Permalink
Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
7623 lines (7546 sloc) 504 KB
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Location History Analysis</title>
<link href="http://anotherdatum.com/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="Another Datum Full Atom Feed" />
<!-- Bootstrap Core CSS -->
<link href="http://anotherdatum.com/theme/css/bootstrap.min.css" rel="stylesheet">
<!-- Custom CSS -->
<link href="http://anotherdatum.com/theme/css/clean-blog.min.css" rel="stylesheet">
<!-- Code highlight color scheme -->
<link href="http://anotherdatum.com/theme/css/code_blocks/tomorrow.css" rel="stylesheet">
<!-- CSS specified by the user -->
<link href="http://anotherdatum.com/css/overrides.css" rel="stylesheet">
<!-- Custom Fonts -->
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet" type="text/css">
<link href='https://fonts.googleapis.com/css?family=Lora:400,700,400italic,700italic' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800' rel='stylesheet' type='text/css'>
<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
<meta name="description" content="Analysis of Google Location History using Pandas time-series API.">
<meta name="author" content="Yoel Zeldes">
<meta name="tags" content="statistics">
<meta name="tags" content="data-science">
<meta name="tags" content="time-series">
<meta name="tags" content="pandas">
<meta property="og:locale" content="en">
<meta property="og:site_name" content="Another Datum">
<meta property="og:type" content="article">
<meta property="article:author" content="http://anotherdatum.com/author/yoel-zeldes.html">
<meta property="og:url" content="http://anotherdatum.com/location-history-analysis.html">
<meta property="og:title" content="Location History Analysis">
<meta property="article:published_time" content="2016-11-16 21:00:00+02:00">
<meta property="og:description" content="Analysis of Google Location History using Pandas time-series API.">
<meta property="og:image" content="http://anotherdatum.com/images/location-history/cover.png">
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:site" content="@YZeldes">
<meta name="twitter:title" content="Location History Analysis">
<meta name="twitter:image" content="http://anotherdatum.com/images/location-history/cover.png">
<meta name="twitter:description" content="Analysis of Google Location History using Pandas time-series API.">
</head>
<body>
<!-- Navigation -->
<nav class="navbar navbar-default navbar-custom navbar-fixed-top">
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header page-scroll">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="http://anotherdatum.com/">Another Datum</a>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav navbar-right">
<li><a href="http://anotherdatum.com">Posts</a></li>
<li><a href="http://anotherdatum.com/pages/about.html">about me</a></li>
<li><a href="http://anotherdatum.com/pages/resources.html">Resources</a></li>
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container -->
</nav>
<!-- Page Header -->
<header class="intro-header" style="background-image: url('images/location-history/cover.png')">
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
<div class="post-heading">
<h1>Location History Analysis</h1>
<span class="meta">Posted on 16 November 2016</span>
</div>
</div>
</div>
</div>
</header>
<!-- Main Content -->
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
<!-- Post Content -->
<article>
<style type="text/css">/*!
*
* IPython notebook
*
*/
/* CSS font colors for translated ANSI colors. */
.ansibold {
font-weight: bold;
}
/* use dark versions for foreground, to improve visibility */
.ansiblack {
color: black;
}
.ansired {
color: darkred;
}
.ansigreen {
color: darkgreen;
}
.ansiyellow {
color: #c4a000;
}
.ansiblue {
color: darkblue;
}
.ansipurple {
color: darkviolet;
}
.ansicyan {
color: steelblue;
}
.ansigray {
color: gray;
}
/* and light for background, for the same reason */
.ansibgblack {
background-color: black;
}
.ansibgred {
background-color: red;
}
.ansibggreen {
background-color: green;
}
.ansibgyellow {
background-color: yellow;
}
.ansibgblue {
background-color: blue;
}
.ansibgpurple {
background-color: magenta;
}
.ansibgcyan {
background-color: cyan;
}
.ansibggray {
background-color: gray;
}
div.cell {
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
border-radius: 2px;
box-sizing: border-box;
-moz-box-sizing: border-box;
-webkit-box-sizing: border-box;
border-width: 1px;
border-style: solid;
border-color: transparent;
width: 100%;
padding: 5px;
/* This acts as a spacer between cells, that is outside the border */
margin: 0px;
outline: none;
border-left-width: 1px;
padding-left: 5px;
background: linear-gradient(to right, transparent -40px, transparent 1px, transparent 1px, transparent 100%);
}
div.cell.jupyter-soft-selected {
border-left-color: #90CAF9;
border-left-color: #E3F2FD;
border-left-width: 1px;
padding-left: 5px;
border-right-color: #E3F2FD;
border-right-width: 1px;
background: #E3F2FD;
}
@media print {
div.cell.jupyter-soft-selected {
border-color: transparent;
}
}
div.cell.selected {
border-color: #ababab;
border-left-width: 0px;
padding-left: 6px;
background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 5px, transparent 5px, transparent 100%);
}
@media print {
div.cell.selected {
border-color: transparent;
}
}
div.cell.selected.jupyter-soft-selected {
border-left-width: 0;
padding-left: 6px;
background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 7px, #E3F2FD 7px, #E3F2FD 100%);
}
.edit_mode div.cell.selected {
border-color: #66BB6A;
border-left-width: 0px;
padding-left: 6px;
background: linear-gradient(to right, #66BB6A -40px, #66BB6A 5px, transparent 5px, transparent 100%);
}
@media print {
.edit_mode div.cell.selected {
border-color: transparent;
}
}
.prompt {
/* This needs to be wide enough for 3 digit prompt numbers: In[100]: */
min-width: 14ex;
/* This padding is tuned to match the padding on the CodeMirror editor. */
padding: 0.4em;
margin: 0px;
font-family: monospace;
text-align: right;
/* This has to match that of the the CodeMirror class line-height below */
line-height: 1.21429em;
/* Don't highlight prompt number selection */
-webkit-touch-callout: none;
-webkit-user-select: none;
-khtml-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
/* Use default cursor */
cursor: default;
}
@media (max-width: 540px) {
.prompt {
text-align: left;
}
}
div.inner_cell {
min-width: 0;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
/* Old browsers */
-webkit-box-flex: 1;
-moz-box-flex: 1;
box-flex: 1;
/* Modern browsers */
flex: 1;
}
/* input_area and input_prompt must match in top border and margin for alignment */
div.input_area {
border: 1px solid #cfcfcf;
border-radius: 2px;
background: #f7f7f7;
line-height: 1.21429em;
}
/* This is needed so that empty prompt areas can collapse to zero height when there
is no content in the output_subarea and the prompt. The main purpose of this is
to make sure that empty JavaScript output_subareas have no height. */
div.prompt:empty {
padding-top: 0;
padding-bottom: 0;
}
div.unrecognized_cell {
padding: 5px 5px 5px 0px;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: horizontal;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: horizontal;
-moz-box-align: stretch;
display: box;
box-orient: horizontal;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: row;
align-items: stretch;
}
div.unrecognized_cell .inner_cell {
border-radius: 2px;
padding: 5px;
font-weight: bold;
color: red;
border: 1px solid #cfcfcf;
background: #eaeaea;
}
div.unrecognized_cell .inner_cell a {
color: inherit;
text-decoration: none;
}
div.unrecognized_cell .inner_cell a:hover {
color: inherit;
text-decoration: none;
}
@media (max-width: 540px) {
div.unrecognized_cell > div.prompt {
display: none;
}
}
div.code_cell {
/* avoid page breaking on code cells when printing */
}
@media print {
div.code_cell {
page-break-inside: avoid;
}
}
/* any special styling for code cells that are currently running goes here */
div.input {
page-break-inside: avoid;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: horizontal;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: horizontal;
-moz-box-align: stretch;
display: box;
box-orient: horizontal;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: row;
align-items: stretch;
}
@media (max-width: 540px) {
div.input {
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
}
}
/* input_area and input_prompt must match in top border and margin for alignment */
div.input_prompt {
color: #303F9F;
border-top: 1px solid transparent;
}
div.input_area > div.highlight {
margin: 0.4em;
border: none;
padding: 0px;
background-color: transparent;
}
div.input_area > div.highlight > pre {
margin: 0px;
border: none;
padding: 0px;
background-color: transparent;
}
/* The following gets added to the <head> if it is detected that the user has a
* monospace font with inconsistent normal/bold/italic height. See
* notebookmain.js. Such fonts will have keywords vertically offset with
* respect to the rest of the text. The user should select a better font.
* See: https://github.com/ipython/ipython/issues/1503
*
* .CodeMirror span {
* vertical-align: bottom;
* }
*/
.CodeMirror {
line-height: 1.21429em;
/* Changed from 1em to our global default */
font-size: 14px;
height: auto;
/* Changed to auto to autogrow */
background: none;
/* Changed from white to allow our bg to show through */
}
.CodeMirror-scroll {
/* The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/
/* We have found that if it is visible, vertical scrollbars appear with font size changes.*/
overflow-y: hidden;
overflow-x: auto;
}
.CodeMirror-lines {
/* In CM2, this used to be 0.4em, but in CM3 it went to 4px. We need the em value because */
/* we have set a different line-height and want this to scale with that. */
padding: 0.4em;
}
.CodeMirror-linenumber {
padding: 0 8px 0 4px;
}
.CodeMirror-gutters {
border-bottom-left-radius: 2px;
border-top-left-radius: 2px;
}
.CodeMirror pre {
/* In CM3 this went to 4px from 0 in CM2. We need the 0 value because of how we size */
/* .CodeMirror-lines */
padding: 0;
border: 0;
border-radius: 0;
}
/*
Original style from softwaremaniacs.org (c) Ivan Sagalaev <Maniac@SoftwareManiacs.Org>
Adapted from GitHub theme
*/
.highlight-base {
color: #000;
}
.highlight-variable {
color: #000;
}
.highlight-variable-2 {
color: #1a1a1a;
}
.highlight-variable-3 {
color: #333333;
}
.highlight-string {
color: #BA2121;
}
.highlight-comment {
color: #408080;
font-style: italic;
}
.highlight-number {
color: #080;
}
.highlight-atom {
color: #88F;
}
.highlight-keyword {
color: #008000;
font-weight: bold;
}
.highlight-builtin {
color: #008000;
}
.highlight-error {
color: #f00;
}
.highlight-operator {
color: #AA22FF;
font-weight: bold;
}
.highlight-meta {
color: #AA22FF;
}
/* previously not defined, copying from default codemirror */
.highlight-def {
color: #00f;
}
.highlight-string-2 {
color: #f50;
}
.highlight-qualifier {
color: #555;
}
.highlight-bracket {
color: #997;
}
.highlight-tag {
color: #170;
}
.highlight-attribute {
color: #00c;
}
.highlight-header {
color: blue;
}
.highlight-quote {
color: #090;
}
.highlight-link {
color: #00c;
}
/* apply the same style to codemirror */
.cm-s-ipython span.cm-keyword {
color: #008000;
font-weight: bold;
}
.cm-s-ipython span.cm-atom {
color: #88F;
}
.cm-s-ipython span.cm-number {
color: #080;
}
.cm-s-ipython span.cm-def {
color: #00f;
}
.cm-s-ipython span.cm-variable {
color: #000;
}
.cm-s-ipython span.cm-operator {
color: #AA22FF;
font-weight: bold;
}
.cm-s-ipython span.cm-variable-2 {
color: #1a1a1a;
}
.cm-s-ipython span.cm-variable-3 {
color: #333333;
}
.cm-s-ipython span.cm-comment {
color: #408080;
font-style: italic;
}
.cm-s-ipython span.cm-string {
color: #BA2121;
}
.cm-s-ipython span.cm-string-2 {
color: #f50;
}
.cm-s-ipython span.cm-meta {
color: #AA22FF;
}
.cm-s-ipython span.cm-qualifier {
color: #555;
}
.cm-s-ipython span.cm-builtin {
color: #008000;
}
.cm-s-ipython span.cm-bracket {
color: #997;
}
.cm-s-ipython span.cm-tag {
color: #170;
}
.cm-s-ipython span.cm-attribute {
color: #00c;
}
.cm-s-ipython span.cm-header {
color: blue;
}
.cm-s-ipython span.cm-quote {
color: #090;
}
.cm-s-ipython span.cm-link {
color: #00c;
}
.cm-s-ipython span.cm-error {
color: #f00;
}
.cm-s-ipython span.cm-tab {
background: url();
background-position: right;
background-repeat: no-repeat;
}
div.output_wrapper {
/* this position must be relative to enable descendents to be absolute within it */
position: relative;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
z-index: 1;
}
/* class for the output area when it should be height-limited */
div.output_scroll {
/* ideally, this would be max-height, but FF barfs all over that */
height: 24em;
/* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */
width: 100%;
overflow: auto;
border-radius: 2px;
-webkit-box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
display: block;
}
/* output div while it is collapsed */
div.output_collapsed {
margin: 0px;
padding: 0px;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
}
div.out_prompt_overlay {
height: 100%;
padding: 0px 0.4em;
position: absolute;
border-radius: 2px;
}
div.out_prompt_overlay:hover {
/* use inner shadow to get border that is computed the same on WebKit/FF */
-webkit-box-shadow: inset 0 0 1px #000;
box-shadow: inset 0 0 1px #000;
background: rgba(240, 240, 240, 0.5);
}
div.output_prompt {
color: #D84315;
}
/* This class is the outer container of all output sections. */
div.output_area {
padding: 0px;
page-break-inside: avoid;
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: horizontal;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: horizontal;
-moz-box-align: stretch;
display: box;
box-orient: horizontal;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: row;
align-items: stretch;
}
div.output_area .MathJax_Display {
text-align: left !important;
}
div.output_area
div.output_area
div.output_area img,
div.output_area svg {
max-width: 100%;
height: auto;
}
div.output_area img.unconfined,
div.output_area svg.unconfined {
max-width: none;
}
/* This is needed to protect the pre formating from global settings such
as that of bootstrap */
.output {
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
}
@media (max-width: 540px) {
div.output_area {
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: column;
align-items: stretch;
}
}
div.output_area pre {
margin: 0;
padding: 0;
border: 0;
vertical-align: baseline;
color: black;
background-color: transparent;
border-radius: 0;
}
/* This class is for the output subarea inside the output_area and after
the prompt div. */
div.output_subarea {
overflow-x: auto;
padding: 0.4em;
/* Old browsers */
-webkit-box-flex: 1;
-moz-box-flex: 1;
box-flex: 1;
/* Modern browsers */
flex: 1;
max-width: calc(100% - 14ex);
}
div.output_scroll div.output_subarea {
overflow-x: visible;
}
/* The rest of the output_* classes are for special styling of the different
output types */
/* all text output has this class: */
div.output_text {
text-align: left;
color: #000;
/* This has to match that of the the CodeMirror class line-height below */
line-height: 1.21429em;
}
/* stdout/stderr are 'text' as well as 'stream', but execute_result/error are *not* streams */
div.output_stderr {
background: #fdd;
/* very light red background for stderr */
}
div.output_latex {
text-align: left;
}
/* Empty output_javascript divs should have no height */
div.output_javascript:empty {
padding: 0;
}
.js-error {
color: darkred;
}
/* raw_input styles */
div.raw_input_container {
line-height: 1.21429em;
padding-top: 5px;
}
pre.raw_input_prompt {
/* nothing needed here. */
}
input.raw_input {
font-family: monospace;
font-size: inherit;
color: inherit;
width: auto;
/* make sure input baseline aligns with prompt */
vertical-align: baseline;
/* padding + margin = 0.5em between prompt and cursor */
padding: 0em 0.25em;
margin: 0em 0.25em;
}
input.raw_input:focus {
box-shadow: none;
}
p.p-space {
margin-bottom: 10px;
}
div.output_unrecognized {
padding: 5px;
font-weight: bold;
color: red;
}
div.output_unrecognized a {
color: inherit;
text-decoration: none;
}
div.output_unrecognized a:hover {
color: inherit;
text-decoration: none;
}
.rendered_html {
color: #000;
/* any extras will just be numbers: */
}
.rendered_html :link {
text-decoration: underline;
}
.rendered_html :visited {
text-decoration: underline;
}
.rendered_html h1:first-child {
margin-top: 0.538em;
}
.rendered_html h2:first-child {
margin-top: 0.636em;
}
.rendered_html h3:first-child {
margin-top: 0.777em;
}
.rendered_html h4:first-child {
margin-top: 1em;
}
.rendered_html h5:first-child {
margin-top: 1em;
}
.rendered_html h6:first-child {
margin-top: 1em;
}
.rendered_html * + ul {
margin-top: 1em;
}
.rendered_html * + ol {
margin-top: 1em;
}
.rendered_html pre,
.rendered_html tr,
.rendered_html th,
.rendered_html td,
.rendered_html * + table {
margin-top: 1em;
}
.rendered_html * + p {
margin-top: 1em;
}
.rendered_html * + img {
margin-top: 1em;
}
.rendered_html img,
.rendered_html img.unconfined,
div.text_cell {
/* Old browsers */
display: -webkit-box;
-webkit-box-orient: horizontal;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: horizontal;
-moz-box-align: stretch;
display: box;
box-orient: horizontal;
box-align: stretch;
/* Modern browsers */
display: flex;
flex-direction: row;
align-items: stretch;
}
@media (max-width: 540px) {
div.text_cell > div.prompt {
display: none;
}
}
div.text_cell_render {
/*font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;*/
outline: none;
resize: none;
width: inherit;
border-style: none;
padding: 0.5em 0.5em 0.5em 0.4em;
color: #000;
box-sizing: border-box;
-moz-box-sizing: border-box;
-webkit-box-sizing: border-box;
}
a.anchor-link:link {
text-decoration: none;
padding: 0px 20px;
visibility: hidden;
}
h1:hover .anchor-link,
h2:hover .anchor-link,
h3:hover .anchor-link,
h4:hover .anchor-link,
h5:hover .anchor-link,
h6:hover .anchor-link {
visibility: visible;
}
.text_cell.rendered .input_area {
display: none;
}
.text_cell.rendered
.text_cell.unrendered .text_cell_render {
display: none;
}
.cm-header-1,
.cm-header-2,
.cm-header-3,
.cm-header-4,
.cm-header-5,
.cm-header-6 {
font-weight: bold;
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
}
.cm-header-1 {
font-size: 185.7%;
}
.cm-header-2 {
font-size: 157.1%;
}
.cm-header-3 {
font-size: 128.6%;
}
.cm-header-4 {
font-size: 110%;
}
.cm-header-5 {
font-size: 100%;
font-style: italic;
}
.cm-header-6 {
font-size: 100%;
font-style: italic;
}
</style>
<style type="text/css">.highlight .hll { background-color: #ffffcc }
.highlight { background: #f8f8f8; }
.highlight .c { color: #408080; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
.highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #B00040 } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #7D9029 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #A0A000 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #666666 } /* Literal.Number.Bin */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sa { color: #BA2121 } /* Literal.String.Affix */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0000FF } /* Name.Function.Magic */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .vm { color: #19177C } /* Name.Variable.Magic */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */</style>
<style type="text/css">
/* Temporary definitions which will become obsolete with Notebook release 5.0 */
.ansi-black-fg { color: #3E424D; }
.ansi-black-bg { background-color: #3E424D; }
.ansi-black-intense-fg { color: #282C36; }
.ansi-black-intense-bg { background-color: #282C36; }
.ansi-red-fg { color: #E75C58; }
.ansi-red-bg { background-color: #E75C58; }
.ansi-red-intense-fg { color: #B22B31; }
.ansi-red-intense-bg { background-color: #B22B31; }
.ansi-green-fg { color: #00A250; }
.ansi-green-bg { background-color: #00A250; }
.ansi-green-intense-fg { color: #007427; }
.ansi-green-intense-bg { background-color: #007427; }
.ansi-yellow-fg { color: #DDB62B; }
.ansi-yellow-bg { background-color: #DDB62B; }
.ansi-yellow-intense-fg { color: #B27D12; }
.ansi-yellow-intense-bg { background-color: #B27D12; }
.ansi-blue-fg { color: #208FFB; }
.ansi-blue-bg { background-color: #208FFB; }
.ansi-blue-intense-fg { color: #0065CA; }
.ansi-blue-intense-bg { background-color: #0065CA; }
.ansi-magenta-fg { color: #D160C4; }
.ansi-magenta-bg { background-color: #D160C4; }
.ansi-magenta-intense-fg { color: #A03196; }
.ansi-magenta-intense-bg { background-color: #A03196; }
.ansi-cyan-fg { color: #60C6C8; }
.ansi-cyan-bg { background-color: #60C6C8; }
.ansi-cyan-intense-fg { color: #258F8F; }
.ansi-cyan-intense-bg { background-color: #258F8F; }
.ansi-white-fg { color: #C5C1B4; }
.ansi-white-bg { background-color: #C5C1B4; }
.ansi-white-intense-fg { color: #A1A6B2; }
.ansi-white-intense-bg { background-color: #A1A6B2; }
.ansi-bold { font-weight: bold; }
</style>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p><strong>Google has been tracking your footsteps.</strong></p>
<p>In case you don't know already, google knows where you have been since you have started carrying a mobile device (unless of course you <a href="https://support.google.com/accounts/answer/3118687">turned off Location History</a>).</p>
<p>Some people might feel uncomfortable with the big brother watching them. I feel pretty ok with that. It feels safe to know that wherever I go, Google watches me; if I'm lost, Google knows where I am and can send a rescue mission. Go Google!</p>
<p>Anyhow, in case you want to know what google knows about you, you can download your Location History data from <a href="https://www.google.com/settings/takeout">https://www.google.com/settings/takeout</a>.</p>
<p>I downloaded mine and started exploring the data. It would be nice to see if we can get some insights from it.</p>
<p>The basic imports:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">matplotlib</span> <span class="kn">import</span> <span class="n">rcParams</span>
<span class="kn">from</span> <span class="nn">mpl_toolkits.basemap</span> <span class="kn">import</span> <span class="n">Basemap</span>
<span class="kn">import</span> <span class="nn">json</span>
<span class="kn">from</span> <span class="nn">pandas.io.json</span> <span class="kn">import</span> <span class="n">json_normalize</span>
<span class="o">%</span><span class="k">matplotlib</span> inline
<span class="n">rcParams</span><span class="p">[</span><span class="s1">'figure.figsize'</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>First thing, we'll load the data from the downloaded json file.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">json_normalize</span><span class="p">(</span><span class="n">json</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="nb">open</span><span class="p">(</span><span class="s1">'LocationHistory.json'</span><span class="p">,</span> <span class="s1">'r'</span><span class="p">))[</span><span class="s1">'locations'</span><span class="p">])</span>
<span class="n">data</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[2]:</div>
<div class="output_html rendered_html output_subarea output_execute_result">
<div>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>accuracy</th>
<th>activitys</th>
<th>altitude</th>
<th>heading</th>
<th>latitudeE7</th>
<th>longitudeE7</th>
<th>timestampMs</th>
<th>velocity</th>
<th>verticalAccuracy</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>26</td>
<td>[{u'activities': [{u'confidence': 100, u'type'...</td>
<td>NaN</td>
<td>NaN</td>
<td>320796661</td>
<td>347841758</td>
<td>1475514329219</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<th>1</th>
<td>20</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>320797239</td>
<td>347841462</td>
<td>1475514261172</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<th>2</th>
<td>20</td>
<td>[{u'activities': [{u'confidence': 100, u'type'...</td>
<td>NaN</td>
<td>NaN</td>
<td>320797239</td>
<td>347841462</td>
<td>1475514141123</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<th>3</th>
<td>20</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>320797239</td>
<td>347841462</td>
<td>1475514008682</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<th>4</th>
<td>20</td>
<td>[{u'activities': [{u'confidence': 75, u'type':...</td>
<td>NaN</td>
<td>NaN</td>
<td>320797365</td>
<td>347841623</td>
<td>1475513948078</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="k">print</span> <span class="s1">'available data:'</span><span class="p">,</span> <span class="s1">' to '</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">t</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">t</span><span class="p">)</span> <span class="o">*</span> <span class="mi">1000000</span><span class="p">)</span><span class="o">.</span><span class="n">date</span><span class="p">()),</span>
<span class="p">[</span><span class="n">data</span><span class="o">.</span><span class="n">timestampMs</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">data</span><span class="o">.</span><span class="n">timestampMs</span><span class="o">.</span><span class="n">max</span><span class="p">()]))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>available data: 2013-02-18 to 2016-10-03
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">data</span><span class="p">[</span><span class="s1">'longitude'</span><span class="p">]</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">longitudeE7</span> <span class="o">/</span> <span class="mi">10000000</span>
<span class="n">data</span><span class="p">[</span><span class="s1">'latitude'</span><span class="p">]</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">latitudeE7</span> <span class="o">/</span> <span class="mi">10000000</span>
<span class="n">data</span><span class="o">.</span><span class="n">drop</span><span class="p">([</span><span class="s1">'longitudeE7'</span><span class="p">,</span> <span class="s1">'latitudeE7'</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The first thing crying out to be done is to plot all the locations I've been to.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="k">def</span> <span class="nf">plot_places</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">title</span><span class="p">,</span> <span class="n">padding</span><span class="p">,</span> <span class="n">markersize</span><span class="p">):</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="n">title</span><span class="p">)</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">Basemap</span><span class="p">(</span><span class="n">projection</span><span class="o">=</span><span class="s1">'gall'</span><span class="p">,</span>
<span class="n">llcrnrlon</span><span class="o">=</span><span class="n">data</span><span class="o">.</span><span class="n">longitude</span><span class="o">.</span><span class="n">min</span><span class="p">()</span> <span class="o">-</span> <span class="n">padding</span><span class="p">,</span>
<span class="n">llcrnrlat</span><span class="o">=</span><span class="n">data</span><span class="o">.</span><span class="n">latitude</span><span class="o">.</span><span class="n">min</span><span class="p">()</span> <span class="o">-</span> <span class="n">padding</span><span class="p">,</span>
<span class="n">urcrnrlon</span><span class="o">=</span><span class="n">data</span><span class="o">.</span><span class="n">longitude</span><span class="o">.</span><span class="n">max</span><span class="p">()</span> <span class="o">+</span> <span class="n">padding</span><span class="p">,</span>
<span class="n">urcrnrlat</span><span class="o">=</span><span class="n">data</span><span class="o">.</span><span class="n">latitude</span><span class="o">.</span><span class="n">max</span><span class="p">()</span> <span class="o">+</span> <span class="n">padding</span><span class="p">,</span>
<span class="n">resolution</span><span class="o">=</span><span class="s1">'h'</span><span class="p">,</span>
<span class="n">area_thresh</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span>
<span class="n">m</span><span class="o">.</span><span class="n">drawcoastlines</span><span class="p">()</span>
<span class="n">m</span><span class="o">.</span><span class="n">drawcountries</span><span class="p">()</span>
<span class="n">m</span><span class="o">.</span><span class="n">fillcontinents</span><span class="p">(</span><span class="n">color</span><span class="o">=</span><span class="s1">'gainsboro'</span><span class="p">)</span>
<span class="n">m</span><span class="o">.</span><span class="n">drawmapboundary</span><span class="p">(</span><span class="n">fill_color</span><span class="o">=</span><span class="s1">'steelblue'</span><span class="p">)</span>
<span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">m</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">longitude</span><span class="o">.</span><span class="n">values</span><span class="p">,</span> <span class="n">data</span><span class="o">.</span><span class="n">latitude</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
<span class="n">m</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="s1">'o'</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="s1">'r'</span><span class="p">,</span> <span class="n">markersize</span><span class="o">=</span><span class="n">markersize</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.2</span><span class="p">)</span>
<span class="n">plot_places</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">title</span><span class="o">=</span><span class="s1">'all the places I have visited'</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">markersize</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzsnWd4FFUXgN/Z9N57A9IIvfduABFEQVCxIGBBiohdUAEV
QbF8IioIqChSRYpSpEOQ3iEQSICEhPTeNtk634/dDNlkEwhFKfM+j4+Z2+bOzDJz7rmnCKIoIiMj
IyMjIyNzL6P4rycgIyMjIyMjI3O7kQUeGRkZGRkZmXseWeCRkZGRkZGRueeRBR4ZGRkZGRmZex5Z
4JGRkZGRkZG555EFHhkZGRkZGZl7HlngkZG5hQiC8JwgCHsqHesFQWhQh/51an+jCIIwVRCExbf7
PDeLIAghxntyx76rBEGYJAjC/Otot1EQhGdv4Xn/ld+KjMy9wh37EpGRuYsRa/jbBEEQdgqCMKqW
vrebOyII13UIX3fEPGtCFMWZoii+dB3tHhJFcTFUF4xv9NQ32V9G5r5CFnhkZG4vwm1uf69wv328
BW7+mu/X34qMzA0hCzwyMnVEEIR3BEG4IAhCkSAIsYIgPHoDY0wHugLfGsf5plJ1b0EQ4gVByBME
4dsq/UYJgnBWEIRcQRA2CYIQXMP4FVtBLwqCkGr8741a5rNSEIR0QRDyBUHYJQhCo0p1toIgfCkI
QpKxPkYQBBtjXQdBEPYay48LgtC9Ur8RgiBcNF7fRUEQhtX1PlUMBTwjCMJlQRCyBEGYXOkcbQVB
2Gc8f6ogCHMEQbA01n0vCMLnVa5zrSAIE41/+wmCsMo45kVBEF6p4d60M94boVLZIEEQThj/ljRU
giDYCIKwWBCEHOOcDgqC4GWs22l8fg2BuUBHQRCKBUHIM9ZbC4LwhfE6043zt6l0zrcEQUgTBOGK
IAgjuf+ERBmZm0IWeGRk6s4FoLMois7Ah8BvgiD41GUAURTfB/YA40VRdBZFcUKl6v5Aa6A58Lgg
CH0ABEF4BHgXeBTwMvZfdo1T9QBCgb7AO4Ig9Kqh3UZjO2/gGLCkUt2XQEugA+AOvA3oBUHwB9YD
H4mi6Aa8CfwhCIKHIAj2wGygr/E+dQJOXGOutdEZCAeigSmCIEQay3XAROO8OgK9gLHGumXA4xUD
CILgCvQBlhmFl7+A44Af8ADwqiAIvaueWBTFQ0CJcewKhmF6jyqEj+cAZyDAOKeXgbIq450zlu8X
RdFJFEV3Y9VnQBjQzPj/AGCKce4PAq8b51lxH2RkZOqALPDIyNQRURT/EEUx0/j370AC0O4WnmKm
KIrFoiimADuBFsby0ca6eFEU9cCnQAtBEIJqGWuaKIrloijGAj9j+FBXQxTFRaIoKkVR1AAfAc0F
QXAyCgYjgQmiKGaIBg4Y2z0DbBBFcbNxjO3AEeAh47A6oKkgCLaiKGaKohh3g/dDNF6HWhTFU8BJ
DMIgoigeE0XxkHFeycB8oLuxbg8gCoLQxTjOEGCf8dm1AzxFUfxEFEWdKIpJwELgyRrmsBx4CkAQ
BCfjNZoTNjWABxBhnNNxURRLrvM6XwReE0WxUBTFUgzPt+J5DQV+FkUxThTFMmDadY4pIyNjRBZ4
ZGTqiCAIw43bN/mCIOQDjQHPW3iKzEp/KwFH498hwGzjVlcekItBGAioYRwRuFLp+DLgX7WRIAgK
QRA+NW7TFQCJxr6exv9sgEtmxg/BoIHKM/6Xj0ET4yeKohJ4AhgDpAuC8FclrcyNYPaeCIIQbhw7
3Tj3TzB9Fiu4KjQ8xVWtTDAQUGXukzBouMyxFBgkCIIVMBg4KoriFTPtFgObgeXGrafPBEGwuNbF
Gbe97IGjlZ7vJgzCExieW0qlLpeRbXhkZOqELPDIyNQBo83MfGCsKIpuxq2cM9zYx6euNhgpwGhR
FN2N/7mJougoiuKBmqYLVNb+BANpZto9DTwM9BJF0RWoZ+wrADlAOYbtLnPz+bXKfJxEUZwFIIri
VlEU+wC+wHlgQR2v93qYC8QBoca5v4fps1gGDDE+t/bAH5XmfqnK3F1EUXzY3EmM2qnLGDQ7wzAI
QObaaUVR/FgUxcYYtvEGAMPNNa1ynINBkGtcaU6uoii6GOvTMX2WIWbGkJGRqQVZ4JGRqRsOgB7I
MWpGRgJNbnCsTKAucVTmAZMrDIoFQXARBGHINfp8IAiCnSAIjTFsTS0308YRUAH5giA4ADMxfkxF
URQxbIV9ZTTyVRgNla2A34CHBUHoYyy3FQShuyAI/oIgeAuCMNBoy6PBYAOjq8O1VqY2YdIJKBJF
UWk0Bh5TuVIUxRMYNGELgb9FUSwyVh0CigVBeNs4bwtBEBoLgtCmlnMtBV7FYGz+u9mJCkIPQRCa
CIa4QSUYrt3cdWcCgcb7WHGfFwBfVzJyDqiw3wJWAiMEQYgy3tMptcxTRkbGDLLAIyNTB4wr/S+B
A0AGhu2sf2rrUkvdbGCoYPC4+rqG9tKxKIprMdh1LDdu35wCHrzGlHdjMLLeCswy2tlU5VcgGUgF
YoF9VerfBE4DhzEID58CCuOWziPAZCAbgwbkTQzvFQUGI9tUDNqLblQRRupAjffEeL6nBUEoAn7A
vEC3FIOxr2RkbLSBGoDBPioRyMIgcDjXMo/lGK5juyiKeTW08QVWAYUYNH87MQiGVee9w1ifIQhC
lrHsXQzP6oDx+W4BIozz/Rv42tgvHjD3HGVkZGpBMCwsZGRk7iUEQQjBYHdjZfy4y8jIyNzXyBoe
GZl7F9moVUZGRsaILPDIyNy7yOpbGRkZGSPylpaMjIyMjIzMPY+s4ZGRkZGRkZG557GsrVIQBFn9
IyMjIyMjI3PXIIqiWfvFWgUegD4frb/1s7lH2DJlgPR369ZtOHr0CL5Nu9Ns6Fs1tjPHlClTGD7c
XGyy2lGr1WzcuJE333yzWp2ljT1aldKkrGPHTixe/Kt0rNVq2b59O0tX/M7emF3VxoiPj0ehuHkl
4J49ezh27BhlZWUkJyfTv39/AgICsLe35/Lly4wZY95budXwj/Bo0ALBzBxEUSTj1C5O//Elzp5+
KKxsKEhPwsbOAUsbe0oLsk3ax8TE4O9fLciwzD3MP//8w4gRI6RjRydn7GxtsbG1pU3r1lhbW7Fy
5UoAek/70+zvTKbu6LUa0k/tAkGBwtIS16AoFBaWlGQlU1aQBYgEtOyNWlmEtYMLgiAQt34uKYc2
mIzj5B2EtZMnuRePVzvHN998Q79+/RBFkYSEBJKSkjh9+jRLly6lqMgQaumTTz7hvffeA0zfsaIo
UlRUxKRJk1Cr1YwYMYJTp07x1Vdf4RLUkPYvfnHd13py2XQy467G/XSr1wT3+s1xDgjDLaQJljZ2
dbx7tx+1sojs84coyUrm8t7VUrlLYCShvZ4m7cQOMk7tqtavXufBRPQdhao4j8Ir5ykryEKv1WBp
a49neBvsXE2DlKef3MnpP77ExcufwmxDvNPgjo+CupTko1vxbxlN2vFtJn0iH3yBkE51zsVsQm3f
21pteARBEGWBp2ZSj27h4s4llBflSmU2jq50f/s3k3bnNvxA8sG/ABg4cCDBwcGcPn2a3bt3A/DB
Bx/w3HPP3ZI5TZ78HitXrjBbV79+fX755RezH/7i4mJ27tzJW2+9jU6nNVyLrS1hoaEkJCSgVqsB
SEhIoFLSaBN0Oh0WFtWj6IeFhdU430GPDcXWxpqU1HT+2b1DKo+euhaFxTXlcbMcWfQ+eZcMeSrt
7Ox58MG+fP7559foJXOvsWnTJl55xWwCdIngVg8Q1m80ljb2/9Ks7l30Oh3xfy+U3nXXQhAERFEk
vM9IErb8DMB3333HuHHjsLCwYPjw4fz88891nkdMTAyurq7Y29f+TJOTk1mxciXbtu/kYsJ5XHxD
aPTYWzj51KvzOe8lRL2e7POHKM5MRNTrsXZ0RVNaRECraGxdvG7puXQaNQXJZylKu4Bbvaa4BEbU
+H25XrZMGVCjhue+FnhEUaS8IAsreyc0ZSWoinLRlJVg4+SGo3cICkur6x6nLD+TzLN7CWgZjbWD
i9k2qce2cHbdnGp1Xbt2ZeDAgXw8fTpFhYUoFAr0ej0zZ87ExsaGs2fP0rdvX1q2bHnNuUydOo0l
S34zW2dl54imrIQXX3qJN15/HUvL6gJFTk4OHTp0MNu/ffv2LFlyNUG0KIocPnyY8vJyRo0aVa39
8OHD2bt3LxcvXuSB3n0QENi2dTNOzq4UFxXgFdkOj7BWaFVKHDwCsHZwwdk/DAtr22teZ03otRoS
96zi4s4l1G8QytYtm294LJm7H1EUUavVNG7cGICek5ZjYW1HeWE2lrb2WNvXFmdQpi6cWD6DrLOG
mJUdOnZErVJx7NixGtufOXOG1157jS1btkhlFy5ckP4+duwYjz9uSHYfEdWY+LgzBLZ9CPf6TTm1
8rNq41lZWTF37lz0ej05OTk4ODjQv39/qV6j0XD+/Hlyc3NxdXXlscceA6DZE+/iGdZKFnrvEWSB
pwYqVF/WNrY4Orng6eWFs4sLRw7sldr4NO5M8ycmoSrJx8LaDsub+BgDxHw5kvLC7Gs3rIH69euz
detWs3UqlQpRFNFoNDg5OaHT6fjuu+/IysoiLS2NmJgY7Fw8KSvMAaBN27YsXbKkzttWoihSVlbG
+vXrmTx58nX3823aDe+GHXDwCsTa0Q0bR7c6nVerLkddkg9AxqndXNhhEOwUVja4hTQh98JRADy8
vBn62GDGjBmDg4NDnc4hc++hVqtp1KiRdBzRdxT1Og9GmZfBhU1z8WkejU+Trv/hDO8N9Dod2z58
pFr5mTNnsLS0lIQbrVaLIAgkJCQA0KJFC0pKDAnlv/76awYMMLyXi4qKaNWqFdOnT8fV1ZXx48cD
EB79HMqCTKztndGUFVNw6QSOzq5YWNuiVhZj7eBC6jnDu6BndB+CAwPQaLUs/W0xdo7OlJUU4RnY
AGsXH7ya9MCnced/4/bI/EvIAk8NHPnhVfJSL0rHfv4BqMrLWLVqFX5+fkRFRQGgsLDExsaGMmUp
7oFh+LV+EP+WfQARQXHNRMjVqNAs2Th7cuXwBuI3/4heZ0i3E933Qfbs3oVOq0Or1eDv74+fnx9B
QUFYWVnxyCOPmNXATHh1Ihs3rMfV1ZW33367FkFEoGp4FicnJ5555hkCAgL45JNPKCsrw9ramrNn
z5odYcuWLYwdO7bO1x3cfgAN+7983e1FUUTUadn20SAAFBYWuHt6k5OZXmOf2bNnm6zqZO5PKmw7
jh07xvz580lOTpbqur+9GBtHN7Z9OAi9TgPItoo3iyiKZMXtR2FlzfHF00zqonv3Zt7cudJxRkYG
3t7e0kIrLS2Nbt26SfXTpk3jmWeeMRlDpVLx5ZdfcvT4CRpFRbFs6RKT+ob9x+DfvCeWtgYtjV6n
Iz/pNKriPFTFeQiCAks7BwJb972u68lLiuXc+u8pyTL8bup1Hoy9ZwABrfrc9JaLzO3lnhR4CpLj
SDm0AVFVQsb5IwA0eewNfBp1xsLK+rrG0JSVoMxL4+APr5ut37ZtG9HR0QwePJgZM2ZQWFhI+/bt
TdrYOnvQ7qUvsXX2BOD0qi9IP7ULC0sr7J1ccfENxsYnHAevYFyDo6rtgRaknOPMH59TmpcplW3e
vJmQkBCzW05gsLdxcnIyXINGQ25uLl26dAHgueee45dffkFhYYUggE6rQWFhgYOjM6GhDSgoLCLp
YsI1783UqVN59tlnzdaJooher+el0S+ze9dOIiIiePLJJ2nYsCG//fYbGzdulNo6ObtQXFQIQPSU
NbVuEyrzM8hPiqXg4jFST8VUq//222958MEHEUVRfunI1Eh6ejpdu17V2Lh6+aOwdSQvJR6AjmPn
4ORbH1VxPqJee8vtEu5H9FqNtDCpSpeuXVlUxRZn3rx5fPHFVeNgOzs7fv31V4YOHQrA+vXradiw
odnxVCoVMTExTJw4EZVKZVLX7qUvcQ2MrNPcrxzexNm/vsMjtCUtnnofdWkhe76qvkVv5+pNl4kL
bmiRK/PvcdcLPKd+/xw7F09U2YmknTfdEx47dixZWVmsWrXKpPx65y2KIrtmPIGmikcTwN9//42t
rS2BgYFSmVKpJCkpCX9/fz7//HNWrDAYCPd4dynW9s7SNtm4ceMYOnQocXFxHD5ylJ9+XAhAYKP2
WNjYYecXiU/jztg4uSPq9ZxZ8z/STu40O8cDBw7g6WkQqGbOnMmPP/5I27Zt+fnnn+nbty+pqalS
W3tXL5RGD6UFCxbQsWNH8vLy8Pf3p7CwkNatW9O9e3d+/PFHRFEkNjaW33//naVLlwIQGdmQDRuu
796lpaVhY2ODh4eHdC8fefRRzp45Y7Z97w//MhFUVCX57J5VXahq3rw548aNIzIykoCAgOuai4xM
Bd9//z1fffUVcPU3pyrO58za2di6eNJo4Pj/eIb3JglbfyFxj9kk8hKHDx/G0tLSrD2is4sLRYWF
0vE777zD888/L2mCRFFk48aNvPrqq7WeI7B5d6IGv3ndi6KygixJwOk1eSWWtvbotRoEC0t5YXUX
clcLPMkH/+Lchh9qbRMe1YSEuFiTsrrMe/+3YyjOSiGiYSPiz5nfxgFo3bYdofXr0aNHD/r06QNc
9UCK6DOKel0GkxV3gBPLpgMwevRoIiMj6dy5M7a2tmzbtg1LS0tef/11dDodPg3b0fypKdL4oiiS
uPM3Luy66mXVqVMnnn/+efLz86u5n1taWTF+3Di+/vprQjo9gkdoK04s/Ri9Tsvs2bPJy8vjww8/
BOCHH35g9OjRUt/BgwczadIk3Nyu2tGoVCqsrKxu2BW98oemKtWEneI8dn9ucBOdMmUK3bp1w9/f
H2vr69POyciYIz8/nyeeeIJLly7RdtSnuNVr8l9P6b6irCCL479Nk7aCqhIZGcn58+elY0efepRk
JpltGxxSj00bN2BjYwPAqFHPExNj8GxVWFgS2usZErYuAqBjx45otDqysjJJvnwZz4g2OLn74OAf
gV+znnLIgfuIu0bgUeal88/XL0rHrsGNaPXsNJIPbiA/KdYQj0HU4+IdiFalpLQwr9oYTj4hdBj7
bZ0lc2V+BoUp59GqlLiFNObQgjfQqsoI7vgINo6u6HVaClPjybt0Er1GLdm45OXl8b///Y9ly5bh
6B1Ep/FzyTp3kBNLPzYZf+vWrbi4uJCYmMjIkSNRKg0aJXP3V6/VkLDtV8ryUrF3ckVTnIOqOJ+c
1EQAwno9TdI/f+AR1gqFqgjP5tH4tYgGrh3zpzIrVqygdevW6PV6unbrTmZGOnPmzKFfv37X1f/n
n38mPj6edu3akZOTw2efVfecaDL4NbyjOlbzgMi9eIKjv7wPgL9/AF9//T/c3d1xcnLCw8PDYL8j
irckDpDM/UPXrl1JTzfYeHmFNqe81BCTxbtRJ7wi2mLn5ouVnSMAol5HUfolHLyCbtoZQcYUbbmS
HTMex9rBhR7vLOHA3Fdx9Akh7cSOam379OnLli2b2bJlC0FBQRw5coS//vqLGTNmAIaFYHh4+NX2
ld6ZRekXOTD3qsanVevWpKSkYGNtzeOPP85XX31F40ETDUKPIMiCz33AXSPwZMcf4fhv02qbD/37
96d3796EhoZy4sQJ3n//fane3tWTRoPfxP0aqzqdRs25v+agsLDEq1EXPEJb1vgPYccnQ9GqykzK
7Fy9KCvIxtPHD0dHR0qKi8nJysDS1oFekw3amezzh8mK20vqsW3mhsXOxRMXL38yLpwCwMHdDysH
Z0J7PYtHaAuTtqIooi4tRNRpsLJ3MWujVCHoWFpZ4+ruQZlSiUatRmFljUdEe1KPbTFp/+677/LC
Cy9Us3fYsmULFhYWhISE1HYLUSqVNGvWDADPkChyLscB4FWvIdmXz+MT1RGPsFYEtnmw1nHyL5/h
3F/foiktlD5O4ZENSTh/TmrTrVt35s//gXPnzuHn5ydtoQHExsZy4cIFoqKiiIys2969zL2FXq8n
IiLimu0qXNMPz3+NwvRLOHmH0HH8d//CDGXqsiDbuXMnQUFB5Obm0r59e4I7PEz9bo9X8+4sL8zm
5PKZFKbGs2TJEhM7y3Xr1vHGG29Ixy2fnopXZNubvxCZO5baBJ4bi+x2g+i1GgSFBbmXTnDs1ykm
dZ0nzMMrog0PfLCaS7uXoyvJwcbFB8eACI7/ZtiW+eKLL3jkEYPbY3JyMqGhoTz66KOsXbsWAO8m
Pa4p7ACIop7UEwZ7GV3meY4tTqbzK3Nx8Aqq1rbJY2+SvHcVtjY2WDm4otWJ2Lh606DHU5Rkp6Au
ycfX0Y2mrt7SyhHAK7ItXpFt8Wvei/KiXGL/+NJkXCcbBf7OlmQYj0vz0iEvnSsH11UTeLZOfRgA
B0dnSkuKUFhY0mr4R7jXb1ZtvqEN6rNhgyFiaWFhIQsWLGDevHnV2u3ctZtPP/1UOh4zdiyvv/Ya
/fr1k2Jh/P3332aDBoqiiJWVlbRNlnM57oa9XCysbQnqOAgHD39EhYLUI5vJKcg0aRMTs5vffvuN
6dMNW4UPD3wEEUhOucKp40dN2p4/f95s8EOZe5+ysjLCIyLJzs6mRfNm7Nq1y2y7xJgVBHd8lML0
SyAI1Os65N+d6H1MaK+nubhjSY31AwcOZODAgZw+fRpRFAkLC5O8ZcN7j8DCyqZan5gvRwIY7RoX
8f6UaSReTODpZ57hrTffZObMmUyaNAkAOzfvav1l7h9um4ZHp1Gxd/ZLJlGIr4WFlQ0PfPBHtfKk
f1aTE7eXvJTz2Nk7YGllRXFhgUmbiL6jCOn4yHVb0JfmprJ39miTMoWFJdFT1173fOuCtlxJwvZf
0JcWYG3vhKjXIVjZoVOVcOVkDHqdFq+INrR8Zlq1vhWrooiICLp06cJPP/0EmKp2RVGUBKMKvv/+
e/r06cOwYU9x+PChGue2a9cuAgMDSU1NpXv37nW+tq6v/1QtrPj1cq0Vn8LSGhDRazXXNZ4s8MhA
dU+tmvivbRTvN6rG6unQoQPdu3fnxIkTbN682SQOT8ViK7jDw/g07oJbSGOzY+7+fDh6TTlBbR5E
q9PhXr+ZiUmBnZMbfq364N8yGnt3v9t4dTJ3Av/qlpa6tJBdnz0tHX/yySe0bNkSf39/FAoF6enp
nD17lgMHDuDi4sL8+fMB8AhtSf3uT0gaGr1Oh16rwsLaTrLHEfU6ygqyERQKbJ09b3o/Nvv8YY4v
+dCk7Fa/AEW9nkM/vk1himGLJqBhK0QUWHsEY+PkjrWjK65BUeg0Khy9g82OEb/+W5IO/Y21vTMu
3gHYOnvi3qgrrkENSdq31iQfSmXCw8PZtGmTSdnly5c5c+YM/fr1Q6fToVQqcXY2RJtVKpW8/PLL
7Nu3DycnZx57bDBXUlPZZgx0GBAYSOqVKwA06DEMdXEudm6+BHcYeMPRkUW9noKUc+g1KhL3/E5e
omGLT6FQ8PgTT7J82dI6jVc5UqvM/YVKpZIiKldl06ZNHDlyhBkzZvDGG2+g1Wr59NNPeeD9VTcV
2Vum7pRkXWbft+PM1rVu3ZrFixfz66+/8umnnxI1YCxB7R6q8zkyTsegzE3Dr3lP7Nx8bnbKMncR
t13g0ZSVELd+Lhmnd0tl8+fPp1evXoAhXUH//v3JzTVoeyo+ShV7swAh7QcQ2f9lkves4NzWxSbj
dxjzDc5+Da45D1EU2T59CHqNCksrG1yMRs/X0vqIoohOo0ajLERhYYWNk/kIwKIoUpKZRE7CUQpT
4/GKaEtAq95SfWluKqrCXNzqNZGEseSD6zm34eqW0sKFC7lw4QJn486xY8d2SoqLTc7RYtj7eEcZ
AguqlUWoinIRRT12rj5kntpJ+tFN6LQaBGsHCtOuftzHjx/P2LFjKSwsxMnJCWtra4ORnhnjbb1e
L+W9+uyzz3juued47LEhFBTkc/r0abKyskzybZ05c4awsDB0Op1ktwPg4+tLZoZhU+5WCIoZsf9w
auWn1coDAwOZP38+Li4uqFQqEhMTadOmjUkUZZVKJXlzyNxfaLVa3n///WqhKSpQWFphYWGBhcIC
X39/kzhUN5OzTebmqey8UMGaNWsYNMgQ00fWwMnUldsi8KiVRWSfO4Co13P2z2+l8vbt2/Pbb79J
H1pzySyPHz9eLQ5Di6c+QNRpubBjCZrSAkPgPhd3VMoSWo2cKQX2M4eqpICitATJ1mfgwIH8+eef
wNW4Ctei6taKwtKKNiNm4Bps2D/OPn+Q40s+NtfVLL5NuhIWPZzSnNRqhtjmgvpt2LChWnwJaxtb
1KryWs/TtGlTTp8+DRgEk8aNG+Pv78/ChQt56CHDyqgi4ee3333HgvnzcXV1JTU1FV9fXzIyMsyO
+/KYMRw7dozPZ80yiYUjiiJvvvkm69atk8psnNzp/tav5oa5IS7vX0de4mkcvUNQF2aQk3AMldJU
MBw6dCgzZ868ZeeUuXtJTk6WFleVsbRzpOFDo/Fv3tOY7y7DxAs0vM9I6nd57N+cqowZRFEkJ+EI
p1bOQqe+6iDS8pmpeEXIBsYytSOKIkWp8SjzM8hLOEzqiV23TuApL8ol5ovqmb0XLlyIjY0NHTp0
QBCEWjNkBwYGcuXKFUI6PopTQBixq74wqbewsEBnTLUQ0XcUuReOo9dpCGo3AO+ojiiq2GhUFlbe
eecdXnzxRdq0aUNBgcHO54EP/jBr7FbTGJUJatmTK6f+QdTVbEPi5+cnucLOnj2blStXsnevIR9X
xf2rKc9Mo8aN6dChAz/9+KNUNnfuXOrVq0dwcHCNKnqFpdV127X4BgTh6elJ7Mnj19U+IKotZcUF
5F0xrIQ/+eQTUlNTuZKWwZ9rr26f2Tq50eSxt3BvUN14+laR+M8fUiZlMERo9fDwoFGjRhQVFTFv
3jwUCgUtWrRg3rx5xMXFsXr1ajw8PHjppZc4f/48/R56CGVpqZSdvnHjxmi0Wvr07k2HDh3w8fHB
29tbzrt1FzNi5Ej+2bPHbF3jQa+hKs6lfpchnFv7FSkndgGy9uBOQ9TrSNj2K47eIbjXb4atS82L
XJl7m9IWTZGRAAAgAElEQVScKxz/7UPsnd3IT7uEV2Q7Ms/8g62LN/W6DCZ+80/otWpEvV7qExAU
QreunVm2dOmtE3iqCga+fn4EBQZy+PBhqWzjxo2SdqGCBt2fpDDpJLmX47Bz8yW8zwhOrai+fQEQ
FBREq1atWLduHYHBIeRkZVJeflXTERY9nJCOj0ru2WkndpAYs4LSnKsRhyu0HQCWNva0fHoKdm4+
XI5ZgagqwdLZC6eAhnhFtkNhacX5zT/VaAsjCApEUW+2roKKmDYVPPzww8TFxVVLpyDqdZxaMYPM
uIMA+DTphoO7D5dififq4XGkHPyLkqxkXn/9dcaOHct7770nRXOuisLSii6vLsDWxROtqgx1aQHq
kgIcfUJQK4uwtLFH1OlQKwspybqMMicVSxt7tOoy6nUaZGK7oNdpTVT7VY2g/SLbgJ0z6cY4GmE9
nqRBL9N8N7cDg41PHId/eheMv9WWbdoSER7Oijra9zQZ/BqX9/9JcfrFWtu9++679OjRo1ahXebO
pLZnFhY9nPpdhnB4/kQK0i7dlLG9jIzMrUOtLCLl4Hou7jR9p0+YMIGjR49KCgSAFq1a4+rsRHR0
NM7Ozjg7OxMUFERISIgUmuKWCTzFGYns//4V6djW1YfyKm7EFTga3bxLslMIDK7HleQkwLDiyjm3
n8y4A2b7/frrr3Tq1Kla+fbt202iBUc9PI6gtoYgeVUFsWnTpnHx4kUWLza1BwIYMGAAkZGRrPtr
A8lXrtDj3eWIeh1Z5w5ycvkMs3OqjH9AAAP695cMrgH++ecffH19AYN7bNOmTQHoPW0dgsICUa8D
QSFt9eUlnubIzwZXyfaj/4dLwNXAWlumPix93C9cuFDjS9wjJIqGAydgYWNX65ZfBXqtBlVJPsXp
lziz7hs0yiL8mnbDOTASdX4amgLD9paFjT3KkiLsfRoQ0WckICLq9Sa5ckI6DSLyweevec5biV6r
IfPsPnTqMnTqcjTKQlKPbkZljN/T672VJP3zB+rSQvya9cDROwRLO0dEnbbWHF6iKHJuwzwKU85R
kp2CXquW6nx8fBgxYgRDhgwxiUotc+dRm9FyBZ3Gf4+Nkzs7Zz5Juxc+l7asZWRk/j206nIKLp/h
2OKpNbaZO3cuvXv3NluXlpZGeXk5ly5dIjMzk5iYPSRfSSXhvCEe3G01Ws67eIIjv7xPp/HfU5af
iZWdI3bufuyeVV0D0PKZaVzY+jPFmZfNjlURwTg/P5/k5GQ8PDyws7OTgs0tXrwYJycnKc1CcItu
iFoNChsH0uMOoVYWSWNduHCB3bt3o1Qq6devnyQ4bNq0ifDwcOm4z0frEfV6SnNTsbJzQrCwZM+X
I9Br1NfU7FQ+VwXLly+XAiL6Nu2OtjSfnEsG7yMnn3oUZyYBAhaWllhaW+PXIpoGPZ6WbI0qa1fi
4+NJT0+nuLhYSqZXefzKuAdFSAkSI/s+j71nACVZyVL49co0adqM4qJC2rRrT0FBIc2bNaFxo0aA
ITnpxIkTAbCwtESn1QLg3bAjLkGRuARE4BwQVi168r1CYWo8eRdPkrDtF5Py48ePS0lbZe4s1q5d
a5J6ZdiwYXz00UfSAqO4uJiWLVvi16wHTYcY2mnKSrCwsqlVGJaRkbl1aNXlnP59Ftnnr4ZJWbx4
MU2aNKnx3apSqUhOTiY1NZUXXnjBpM7JwxcbJw+s3fzwjuqIW0hjds588r+JtJwdf4S041sRdRo8
wtvi37wnO2Y8jqjXY2lpidb4IXV1deXjjz/Gx8eHFi1a0LNXL8n9GaBZs2a88cYbTJ48mQkTJtCt
WzfmzJnD0qVL6dGjBwMHDqSoqAiNRkNxcTHffPMNUY0a8ZfRcNkcu3btkm5e5wnz2PvNyzg4OlFa
UoxPVAeaD3uf4oxEErb+jHdUJxRWNlg7uKApK+b075+bjFWx/VRBZY2MpN2pRPPmzZk2bRpBQUGk
pqby2GND0Go1hPV6mgY9hnF5/zrOb1rAF198waOPPlpt7iUlJQwaNIhGjRqxYcMGevfuzdatW+na
tSt79uzhqaee4nzCBY5Wib3z6KOPMmvWLJRKJY6OjtXGrUrFNuILL77Igf37pfL7yfahcpqQCkFZ
5s5j/fr1kpBemQahYZSVl/P40KGsWf0HRTprClJNQxf0eGcJVvbOcqJIGZlbTFl+JpZ2jlzY/CMp
R69G+3dwcGDFihXSIr4qoijy4osvmgQPdfYKwNbdH5fgxng3bI+1kztWttXtLu+o1BJHf3qH0uxk
1OVK9Dpdtfr+/ftLkYKvh3r16rNt21bpOC0tjbfeeouDBw8SERFB27ZtWbJkCW+++Sa9evVi165d
lJWVMWfOHMCQ1PLMH5+TdiqGJ54cxorlywDo/tbiGt3TNWUl7Jz5JGAIBhgfHy/VvfzyyyaRjaOn
/UnexeOS6u6BBx7ghx9Mk6FWVsX3+Wi9yXbXlClTGD58eK33QKvVYmlZ3bU2LS0NHx+fWgPx6fX6
a+arat68OaWlpdLx/STw6DRqzqydLYVceOWVV4iOjiYyMtLsPZf5b9iyZYu06AgKCiIlJUWqEyws
EXWGxVVoz6e5uHMJTZo0ITb2asLhyAdfJKRTdacCGRmZG+PygT85v3G+SdmqVas4c+YMPXr0MPH+
BVCr1UyfPp2lS03teHybdqfpkDeve0FyRwk8FYh6HTq1ipwLR8k5tx+9Somtuz+6khysPELQqkpJ
3n9VQ2NtY0P/AQOxtFCgF0XKSkt54YXn2bdvH1988UUtZzLFLSAUtwYtQWFJaM+nEBQKdBoVeYmn
KM1KwcLaFq/Itti6eNU6Tll+JqkH/0RbmkfyyaveIUGtorFy8sTG2QP/Fg9gYWWNMj+Df/73QrUx
Vq9eTePGjRFFkRUrVjB16lQpq3jqsS2cWfsNgwYNIiAggG+/Nbj+V94669Kli+RWbmdnJ7mnmyMj
IwMHBwdKS0slW6OkpCSiow1JR2NiYkxi71SwY8cOXnrpJZOyqobY9wMFyXFknTtA0j9XI4GfOnUK
e/t7c1vvbiQ+Pl5ylujevbvklVdB40ET8YhoQ8bxreScO4BehIIUQ+buLhMXYu/u+6/PWUbmXuXC
9t+4tHu5dDx9+nSefPLJau02b97M3HnzKC0pITExUSq/0e/MTQs8mvJSdColmrIS1Moi9BoVOnU5
ZXkZqPOSARErFz/82zx4Xcaz1yLl0Ebi1n9PREQETzzxBBEREURFRaFUKklJSSExMZG9Bw5y6OAh
crMNBtPhfUbiHdUBa3sXk5xW/xVHfp5MXuIpwno8QYNehpg76tIidn32VK39KgRMg5HwoyZudxXU
Dw0jMDCIPbt3mpR/8MEHnD17ll27dklBHgH69etnEnF5woQJlJWXczk5lS1/G7Rprdu05eiRw7Rv
356HH36YmL37uXjxIqXFxWSkG7zfWgx7D7eQJljZ3592LKIocnHHEpN/xCBHd75T2L17N88//zzv
vPMO8+bNo7CwsMa29boMIaLPiH9vcjI3TcLWXxBFEf+WD0gOMTJ3JmX5mez5X3Wnlop35cmTJxk2
bBhBQUFcvGjqNRvS8RHCe4+44UX1TQk8lY+D6oXi6uaGvZ0ddnZ2BAf606RxIxQKBatWr+HAvr04
e/oaklpaO2Ln5ou1o6tROEpHVBWjsHfD3jMAz7DWWNrY1XjugpRzZMfupuRKHGXF+Wg1aqysbXFw
88LW3R9br/q4hjTG0afeHRkp9cSSaWQnHKfdC7NwCbyaxTvpn9WoCrPwatQJt5Am6PU6EEU0yiK0
qlKs7F2wdnAxUd/ptRoQFOjUZeReOEZpbirWDq7YOLnjGd6aK4fWU5J6jrKCHAozktCqr7rw2zi6
4hPeknJlKZbWtuhFEXt3HxSWNti4eGHr5IGDdzBZcfs5t2EeHvWb4OjmjZ1fBHauPuh1GgRBgUtQ
Q2wcXf/Ve3inIYoiR356m3xjZvgKKnvoyfw3nD59WorOC+Dk5Exx8VUHhujo3lhYKNi8eTPOfqG0
HjnD7P6/zJ1LZU/c+2lb/W4j9dhWzqydLR1HRkZKZiqpqanY2tqSm5trErom7IHhuIY0wi046rrz
YdbELRF4rmcVq1KpiI2NZfv27SYu22DIxu3p4UF6RganYuOIPX0K32Y9Cew06JZohf4LijOTKM5I
xCO0JRmxMRRejsXG0oKsi6coKymUjJCrUpgaT+axzRQmn6EkPxuNWgWAf1A9sjPTpWO3ek2wtXOg
rDgfj/DW2Ln74+gVhKN3yH23pXSncOXI3yaRxSuoiGYtc2vRarUcPnyYdu3a1WqL9u6770qpJSyt
rNBqNDg4OlNaYhB6/Jv3xNbBGfeGHaV8fTJ3H8r8DOzd5MXFnUhJdgr75oypVi4IAidOnODgwYPV
zCMAoqeuqxZM+Ga4KYHHwsYOncoQ7nvv3r34+FxfIja1Wk16ejrjx4/nhx9+qGYfkpaWxoIff2Lx
L4uo1/4hfJo/YKIJuV0UJMdRlH4BvUaDprwYvbIAwcaJ4I4Dr0vwurR7BRe2V4/tUxutnv0Qz3BD
UML0kzs5/ceXUl1MTAy+vr6kpKQQEhICwIEDB3jmGYNL//jx47ly5Qo+Pr6sWrWK3NwcGg+aSEDL
aJNziKJIUVoCeRdPoM5JoiwvHWVRHnqdDktra2zsnUBQYOfdgMiHx0sfZ71OR1HaBYrS4kFQIGq1
CAoF9h7+OPk24Nz673Dw8ENdXoZ3VEccfeoh6rSU5lzB2tENa3vn+yoiqqjXUV6Uy56vRlWrk7e2
bj2JiYlSLI5Ro0bx/PPPM2Xah+zasZ0uXbrwxBNPEB0dTUpKCq+//jonT54EoHHT5ly8eJFyZQmu
fvVpN2bOf3kZMjL3LCn71xC36cdq5Y888ggJCQmcPXvWbL+mg9/At3mPW75QvCmBJ6j9AFIOGtSH
tyMOSW5uLgsW/sjCBQaNUJ+P1qNVKU2ypN8q9n7zMqU5VwgKDqFLly64ODtjb2/Hzz8vIj8/j4Z9
RxLc2XxuHVGvZ+u0gSZlgwYNolOnTnh5eTFixAi6du1Kp06daNiwIbt372bRokUABLXuTdQjhjxZ
VQMkVk6yWhOiKEru0JF9RxLcabCJwHLl8EZS9q7C2cmB6F49ad6sKcHBwfj6+mJlZUVsbCyfzZrF
hYQEnLwCiHhoLFeO/k1m7FVja2dnF/o82A9rKyvKyspYs3oVzn4NKEq/xIsvvsSCBfOpFxpOdlYW
pcUG2whbO3ssLK2wsnPAztUXt4adCGzz4HU+jbsbjbKYrHP7ObP2G6lszZo1UsBJmRtj4cKFeHl5
MXDgQOk3fuLECYYMGXJd/bv37MnunTv55hvDc5kwYQLO/uF0ePl/t23OMjL3M0kxK4jfZl4J0Lt3
b0LDwpg3d65Jeafx3+HoHXJb5nNLtrR27dpFYGDgLZtUUlISf//9NwcOHyP29CkK8nKqtalpS+h6
URXns/tzg8GwwsISvdE1tYI9e/bg5+cnBSUL7TGM0F5Pmx3LnMBTwaFDh3B3d5eOqyYzbDrkLbwi
2mJpay8JPNerDfjoo4/49VdDYs4OY2bj7Bcq1WXFHeDEsukAzJgxg6FDh1YTEmd/M4efFv2CT/No
Mk7HoCzIMql3c3MzSQtSwZQpUyT3wN59+zL40UfNRr3U6XQkJSXx/vvvS+P0nLT8jjAc/7eorLU7
cOAAnp73j8brVpKenk7Xrl1NympLcFuVzl26ci4+gdysDHzDmmNt70hpfhYN+ryIW0ij2zFlGZn7
FlEUyYrbT/6FI6Se3I1OozLbzsvbh+wsg3NRYNsHadhv9G01ybhpgefMmTPY2NSefPNaaDQaTpw4
wZKly4mJiaG0tAQbeyc0ZaU4u7nSqlVrvD3cGDx4MI0bN+brr79m/oKFdH1jESn7/kBUl2Hl6o9r
cBQOnoGSp1Da8a1kntiGg3cwpYX5hEc/K0mOxxZPIyfhCEOGDMXR0UHSuNSEOTe4fXPGUJJ9NaZH
97d+JSfhqIlR1rZt26hXrx5gGnTQwc0HrUqJSlmMwsKK6Klr6iTwaLVaKTBTz8krTIwsVSX57J5l
EOY+/vhjhg0zFQz1ej2ff/EFCxcupN0LX3Jw/mtmz/Hjjz/SvXv3auVFRUX89PPPfDtnDoJCgajX
m9ipaDQakpKSUKlUiKKIt7c3GRkZPPaYQUNWeRvvXqdCc1jB2bNnsba2/g9ndHfSq1cvkpOTb6iv
W0ADBGsHHH3qE9FnpGzjJiNzG6kci87R0ZHRo0eTnZ3NI488QvPmzTly5IiJC7qzfzitnp2GtYPL
bZ/bTQs8x44dw9nZuc4n1mq1bNu2jT/WrOPgwQMorGwR9XrcXJzo2aM7Hdq3o3379ri6mnr//PXX
X7z22tUPtLe3N2PGjCHufDxHj58k5XIigsISUbAgrOcTnF3/Q9VT02LYe7gERrL78+EsW7aMtm3b
SnU6nY7hw4dz8OBBqcycsLP78+GoivOYMGGCpCI3x4ULF1CpVKxYsYKPPvoIMBhRfvrp1eSoFtZ2
PPD+75LAExcXh5WVFZ/MmMnPP5nuf/Z9aABh9UPYvG0HJXobGg2dLKWdANPUExVaqqpUJB3tOO5b
Dv/0LtqykmptAgMDWbt2bbX7X5lnnn2WA/v3Y2ltg0IQ6N33QVJT04g7cxpbRxd0Wi1ajQqNqgyd
VovCwkIKKFkRU+heRadRs/3jwWbrZHueunPp0iX69OlTeyNBAddI99Jx7BycfOvfwpnJyMhUcGH7
Yi7tNk1off78eROngvDwcCrLFv/mt6A2gaf2ELsYXtw3IuwAvPX220x87Q0uFFmhLCkmMjyU6dPe
Z9uWv5k65QP69u1r9mNbWdgBGDNmDM8++ywzpn/MhnWrGTH8WVTKYtSlBdWEnc8/N6R9OLHsE5L2
/A5QTfthYWHBkiVL2LFjh1RmbkUY9fA4AEnYqTqvxx57TIqynJaWJgk7ACNHjjQRqHTqMi7vXydt
0UVFGZIWdurYwWTMFsPe5zIB/B2bg33zgTR9+iMTYQcwyWJekzt0RRTg/ITDhHQwbMU1aWLwThk9
ejQTJ05k/vz5tQo7CxYskFJKeDXqglpVTmyuAl1oT1zqt6AwJ4OWLZox+oVRfD5rFh9++KFJ9Ox/
Zj3FlikDyI6vvmV2L1BbnrXly5dz8eJFysrK/sUZ3d00aNCAo0ePsnz58pobVbrns2bN4o8//qBl
y5YmTawd5CSvMjK3C0ef6ouJgoIC6e8RI0aYCDu93l91xyx8r6nhqetKddKkSfz+++9ENmrC+bOx
tB/9P1KPbOLK0S20bNWa31euuOYYWq0WnU5ndhutpszhFcTGxmJhYcHYcePZuWM7gW0f4srhjRw8
eFBKQFqZxx9/nGPHjtHr/VVYWtuaHbMo7QIH5lXP02Nu6yIvL4+cnBwiIiIA07QRLYZNxjuqk6Tl
mTVrFoMHD+aDDz5g2bJl+DfrRpMhb9d6fXDV8PlaW43jX5nA/mOxtBvzbTX7o9WrV9OsWbMa+17r
PpujIvdXUlISGzduJDExkTVr1gDQ7Y1FWNo51niP72ZivhpFeRXbqAreeustRo8e/S/P6O4nNTWV
4cOHc/my+STDFTi6uFNSmGdS1nvaupuO5SEjI2OKWllESVYyR356Vyoz912Ni4vj4YcNi/L/Il7S
TW1pxcfHXzPXUgU6nY6nnhnO0cMHafn0VNwaNCdx60IyT8fw0osv0KVLF1q0aHFjV2EkNTWV7Oxs
3NzccHd3x9bWFiur6tqZymkTKjCXjLOyB1RtD0enLidxzyo0ZcWkHLqa6+vVV19l/Pirbt45OTns
2bNHCoJWYRANV1/EVT21ABo98gqBrfte8/oLUs5zaMEbwLUD3vV76CESk9PQllffzoLaY8ds2rSJ
V155pVp5t27diImJMdtn0ODBzJwxw2xCOHsHR5SlJbR78Qtcg8wnjLtb2ff9eEoykkzKtm7dKhl5
d+3ajbNnz3Lw4IH/YHZ3Nnl5efTs1YvSEsNv1NxvesGCBfy8aBH79u4FQKlU0q1bN5NVZQUN+48m
uP3D1cplZGRuHFVJAbtnPWNSdu7cObP5BAsKCmjTpg1wFwo8dg6ONGrchAnjxtC5c+daT5SdnU3H
jh3pOXklVrb25CXFcuSndyUh58SJE4SGhrJ582aTfnq9nvz8fNzd3W+p6quqlsLb25t9+/ZVa/fc
c8+x1/gyvd4HpNOo2PvNy5QXZgOGsPYBAQHSOSdPnoyPjw+vvvqq1KfX5JXsmPF4jWN2HPctTj71
aj1vSVYy+74dS9OmTSXtSU1UjmEC0K1bd44cOUyDBg3Iy8urUXCpYMGCBaxZs5b583+QPPTS0tL4
5ptvpCBvFVRoAmNjY81meK9Kl9d+JCN2Dzp1GR4NWuDkU++uTFmhURaz89OrW6ZRUVEsWrSI9u3b
V2s7ZMgQ8vLyOHb8ODG7d8t5uIDy8nJeeuklk3+X0dG9+eST6Rw5coSGDRvi5+dXoxF4TEwMo0aZ
xkSKnrr2joy+LiNzt5K4ZxUJWxeRkJBATk4O8+fPZ9IkQ4JrQRBMvtuVvzv/Rd7FmxJ4eryzhLxL
Jzm96gsGDR7MrM8MhriiKHLgwAHefudd/P39iIpqxOGjx8kuLKXNaIPNi16rYdtHg8yO3bdff/bs
3oVSWWpSXjkM9c1SXFzMQw89RHp6uiSQgMHDqKpWaMmSJUydOpVuby6qU+TnypLvnDlzTLQiQU06
YuPdgKB2AxAR2fWpaR6t2NhYya6mAnt3XzqO+x4LK/Mv+OLMJPZ/N56JEyfy3HPPYW9vX2sEWqVS
ybRp01i9erVJeV00d7VRXFyMUqk0CUiZkZHBa6+9Rvv27aWkp7URHtWY5KREHNx9aNDnJdzr3z2x
bLTqcnZMvxojZtKkSeh0OmbNmnXNvrJhs6kG9FosW7YMgDZt2kgv2N27dzN12jSuVMqODnLqARmZ
W4m2XFnrYr3qu0yv1xMREYGtkxtd31j0r24x35Js6RUf2tdff52SUiVr1v2JSq3FxisEXXkpHhHt
cPYLxa1eE7MSXWLMShK2/Vrjuby8vYl+4AE++OCDGldzoihSWlqKo+ONx3ip0MD4+/uzdetWyQam
ovxGYsiUF+aQsPF78i7HoVIWY2XnSPe3f5NWmTqNiu0fmwY0rNj7FEWRmJgYWrVqxdGjR3nhhRdw
8qlHx3E1CwpHFr5F/pXzUmJRV3dPKY6Rg4MDK1euJCIiguzsbD7++GOTxKEV3OjHdvjw4dJqfPv2
7VJ0aHOIosjcuXP56quvamzzyy+/4Ovry6JFi4iNjeX06dM0fnQCHqGt7poIzqJeR/L+P0natwbf
0KYIVjaUlZaQeXYfnvWbkpNoPov933//fUO2UvcisbGxrFz5OxMmvIJaraagoIDS0lJmz57NgQOm
W4GPDRnCpzNnmqwqo6N7k5R0NdPynSjwaFVKkvauQacqIeLBl+4YQ877kaO/fEDuxeMAtB31KW7G
dCNl+Zlc2L4YVUk+3g07ENxB3h6tQKdRUZByjqOL3quxTWxsLLa2BjvN/Px8hjz+BCprd0L7PI/D
v5Tw9ZYIPAD5SbFkHl0PCksCOj6Go0+96/pHWxEAsEFoGC88PwoHBwfCwsIICwurVTtRlbfeeos1
a9YwfPhwpkyZUvs5jW7iDg4OUmwYuCrYDBkyhBkzZkhajsofnlvtQleac4W937zM0KFDmTlzZq1t
K+ZxrRd27OqvSDth8DKzsrbG2s4JS2sbCrPTqrW1s7dHrVKhM3pQdevWjZ9++uma8541axbz589H
oVAQHx/Pnj17GDlypFS/ceNGyTi7JtLS0oiPj6dHjx7Exsby9ddfs2vXLgAWLVrEhx9+SGJiokkf
GxtbrJ3cqP/AcyhzUvEMb42ti9e/EsPhVqDMSyd57x8kH/4bn9BmuEZ0QFNeQsbJXSjzTJ/PtGnT
pDQi9ytVhT5nFxdAoKjwqo2OpY0dvd77nZKsy+z71uA9WVlo37hxIxMmTJCO7ySBp7wwh5gvR1wt
EAR6T/tTFnhuM+WF2Rz+aRLuoS1pNGAM5zb+YGJ/eb34NeuBras3YQ88Kz8zQF1aSOKe37m8b221
ut9//91EY6tUKln44498M3s23hFtCOo0CLfgRndu4MFb9eK4cngjZ//6XjoePfplzsad5eSJkxQV
GVIVdOnShdjYWMkY0cbWDlW5wa1XoVDwzjvvsGPHDiZMmGDWRqIyq1ev5u2336ZRo0b8+eefUnnF
1tXixYvp2LGjSZ8dO3ZIyc0EC0tEnZaIPqOo18U01srRX6eSe+EoAA+8vwqLa3geFaSc49CCN6Xj
ihg85qj88vdp3JnmT0wy266sIIs9X40ismEUa1b/wblz5ygpKcHOzg5fX19sbGzIycnB29tbcj0v
KSlh7dq1PPHEEzWev6a5gCHAVEnJVQPoG9USiaKIXq9n5syZUjBIO3t7ypTKWvt512uES1gbAts+
dEdGctbrtOz67Bm05SX4BwaRduXqNouFpRWe9RuRn5qIWllk0u9WBPa8G9FoNKSkpDBq1CiuXLka
uDE8PAJBgICAAMLDw9m+fTsXL16k0/jvcfQO5sLWn7m05w8WLlxIt27dEEWRyMhIOnfuLNnidZm4
EHv3OyPJZElWMqdWzMC/ZR/8WvTE2sFV/nDeJv6Z/RLK3OqLvltNq+Ef4RnW6raf506mvCiXs+vm
kJNwpM59b+eC5I4QeMA0YF5w+4dRK4vIiT+MVlX9Q+feoDlu9ZpQcPmspHqsyrVye6nVahQKhYkl
+Zo1a8jNzeXJJ5+scWts5syZ/PijaTBAhaUVfs17EjVgHEVpFyRPqW5v/oKtc3V398poVUp2fHJ1
//NambUrJw+Fmn8cOo2KuFWfkZlwDJ3WkDajbdu2Jqki7OzsOH3a/JZKBWfOnOHSpUsMGDDAZF7r
14QUI44AACAASURBVK9n6tSpFBYW1th3zpw5REZG0qBBg1rPYY6SkhKmT59O06ZNmTp1ao3tWrZs
yaBBgyStnmtwIxoNHI+jd3Cdz3k7ObLwDfKSz2Pn5kNZfiat2rQjtEF9GkZG0LFjR44dO8b38+aT
dsU0mvArr7xiYtx+P7By5UomT558XW0dvYIoyU5BsLCi0cNj8QxvzYF5ExE15VhaWuDk7EJm2hWT
Ph1e/hpnf3m78F5EmZeBVqXE2a8Beq0GnVaNXqsh49QurhzdTGl2yrUHMeIfEIiVpUWt4Q/i4uKY
NGkS+/fvJzMz06RODoFgQK/TUl6Uwz//e+GabZs/ORmfRp04s/YbUo9tASCsx5PU6/7kLXE2uCW5
tG6V4GOwd1hHWUY8ytw0inMzsFBY4Ozqipu7By7Oznh6eGBjY8WlxMtoNBpiTx4zO5Y5F9by8nI+
+OADGjZsyKlTp8jLy2P//v04OzvTunVrgoOD+eWXX3j99dcZO3bsNedbUlLCuHHjpJVjBXXZ9ipK
v8iBua+yadMmyQW+JvLz8+nevTvKStqO4I6P0LDfizX2qZwzrCqt2rTj2JFDAHh5eREeHk50dDTt
2rXDxcWFy5cv17ql4uXlRefOnVm7trr6sjJnz56luLjYbKyja1FWVkaPHj3Izc0FDELU9OnTsbCw
IC2t9tVa1ZQb/yXZ5w9xfMlHtO/QCY1WS0pKMrnZWdg5u6NVl6NSljBs2DAaN27M/PnzpTQKbdu2
/T975x0WxdlF8R+9iaDSLFgQsSPWWABRY4+9Yu89JsEajWKJYo+9xRIVorEX1FiwK/YKCgKiIChF
BakLy+73x2bHHXaXYklMPs/z+DwybWdnZue9773nnsOmTZswM/s8vsffgfT0dM6dO4eZmRlDhw7V
up19eQeaNXVn+7bfKFmqFFJpDgnxcRgam1CidEVkuvpkSzLJzkglJeE5xcpVx7nnFIzMi2s95hf8
O5EYfpvb2/OmMmjDvn37FCRaY2PRO1jZdTR69GhWrVqFjY0NQUFBhIeHEx0dLWq6qF27DhkZ6YSE
hAjLvp55AB09fZDLvgQ+hYRSnmXIkCFcDrxGeNhjytRtTfmmvTEqol0QtyDH/eCARxnJ5paVLlHR
hZIuLbB2ql+gMoNSR6Zfv350794de3t7LCzy52Yoyytt27Zl1apVGrdZsGABERERxMTECArI1atX
Jzg4WNhGE1F0586dzJgxg7Jly3LmzBnBnXnOnDksXbpUY4aj4eiVFC2pntWQZqZzbeMPpCXG/LXd
CsztHAg9soqom4po1tvbm/79+yP5i1eTkZHBV199xbRp05g/f77oeOVdu1O+SZcC81ckKa85v3iA
8HeFpr2IPK9Z7NHQ2ISszMIpAevp61PEvCjJb17TYNhiJKlvuLdLfM7379/H1NSU7OxspFIpJiYm
+R5XLpfTp08fZs+ejZOTU55k3r59+1KkSBE2bNiAcdESuE/cVqjv8KkQ+ucmoa49c+ZMBgwYQEZG
BmvXrWfz5s1kSTK17rt161Y148z/B9y5c4f+/fuTmfnu2qxbt46WLVuSk5OjkeMnl8s5deoUy5Yt
Uyur5jbY/YJ/P1R9m94Xqll15btF2al6/vx5AgMD0dXVJScnB2dnZ2JjY0lLS8uzy9SqcgNK1WrG
/d0LATA0KYJhUSvs67fDvkG7Dzrf/wc8PLya5zf/1LjOwq4cyS+f4dC0N2bWZTA0tUDXwBADkyIY
W9igb6R9TPkoAY9TqyFE3zhKxhtFSs/ExARTU1PKlCmDsZk5d2/folgZR8p6DMDCvkqe2Q9V4b2C
dqoEBAQQGBjIt99+qzVA+v3330VkZuVDHhERQevWClG/VatWYWxsjI6ODubm5lhYWPDkyRMh2xMW
FpZvFgYUysG5u4hUS1dfffWVyFoiL4wZM4a1a9cWyBnaslx16g2aj24hyN655QFmzJjB3LlztW5v
XbkBJZzqEaLCuVJFzR6TebAn77brkSNHsmGDwvbjfTgqBS15FC9XjXpD828B/ztwa9tPvIq4q7Zc
yUvbtWsXq1evpnS9NsTk+qGvXbs2fx+pLyAtLY1atWqpLfeY4vevIbV/Qf5ITYjmyqrRhdrnyJEj
gsJveHg4crmcnJwcjeJ4SixZsoQaNWrQunVrtTHr1atXnDp1irCwMHbs2IFMlreHmyrcvLZgYmlT
qPP/JyGTZvP66QMykxMxty1H0dJOfwvPTC7L4fmtEzzSMNZ4eHigp29AjhzevEkiKzub5KQkEuJe
YGpuSdFSFTG2q4RN1caYWZUW9vsoAY8qNJFVc3Jy2LNnDyvXrCM9I5Oi1qUxMC+OnmkJTKztsavu
KiL3xtwJIPjALwA0aORK1cqVSEyI5+7de8THx5GdnQ0odHn27dsntLopkZKSwooVK8jOzqZMmTIM
H64o+WRlZfH27VuKFy8u0pmJiYmhRYsWSP/iumiCUsxP20u1epcfhHNuNcefnGwJuvqGyGU5pL+K
4cbmqWRnpADQrFkzJk6cyJkzZ1i6dKnasYrYlMe2RhMizvhpPJc+ffrw+++/az3XFjP2EX3NHz1D
Y8rUb5fvw6kMMm/duiUKGPMybGwxYz96BoY8Orqe6Gv+VOs4DruaTYl7eJngA8sBqNJ+FKVrf02A
ihZNbrwvKffHadPYs3t3vtvZVqxJDU/vfMnjnxpymYyoa0cIPf6raHmlKtWJfvYUIzNzrCo3pJxH
Xx7sW0xCyHVhm+bNm7Nx48a/+5T/NVi1ahUrVqwQLStV+2ucWg3B0Oz9vP6+4PNBckwY1zb8QOW2
w4kLvkxS1MMC7+vs7MyUKVN4/Pgxbm5ulC9fvkD7xcbGsmPHDqZMmSJaLpVKRWrxbm5upKSkUL9+
fezs7Gjfvj1PnjzB0NCQK1eu4OnpKTKnzg1dAyNk2RIAHJr2QkdPHwf3np9NCSwtMYagnbMpaWNF
xYoO3LxxE6mOPlY1m2HfsNMnE/GUy+Wc+bk7OdkSanafSElnD65vmkxS1EOWLl1Kx44dNY5rMpmM
qKgogoODuXbjJr/77gCgRtcfKO7gwoUlA98/4Dlw4IBQEnJ1dRUUd/PCs2fPiImJIS4ujhcvXnDl
2g3u3r2LTaU6GJYoi2mJ0sikEopXcCb48GrexoRhXNQKXT09cqTZmJYoRfzDd8qrP/74o1qd/9Kl
SwwaNEi0TLVNOi4ujj/++INKlSqRnJzMoSNHuHHtGvYN2mtsTezatStVqlShV69eQts8wObNm0Wf
7T7xNwxNLbQKKgIaO8CcnZ0FXk7ldiMp5dKctPgorm+apLb/li1bcHd3BxQ3d8SIEUIrN0D9YYuJ
OL6O8iVL8DAoCPOSDpRu2BnrKg21Bj657Sw0Ba179+5l6tR3PimVWg2mgqtYP+j29p9IDH+XxXDz
2oKhmSUXl/QnK0MhIlmyUi1ehN0T7fchJZvg4GA6deqkdb2RaREajlv/QXXfjwmZNJuE0Ovc+8MH
QzNLavaYhLlteVEGQpO9SH5k9v9HqFq/KNHk23V/m6bHF3xaBK4dT0ZSHNJMxbvD1KoM6YnP89kL
fv75Z4KCgrCwsMDf3x87OztWr17Nrl27qFGjBs2aNcv3GBcuXCA9PZ02bdoACkuE77//nkuXLom2
a9asGbVq1WLcuHH5HtPLy0vUFdyrVy8OHjyIRCLRuL1Vpbq4eP70t6sRq+LkzG9o0KCBMMFWDfiq
dRpPmbraM885WZm8uH+O5OehpLyMpFyjTpSslf+1l8tkpMY/4+mVA7z4S15FyRN+fvNPHh5eTatW
rVi7VnOVQRXKsbpGrdoE3VM0OL13wPM+rcepqam4uLgwZcoUIfMSGxvL+fPniYx8yhF/fxLi4/I8
RuV2Iwg9ppjxqgYASsjlciQSCX/++SeHDh2iRIkS9OnTh6ioKJ49i2LVKoXas61DDdA3RCqVoUsO
CU/y7ljKC++0QBT2DqDo3pJJs9W2nTx5Mr1798bMzAw9PT21WYNpMVvS36hfgwMHDlCzprrSsKYX
f2hoKFKplEOHDrFg4SLevk3WqO+hFI1URe77unHjRjV14CLW9jT+dp3wt6qqsLltOVz6zsLE0lpY
r0lgURPWr1+v5nOWF7SVPP8tHRJ3/OaQEKrI5hQrX4NqHcZyOVe63tzcnDt3NHcj/psgl8uJiIgo
tKCiTCZDR0eHpKQkIiMjuXz5MufOX+De3XfXRNmW/gX/fmgK+LVh9OjRTJgwQW351atXefDgAaVK
lSIgIIB+/fpRp04dfH19ycnJoVGjRtjZ2REfH8/Ro0cpVqwYbm5ulC1bllWrVpGVlUX//v0pWbIk
oKAWnDx5Uu1zdu3aRd26ddXfqykp3Lt3D0NDQxo0aAAgaJXt3LlTLeujHGtv377N69ev8fLyIiPj
L9kVPX1qdp+EbfW87Zu0QZYjJSH0OmZWpTGzLluoiZPyXjRp0oSilsU5d+4sGWmpFC1ZkQbDl6gF
Y1JJOtHXjxN2aivo6IBKDFG13QjsG3YUvm9aQjTGFlZkZ6Qik2ZxeeUo0bHq1m/ArRuKd2ONrl5I
Ul6Tk5Uh8IQPHz5MtWrV8v7uMhlyuRw9PT0eP35Mu3bt/t6AZ9y4cfz5p4KjoG3/jIwMjIyMkEgk
xMXFUb58eeRyOfPnz2fr1q0a99HT06d8xUpIJJk8fxaptt6qdHlMrewxsLDDsKgVj/zXYWhohLGJ
CXYlS/I45FGe521bpQHOvafzNjactFexGBctgZmVvagDqtUcf1F7vdK3JzsjldSEaG5umSIoIKui
wVcNua5iHtl0si8pL5+odR3kdb1zDyKq296+fZuePXtSum5rqncSm37mfrloykBpGqCKlnKk4ajl
omVSSQbnFvVFlp2FiaU1bl7v7pVcJuPx0TUAWDjUIScrQyh95UZhnquEhASGDRsmIp/nRvPpu9E3
+vy8qS4sG0pmUt7B/X/JYmLmzJn8/vvvmJiYcO/ePTX7kjt37hATE0OrVq0ICAggLCyMffv2ExOj
Pqs3KVqcUnXbUq5xp8/y3n5B4SGXy8lOf8u5hX0LvI+XlxexsbFER0dTqVIlunXrhr29PePHj2fR
okVYWVkhlUo5fPgwDx48oGrVqmRlZWFqakpsbCz29va4urqSkpLC3bt3uXDhAj179qRhw4aiz0lP
T8fDw4PXr1/j5OTEokWLOHToENOmTVMLIAIDA+nf/924oGqkmZycjImJiVbHgNwIDw8XskwADk17
49C0V6GyPkpdNiUsrexIShTzQSt9PYAK7ur2EBlJ8VzfOAFDs6KUbdQZ85IVMbergI6ODjKZjEdH
1hBz64TWyb0Sys7lG1t+5M1TRWKhqGUx3ia9Udt23DiFPRKojz2effrRo3tXrKyssLOzK7QFkqOj
498b8Gzfvp05c+YwePBgpk/XLEOt/JJLly4VyhV9+vTh+vXrou1azDzIHV9vjC2sMbG0xaKMEwam
RdE3MuV15H3ePA2iUqvBmKgQiGU5Uk7Pzt/AMjd0dPVp8dMe4h5dQZL8SiQ4KJNmo6Orh04eF//B
/mVCek4bTIrZUav3NKSSdHIk6dzxmwMo+EObNm3Ks61b9cH4+eef6d1b0blw//59unZVnKtR0RK4
e23h1CzFNa07aD63flOQf/O6l7/88gtr1qwR/tbmKRZ94ziPjqzBtEQpGo5cjr7xu4HoVcRdIk/9
yuvYZ+jo6qJvYIiurj6SDM1u7fmdU25IJBJkMhlt27YVCdUpUbXDWOzrtwUU9+ufTBMDJD8P5dpG
9ZmpKr766iv8/DTzuP6NePXqVb6ioJpQrHwNLO2rYl3lK4qWrPiP37sv+LjITE7g2sYJSFJeF3rf
du3aMWTIELp3V+cJ5vYElMvlPHnyhOjoaG7cuIG1tTX9+/fXquifnp6Os7MzTZo0wc7ODkdHR6pU
qYKNjQ3lypXDx8eHAQMGUKFCBdHneHh48Pz5c8EiSBXK93Tud1t8fDwWFhYa+Yxv375l2LBh3L4t
lmCpO2ge8hwpVpXq5nOVFJPRl0EXeXhoJV27dWf8t+PQ0dHh0aNHjBqlyKwYGJvRaNyafP0ipZnp
vAy6wMtbR3kd8y65MHjwYCEhMXr0aNatW6dx/++++45u3bpRsmRJdHR0kEgkhIWFYW5urmZH9PN8
H37botC9+xjNG397wPPmzRsiIyOpXbu21tRaYGAgBw8e5Mcff0QqlYqibZNitpSu2xq7Gu4a1VLl
cjlSSTqxd07z7MpBwbEcFGRePQMjEh7f4I7vbK3nqPT80FQqUkLP0Jgq7UZiW70JOVmZGJkXR5Ly
mrexEdzdNY8y9doQ//AKVk71qdRyoJo5KECFChVE1gkW9lVIjg4RbXPmzBnKllWk6iUSCQcOHMDA
wIBOnTqpdRisXbuWdu3aiYh5P/74I3v27KF6lx8oWdOd+JCr3N+9kIqOjjyLjkEqydD4w8yNvn37
cu0vnlPVbzR3SEhS3/Dy/gXsarpjZF5MWP76aRDBf8xjxS9LcXV1FR7y8eO/41ZQCGmv32U5dHX1
kMkUNhc9e/ZUa8XPD3K5nPv37/Pw4UNmzJiR57bNp+/Js4XxUyLs9A4iL2iWBMiN0NDQQtmsfK5I
SUmhbt26WjtaDE3Nqd1/NsnPH2PtVB+TYrYat/uC/w7evnjC1XXj1ZZrehcq0a1bN0JDQ2nbti05
OTmMHj0aHR0dpFIply9fxtvbW5j0dOvWjQULFmgca/bv309wcDDjx4/X2N17/PhxkeGzKiwtLfH3
9+fq1as8evSIDh06qJk958a+ffsEEnR4eDgnT57E1tYWAwMDOnbsqJWXoqryf+nSJTZt2sTu3btF
emyV2wynXGPtXEYllBl91bFbJpNx9+5devZUZHhy6+q9fnKf+JBALOyr8PbJbZ7dCgAU9IPmzZur
BZU6OjqkpqbSo0cPwsLCAChZsiTu7u7Y2Nry3Xj1+/134YMCntu3b1O0qLgLIjs7m/DwcEqUKIGN
TeFa71JSUsjJyRHsDkCRAqxbV3MEa1u+CnFPQ7AuX4XUV3FkpKinx7Sh7sCfubXtJ0A7N0YJuVyO
VCoVaoHnzp3jhx9+ED1w74vGjRsLhptKaFOJ/uOPP4Ss2JEjR6hatWq+x3/z5o1QL24+fQ+6evoC
qbpoUQv8/Y9QqlSpfI8jl8v5+uuWPHv2FAfXbpT38ES/gJ1PdzZ5MWX8CDp3FmfWlixZwuHzt8lO
S+bNi0ik2VkAVHTvTsSFvYp981HMzgsxMTE0bdo0z22KlqxIlfajsCyb/7X8WFAtexYEmkQ0/014
/fq1wGNQ4quRy7AonbfX2hf89xF2ahuRF/dgaGaJxxRfYbk2Hk9ueY6OHTsya9YstXHo6dOnAhfw
3r17WoU7J02ahI+PT57t6YmJiYSEhLBixQru3LmDq6sry5Yto3hxhYClXC5ny5Yt6OvrM3DgQGG/
o0ePalRJr1q1KkeOHBGyPePHj2flypWF5i9KJBKuXbvGkCHvylXOPadiV8NV4/aq753w8HB27drF
Tz8pxkBDIxOyJBno6hnwtfcBAF4GXeL+7gWiY3h7e1O9enWcnZ3Vrtnz589p1qwZqnGDgYEBCxcu
pEOHDp9F08UHBTwjRoxg8uTJagcERapx5cqVhT4ZJYYOHcqPP6p7RSmJj69fv+bly5f88ssvjBkz
BlNTU8zMzHj+/Dn16tXDyclJFHlGRERw+fJl5syZo/Gz35crsWvXLkqUKIG/vz8NGjSgZ8+eIi8q
uVxOQEAAMpmMMWPGUKtWLWxtbQUC3JUrV2jcuLHomNbW1gQGBmr8POXsuDC1y7CwMNq2bau2vFu3
bixcuLDAxwFFl12LFi0oVq469YcWbN+726bR5evGDBkymFu3blG6dGn8/f359ddfcWjSGcfW7yTH
lTOEzOQELixVmJF+KI9FLpezatUq+vbtS8+ePWndurVam3ex8jUoXqEWFZt5ftBnFQQnvTuCvGC6
Hf92Dk9KSopgGFixWV8cPHp/Fi++L/h8cW3jBJKfh4qWVa5cmdDQd8vMzc1JT08XTI9BkYX29vYu
1LuxQ4cOTJs2TY23WBjI5XJ2796Njo6OkCUBcdClitatW7NmzRohINq1axd2dnYF6nLW9vkpKSnU
qVMHwyKWeEz21bhd+OltPLmwh8DAQEJDQxk0aBC2Vb6iRo8p6BkYqh1TGRwpJ+VOTk4cO3ZM63kM
GjSIS5cu0ahRI6ytrenSpctnJ5j6QQGPJqPLhIQEUlJSKFmypEhFVyaT8erVK27evMmVK1fo27cv
lStXFr38ZDIZCQkJDBgwgIiIiHw1WpR8oHnz5jF9+nStQZIqnj59yty5czl//rzautw1348J1Rd/
7hZj1cyNEh97oNNUngsICBBqphKJhKNHj1KzZk2tZbzXr1+zdu1afvvtNxyb98PBo2AKp6nxUYTs
W8jbxBdCFseqfFVsnFtQuq66qBfAm6dB3NiiaIP/2Aaahw4d0tjZoYSOrh4OTXtRwa3HJ+GL5NeF
snHjRipVqkRcXBz16tX76J//d0H1mYfPy6X8Cz4vyOVy0l/FqHXqKHHnzh3c3NxITU3l6tWrWFlZ
CZmEAwcOsGHDBiIiIgCwtbXl/PnzeWZtlFi0aBH169cvUKu6JmRlZbF8+XKaNWumUW9nw4YNLF68
WPi7dOnSxMTEaGwO+VCM+/Zb/jx+XKt5qfK98+2342nbtg29PfvwNjmJUs5NqdFdLIGSGHaL2zu8
1bTZ8kJAQAAjR46kd+/e/Pzzzx/+hT4BPimHJzIyklWrVhEdHS201RoYGAjCgaDIcChLX6mpqVpN
O7UhMzNTqJ1evHhRaCPMC8r2tNwoSJAhl8vZvHkzMpmM/v37F8gaQYmUlBSMjY21upFHRkby6tUr
atasWagB/tq1a/z000/4+/tjZGREUlISDRs2xM3NjTZt2uDi4kLFihWZOHEiBw8eFEkCKL+TpiBH
9XqsXbuWZcuWCX8rO9A+BWJunyL44AoaN27M119/TZ8+fQr08sqNjIwMjfdHIpEwePAQBg4cwNix
Y/M8Rt0BcynhWDvPbQoLbQFP165dycrKwt//XWBQsWJFTpw48VE//+9AbtHKL8HOF2iDphLv0aNH
iYqK4uXLl9SvX5/AwEBMTU3p1asXACdPnuTHH39Us/ZxdnYmJyeHbdu2iagR2vDq1SuWLFnCmDFj
ePLkCVWrVtVKxThw4AASiURoCAHw9fWlcuXKGoOdGTNmsHPnzjw//9ChQ/Tt25fU1FT27dsniNpe
vnyZHTt2MHXq1AKLJSo5QnUHzaOEg7o4rlSSzsugSzw8tJKpU6cybNgwURaqlJMLOvpGSNOTiHsa
iqmpKffv3y/QZyvh6OiIvr6+yFPsc8IHBTwPHz7E0NBQ0ByYOHEiJiYmREcrHGlNTEwoUqQIK1eu
xNnZmerVqwv716pVi6FDh9KmTRt+//13Zs2aBcDy5cv55puC6TDs2rWL48ePA7Bs2bJCm1OqltD6
9OmjtdylipCQENH5/fLLL2pO4vlBNeAqiGlofjhx4gRjx45lyZIldO7cmbNnzzJ8+HAcHBx48uQJ
oOh4++qrr3B1dUVPT0+UCgZF2tLIyIizZ88Ky8qWLUtGRgYJCe+I3x5Tf8fQ9NOo10pS33Bzy4+k
5RIXK0xtW1ML/YULFwSekrJkpoTyB29lZU1iYoLavvBpBuv8sjzDhg0jMTGRunXr4un56ctsBUVq
aiqGhoZqbbUhISGYm5tTrFgxYmNjRa20/1Swk52RyvNbJ8jJyqSItT12Nd3z30kLVK1h4J0EhUya
ja6e3r9C8+lzRe7fgmrlICYmho0bNzJ8+HDKlCmDTCbjxIkTApl4yJAhODk5cerUKQICFGRaTdxS
bZBIJEyYMEGQSgHNE9/cXFLl2Jeens6CBQsYN26cWqCUO7uTFywsLJgxYwYdO3ZEV1dX8HA8ceIE
FSvm7f+Wnp5O69ZtePEiFucek7Cr2ZSIszt5cn4ntXpPp4htOfQMjDEqYolUksGZeT1EvpMREREE
BQVhZGRERkYGpUqVomzZstjZ2RW6/KytC+1zwQcFPBUqVCA+Ph6ZTEapUqWIiIigQoUK5OTkULNm
TRo2bMjAgQMpU6YMDx48ULNkyG3eCQqBo23b8jd8zJ0unzFjhogwVlAogwUo2E2aOnUqe/fu5euv
v+b06dMAHDx4UMTQVzp7KwOwZ8+ekZKSQvXq1UlKShLNBipUqMCpU6cKfd658fTpU+zt7dHT0yM9
PV3gBj1//hwDAwOsrKwE8m9hhd8A6g32oXgF7cTuD0H66xfEBB4g8toxmri5s9Bn/nuRdO/cuUOP
Hj00ruvevTt79yqI0Nu3b2fAAIWJquo9r1mzpiD2pYSOrh4tZx0q9LnkB20Bj2rG83ODv7+/oI8B
sHDhQrp1U4hJanqmHFv0x6Fpr7/t/FShiXAJ0GDYYoGgLpfLyUp9g4GpBbp6emSlJfPwyBoquHUn
400cRWzKYmhmydPLB3gVfpuUl080flbpOi2p3lmdnPoFeUObNINyDMjOzmbOnDmMHj1amLDkzhzm
VtrPPaHJDydPnkQikVCtWjUOHz7MiBEj1AjOycnJ7Nu3j/nz52NsbCwyswWFKGFqaio//fQTcrmc
2bNnExoaipubG8uXv9Ma69SpE4cOid8ldjXdsShTmeRnQbx8GIiurh5WtnY4OFRUqPo7lMO1SRNq
164tWChlZGQIlI/de/Zy7+4dzK3LUHvAzxiZFyc8YDuRF/cKn1HCxo5X8Qqit1X5alQrb8vmXzd+
Ei7dgAEDuHLlitaxNCsrCx8fH3bs2CEsGzRokECe/pSIioqiefPmH+alVb58ed6+fUvZsmW5e1fd
HBEUddJJkxQ1wqSkJI4dO4ajoyN6enoYGxszdepUIY2viRekCRKJhEaNGvH27VtAoX0gkUjYd1dZ
MAAAIABJREFUvn077u7uJCYmEhgYiLm5eb4tvTKZjJycnAJ9rjIzoqenR2hoKObm5rx8+VIgqzk7
OwtpwIoVKwp1ZSXCwsJYsWIFUqmUypUrU7t27fcmqykREBCAj48PT58+FZb5+vqqiWcpIZPJWL9+
vVCiqtZxHA8Pqzv/FrEpT2r8U4qWrEjD0SvU1n8sRJ7bSdgZP1asWEH79u3f+ziaBl1Vj7Pc8PPz
46uvvuLgwYOYm5szcuRI0fp6g+dTrFyNPPWV3hd5ZXgeP36Mjo7OZ0XuzctXTRXGlrZY2lehSrsR
/5hhZ/gZP56cy7uU0GqOPxFndxJxVqFzVKJCTV5F5q+0HhQUxNy5c/njj3eSAtU6fUuZuq0/7KT/
D6HtNzBixAgiIyOpUqUKjRs3pl69eqLfQlxcHE2avFMdLkwXY1JSEr/88gvp6ekMGjQIU1NTtm3b
RqtWrahZs6bGjlClQjIoykbKID83nJ2dWbVqlagztEmTJsTHx7Nz506Bj2dhYaFWims56zA6urpI
szLJTIoj/VWs4v+vYkh+cotXz59gZGKCnp4emZkZmBezQdfYHHP7qpSu3ZJXYTdJjbrP6+jHpKck
s23bNuEa5aZwDB8+XM0j7GNBmRDQ1l1bp04d3r59i4uLC3369OHcuXMcO3aMXr16MW/evE9yTspu
tLZt23L8+PH3D3g2bdqEh4eHsCw+Ph5vb28hYzF27FjMzc0ZMGAAUVFRWFlZMXjwYB480P5iyS/L
sn//fvbs2cPWrVsxNjbm/v37BAUFCU7oCxYsEHk+AQXSmfkQKEtI2mBoaIhMJsPU1JSzZ8/SunVr
fvnll49GWluzZg2//KJ5UAeFD5aLi4vwt2q7pI6ODnndZ/j0JQlZTg6nZys0JMzMzLh3753XVmZm
Jg8fPqROHXUSXm5oCniU5/76yX1ubf9JpHQdHh6usWUaoGipSjQcpf2afihUu9Dywp49e0SZzL8L
aWlpzJ49m/379xd4H6Wh7D8FuVxO8MEVxN45rXF9yZIlefHiBQC1+3pzx09di+vhw4ds2rRJmAzM
nTuXb775RuPL+9tvvxVK6gD1Bs2nuIPzx/gq/2kImZ1c1gMzZ84UaAVt27bl22+/5ebNm3h6eqoF
/6qaNpB/0JO7IpAXZs+eTd++YrXnhw8fcuvWLfr3709UVBSRkZHCJF85mdfT0+PWrVsEBgYyffp0
DAwMiIvTrqSe24sxr/esXJZDdkaqQvOtaAl09fTJycok+sZxHp/YTAlrG+bNnUOVKlU0TqAlEglG
RkZMnTqVqVOnFojfVFioCouqqkuDWH1ayR8CMX/0U5XBLly4wLJlyyhVqhQnT578eKTl06dPM2rU
KJo3b86CBQsoXrw43bt35+7du9SqVUs0kE2aNIm2bdvSvHlzbG1thQcjvy+dVznm3r17mJqaEh4e
zqxZs7h27ZqwbsWKFdSpU0dok1PldXwspKenCylPfX199u/fz9WrV/H392f48OFkZ2czZswYGjRo
oMYZOnXqFGlpaWpaNYVFfHy8Wps7KPg4Tk5OQhkuLxgWKUZW6jtNow8JeC4sHSwSfyzbqBNp8VFk
vHlJuSZdeXRkjdo+mzdvFmZJs2bNwtfXlylTptCvX788SeKaSlrKmRNAxps4Lv4iNprt1auXaLau
hGXZajQYtkht+cdEwNxu5GSrGwfOnDmT0NBQ/vjjj39EgycnJ4fKlSsXaNsGI5ZiWaZg235qRF07
QsjRDYXeLyQkhDlz5tC2bVthEuLp6Ymrq2uepPb09HTWr18vEosr17gLldsM1brPF0Dkxb2EnfpN
tOzx48fExsbSv39/vLy8BK6YMqhZtWoVPj4+1K9fn0WLFglZe+V4cO7cOa2Z8oULF/Lrr7+KltUZ
MIeHh1ZRpf0oZNkSMpLi1c6pMAPw5MmTcXd3p23btsK5xcXFMW/ePFErt4+PD8+fP6dTp05MmzaN
mzdvAlC1wxjs66s30uSF8BObME6KYMTwobRu3bpAFYpPiVWrVrFihaIS4OLigqmpqZrGnDKrropu
3bpx7969AvGV3hfBwcF07twZuVz+4QGPVCpl9OjRgpPs8ePHcXJyEhSCPT091djqM2fOJDo6WuSN
ZW9vLyLNakJ8fDyjRo3Syh53d3fHwMCADh06sHjxYmJiYkTrldmWGzduvLegXVRUFAcOHKBs2bJM
mjRJ5MSuinbt2vH48WNWrVpFmzZthFlKdnY2+vr6olmLaiBXpUoVUafO++DgwYNs2baDhw/uaVzf
ao4/J2d+Q/Pmzdm4caMwYzIzMyMtLU3Yrk7/2QWSLs+N3J0XlSpVElQ3NWHixIl07NiRdevWMW3a
NCGwSUlJ4ZtvvhHuY+3atdm0aZPGVsnk5GT8/PwYNWqU6H40GrMSczsHANISotXMOZX4p8i1qqn9
sWPH4ubmJnSCNGrUiMDAQLp3786CBeqclI+FlJQUOnTooGbL4THFDwMTRefk507MlUmzyUpL5vGp
rZjbVsC8pAMRZ/zUNF2UuHHjBpaWlh9cOvzSfl84vIq4K4i+KnHjxg2KFVOos2/atAl3d3ecnJyI
i4sjODiYw4cPi96JqiWb/ODk5CTol5VyaUGNrj9o3C7qmj8hR9cLfxck4GnatCkxMTEYGRmxZcsW
vv32W16/fmeR0bVrV+bOncuxY8d48OCBUIkAaNGiBc+ePQPevY9B4f2nq2/E+UV9KV21Pialq2JX
w134HSoRF3SB4APL+XHqlPfir35sJCUlMWbMGB4+fEhqqsIyyMrKih49euDg4EDnzp21/tYSExMp
UaLEJynjy+VyatasSU5ODtnZ2VoDngL3Aevr69OuXTusrKx48+YNXl5eooBEGex4enoyYMAAIYWV
kJAgCniWL19OVlYWhoaGWtneNjY27N+/H6lUikwmIyMjg4MHDzJ37lxAkbkBBa9FGdWfPn1amMV7
eXnh6empVXmzIJg1axYXLlwQ0p6aWuHlcjnbtm0jKipKYPenpqYSGxtLYGAgZ86coVq1akyePFnt
Jit5SaqYN28eW7du5ddffy2QZkTnzp3VskU///wzv/32m+L8/noBKN1mu3XrRosWLbC0tOTp06ds
2rSJiIgIbuzwxqhIMcq7dcemaiNMLAtGqFUNdtq0acPq1eocIVVJgXLlypGamircRyWaNWtGUlKS
cJw///yTunXratTmsbCwYMwYhVP9+fPnhSxR4Np3UuaVWg2m+fS9XN80kdS4pwX6Lp8a7hO3cWGJ
4oW1Zs0akW/ZrVu3ADQKR35MvHr1Si3Ysana8B/j4bwPdPUN0Dcy5eX987xEXWcLFL/Vw4cPI5FI
hAH2Q5Ceni7q2jQweb9J1P8LNPF2rly5wvTp0zl58iRz587F1tZWmLDY2toSFRWlNgFUVVvOC0eO
HBGCnbxI9HK5XBTsFAR79+4VJmL16tXD0NBQFOyAgoIRExODn58fXbp0Ea0LCAgQxrnIS/uE5Ylh
t7i/WyHqOuAbN/YfPMTZI4osoknxklTv/B3FylbFprobMXfPMnfuXB4+fFhoEdmPDUtLS37//ff3
2tfKKm//rg+BXC7HyMhIjTeVG/lmePIS6pNIJFSvXl3QTpg6dapG8nBQUJBoYK5cuTJHjx7F09OT
okWLsmGD9hS1VCrl6dOnODo6ivQEBg8ezPbt29Var1WRW1ApJyeHly9fUrp0aa37FATbtm1TG7RB
XRJdidmzZ1O/fn0RqUzTdVXWQLdu3fpe6pVz5sxh+/btgMK59t6u+cQ/CsxX1C86OppFi5dw/NhR
AIyKFMN90vZ8I3Hli+3BgweiMlRe/mSq2LlzJ48ePdIqFeDl5SUEN9qQV2lGdRb+MvgSVpXqFdgq
41Mgvzb1mzdvfpK6uyratm0rZOHK1G9LtQ55axR9jpDLZNz/fQ5xj29q3eZjCowqS/ZKKF2hv0CM
y6vGkJYQJVqmvA8RERG0bv2O9N27d2+8vb2FEo1EIsHFxUXQb8urfJUbt2/fFhpKanabQMla6pNF
aVYmZ35WmI/279+fc+fOMWnSJOGdfPXqVQYPHkyfPn344YcfMPmLPJyRkcGIESPo2rUrLi4uDBky
hOTkZE6dOoWJiQlz585lz549fP3116xfrzmYUo6T8O6dJJfJODWrI0bGxpw6eRIzMzNRS3zJ0va8
SkykaCkHEiPfdTlPnDiRkSNHfnn+NODatWtCguK9S1rXr18X/ERA0clhbW0tlIqCgoIAhFl8dnY2
MplMbYBVvenwThPH3d2d2NhYEbmradOmVKhQQchUwDvl4oiICLy9vbl69aqaMWebNm3o2bMnvr6+
pKenc/XqVbp168a8efOIjo6mZcuWABw+fFjIerwPnj9/zpo1a3jx4gVVq1YlMDBQuA5KNGnShMuX
L7N48WJatGjB6tWr2bJlCxYWFri4uFC2bFmhLFeuXDkOHjxI//79C/QgL126FE9PT+zs7NDV1VUb
9JWcFk0mcrmRnJzMjh076NWrF9bW1oKthIvnT5So6AI6ulpJqo9PbuWpyqzlfeDv78/atWvp168f
mZmZlCtXDh0dHc6fP0/Pnj0LLM4YHx9PiRIlRNfhcys75BfwwKcj9Wkj3X9u1+h9kVtDx9LSUuBO
FBYpKSkEBgaqBdvNp+1G39j0g87zv4i8fOM8PDzw9vbG3t4eqVRKVFQUvXr14s0bsSeiu7s7c+fO
xdjYmNWrVzN8+PAC8y9VddOMzIvTdNJ28fpjG4m6ehhQNHBoKrsrxyFVTJ06FQ8PD4yMjNQy7leu
XEFPT0/EVcmtrq+EpglgBbceOH49gOgrB3hyfidZmQqpjIEDBzJjxgzkcjnR0dFcvHgRU1NTfH19
iY6OFmWXWrZsqdWt/P8VixYtYuPGjR+HtKxsfevbty+zZyu6HyZMmMCNGzc4evQo5ubmbN26lXnz
5olEj1ShTO/p6ury+PFj3NzccHR0pFatWqxevZpy5coJNU+AxYsXi+qC7du3F/mtqMLU1DRfs8+y
Zcty8ODBAotW5YXLly+L6qrt2rVT8yFRyoznd05RUe9mRhMnTmTIkCFqwm+Qv75Oqzn+yHJyiL7u
T+hxRblPVd1TFcOHDxfxqby8vERKy0oUr1CTeoN9NH6etkHc9YdNGBUpjp6BoaJDTC4j5WUkktQk
wk79plZq+lhddsoHXgmXPj9hU0Vz6/7fDeWsThNMzczYt3fvBwtUaoMmz5//SrATe+8sQfuWqi33
8fHBxcWlQNdUJpPh5+fHtWvXRAJ1ACUc61B3QP6Cpf+PyM5I5azPO1ViVe0yULyTJ0+ezG+//UaL
Fi1ITk4WtLKWLFmCt7e3wCfM3b1ZEKiWzNHRodXsI4C4K1SJvCwURMfJA9bW1ixYsIBz587RrVs3
jfvcvHkTW1tb7O3tSU1N5eXLl5QvX56goCAePHjADl9fnvwlZeLYoj/mdhUwtrAicO146tevn6dy
c2ZmJuHh4ULF5HMV//unoLQU+igBj7JDRulnlZmZiYuLC1KpVBhUZTIZW7ZsITY2VkTeevv2La9e
veK7777j4cOHgCIifvHiBe7u7owYMQIvL6987QUiIyOFTE1+6NixI82bNxcJqYWGhuar2ZMflKKD
CQkJfPPNN1haWgoclNyoXbs2d+/eFdrCp06dSvPmzSldujTPnj1j+/btpKSkcPTo0Q86p+Y/7RXK
NapBSJMmTUh89ZoWLVrg9cP3wvnv37+fhQsXYlrcjuIVXUiNiyIp6qGw39y5c9HT02PatGnCMk0D
ZO6Ap6D+W3nNCjX9iJXaD6pYt26dxmchd1D4uZUgcl+z3JICnwKdu3QhKJdUxH8l4Hl+6yQPD2k3
Ma5bty4bNmzAwsJCeA7S0tJwcXHRKNegKlz4BWJc3fADb2O0Nyao4vHjx1y6dInTp08LvI/79+9z
8eJFoTPu6NGjgi7XsGHD1ORGNCEmJobhw4fz+PFjYZmqTlLm21cCX06J3C3UoCDRNm3alJMnT1Kq
VCmuXbuGs7MzpqaKLJ6/vz9K4d3y5cuTlZXFiRMnOHfunIi/mvt9pXz/+Pj4iHwfVUnY8+fP58CB
A6JMVxHzonjPnKHGA8oN5fFnzpwpiKt+gQLNmjUjOjr643tpFUbtcvz48ULmw8nJidatW9O8eXNq
1qyJVCqlX79+LF68GHt7e437SyQS9PX1BbuE3bt3s2vXLoKDg6lfvz43btwQtl24cCEHDx4UnMhH
jhzJli1byM7OZvny5SQnJ3PkyBEhyNLR0UFPT4+kpKQ8+RO5Z8jm5uaCd1hGRgZ9+vRBJpOxePFi
7OzsKFq0KL1791ZLq0+bNo0hQ4YI1xAQXcesrCwWL14sInprQl6D1bkFfcjKSKFsvdbo6Ory7Jri
2oeHh5OUlES9evUwK2ZD2SbdKensgb6xKdmZaZydLyb7GZuYgK4+1tVcKeFYB5uq7zSFrm+eQtIz
sYK2EvWHLqJYuYKVDF9H3ufm1mmiZZqeubt379K9e3eNx6hWrRpLly4VZvJ9+vTh+vXrom0+p8Fd
U1bsU7ZrKkW5VOHg4Ylj875a9vj3QdP7KHe3nompGRnpabl3xcymLC69p2NctAR6/yDH63OGLEfK
6dkFl9O4dOkSxsbGzJ8/n3nz5lG1qiKAPHLkCCEhIRgaGlK3bl3s7OwEVeHSpUvnSTJX1XlRhccU
P84v7k+tXtPQNzbj5tZ3Qcbu3btxdnYWBTvBwcFkZ2ezevVqzp07R//+/Xn79q2gkLxhwwaOHj3K
7Nmz0dfXp2ZNhfp8+/btqVatmshKYv78+SL3dBBPznI7wIM6v0wqlSKRSArcZKMqknj37t1Ce1P+
V7F+/XqWLFkCfACHJ/fgExMTI3TGbNiwgRYtWuR7Il26dFETIrxy5QrFihWjXbt2Ag9H6V2iCiU/
RVXI6K8vhI6ODt9//z3+/v7cuXMHPT09TE1NycnJYdKkSRw+fFjYPrdGkCpcXV2FmYiqidvt27eJ
jo7mxIkTnDx5UrSPqlts165dSU9P5/jx41y/fp1Fixaxbt06QSvHx8eHHj16IJVKcXV1JTExkTt3
7uDp6UlISAi1atVi3z4FF0Y1OzFhwgRGjx7NmTNnGDFiBADNftyl1rqYH6KuHyXEfx2169YnJOQR
lvZVqdptMvpGYqKxNDON7PS3mBSzQybNIik6BAv7KhqJvmGnfhNJm6uisKajD/Yv48XdM6JlmmZk
BUk7e3p6oquri5+fn2j55xTwgOag51O4K6sSOpVoOHolRUs6fNTP+TcgMzmRC0sHAWBbw41i5WtQ
tsH7q37/vyA8wJcn53dpXW9oaEhWVhZTp04lMDCQ9evXY2BggK+vL7Vq1aJmzZpkZ2dz9OhRmjdv
LhIY9fPzo0GDBlonz0ePHqVSpUpqRtBWTvWp088bEBOSRef919hVp04dnJyc2LVL8R0KY7szduxY
Xr9+LSoznT9/nkOHDhEXF8dXX31Fu3btmDt3LiVLlmTYsGGMGTNGNF4sXbqUCRMU9hqTJ09m+PDh
H5xxVhUAnDNnDn369Pmg4/3b8eDBA7p06SJQSD5KwLN//34mT57MzJkzqVSpEi4uLkJ3zo0bN/j+
++/ZsWMHDg7il6mSMNmyZUsqV65MuXLl6NixIy9fvhRJdGsifW3fvp05c+aouaQ/ffqUadOmqc3k
lZgxY4bQSTVq1CgGDBjA9OnTOX/+PDKZDHNzc1JSUmjQoAFjxozh9OnT+Pr6CmKFjx8/plOnTmRn
Z1OvXj21TM3Zs2exsbHhl19+YdOmTYBCF2f69OmCd1jNmjWFQO/PP/9k//79Ar8kLCyMS5cuMXjw
YGxsbATxpipVqiCVSrXek+bTd6NvVDjipFwm4+GR1ZhZ2WNbvYnQdp72Koabv05QZJpkMrIk7zym
ChIg5GRnETC3KwDNpu7EwFR7u+71zVMoVq4GDu49NM6iU+OfcWW19o6h+/fvY2pqilwup1evXty+
fTvf8wOoN2QBxcvnX5v/uyGXywlcM47U+Gei5R+rJn/48GGmTp1KVlaWaHnR0k40HKnO0/qCL9CE
vIj2+dED7t27R1hYmFpmVpPyuapGjypyByeu32/CtLi6SKfqee7evVsUVC1btgxDQ0Nq1qxJ06ZN
6dWrlyAF8SGYOnUqb9++5ZtvvmHmzJncvHlT6C579eoVkZGRZGVlMWnSJOLi4rC0tBQyXx8DM2fO
FLWIz5w5s8CNL/81eHt74+fnx6BBg/jtt98+TsDj5eXF4cOHNc6+Hz58yKJFi/j5558L5Rs1YcIE
kdnaiBEjGDhwIGlpaTg4OCCXy4mKiqJUqVJCC2NeBpJK9OrVCzc3Nzw8PDA2NkYqlVKlShVhvZub
m6hslJKSQvfu3fHz82PkyJHcu3cPfX19pFIpa9euZdu2bYKqc8OGDYmNjSUqKooBAwaQmZlJmzZt
cHd3V/uBrly5kpiYGAYMGEBSUhJNmjQRiGkxMTGkpqZiY2Mj/Nizs7OF9K8qyjXujIOHJwbG768t
pApJyhvOL1akh7ds2ULZsmXZ8Osm9vyxi/Ku3XBqJbZEyMnOIi0hCpPiJUXnEHX9KE8v7iEzOVFY
5uI5HatK9dDVNxD2VQZGAE6thlCucWc1/6q8eD2gyBQuWrQIHR0dpFIpPj4+IhPar2ce4MmF3Woe
S58bh0cVqmWXVq1aiRR93xfaZAG+9j6E7gfy177gvw9J6hse7F3K6yeafRNBkalQZp214eDBg5ia
mmr0Z9uzZw8ODg4cO3YMX19f/Pz8BB8q0Cw3oaqoroqMpHguLlPQBLRNGJTv5bCwMPr16ydS6C8M
VD2yrl27xqpVq/D29kZHR4eUlBShezkhIUFrtlbJgZXL5fzxxx9CBup9ERAQgJeXl0D+njx5MgMH
DhRoIP8PWLduHUuXLkVXVxeZTPZxAh7lQ9O1a1cMDQ0ZNGgQFStW1DqYTJs2jT179jB37lxBVVYT
Dh8+zKZNmwQysxJVq1ZlxYoVwg/m9u3bLFq0SEhN5sZPP/1Eo0aNaN++PSYmJmpltJUrV7Jy5Tty
o9I9V4kRI0Zw5oyitKLkCxUUyuxUTk4OO3fuZN26dcTFxTFp0iSRYeWlS5cYNGiQaF9TU1Pu37+P
r68vs2bNEq2r3GYY5Rp/mBWFJiQ8vsEd39kUK1aMZs1bcObMWQws7ajUfgxFbMqJtk1/85L7vjN5
m6Bo22zy3QbMSpQWzapGjBgh6o4qKJqMX4+ZlThAFtrddXRpNftwnrPM3bt3i0o2VdqNxNyuAje2
vCM/fs4BD6jPoguiP5QfVL3U4PMr6f2/I/31Sy4tf1ei/xzuz9mFfclO0y7cNnbsWH74QbOCcW5E
R0fTrFkzrYKkIJYqWbx4sYism56ejrOzwrMsL+VkEE+UNAU8a9euFXWftm7dmtevX4u4n4VBeHg4
AQEBBAQE8MMPP2Btba22TUZGBsOGDdMaWAUHB3P27FnGjRsnHFMqlTJ//nwGDBggolYUFBKJBE9P
TxGhukiRIty5c+ezfv99DGRmZnL16lVmzpxJbGys1oCnUMpcytnn/v372bVrF23atKFSpUo4Ojqy
bNkyNRM1AwMD5HJ5vtF0x44d2bdvn1AK69ChA7du3eLRo0e0atVKIHjVqVNHFOzMnDmTkJAQQkND
CQ8PJz4+XmD8q77slRg/fjzh4eFMnDgRUPA94uLiWLVqFXK5XHj4cs9IlPXR+vXrs3LlSg4cOCBS
yh06dKjwQOnp6dGvXz/hWvTr10/Y7vTp02rBzq5du7h27RqOjo5qwU6rOf6fJNgBsHaqT4nyNZCZ
lODOSykVO3xP7cEL1YIdgGcX/qB29cqCwnVqnHoZZvLkyYSHhxMeHk5YWJjwIhs7dqyQWZs2bRph
YWGEh4fj6uoKwOWVowg+tErULePUajCt5vjTarYiGG01x59Wc/yp2Ey9Tp2bnxJ2eju3dihq+00n
76DVHP/P/seee7BbtmzZB2d62rdvL0p352ce+wV/L4IPLv+nT0GEZ4GH8gx22rZtW+BgBxDkLvLi
yxgZGbF582b27dun1pmkSurNK9gBcdOHTMU4WIncUhsnTpzIM9hRzRprwtKlSxk5ciS7d+9WIwyf
O3cOR0dHPD098fPz05q5ycjIwNXVlXLlyglaOidOnGD79u1q8hEFhZGREfv37ycsLIxbt26xZMkS
UlNTRVp1/1UYGxvj4eHBqFGj8tzuvbu0QBFRrl+/XtDbWbJkiVZjzGvXrmFkZKSx/VZTB5TSeuHx
48c8efJETXbfy8uLwYMHC3XZBg0aiNjz+RGqQ0JCGDZsmKCMrKurS6lSpVi2bBk1atSgW7dulCpV
inv37pGYmEiPHj3w8RFr0aSnp5OYmIi9vb3oR6daUlA1ycw961YqIL99+1ZUc/4cZnuqUBKUixUr
jkGJctTqPwcdHR3igi9z7w/FNVmxYoUQbBYUuRVsi5Z0oOFo7e3FmvA2Npyr69/JDlRpN5KQY++U
u9+H8/RPQJL6hvOLxB0o48aNE0kqFAa5O7M+t2fqC+D10yBu/pWJ/KfvT15Z1MuXL1O8eHE1b8C8
IJfL2bNnD+fPn2fRokWFtvlRBko2VRvh4jk93+1j7pwm+IAiiFQdszSVxlSNrN8HSqoDKOx6vL29
hVZ2pbGzshHFz88Pb29vihYtSuPGjRk4cCCenp40atSI7dvV1exv375N7dq1kcvlH0UpPDMz86Nx
hv4tcHR0/DgZntwwMjLiu+++E2b2ymBn165ddOnShd27d7N161Y8PDzo27cv3bt3x9HRkYsXLxIc
HIyPjw/r168Xgp3ExETevn0rBDsxMTH06dNHFOwoWwTT0tIEQmZ0dDSLFy8WRKUWLlyYZ7Ajk8k4
efKkEOzY2dkhk8l4/vw5R44cYfv27Tx69Ijg4GASExXcFKWgoVwuF/QfnJ2dad68Od+svQ9eAAAg
AElEQVR88w2LFr1z3dbR0RGE/oYOHSrMrtu3b094eLgwe69evTpv3rwRgh19YzNaznpXYvtcUKnl
IGr3nYlFpa+o0etH4UdqW/2dsZ+mjFp+2Lt3r4h0/vbFk0JnIoqWchQyQK3m+COXi2d4WWnqnmWf
I4yKFKPlX6JpSqxevVqjYGRkZCRdunTh1KlTaqRkUJBCVYMd/UJ29X3B3wPdz8io1SmX+/uGDRuY
NGkSFhYWjB07lqpVq+Lr61vg4+no6NCzZ08mTZrEmjVrBJmQwqKCm2YpitwoVau56O9bt27h6Oio
0XbmfYOdrl0VPESpVIqtrS1Tpkxh3759ODs7s3fvXlJSUrCxsSE8PFzouu3bty9HjhzB2tqaP//8
k40bNxIUFERERISI6qBEnTp1WLBgAU5OTsTHx7/Xeari/y3YyQ8flOHRhr1796oJSDVu3BhLS0vO
nDlDZmam2j7KyPbly5fExsZy8+ZNvv32W7Kysjh16hRxcXHUrl0bAwMD0tPThVTivXv3mD59OiEh
IUDBFHtVuTrKUprSCXnbtm1kZ2dTqlQpbGxsWL58Ob6+vkyePFkU1Fy/fp1z584xefJkYZnqtdqx
Y4fQpl6pUiUmTJiAq6ur8AAGBQXh5+eHm5sb48crjC//6VleYSGX5XBqlkLNVPndb926Ra9e7/R8
lMuPHz/OjBkzSEpKokWLFqxcuVKwjSiI95Y2wqLG81Kp6f/brqmmTI8Sbdu25fjx42rLVZ+769ev
q7Wofu4cpv9nSFLfkJMtwbSYeufR34mC2J54eHgIHam5cefOHX744QcOHTokUjNWclVq164tcj5P
TEzkwoULtGnTRsiOqEKZ4Sno71f1/Lt3786NGzd49uwZQ4YMYcuWLQU6hjY4Ozvz3XffMX36dGGS
