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Who	I	am

• Yoav	Ram	@yoavram

• Postdoc	at	Stanford	University
• PhD	in	BioMath from	Tel-Aviv	University
• Using	Python	since	2002
• Using	&	teaching	Scientific	Python	since	2011
• Python	training	for	engineers	&	data	scientists

Presentation	&	source	code	on	GitHub:	
https://github.com/yoavram/DataTalks2017

License:	CC-BY-SA	4.0
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Why	Python?

I	used	Matlab.	Now	I	use	Python.	by	Steve	Tjoa
Why	use	Python	for	scientific	computing?

for	scientific	computing…



Python	is	Free



Gratis:	Free	as	in	Beer

• MATLAB	is	expensive	(as	of	Feb	2017)
– Individuals:	$2,350	
– Academia:	$550
– Personal:	$85
– Student:	$29-55
– Batteries	(toolboxes…) not	included

• Python	is	totally	free
– Batteries	included	(NumPy,	SciPy…)

• R	is	also	free

MathWork	Pricing



Libre:	Free	as	in	Speech

• MATLAB	source	code	is	closed and	proprietary
– You	cannot	see	the	code
– You	cannot	change	the	code
– You	can	participate	in	the	discussion	as	a	client

• Python	source	code	is	open
– You	can	see,	you	can	change, you	can	contribute code	
and	documentation	(python,	numpy)

– You	can	participate	in	the	discussion	as	a	peer
(python,	numpy)

• R	is	also	open



Python	is	a	general-purpose	
language

R	and	MATLAB	are	used	primarily	for	
scientific	computing



Python	is	used	for:

• Scientific	computing
• Enterprise	software
• Web	design
• Back-end
• Front-end
• Everything	in	between



Python	is	used	at

Google,	Rackspace,	Microsoft,	Intel,	Walt	
Disney,	MailChimp,	twilio,	Bank	of	America,	
Facebook,	Instagram,	HP,	Linkedin,	Elastic,	
Mozilla,	YouTube,	ILM,	Thawte,	CERN,	
Yahoo!,	NASA,	Trac,	Civilization	IV,	reddit,	
LucasFilms,	D-Link,	Phillips,	AstraZeneca,	
KLA-Tencor,	Nerua

https://us.pycon.org/2016/sponsors/
https://www.python.org/about/quotes/
https://en.wikipedia.org/wiki/Python_%28programming_language%29#Use
https://en.wikipedia.org/wiki/List_of_Python_software
https://www.python.org/about/success/



Python	is	portable

More	or	less	same	code	runs	on	
Windows,	Linux,	macOS,	and	any	
platform	with	a	Python	interpreter

Python	for	"other"	platforms



Python	syntax	is	beautiful

Although	beauty	is	in	the	eyes	of	the	
beholder



Python	is	inherently	object-
oriented

Almost	everything	is	an	object



Python	is	high	level,	easy	to	
learn,	and	fast	to	develop

So	is	MATLAB,	Ruby,	R…



XKCD	353



Python	is	fast	enough

Written	in	C
Easy	to	wrap	more	C
Easy	to	parallelize

Benchmark	Game |	NumFocus Benchmarks



Python	is	popular	and	has	a	great	
community



Popularity
• Python	is	7th most	popular	tag	on	

StackOverflow
• R	is	24th most	popular	tag
• MATLAB	is	58th most	popular	tag
stackoverflow.com/tags,	Feb	2017



Active	community

• 3rd most	active	repositories	on	GitHub after	
Java (incl.	Android)	and	JavaScript (incl.	
node.js)

• ~4.8-fold	more	than	R	(12th)
• ~27-fold	more	than	MATLAB	(24th)
• As	of	Feb	2017
• See	breakdown	at	githut



Python	has	a	lot	of	great	libraries



Many	new	libraries	released	every	
month

During	2016	>2,000	new	packages	released	every	month.	
See	more	stats	at	PyGarden/stats.



