Skip to content

ykk648/apstone

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

Base stone of AI_power, maintain all inference of AI_Power models.

Wrapper

  • Supply different model infer wrapper, including ONNX/TensorRT/Torch JIT;
  • Support onnx different Execution Providers (EP) , including cpu/gpu/trt/trt16/int8;
  • High level mmlab model (converted) infer wrapper, including MMPose/MMDet;

Model Convert

  • torch2jit torch2onnx etc.
  • detectron2 to onnx
  • modelscope to onnx
  • onnx2simple2trt
  • tf2pb2onnx

Model Tools

  • torch model edit
  • onnx model shape/speed test (different EP)
  • common scripts from onnxruntime

Usage

onnx model speed test

from apstone import ONNXModel

onnx_p = 'pretrain_models/sr_lib/realesr-general-x4v3-dynamic.onnx'
input_dynamic_shape = (1, 3, 96, 72)  # None
# cpu gpu trt trt16 int8
ONNXModel(onnx_p, provider='cpu', debug=True, input_dynamic_shape=input_dynamic_shape).speed_test()

Install

pip install apstone

Envs

Execution Providers Needs
cpu pip install onnxruntime
gpu pip install onnxruntime-gpu
trt/trt16/int8 onnxruntime-gpu compiled with tensorrt EP
TensorRT pip install tensorrt pycuda
torch JIT install pytorch

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages