

Who | am

* Yoav Ram @yoavram

* Postdoc at Stanford University
 PhD in BioMath from Tel-Aviv University

* Using Python since 2002

* Using & teaching Scientific Python since 2011
* Python training for engineers & data scientists

Presentation & source code on GitHub:
https://github.com/yoavram/DataTalks2017

License: CC-BY-SA 4.0

Why Python?

for scientific computing...

| used Matlab. Now | use Python. by Steve Tjoa
Why use Python for scientific computing?

Python is Free

Gratis: Free as in Beer

« MATLAB is expensive (as of Feb 2017)
— Individuals: $2,350
— Academia: $S550
— Personal: S85
— Student: $29-55
— Batteries (toolboxes...) not included
* Python is totally free
— Batteries included (NumPy, SciPy...)

e Ris also free

MathWork Pricing

Libre: Free as in Speech

 MATLAB source code is closed and proprietary
— You cannot see the code
— You cannot change the code
— You can participate in the discussion as a client

* Python source code is open

— You can see, you can change, you can contribute code
and documentation (python, numpy)

— You can participate in the discussion as a peer
(python, numpy)

 Ris also open

Python is a general-purpose
language

R and MATLAB are used primarily for
scientific computing

Python is used for:

Scientific computing
Enterprise software
Web design

Back-end

Front-end

Everything in between

Python is used at

Google, Rackspace, Microsoft, Intel, Walt
Disney, MailChimp, twilio, Bank of America,
Facebook, Instagram, HP, Linkedin, Elastic,
Mozilla, YouTube, ILM, Thawte, CERN,
Yahoo!, NASA, Trac, Civilization IV, reddit,
LucasFilms, D-Link, Phillips, AstraZeneca,
KLA-Tencor, Nerua

https://us.pycon.org/2016/sponsors/
https://www.python.org/about/quotes/
https://en.wikipedia.org/wiki/Python %28programming language%29#Use
https://en.wikipedia.org/wiki/List of Python software
https://www.python.org/about/success/

Python is portable

More or less same code runs on
Windows, Linux, macQOS, and any
platform with a Python interpreter

Python for "other" platforms

Python syntax is beautiful

Although beauty is in the eyes of the
beholder

Python is inherently object-
oriented

Almost everything is an object

Python is high level, easy to
learn, and fast to develop

4
4

/A Y,
\\\“\\\\\\\\\ 7’ \\\ \\\\ \
\\\: /

/
v

v
(h
.
/ M . \\
v
/

XKCD 353

Python is fast enough

Written in C
Easy to wrap more C
Easy to parallelize

@gthon

Benchmark Game | NumFocus Benchmarks

Python is popular and has a great
community

Popularity

* Python is 7t most popular tag on
StackOverflow

* Ris 24" most popular tag
,. * MATLAB is 58t most popular tag
ios stackoverflow.com/tags, Feb 2017

ct+

matlab

html
python
jquery

android

StackOverflow tag name

php

c#

java
javascript

0 200000 400000 600000 800000 1000000 1200000
Count

Active community

39 most active repositories on GitHub after
Java (incl. Android) and JavaScript (incl.
node.js)

~4.8-fold more than R (12th)
~27-fold more than MATLAB (24t)
As of Feb 2017

See breakdown at githut

Python has a lot of great libraries

Many new libraries released every
month

2.4k -
2.2k -

]
N® of releases

2.0k —

SN
1.8k
1.6k
1.4k
1.2k

1.0k
800 -
600 —
ielliilill
=S et AL

2005 2007 2009 2011 2013 2015 201

Il Monthly releases M Year-on-year growth

During 2016 >2,000 new packages released every month.
See more stats at PyGarden/stats.

Python can do nearly everything
MATLAB and R can do

With libraries like NumPy, SciPy,
Matplotlib, IPython/Jupyter,

Displacement

N
o

N
o

N
o

Differential equations

plot
plot

scipy.integrate.

SR HEL

(f, wo, t,

)

Model fitting

params, cov = scipy.optimize. (

f=logistic, xdata=t, ydata=y, p0=(1, 10, 1)

NO=1.512, K=8.462, r=0.758

8 Lt e
o° .0 ® K
> () <: N(t) —
4 o. — — L —Fr
1 (1 N(O))e t
0 | ;
0 o 8

Optimization

res = scipy.optimize. (

f, method="bounded", bounds=[8, 16])

fun: -0.23330441717143405 |
message: 'Solution found.’
nfev: 9

status: 0

04 4

02 -
success: True

x: 11.706005 =

00 A

Image analysis

segmented = 1mage threshold
dilated = scipy.ndimage. (segmented, max)

labels = skimage.measure. (dilated)

image labels

ee02a@
XYY XN

eec@@g

Machine learning

knn = sklearn.neighbors.
knn. (X_train, y_train)

knn. (X_test)

Accuracy: 0.9

petal width (cm)

T T T
0 1 2 3 4 5 6 7

petal length (cm)

Deep learning

with
readout =

as s:
s.graph.get_tensor_by name('softmax:0')

predictions = (readout, {'Image’: })

pred_id = ()

Label = node_lookup.id_to_string(pred_id)
score = predictions[pred_id]

basketball (score = 0.98201)

Demand & supply of Python
programmers is high

Number of Indeed Job Postings by Programming
Language (Feb2,2017)

PHP
i0S
Perl
C#
C++

Javascript

Python

Java

SQL

20000 40000 60000 80000 100000 120000

o

B Number of postings

Coding Dojo

30
25
20
15
10

Number of top 39 U.S. computer science departments
that use each language to teach introductory courses

Python Java MATLAB C++ Scheme Scratch

Analysis done by Philip Guo (www.pgbovine.net) in July 2014, last updated 2014-07-29

Phillip Gou @ CACM

First language at Israeli universities

TAU: CS & Engineering use Python
Technion: CS use C, some courses in Python
HUJI: CS & Humanities, use Python

BGU: CS use Java, Engineering use C

History of Python

Developed in 1989-91 by Guido van Rossum
in the Netherlands

Python 2.0 released Oct 2000 (support ends
2020)

Python 3.0 released Dec 2008
Python 3.6 released Dec 2016
Python 3 is widely used

2 Vs 3

If you use Python 2.x:

* 2012 called, they want their print back
* Seriously, consider moving to 3.x ASAP
* But atleast 3.4

* See www.python3statement.org

I 1 I I 1 I
2008 2009 2010 2011 2012 2013 2014 2015 2016
M unknown M py2 M py2-3 M py3

http://pygarden.com/stats

5

'

Scientific '\ in action:
Theoretical Evolution

: ‘!'?’I’F’H"Avlllhl‘ﬂ}“‘“y

Photo by Rob SQkH:ifépkhise |

Scientific Python in action:
Theoretical Evolution

 Formally this field is Population Genetics
e Study changes in frequency of gene variants

within populations
* Focus on two forces:

— Natural selection

— Random genetic drift

* Methods from applied math, statistics, CS,
theoretical physics

Population genetics

36

Evolution

University of California Museum of Paleontology
Understanding Evolution

Natural Selection

Random Genetic Drift

Wright-Fisher Model

Standard model for change in frequency of gene variants

R.A. Fisher Sewall Wrigh
1890-1962 1889-1988
UK & Australia USA

39

Wright-Fisher Model

Standard model for change in frequency of gene variants

Two gene variants: 0 and 1.
Number of individuals with each variant is ny and n,.
Total population size is N = ny+ n,.

Frequency of each variant is p,=n,/N and p,=n,/N.

Wright-Fisher Model

Assume that variant 1 is favored by selection due to better
survival or reproduction.

The frequency of variant 1 after the effect of selection
natural (p,) is:

. n1°(1+S)
" ng+ng-(1+5s)

P1

s is a selection coefficient, representing how much variant
1 is favored over variant 0.

Wright-Fisher Model

Random genetic drift accounts for the effect of random
sampling.

Due to genetic drift, the number of individuals with variant
1 in the next generation (n’,) is:

n; ~ Binomial(N, p;)

The Binomial distribution is the distribution of the number
of successes in N independent trials with probability of
success p,.

Fixation Probability

Assume a single copy variant 1 in a population
of size N.

What is the probability that variant 1 will
take over the population rather than go
extinct?

43

NumPy

The fundamental package for scientific computing with
Python:

* N-dimensional arrays

e Random number generators
e Array functions

NUMpPYy.org

Loosing your loops

' Deh t the Stock Photo

Natural Selection Random drift

n; - (1+s) . .
= I~ B 1 N,
P1 ng+n;-(1+s) (momla (N.py)

from numpyv.random import binomial

Import a binomial random
number generator from
NumPy

nl

Natural Selection
Ill * (1 + S)

pl:n0+n1-(1+s)

Random drift

n; ~ Binomial(N, p,)

Start with a single copy of
variant 1

Natural Selection Random drift
. n;-(1+5s)
ng+ng-(1+5)

D1 n; ~ Binomial(N, p;)

Until number of individuals
with variant 1 is O or N:
extinction or fixation

while 0 < nl1 < N:

Natural Selection Random drift
. ng-(1+5)
ng+ng-(1+5)

D1 n; ~ Binomial(N, p,)

The frequency of variant 1
after selection is p1

pl = n1x(1+s) / (n0 + n1*(1+s))

Natural Selection Random drift

ng- (1 + S) . .
= I~ B 1 N,
P+, (L+s) (momla (. P1)

Due to genetic drift, the
number of individuals with
variant 1 in the next
generation is n’

nl = binomial(N, p1)

Natural Selection Random drift
_ Ill * (1 + S)
ng+ng-(1+5)

D1 n; ~ Binomial(N, p,)

Fixation: n1 equals N
Extinction: n1 equals O

I
I
=

fixation = ni

NumPy vs. Pure Python

NumPy is useful for random number generation:
nl = binomial(N, p1)

Pure Python version would replace this with:

rands = (for _ in (N))
nl = (1

for r 1n rands

if r < pl)

randomis a standard library module

NumPy vs. Pure Python

simulation(N=1000, s=0.1)
simulation(N=1000000, s=0.01)

Pure Python version:
100 loops, best of 3: 6.42 ms per loop
1 loop, best of 3: 528 ms per loop

NumPy version:
10000 loops, best of 3: 150 us per loop x42 faster
1000 loops, best of 3: 313 us per loop

x1680 faster!

53

-

.

faster? -

T

-

@gthon

* Optimizing compiler
* Declare the static type of variables

http://cython.org

55

@gthon

def simulation(np.uint64_t N,
np.float64_t s):

np.uint64 _t n1 = 1
0.uint64_t nO
np.float64_t p

-

56

@gthon

simulation(N=1000, s=0.1)
simulation(N=1000000, s=0.01)

Cython vs. NumPy:

10000 loops, best of 3: 87.8 us per loop x2 faster
10000 loops, best of 3: 177 us per loop x1.75 faster

57

To approximate the fixation
probability we need to run many
simulations. Thousands.

;;‘;,
e : i

In principlé, the standard error of our approximation decreases with
the square root of the number of simulations: SEM ~ 1//m
Death to the Stock Photo

B

Multiple simulations: for loop

fixations = [

59

simulation
1000

Multiple simulations: for loop
fixations = [
simulation
1000

]

fixations

[False, True, False, ..., False, False]

(fixations) / (fixations)

0.195

Multiple simulations: for loop

1 loop, best of 3: 8.05s per loop

62

Multiple simulations: NumPy

nl

np. (repetitions)

Initialize multiple simulations

63

Multiple simulations: NumPy

nt * (1 +s)/ (N+ nl * s)

pl

Natural selection:
nlis an array so operations are
element-wise

64

Multiple simulations: NumPy

nl

binomial(N, p1)

Genetic drift:
plis an array so binomial(N,
pl) draws from multiple
distributions

65

Multiple simulations: NumPy

update = (n1 > 0) & (n1 < N)

update follows the simulations
that didn’t finish yet

66

Multiple simulations: NumPy

update = np.array([] * repetitions)
while update.any():

nl[update] = binomial(N, pl[update])
update = (n1 > 0) & (n1 < N)

update follows the simulations
that didn’t finish yet

67

Multiple simulations: NumPy

result is array of Booleans: for
return nl == each simulation, did variant 1
fix?

Multiple simulations: NumPy

simulation(N=1000, s=0.1)
10 loops, best of 3: 25.2 ms per loop

x320 faster

68

Fixation probability as a function of N

Nrange = np. (1, 6, 20,
dtype=np.uint64)

N must be an integer for this to evaluate to
(n1 < N)

69

Fixation probability as a function of N

fixations = [

simulation(
N,
S,
repetitions
) N Nrange

Fixation probability as a function of N

fixations = np.array(fixations)

fixations

array([[False, False, ..., False, Falsel,
[False, True, ..., False, Falsel],

.

[False, False, ..., True, False],
[False, False, ..., False, False]l],
dtype=bool)

Fixation probability as a function of N

fixations. (axis=1)
fixations. (
axis=1,
ddof=1
) / np. (repetitions)

mean
Sem

72

Approximation

Kimura’s equation:

e %5 —1
e_ZNS e 1 Motoo Kimura
1924-1994
Japan & USA
def kimura(N, s):
return np. (-2 * s) /
np. (=2 * N * s)

(x) is e-1 with better precision for small values of x

73

kimura works on arrays
out-of-the-box

[kimura(N=N, s=s)
N in Nrange]

kimura(Ns=s)

1 loop, best of 3: 752 ms per loop
1000 loops, best of 3: 3.91 ms per loop

X200 faster!

74

Numexpr

Fast evaluation of element-wise array expressions
using a vector-based virtual machine

def kimura(N, s):
return (
"expml(-2 * s) /
expml(=2 * N % s)“)

kimura(N=Nrange, s=s)
1000 loops, best of 3: 803 us per loop x5 faster

75 https://github.com/pydata/numexpr

Plotting with matplotlib

0.12

o
-
o

©
o
o

Fixation probability
o o
o o
&~ (@]

©
o
N

0.00

76

—— Approximation
- 2s
¢ Simulation

¢

t
-

10"

102

Population size (N)

10° 104

10° 108

http://matplotlib.org

Tiiathnilme

e

e
N e

v'l|t

ep ;Iraé.k osf tlme

\\;‘ l\ t \

tlme |\mwsured in number of generations

https://commons.wikimedia.org/wiki/File:Prim_clockwork.jpg

def simulation(N, s, repetitions):
nl = np.ones(repetitions)
T = np.empty_like(nl)
update = (n1 > 0) § (n1 < N)
£=0 t keeps track of time
while update.any():
t += 1
p=nl=*x(1+s)/ (N+nl=*s)
nl[update] = binomial(N, p[update])
T[update] =t
update = (n1 > 0) § (n1 < N)

return nl == N, T

78

def simulation(N, s, repetitions):
nl = np.ones(repetitions)
T = np.empty_like(nl)
update = (n1 > 0) § (n1 < N)

R T holds time for

while update.any(): extinction/fixation

t += 1

Pp = nl % (1 +s)/ (N +nl1 * s)
nl[update] = binomial(N, pl[update])
T[update] = t

update = (n1 > 0) § (n1 < N)

return nl == N, T

79

80

return nl == N, T

Return both Booleans
and times (T)

Statistical data visualization with Seaborn

* Visualization library based on matplotlib and
Pandas

* High-level interface for attractive statistical
graphics

By Michael Waskom, postdoc at NYU
http://seaborn.pydata.org

Statistical data visualization with Seaborn

N e e _— | e

-

82

Plot with Seaborn

fixations, times

83

simulation(..)

Plot with Seaborn

(times|[fixations])

85

Plot with Seaborn

(times[~fixations])

Plot with Seaborn

fixations, times = simulation(..)
distplot(times[fixations])
distplot(times[~fixations])

0.025 - ; 0.6 -
0.020 - 0.5 1
0.4 -
20.015 - >
& &
= -1 0.3
2 g
i 0.010 - T
0.2
0.005 - 01
0.000 - 0.0 - . . ; ; .
R0 140 160 180 200 220 240 260 0 5 10 15 20 25 30 35

Fixation time Extinction time

Diffusion equation approximation

1 — ¢ 2Nsz _ €—2NS(1—SU> 4 e—2Ns
hiz) = x(l —x)
(62]\73:1: . 1)(1 . 6—2N3(1—:1:))
[—
2(2) x(l — x)

1 1
— Ii(y)d
‘]1 8(1 - G_QNS) /x 1(y) Yy

1 X
= Ir(y)dt
/> s(1 — e—2Ns) /0 2(y)

1 — 6—2]\73:1:
U= T N
1 —u
Tfm = J1+ Jo
Uu

87

Motoo Kimura
1924-1994
Japan & USA

Diffusion equation approximation

1 — ¢ 2Nsz _ 6—2NS(1—SC) 4 e—2Ns

(1 —) Requires
integration...

Motoo Kimura
1924-1994
88 Japan & USA

def integral(f, N, s, a, b):

integral will calculate fabf(N,s,x)dx

89

from

90

import

(f, N, s)

partial freezes N and s
in f(N, s, x) tocreate f(x)

from import

return (f, a, b)[0O]

@SciPy's quad computes a definite integral fab f(x)dx

(using a technique from the Fortran library QUADPACK)

91

92

11

I2

I1 and I2 are defined according to the
equations

def T kimura(N, s):
x =1.0 /N

T_kimura is the fixation time given a single
98 copy of variant 1: frequency x=1/N

def T kimura(N, s):

J1l = %
integral(I1, N, s, x, 1)

J2 = %
integral(I2, N, s, 0, x)

u:

J1 and J2 are calculated using integrals of I1
and I2

def T kimura(N, s):

return J1 + ((1 = u) / u) * J2

T¢; Is the return value

95

def T kimura(N, s):

np.vectorize creates a function that takes a
sequence and returns an array - x2 faster

96

97

2500

sl " e aaaal

2000 -

-

N

o

o
1

1000 -

Fixation time

500 A

—— Approximation
¢ Simulation

10° 102

10° 104
Population size (N)

10°

108

Dig Deeper

Online Jupyter notebook: github.com/yoavram/PyConIL2016

Multi-type simulation:
Includes L variants, with mutation.
Follow ng, n,, ..., n_ until n;=N.

0.0045 - , 15 -
0.0040 - '
w 1.4
0.0035 - §
0.0030 - E 13
5 c
< 0.0025 - 3
> £ 12
S 0.0020 - c
o ke)
Y- 0.0015 - T 1.1 -
0.0010 A §
a 1.0 -
0.0005 -
00000 —- T — | 09 T T T T T
08 200 400 600 800 1000 1200 0 100 200 300 400 500

Adaptation time Time

Dig Deeper

Online Jupyter notebook: github.com/yoavram/PyConIL2016

* Numba: JIT compiler, array-oriented and
math-heavy Python syntax to machine code

e |PyParallel: IPython’s sophisticated and
powerful architecture for parallel and
distributed computing.

* |PyWidgets: Interactive HTML Widgets for
Jupyter notebooks and the IPython kernel

Thank You!

Presentation & Jupyter notebook:
https://github.com/yoavram/DataTalks2017

e

X yoav@yoavram.com
y @yoavram

() github.com/yoavram
A www.yoavram.com
&, python.yoavram.com

Death to the Stock Photo