Python	can	do	nearly	everything	
MATLAB	and	R	can	do

With	libraries	like	NumPy,	SciPy,	
Matplotlib,	IPython/Jupyter,	

Scikit-image,	Scikit-learn,	and	more



Differential	equations

x = scipy.integrate.odeint(f, w0, t, …)
plot(t, x[:, 0])
plot(t, x[:, 1])



Model	fitting

params, cov = scipy.optimize.curve_fit(
f=logistic, xdata=t, ydata=y, p0=(1, 10, 1))

N0=1.512,	K=8.462,	r=0.758



Optimization
res = scipy.optimize.minimize_scalar(

f, method="bounded", bounds=[8, 16])

fun:	-0.23330441717143405
message:	'Solution	found.'
nfev:	9
status:	0
success:	True
x:	11.706005



Image	analysis
segmented = image > threshold
dilated = scipy.ndimage.generic_filter(segmented, max)
labels = skimage.measure.label(dilated)

image	 labels	



Machine	learning
knn = sklearn.neighbors.KNeighborsClassifier()
knn.fit(X_train, y_train)
knn.predict(X_test)

Accuracy:	0.9



Deep	learning
with tensorflow.Session() as s:  
readout = s.graph.get_tensor_by_name('softmax:0')    
predictions = s.run(readout, {’Image': image_data})

pred_id = predictions.argmax()   
Label = node_lookup.id_to_string(pred_id)
score = predictions[pred_id]

basketball	(score	=	0.98201)



Demand	&	supply	of	Python	
programmers	is	high



Coding	Dojo

(Feb	2,	2017)



Phillip	Gou	@	CACM



First	language	at	Israeli	universities

• TAU:	CS	&	Engineering	use	Python
• Technion:	CS	use	C,	some	courses	in	Python
• HUJI:	CS	&	Humanities,	use	Python
• BGU:	CS	use	Java,	Engineering	use	C



History	of	Python

• Developed	in	1989-91	by	Guido	van	Rossum	
in	the	Netherlands

• Python	2.0	released	Oct	2000	(support	ends	
2020)

• Python	3.0	released	Dec	2008
• Python	3.6	released	Dec	2016
• Python	3	is	widely	used

Guido



2	vs	3

If	you	use	Python	2.x:
• 2012	called,	they	want	their	print	back
• Seriously,	consider	moving	to	3.x	ASAP
• But	at	least	3.4
• See	www.python3statement.org

http://pygarden.com/stats



34
Photo by Rob Schreckhise

Scientific	Python	in	action:
Theoretical	Evolution



• Formally	this	field	is	Population	Genetics
• Study	changes	in	frequency	of	gene	variants	
within	populations

• Focus	on	two	forces:
–Natural	selection
–Random	genetic	drift

• Methods	from	applied	math,	statistics,	CS,	
theoretical	physics

Population genetics35

Scientific	Python	in	action:
Theoretical	Evolution



Evolution

University of California Museum of Paleontology 
Understanding Evolution36



Natural	Selection
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Random	Genetic	Drift

38



Wright-Fisher	Model
Standard	model	for	change	in	frequency	of	gene	variants

39

R.A. Fisher
1890-1962

UK & Australia

Sewall Wright
1889-1988

USA



Wright-Fisher	Model
Standard	model	for	change	in	frequency	of	gene	variants

Two	gene	variants:	0 and	1.
Number	of	individuals	with	each	variant	is	n0 and n1.
Total	population	size	is	N	=	n0	+	n1.
Frequency	of	each	variant	is	p0=n0/N	and	p1=n1/N.

40



Wright-Fisher	Model
Assume	that	variant	1 is	favored	by	selection due	to	better	
survival	or	reproduction.

The	frequency	of	variant	1	after	the	effect	of	selection	
natural	(p1)	is:

p" =
n" ⋅ 1 + s

n) + n" ⋅ 1 + s

s is	a	selection	coefficient,	representing	how	much	variant	
1	is	favored	over	variant	0.

41



Wright-Fisher	Model
Random	genetic	drift	accounts	for	the	effect	of	random	
sampling.

Due	to	genetic	drift,	the	number	of	individuals	with	variant	
1	in	the	next	generation	(n’1)	is:

n"* ∼ Binomial(N, p")

The	Binomial	distribution is	the	distribution	of	the	number	
of	successes	in	N independent	trials	with	probability	of	
success	p1.

42



Fixation	Probability

Assume	a	single	copy	variant	1 in	a	population	
of	size	N.

What	is	the	probability	that	variant	1 will	
take	over	the	population	rather	than	go	

extinct?

43



NumPy
The	fundamental	package	for	scientific	computing	with	
Python:

• N-dimensional	arrays
• Random	number	generators
• Array	functions
• Broadcasting
• Tools	for	integrating	C/C++	and	Fortran	code
• Linear	algebra
• Fourier	transform
numpy.org

44 Loosing your loops



Into	the	code

45 Death to the Stock Photo



from numpy.random import binomial
n1 = 1

while 0 < n1 < N:
n0 = N - n1
p1 = n1*(1+s) / (n0 + n1*(1+s))
n1 = binomial(N, p1)              

fixation = n1 == N

Random driftNatural Selection

n"* ∼ Binomial(N, p")p" =
n" ⋅ 1 + s

n) + n" ⋅ 1 + s

Import a binomial random 
number generator from 

NumPy



from numpy.random import binomial
n1 = 1

while 0 < n1 < N:
n0 = N - n1
p1 = n1*(1+s) / (n0 + n1*(1+s))
n1 = binomial(N, p1)              

fixation = n1 == N

Random driftNatural Selection

n"* ∼ Binomial(N, p")p" =
n" ⋅ 1 + s

n) + n" ⋅ 1 + s

Start with a single copy of 
variant 1



from numpy.random import binomial
n1 = 1

while 0 < n1 < N:
n0 = N - n1
p1 = n1*(1+s) / (n0 + n1*(1+s))
n1 = binomial(N, p1)              

fixation = n1 == N

Random driftNatural Selection

n"* ∼ Binomial(N, p")p" =
n" ⋅ 1 + s

n) + n" ⋅ 1 + s

Until number of individuals 
with variant 1 is 0 or N: 
extinction or fixation



from numpy.random import binomial
n1 = 1

while 0 < n1 < N:
n0 = N - n1
p1 = n1*(1+s) / (n0 + n1*(1+s))
n1 = binomial(N, p1)              

fixation = n1 == N

Random driftNatural Selection

n"* ∼ Binomial(N, p")p" =
n" ⋅ 1 + s

n) + n" ⋅ 1 + s

The frequency of variant 1
after selection is p1



from numpy.random import binomial
n1 = 1

while 0 < n1 < N:
n0 = N - n1
p1 = n1*(1+s) / (n0 + n1*(1+s))
n1 = binomial(N, p1)              

fixation = n1 == N

Random driftNatural Selection

n"* ∼ Binomial(N, p")p" =
n" ⋅ 1 + s

n) + n" ⋅ 1 + s

Due to genetic drift, the 
number of individuals with 

variant 1 in the next 
generation is n1



from numpy.random import binomial
n1 = 1

while 0 < n1 < N:
n0 = N - n1
p1 = n1*(1+s) / (n0 + n1*(1+s))
n1 = binomial(N, p1)              

fixation = n1 == N

Random driftNatural Selection

n"* ∼ Binomial(N, p")p" =
n" ⋅ 1 + s

n) + n" ⋅ 1 + s

Fixation: n1 equals N
Extinction: n1 equals 0



NumPy vs.	Pure	Python
NumPy is useful for random number generation:

n1 = binomial(N, p1)

Pure Python version would replace this with:
from random import random
rands = (random() for _ in range(N))
n1 = sum(1

for r in rands
if r < p1)

random is a standard library module

52



NumPy vs.	Pure	Python
%timeit simulation(N=1000, s=0.1)
%timeit simulation(N=1000000, s=0.01)

Pure	Python	version:
100	loops,	best	of	3:	6.42	ms	per	loop
1	loop,	best	of	3:	528	ms	per	loop

NumPy	version:
10000	loops,	best	of	3:	150	µs	per	loop	x42	faster
1000	loops,	best	of	3:	313	µs	per	loop	

x1680	faster!

53



Can	we	do	it	
better faster?

54Photo	by	Malene Thyssen



• Optimizing	compiler
• Declare	the	static	type	of	variables
• Makes	writing	C	extensions	for	Python	as	
easy	as	Python	itself
• Foreign	function	interface	for	invoking	
C/C++	routines	

http://cython.org
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def simulation(np.uint64_t N,
np.float64_t s):

cdef np.uint64_t n1 = 1
cdef np.uint64_t n0    
cdef np.float64_t p

while 0 < n1 < N:
n0 = N - n1
p1 = n1 * (1 + s) / (n0 + n1 * (1 + s))
n1 = np.random.binomial(N, p1)               

return n1 == N

56



Cython

%timeit simulation(N=1000, s=0.1)
%timeit simulation(N=1000000, s=0.01)

Cython vs.	NumPy:
10000	loops,	best	of	3:	87.8	µs	per	loop	x2	faster
10000	loops,	best	of	3:	177	µs	per	loop	x1.75	faster

57



To	approximate	the	fixation	
probability	we	need	to	run	many	
simulations.	Thousands.

58

In principle, the standard error of our approximation decreases with 
the square root of the number of simulations: SEM ∼ 1/ 𝑚�
Death to the Stock Photo



Multiple	simulations: for loop
fixations = [

simulation(N, s)
for _ in range(1000)

]

59



Multiple	simulations: for loop
fixations = [

simulation(N, s)
for _ in range(1000)

]
fixations
[False, True, False, ..., False, False]

sum(fixations) / len(fixations)
0.195

60



Multiple	simulations: for loop
%%timeit
fixations = [

simulation(N, s) 
for _ in range(1000)

]

1	loop,	best	of	3:	8.05	s per	loop

61



Multiple	simulations:	NumPy
def simulation(N, s, repetitions):
n1 = np.ones(repetitions)
update = np.array([True] * repetitions)

while update.any():
p1 = n1 * (1 + s) / (N + n1 * s) 
n1[update] = binomial(N, p1[update])
update = (n1 > 0) & (n1 < N)

return n1 == N

62

Initialize multiple simulations



Multiple	simulations:	NumPy
def simulation(N, s, repetitions):
n1 = np.ones(repetitions)
update = np.array([True] * repetitions)    

while update.any():
p1 = n1 * (1 + s) / (N + n1 * s) 
n1[update] = binomial(N, p1[update])
update = (n1 > 0) & (n1 < N)

return n1 == N

63

Natural selection: 
n1 is an array so operations are 

element-wise



Multiple	simulations:	NumPy
def simulation(N, s, repetitions):
n1 = np.ones(repetitions)
update = np.array([True] * repetitions)    

while update.any():
p1 = n1 * (1 + s) / (N + n1 * s) 
n1[update] = binomial(N, p1[update])
update = (n1 > 0) & (n1 < N)

return n1 == N

64

Genetic drift:
p1 is an array so binomial(N, 
p1) draws from multiple 

distributions



Multiple	simulations:	NumPy
def simulation(N, s, repetitions):
n1 = np.ones(repetitions)
update = np.array([True] * repetitions)    

while update.any():
p1 = n1 * (1 + s) / (N + n1 * s) 
n1[update] = binomial(N, p1[update])
update = (n1 > 0) & (n1 < N)

return n1 == N

65

update follows the simulations 
that didn’t finish yet



Multiple	simulations:	NumPy
def simulation(N, s, repetitions):
n1 = np.ones(repetitions)
update = np.array([True] * repetitions) 

while update.any():
p1 = n1 * (1 + s) / (N + n1 * s) 
n1[update] = binomial(N, p1[update])
update = (n1 > 0) & (n1 < N)

return n1 == N

66

update follows the simulations 
that didn’t finish yet



Multiple	simulations:	NumPy
def simulation(N, s, repetitions):
n1 = np.ones(repetitions)
update = np.array([True] * repetitions)    

while update.any():
p1 = n1 * (1 + s) / (N + n1 * s) 
n1[update] = binomial(N, p1[update])
update = (n1 > 0) & (n1 < N)

return n1 == N

67

result is array of Booleans: for 
each simulation, did variant 1 

fix?



Multiple	simulations:	NumPy

%timeit simulation(N=1000, s=0.1)
10	loops,	best	of	3:	25.2	ms per	loop	

x320	faster

68



Fixation	probability	as	a	function	of	N

Nrange = np.logspace(1, 6, 20, 
dtype=np.uint64)

Nmust	be	an	integer for	this	to	evaluate	to	True:
(n1 > 0) & (n1 < N)

69



Fixation	probability	as	a	function	of N

fixations = [
simulation(

N,
s, 
repetitions

) for N in Nrange
]



Fixation	probability	as	a	function	of	N

fixations = np.array(fixations)
fixations
array([[False, False, ..., False, False], 

[False, True, ..., False, False], 
, ..., 
[False, False, ..., True, False], 
[False, False, ..., False, False]],
dtype=bool)

71



Fixation	probability	as	a	function	of	N

fixations = np.array(fixations)
mean = fixations.mean(axis=1)
sem = fixations.std(

axis=1, 
ddof=1

) / np.sqrt(repetitions)

72



Approximation

Kimura’s	equation:
e=>? − 1
e=>A? − 1

def kimura(N, s):
return np.expm1(-2 * s) /

np.expm1(-2 * N * s)

expm1(x) is	ex-1	with	better	precision	for	small	values	of	x
73

Motoo Kimura
1994-1924

Japan & USA



kimura works	on	arrays
out-of-the-box

%timeit [kimura(N=N,	s=s)	
for N	in Nrange]

%timeit kimura(N=Nrange,	s=s)

1	loop,	best	of	3:	752	ms	per	loop
1000	loops,	best	of	3:	3.91	ms	per	loop	

X200	faster!
74



Numexpr
Fast	evaluation	of	element-wise	array	expressions	
using	a	vector-based	virtual	machine

def kimura(N, s):
return numexpr.evaluate(

"expm1(-2 * s) /
expm1(-2 * N * s)“)

%timeit kimura(N=Nrange, s=s)
1000	loops,	best	of	3:	803	µs	per	loop	x5	faster

75 https://github.com/pydata/numexpr



Plotting	with	matplotlib

76 http://matplotlib.org



Fixation	time

How	much	time	does	it	take	variant	1 to	go	
extinct	or	to	fix?

We	want	to	keep	track	of	time*.

77 time	is	measured	in	number	of	generations
https://commons.wikimedia.org/wiki/File:Prim_clockwork.jpg



def simulation(N, s, repetitions):
n1 = np.ones(repetitions)
T = np.empty_like(n1)
update = (n1 > 0) & (n1 < N)
t = 0

while update.any():
t += 1
p = n1 * (1 + s) / (N + n1 * s) 
n1[update] = binomial(N, p[update])
T[update] = t
update = (n1 > 0) & (n1 < N)

return n1 == N, T

78

t keeps track of time



def simulation(N, s, repetitions):
n1 = np.ones(repetitions)
T = np.empty_like(n1)
update = (n1 > 0) & (n1 < N)
t = 0

while update.any():
t += 1
p = n1 * (1 + s) / (N + n1 * s) 
n1[update] = binomial(N, p[update])
T[update] = t
update = (n1 > 0) & (n1 < N)

return n1 == N, T

79

T holds time for 
extinction/fixation



def simulation(N, s, repetitions):
n1 = np.ones(repetitions)
T = np.empty_like(n1)
update = (n1 > 0) & (n1 < N)
t = 0

while update.any():
t += 1
p = n1 * (1 + s) / (N + n1 * s) 
n1[update] = binomial(N, p[update])
T[update] = t
update = (n1 > 0) & (n1 < N)

return n1 == N, T

80

Return both Booleans 
and times (T)



• Visualization	library	based	on	matplotlib and	
Pandas

• High-level	interface	for	attractive	statistical	
graphics

By	Michael	Waskom,	postdoc	at	NYU
http://seaborn.pydata.org

81

Statistical	data	visualization	with	Seaborn



Statistical	data	visualization	with	Seaborn

82



Plot	with	Seaborn

from seaborn import distplot

fixations, times = simulation(…)

distplot(times[fixations])

distplot(times[~fixations])
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Plot	with	Seaborn

from seaborn import distplot

fixations, times = simulation(…)

distplot(times[fixations])

distplot(times[~fixations])
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Plot	with	Seaborn

from seaborn import distplot

fixations, times = simulation(…)

distplot(times[fixations])

distplot(times[~fixations])
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Plot	with	Seaborn

fixations, times = simulation(…)
distplot(times[fixations])
distplot(times[~fixations])

86



Diffusion	equation	approximation	

87

Motoo Kimura
1994-1924

Japan & USA



Diffusion	equation	approximation	

88

Motoo Kimura
1994-1924

Japan & USA

Requires 
integration…



from functools import partial
from scipy.integrate import quad

def integral(f, N, s, a, b):
f = partial(f, N, s)    
return quad(f, a, b)[0]

89

integral will calculate ∫ 𝐟 𝐍, 𝐬, 𝐱 𝐝𝐱𝐛
𝐚



from functools import partial
from scipy.integrate import quad

def integral(f, N, s, a, b):
f = partial(f, N, s)    
return quad(f, a, b)[0]

90

partial freezes N and s
in f(N, s, x) to create f(x)



from functools import partial
from scipy.integrate import quad

def integral(f, N, s, a, b):
f = partial(f, N, s)    
return quad(f, a, b)[0]

91

SciPy’s quad computes a definite integral ∫ 𝐟 𝐱 𝐝𝐱𝐛
𝐚

(using a technique from the Fortran library QUADPACK)



def I1(N, s, x):
…

def I2(N, s, x):
…

92

I1 and I2 are defined according to the 
equations



T_kimura is the fixation time given a single 
copy of variant 1: frequency x=1/N

@np.vectorize
def T_kimura(N, s):
x = 1.0 / N
J1 = -1.0 / (s * expm1(-2 * N * s)) *

integral(I1, N, s, x, 1)
J2 = -1.0 / (s * expm1(-2 * N *s)) * 

integral(I2, N, s, 0, x)
u = expm1(-2 * N * s * x) / 

expm1(-2 * N * s)

return J1 + ((1 - u) / u) * J2

93



@np.vectorize
def T_kimura(N, s):
x = 1.0 / N
J1 = -1.0 / (s * expm1(-2 * N * s)) *

integral(I1, N, s, x, 1)
J2 = -1.0 / (s * expm1(-2 * N *s)) * 

integral(I2, N, s, 0, x)
u = expm1(-2 * N * s * x) / 

expm1(-2 * N * s)

return J1 + ((1 - u) / u) * J2

94

J1 and J2 are calculated using integrals of I1
and I2



@np.vectorize
def T_kimura(N, s):
x = 1.0 / N
J1 = -1.0 / (s * expm1(-2 * N * s)) *

integral(I1, N, s, x, 1)
J2 = -1.0 / (s * expm1(-2 * N *s)) * 

integral(I2, N, s, 0, x)
u = expm1(-2 * N * s * x) / 

expm1(-2 * N * s)

return J1 + ((1 - u) / u) * J2

95

Tfix is the return value



np.vectorize creates a function that takes a 
sequence and returns an array - x2 faster

@np.vectorize
def T_kimura(N, s):
x = 1.0 / N
J1 = -1.0 / (s * expm1(-2 * N * s)) *

integral(I1, N, s, x, 1)
J2 = -1.0 / (s * expm1(-2 * N *s)) * 

integral(I2, N, s, 0, x)
u = expm1(-2 * N * s * x) / 

expm1(-2 * N * s)

return J1 + ((1 - u) / u) * J2
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Dig	Deeper
Online	Jupyter notebook: github.com/yoavram/PyConIL2016

Multi-type	simulation:
Includes	L variants,	with	mutation.
Follow	n0,	n1,	…,	nLuntil	nL=N.
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• Numba:	JIT	compiler,	array-oriented	and	
math-heavy Python	syntax	to	machine	code

• IPyParallel:	IPython’s sophisticated	and	
powerful	architecture	for	parallel and	
distributed computing.

• IPyWidgets:	Interactive	HTML	Widgets	for	
Jupyter notebooks	and	the	IPython kernel
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Dig	Deeper
Online	Jupyter notebook: github.com/yoavram/PyConIL2016



Thank	You!
Presentation	&	Jupyter notebook:

https://github.com/yoavram/DataTalks2017

100

yoav@yoavram.com
@yoavram
github.com/yoavram
www.yoavram.com
python.yoavram.com

Death to the Stock Photo


