CS1001.py

Extended Introduction to Computer Science with Python,
Tel-Aviv University, Spring 2013

Recitation 3 - 14-18.3.2013

Last update: 18.3.2013

Divisors

In the previous recitation we wrote a function to find the divisors of a number:

def divisors(n):
return [div for div in range(l,n) if n % div == 0]

Here is a faster and slightly more complex way to do it:

from math import ceil
def divisors2(n):
divs = [1]
for m in range(2, ceil(n ** 0.5)):#1 and n**0.5 will be handled separately. why?
if n % m == 0:
divs += [m, n // m]
if n % n *xk 0.5 == 0:
divs += [int(n ** 0.5)]
return divs

print(divisors(36))
print(sorted(divisors2(36)))

[1, 2, 3,
3

4, 6, 9, 12, 18]
[1, 2, 4, 6

, 9, 12, 18]

B >

Timing operations

Here is the simplest way to measure the time an operation takes. This method
uses the clock function of the time module. It is the simplest way to do it
and as such it is a crude way of doing it with very little statistical power and
significance.

import time
help(time.clock)

Help on built-in function clock in module time:

clock(...)
clock() -> floating point number

Return the CPU time or real time since the start of the process or since
the first call to clock(). This has as much precision as the system
records.

print(time.clock())
print(time.clock())

25.99883061412379
25.99907632401105

This way of timing operations is often called the tic-toc way, we save the time
before and after the operation and subtract to find the time interval. Run this a
few times to see how crude it is.

n = 1234567890

tic = time.clock()
divisors(n)

toc = time.clock()
print("divisors: ", (toc-tic))
tic = time.clock()
divisors2(n)

toc = time.clock()
print("divisors2:", (toc-tic))

divisors: 467.4390757203012
divisors2: 0.014307922181728827

The binary system and base conversions

A binary number is a number in the base 2, which means that it only uses 2
digits - 0 and 1. The “regular” numbers we use, the decimal numbers, are in
base 10, which means they use 10 digits - 0,1,2,3,4,5,6,7,8,9.

What is a base? To understand base X imagine you have X fingers instead of 10.
How would you count with X fingers?

Converting binary to decimal

Looking at a binary number, 10011010, the Least Significant Digit (or bit for
binary digits), in this case 0, is the right most digit, and if it is 1 then it is worth
20 = 1, otherwise it is worth 0. The next bit (in this case 1) is worth 2! = 2. The
next one is worth 22 = 4, and the k-th digit/bit from the right (starting with
k=0) is worth 2k In general, denoting the binary number zpqse2 = anapn—...a1a0,
it’s decimal value can be evaluated by

§ : k
Thasel0 = a2

n>k>0

. Let’s write python code for this:

x_bin "11110"
x_bin = x_bin[::-1] # reverse it so that LSB is on the left for the iteration
x_dec = 0
for k in range(len(x_bin)):
bit = int(x_bin[k])
print (k,bit)
x_dec += bit * 2%x*k
print (x_dec)

S W N - O
S T o)

Converting decimal to binary

Converting from decimal to binary is done by integer division. Remember that
taking the modulo 10 of a number gives the LSD in base 10, and diving by 10
removes the LSD. This is the basic idea:

x_dec = 42
Xx_bin = "'
while x_dec > O:
bit = x_dec % 2
x_bin = str(bit) + x_bin
x_dec = x_dec // 2
print(x_bin)

101010

Builtin functions

There are some python functions to do these operations:
bin(42)

'0b101010'

int('101010',2)

42

You can also use base 16 - hexadecimal numbers:
hex(42)

'0x2a’

int('2a',16)

42

General conversion

We want to convert from base 10 to base b (2 < b < 10) :

def convert_base(n,b):
'''convert_base(integer, integer) -> string
Return the textual representation of n (decimal) in base 2 <= b <= 10.
rea
result = "'
while n > O:
digit =n % b
n=n//b
print(digit)
result = str(digit) + result
return result

convert_base(23,12)

1+12+12%%2

convert_base(10,16)
and now to base b for 10 < b < 36 :

def convert_base(n,b):
'''convert_base(integer, integer) -> string
Return the textual representation of n (decimal) in base 2 <= b <= 10.

assert 2 <= b <= 36

if n ==
result
elif n < O:
result
else:

]
o

result
n = abs(n)
while n > O:

digit =n % b

n=n//b

str(digit) omnly works for b <= 10

result = '0123456789abcdefghijklmnopqrstuvwxyz' [digit] + result
return result

convert_base(23,12)
convert_base(10,6)
convert_base(10,16)
convert_base(40,32)
convert_base(0,5)

convert_base(100,55)

Python’s memory model

See more examples at the Python Tutor website.

http://www.pythontutor.com/visualize.html

Fin

This notebook is part of the Extended introduction to computer science course
at Tel-Aviv University.

The notebook was written using Python 3.2 and IPython 0.13.1.

The code is available at https://raw.github.com/yoavram/CS1001.py/master/
recitation3.ipynb.

The notebook can be viewed online at http://nbviewer.ipython.org/urls/raw.
github.com/yoavram/CS1001.py/master/recitation3.ipynb.

The notebooks is also available as a PDF at https://github.com/yoavram/
CS1001.py /blob/master /recitation3.pdf?raw=true.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0
Unported License.

Ipython d:\\workspace\\nbconvert\\nbconvert.py -f latex d:\\university\\CS1001.py\\recitati
Ipandoc d:\\university\\CS1001.py\\recitation3.tex -o d:\\university\\CS1001.py\\recitation:

http://tau-cs1001-py.wikidot.com/
https://raw.github.com/yoavram/CS1001.py/master/recitation3.ipynb
https://raw.github.com/yoavram/CS1001.py/master/recitation3.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/yoavram/CS1001.py/master/recitation3.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/yoavram/CS1001.py/master/recitation3.ipynb
https://github.com/yoavram/CS1001.py/blob/master/recitation3.pdf?raw=true
https://github.com/yoavram/CS1001.py/blob/master/recitation3.pdf?raw=true
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

	CS1001.py
	Extended Introduction to Computer Science with Python, Tel-Aviv University, Spring 2013

	Recitation 3 - 14-18.3.2013
	Last update: 18.3.2013
	Divisors
	Timing operations
	The binary system and base conversions
	Converting binary to decimal
	Converting decimal to binary
	Builtin functions
	General conversion

	Python's memory model
	Fin