LJPJ0NHRQSKRsGLFCs6dO8fFixf57rvvBI0cJXI3zChhYWGhsVts1KhRnD59WqtVxRfkjU+W4dGG
7t27C1kf5b9t27YRHx9PZmYm1atXZ8CAAdSqVQsLCwssLCxo06YNOjo6lCxZkk6dOvH777/TqlUr
Nm/eTIUKFWjYsCFGRkY8fvwYLy8vIaX4+PFjIdjx9fUtkD3BihUr8PHx4dy5c9SqVUtg1oPCy2TY
sGGYmZlRr149fH192bJli9qAbGlpSdeuXQkKChI4P46OjkI9dvbs2Vy/fp0//viDKVOmMGrUKNHL
okaNGnh7ewvBTvOfNGvafK44OfMbIdgBBNPS3C8XiURCv379CA0NFdSoAwICePHihbCNjo4O4eHh
nDx5Umv3ndKSQS6Xk5MtyfPcdHR0hIzPvw1GRYrRao6/WrYH0BjsgKJUevv2bZKTk0lNTRWtK+FY
98tL8zOGUZFiHxTsJIbf5uTMbwoUsBQGSiVkZVll6NChWoMdiURC7969ef78OXXr1hVlLnbt2oWr
q6so2AEFn3Hy5Mk4Ozvnmf158+wh0iz1CbI2+Pv7ExkZSb169QgPD2fatGmEh4fz6NEjxo4dy/ff
f8+jR49YvlxR/qpfv76w76pVqyhXTsFhtLa2FmRQhgwZQtOmTbl48aKQ5VJmUI2MjJg8eTLHjh1j
z549zJs3T00yQ19fX83Hrk6dOpw7d07jd1i8eDEeHh5aJVe+4P3xSTI8mpCTk4O7u7uQTgwICBAe
roSEBLKzs4mIiKBq1ap52sgrhdROnTpFhQoVePXqFXfv3i2QAKImpKWlcfnyZXbt2iWQckHB5D9x
4oTggO7u7k5oaCheXl506NBBEEhs3bo1EX/5ori6urJixQosLCwICQlhxIgR1KtXjwULFpCYmIit
ra2oTVA5iylM9uJzwf3dC3gZdEm0LDw8nKysLCQSCRkZGWzatEnr7Kpdu3aijjlVpKen891339Gj
Rw+hW0lp3PjkjC/h53ZRqWl3KrQYpPX8VAeAf2PgA+LvUH/oQm5snlLoY3zJ7vx3kTvI+ZDnPPex
pk2bxvz584W/lXxDTdCUoT127BhOTk6kpKSwYsUKNaVvgFOnTrFjxw5hsqSKTp06CXpmSijfk6oZ
3BY/7UXP0JhrGyeQ/PydorGrqyv9+/fHwsKCevXqkZaWhq6urqAbB9C5c2c102dtUB0Hld20/v7+
It7izp076dOnT77dbFlZWSKB3ZycHCIiIjA1NaVMmTICDyj3535BwZBXhqfgcrgfCB0dHQYPHiwo
JKvaSAwePFjI0jRr1oxff/1V63Hq1KnD7du3BfPPEiVKFCrYkcvl/Pjjj4L0d58+fUTdLKBoHVce
U5nCvHDhgprLujJIU0IZ7ABUqlSJ4sWLc/jwYTp37oy7u7vG8zEwMf/XBTsAzj2n4twTXkXc5dY2
xcvM0dGRn3/+md69e2Nubi6UDf/44w9sbW0JCAhg9+7dhIaGajVvlcvlQhpcyZ8CBJfqp1cOAKBj
YKJxf4C0xOeiv7PTU/IURfxckXsAU/07+OBKYm6fzL2LCC59ZnwJdv5P0HSKX/4bFQKqwc6oUaM0
GhkrkZGRga2tLSYmJpw8eZJff/1VCIDysj1o2bKlmhfe6dOnRZ02qlSCU7M60mjMSq79OklYH/Bz
d1rN8eerEUtJiX9G4F/ipZcuXeLSJcWErFq1amqSJ/nB1Nqecg078uiIoht36PCRvE1JpWgRE37d
uJGUlBRGjx7N8uXL6datGw4ODoJJdH6SErmvpVJNHxRZprZt2zJt2jQSEhIKdc5fkD8+acATHx/P
ihUreP36NfPmzRNZQ6iib9++hIWF8fLlS7VOKE3Iy+l81KhRnDlzhrZt27J06VI1gcSMjAyRCWVS
UhLdunUTSGZeXl7Y2dmxefNmgW+zZs0azp49q0aoVRUI1NXVRSJRlFpycnKYPXs2v//+O3p6ehpn
Rkpj1boD5+b7fT9nFHcQk2pViXZPnz4FFJwuHx8fmjVrJqhf524LjY2Nxc7OTtCSANR0lADqD1uC
oZklRuaaPXdUO8eUOLvA8z+X6ajeeTzlmnThiopXVG5YO9XXuu4L/v2o0dWLoP2KlmsjM80u4AVF
y1mHhbKxKlSbSrRh+/btQubeyclJyErs37+fp0+fqnXY5gU7Ozvq16/P+PHjBeG+ESNGCNnwwLXj
cZ+0nQuL1U0zzW3K0WqOPw/2LeXFvbPCcm3Bjuv3v5KTlYm5XQW1dVHXjpCe+JwKbt2JvLiX82cD
hHVOTk6EhYWxdOlSunXrRr169Rg3bhwhISF06NBBayZMG5o3b052djbBwcGCAG3RokXZvXs3vXr1
ei9Nns8JHTp0wNXVlSlTCp+hLijCw8M5fvy4YLehDZ+0pHX58mUGDlS41uYW+fsU2L17N4sXLxYc
aJctW4aRkRGVK1fG2toaMzMzIf3q6OhIeHg4O3bsoEiRImRkZLBhwwZ8fHywsbERmRFmZ2cTGxsr
lOBAvd1RmdkARR35+++/FxmM5oayFPZvLbcooZoK15T2zsnJ4f79+2rcHFX5d+XLbNOmTXh4eAj7
SaVSQc/nfciLFy9exM3NDQCrSnWp0392Ib7Zvwc50iwSHt/iwd5FyKXZODTrg6MGzaIv+O/hxtZp
lKrlQek66mrGhYUmHlBumwZNkMvluLm5Cdnw8PBw7t+/z5w5c+jUqROzZ89m5cqVtGvXjoyMDIyN
jQs1+Th16hSjR78L7Avq1af8Po3HrcHY0pb0V7FEnPUjIURdF07fyASnNsMoYl0WA1NzLq8U67lc
v36du3fvcuTIEUqWLMnkyZN5/vw50dHR/I+9Mw+IOf//+KNLUklCoQjJfV/rvq11X2HXuWtz5ib3
zbLWfSzWtYR1hEKOHElJjqiUdNhUItKlc5pm5vfH7HzMNFOKWPv99fiLzzFXM5/P6/06ns9GjRpp
bLz+FJSHD7p27cqePXs+cMbXy08//cStW7e4d+8eZcuW/SzPcfLkSRYufG9CXeRu6YUhMTGRkiVL
FvmXQkFERARLly7l3r17bNiwQRAWzI8aNWqwadMm5syZg6mpKZs2bcLCwoJ3796xcuVKXFxc8lUJ
hfc36uXLl/PDDz8QHBzMwIEDhTLZyJEj1cQEFYSEhNC3b18qN/uWev2nftT7/reJ9D5NuLvcniMg
IEBNa0OhKj169Gi1Ov3mzZvp21deh1d8jpq+a8rCZR8KenJPOIWHhxMQEKDi5fNfDzCL+f+JODON
tNfPKVO13mfLVGoKeHIrIOcmIiICc3NzYcpVQbNmzVQmkPT19YUMOMhtJ+rXr8+rV6+ERYkCT09P
KleuTE5ODnv37mXjxo3CvoL+fqWSHLS0dUAm4/HpjcQ99tR4nKmpKRMmTGDdunVYWVfHoJQhz8JC
kPwzFPMx+mIfg7u7O5cuXSI4OJjFixfToUMHUlJSsLOz4+eff1YTWP2v4OPjw+jR8mzchQsXNE6r
FSVpaWk0btz43+3hKaqoTiaTERoaSqVKlTA2NiY9PZ1t27YJjbFly5Zl/vz5lChRgtKlS1OyZElE
IhHdu3fn7du3Kg627969o39/+ZRRxYoVhWbigIAAXFxcAIiOjiY5OZmjR4/StWtX0tLSBL+XtLQ0
Zs+ezcaNG3F2dmb58uXCtNfIkSNp1aqVUPI6c+YMbm5uLFq0SEVNGiAr+Q0ScTYySQ46/7iX/xdK
L08v7iHaVz5J1KtXL5VgJzs7m+zsbEFV+sGDB0RERAjBS6tWrahfvz4JCQkqAeGcOXNYt24durq6
yGQyFSFJkF+Qq7buT63vVCceZDIZT912E3PPTdjm5+eHlpaWmtKr+9I+/3PlrWL+9/FY+96ap43D
To2K6J+DqKioPPft3LmTzZs3a9yX+/elCHZiYmKwsrJiwIAB7NmzB5lMRu/evXFzk/92Bw0aJAyt
fMzNUZSaiKdSucugjDmZyfJym3IGOTc///wzzs7OnD9/nsQyZYT+wQ+VSD6V7OxsPD09Vfp+Dh8+
TIcOHTAxMVG5Z/2XSElJoUePHiQkJAjbNGkiFTX59YzBF2xaLgocHR05e/asxn1Vq1Zlx44dVKtW
Tei96dChA9WrV2flypXCcTKZDJlMhr+/P4GBgYwZM0blx6n494EDBxCJRLRu3RqxWMzdu3fx8fHB
xcWFsLAwHB0dqVy5MoCQuUpNTQXkAQC8T0VmZGTg6empknkKDw+nZs2aJDx7pGKsqatvQJdFpz75
s/rcKIKdBw8eEBMTg42NDRYWFnh5eak0dgNCX9bdu3fx8vKiU6dOlClThufPn6uMWru4uGBlZcX0
6dMJDw/X6M0VdceVqDuutLTfQBmr2mSlvOXWxrEqx/To0UNoHjcyMmLbtm3k5OQwa9YsACKuHaJm
97EUU8zXQta7BEqWlktqKHzu9AyMEWemUqHONyrH6hl8ngb8HisvqGR56taty7hx4zQem3shYdGg
Iw0Gz8L/r1+ID72LtrY2Dg4OHDx4UDC1BFT6gRTj64GBgQwbNoxHjx6xefNmzpw5o/Z8BZ1kzc5I
Vfm/ItgB8gx2FPz++++YmJiQlpbGDz/8oHLfyIvMzEyVya/Ccvv2bZVyHch1e54+fYqNjY1aD+p/
hYCAAJVgB+TBXWH7m4qaLzaWXhRMmTKFK1euqG2vU6cOO3fupEqVKoV6vMjISLp3787gwYNZunQp
AQEBiEQiFc2EiRMnMmvWLLy9vZk8eTLLly+nYcOGeHl5qV0MZDIZzZo14927d5w5c4b69evz+PFj
ypYtqzKVpoziwvH06VOmTZuGu7s7nef/9dVPFeWl++Hq6ipkzpSJiIjg5cuXVKxYEbFYLEwq5OTk
EBUVRWBgIN999x1SqZR3795hbm5OTEwMXbp0wd3dnerVq2Nra6vRK0fTc+Um9wX6S66SiylGE1nv
3nJrw1jh/99M3IJeqdKC87eCcuXLk/D2LTKZDKuWvanTJ+9G9U8lKSpYRf5AT08PNzc3qlevjlgs
5uTJkyxbtkzY32WxM7olVNV8la8N9erVE8bLdXV1mT17NgMHDsTe3l4YSvjjjz8YP348NWrUUJl6
rdvPAcvmPQv1+guiR/T48WMhSHFwcKBhw4aMHz+esLAwYbHaoEGDPBfXIJ/enTFjBg8ePKBs2bIf
rZkjkUiYPXs2Fy68L9V17dqV69evM3bsWI3j/P8FFCrUyvz6668MHjz4sz93fmPp/6mARyaTcfTo
UZYvXy7UgD+FyMhItm7diqOjI7Nnz+b+/fvY2dlx6tT7DIuTkxNHjhzhypUrtGzZkiNHjqh4nGRn
Z3P27FkGDx6sFo0rGqSbNGmi8pjKxMXFYWhoKJTDCqsw+m+irLSsIDw8nO7duzNv3jyaNm0qpISd
nJwYNep9f83GjRs1BkYHDx5kzZo1gHrg0qhRI5XVogJ/f38MDAzo0KEDrq6uGnWcDh06JEyIKbD9
dhzWbfPuTyimmM9J7ptz/cGzCTr9vl8lODgYLy8vduz8nWeRUVi1GUjVNoM+u4xFRuIrvLfYf/C4
vK5Ryu/r7NmzXLx4kVmzZqGnpwfA5cuXcXBwwMTEhJQUuWGpn58fJiYmgs5a7seXyWQkPvMn0Pk3
qn7Tj+qdhqMJTQFP2+l7uL31vRjivn37CAwMpG/fvgwbNowqVaoIk7uKBltQ9UHMTW4H9k9VRU5J
ScHR0ZHr199Pgym0jP6L5OTkoKury/3794WpW0BYvH5O/mcCnoJw9OhRgoODVXQklImLi+PkyZOY
mpqq3IBDQ0NxdXXlzJkzQv124MCBBAUFER4eLhx35swZGjZsCMiDHUX55vr161SpUgVvb288PDyY
P38+Ojo6TJ06laVLl2JhUTA11SdPntCvXz9BaO+/gHLgY29vrzJ+OGrUKF68eMGNGze4d+8eISEh
mJiY0KFDhzxVsT09PalUqZKamNnly5eZOXMm69evRyaT0bZtW8zMzPDx8aFVq1Yqoo65ycrKomnT
pjRq1EhtJP6/EFwW879F6OX9RPnknUHYtWsX586dU1PXtm43BD0DI9LeRGHZ7FtMrT9t0Zcf6W9j
ub1N1e+pbLWGNBuzSt4Q/A/irHTSXj/n0dGVtLTfQHp8DAHH5dffoKAgNT+nbdu2sW3bNtzc3Jg/
fz6PHz/m5s2bWFpaahxSEGekcnurPdmZaWr7lJHJZASd2cSrAA/KWtejTr9pGJarLOwPcd1KieS/
mTdvHmXKlOHBgwfExsbSrVs32rdvj1QqJSEhgfbt25OTk8OECROYO3eu2vMoP19ycjKlS5fO99pT
GI4ePYpIJKJLly6FGkdPS0vD39+fM2fOsGHDhiIxHv1YDh8+zMqVK9myZQu9e/fm9u3bQj/nl4gn
/l8FPHlN/KSmpqpNEmiKyiMjI4mMjGTv3r34+/sjFotZu3YtCxYsYMCAAWzYsEHl2O7du9O7d2+2
bt0q/KFB3tB35swZpFIpf/zxR6Gi/9lz5/Hg2RvqDZEHDlKJhPT4KHT0S/3rnjv5oVhdKX/2f//9
t2C9odg3Y8YMIYVbEO8zBTKZjKSkJJUm+KCgIAYMGICurq4gXvkhlL3UoDjgKebLk1/p5eTJkzRp
0kSjv1y3bt1BS4trV+XNrP+2Snv621j8Dy0gPSURgKajViJKSyLS6xQZ/wiA5r4Wi0Qi4uLiVGQ+
FCiu32VrNKZev6kYmJoXSFFaJpPh9+dCkqKCad7yG6Iin5GZLcWq/TChLBZ+9RDtrA1Ytmypynkn
TpwgJCQEkUiEWCzG0NCQpUuXoqOjU+iszYMHDwgNDWX48OFFFgTlZtWqVRw6dCjP/f+2B9fWrVvZ
vn078P5v7+Ligr6+fqE0mT6Wr0Jp+Uuh/ONKTEzEz8+P5s2bq00b9O3bV+OXolq1alhZWZGRkSFk
ApycnABUTBkVmZg7d+5QqlQptRTnvHnz0NXVJSUlBZFIVCjXWqvKFXE9exqZjj7aohReP3tMufLm
vEtJxriCFeUadae8bcuvrs+n9ZQd3NnpwI4dO3BwcFDrm1FQu3ZtLly4gJWVFWXKlCnQY0dHR9Ol
i9wReceOHfTsKb+I1a9fn9mzZ9O4ceMCv87JkycTFRUl9Avc3jaRttN2F/j8YoopKmy6jibiuqpk
g4eHB02bNsXd3Z2YmBi1soqylcOXDnZkMhkxvud4E+xF1ru3ZKUlU7VKFSYtmo+joyMPneTBhHID
tGIyC+TeWmZmZmoKy7lJfOZP9N0L1Mrl4t5giOaMS0biSxIjH6tYFrm5uTF9+nR0DYxIinxMzD03
GpQdoHKelpaWoJ+m4PDhw/z55595CuXmhUwmEx4rNTVVRTG6KOnXrx8+Pj40bdqUqKgofH19hX2h
oaH/SrCTlZXF2bNn+fXXX9X8/EBu4/E18MEMjyZ9lc9Jamoq8fHxn1TnS0hIYNy4cVSpUoWLFy8C
8qizc+fOBdICsre3x8PDQ2WbgYGBivLv0qVLOXbsmJrnDMhVl6VSKStXrhSCJJFIhI6Ozge77pUz
InXq1mXSxImC07xIJMLd3Z3tO3cR/TwS/VKGiLKysPqmHzZdR32RL7qyIKMm3Jf2oVWrVhw9epSF
Cxdy8uRJduzYQWRkJHZ2dhgaGpKamkp2djaWlpYFft7hw4fz4MED4f8bNmz46B/RuXPnOHLkiIrJ
X3GWp5gvSdqbKHx2TKH7cleeXtxDzL2LKvvz0n/JzMykQYMGAHRZdBJd/S9b9r66YgAySY7mnVpa
dFt6Fi0tbbS0tZFKJFxbIS9179+/n/bt22Nra4utrS0XLlzgyJEjDBw4UMW8WXmRpJCPUAROHec6
aVRYF6UlE/DnfDq1+4YN69ep7Dt37jzbf99FZESY0FOi/HyamDt3LrVr185zQi0/UlJSOHv2LEOH
Dv1sunO5EYvFggTK5cuX81xofk5+/vlnwQxVT0+Pe/fuYWho+K+U1j6ppAVyxVqFc+znZuPGjeza
tQs3N7cCze3HxsbSsWNH9u3bh6urK+fPn+fQoUOCwvP06dMxNjZmwIABBc4mXLlyRXALVrBp0yba
t29PdnY2EomEd+/eMWnSJFq0aMGZM2cwMDAgMzOTlStXsmPHDt68eSNkmxQpvo4dO7J//36mTJnC
69evmTFjBu3atVN7frFYLDT45YVMJuPVq1e4urqya/cejMpVxqxBZyxb9P4sgU9OVgY+OyeTlSLv
b6re6XtqdBquUsuH96n6R48eCRcWiUTCy5cvGTBggNCkCHLxxQ+9T3j/95g7dy67d+8mNTWVtm3b
Cmnd58+f061bN3x8fKhQoYLKuenp6ejp6an41yi+Y8q0+GndZ+2HKKaYvHjx4ApPzm1X2dawYUOV
8eyXL1/y22+/cf68XA6i9eRtGFt83ubP3CgHMAqsrKw4d+6c0C5gUasZdQbNRc9ArociEWcLshuP
Hz9m7dq1TJ48mdKlS9OwYUNMTEwEgULlG3XVNgOo1VOeYZHmiNHS1skzm+W7ZybvYsMJDw9HIpHw
/PlzypQpg0wmw8zMTOWmK5VKCQgIUGtvUHmfUinr1q1jyJAh/5mmYeXPTtE7o+k+oLD7KWq7iqCg
IFJTUwU7kH+TTw54QG7wOXToUCIiIjh48CBisZgVK1YIDbxFhVQq5dKlS3Tv3j1fwzoFYrGYSZMm
MWPGDDw8PNi6dSuLFi1ix44dws21MH0ioJoyXrduHYaGhkydKldDVp4sAHm5S/FHVmQ/3NzciI2N
Zfz48YBch2b//v2A3FRU0QStKO18KhKJBC8vL+Y6ziM1I4vO84+pBSKfQk5WBjd+UVf6bDV+IyaW
74NSqSSHayveZ10UkxcNGjQgMzNT5VwjIyOuXr2Kqakpx44dIy0tLU/TPWWLEmVmzZrF5MmTSU5O
FgQhFSOw+vr6TJs2jYsXL1KmTBl8fX1VsmuaVkHFWZ5i/g3u7XMkOVrd7+natWtYW1sL2WQF5nXb
0Gj4QrXjPzeS7Cyurx7CvHnzsLS0REdHB1tbW6ytrVV+T22n7cawnCXijFT+9jpF1G154BYWFiYE
HxkZGfneOwrzWwxz/5OEgCtYW1ujra2NhYUF6enpZGRkkJiYKGhygbz0kpmZKfRIjR49WmMm5urV
q3h4eDB9+nTMzc0L/Fr+LXJycoT3pWDcuHE8ffqUu3fvkpOTR1YOuZSIwsLnf4EiCXg08SFn88LQ
qlUrEhISBFnxj+XFixdqAlPt27dn165dNGvWjJkzZ1KvXj0SExPp2bNnno1lycnJQkYoMzOTI0eO
cOrUKfbs2YNEIhF6SJQDntzEx8fz9u1bwsLCmD17NiAfZ1Ru4i1Kco8AVu84DMvm31HSRH1MuzBo
WtkBdF/uKgRWioshyIMZMzMznJ2dMTU1ZfXq1fz5559q569evRozMzNBeCu/z3LDhg3cunVLzQhQ
kUWrU6cOYrFYZbudnZ3gZdaxY0c8PT2ZOHEic+bMIT09nUaNVI1PQW7KWRS+RMUUU1Dcl/UDmWZ9
qXPnztGvn7qpJ0C76X9QyqzS53xpKogz0/FYO0wY0gB5qX7atGnCOLVptYYkRQZqPF/RTKuQ/9dE
g8GzMavZjBKl8jaIzk1yTCj+Tovw9fHJ11hagVQqxdPTk4cPHxIQEECPHj0YOXIk9+7dIzk5mYsX
L5KdnU1ycjIikQgjIyPi4uLYunUr3t7eGBkZMWTIkK9WFFDZh0uZGjVqcPDgQfbv38+xY8dUrpcA
lStXZs2aNRqrDhEREdy5c4du3bphYWHxVSvVf/KUlouLi6ASvGTJEo2r7Y9ly5YtXL9+HYlEQlxc
HOPGjWP8+PEFKnWAPMCZM2cOhw4dElQco6Ki6Nq1q8pxJ06cYPHixSQlJQlj505OTnzzzTdkZ2cL
Ea7iRxkSEoKxsTGWlpacOnWKBQsWCAaoyv4goD6FcPPmTWbMmCE0bylu5IrG26L+DJXJycnh4cOH
PHv2jHsPHnLeVT76Wq3tQGp0HY22bsE+19woSlUlTcr/E0i9FwTLSIrDe7M8/Tpf+MsAACAASURB
VHzr1i0qVdJ8Eb5+/TotW7bE3d2da9eusWHDBmEiIjg4mFOnThW45qtYUSqvGhVTchYWFnh7exMc
HCxo/fj4+LB161amTJkivD6FKezEiRNVpAeKrSeK+dzIZDKQydDS1s53YkthyCuRSHj16hXly5cn
MTFR8J+q2X0s1doPyfP8okSclY7HL8OA9+PmhekX6dSpEytXruTBgwfMmjWLTvOOUuITXd4BMpPf
4LXpJ44ePVpoKwipVMrcuXPx9/enSpUqWFlZYWlpKWTnFSxZsoSnT5/SvXt3YmNjuXLlCmvWrFG7
z/zXePv2Ld98o6rkvXDhQnr06EFoaCjx8fEcPXqUkJAQYX9RaOB9TopkLF25zFOUY2+bN29m586d
KtuWLl0qBBRnz57F19eXX375RWM25tGjR8yaNYvjx4+rpB6vXr3KwYMHBQXMMWPGYGdnR58+7y8u
lStXJjY2Vvi/qakp9+/f5+jRo4KaqL29PbNmzeLdu3csXbqUK1eucPnyZYyMjITxaEXpTSaT4efn
p9b1v2/fPjIyMpg2bRog94yaOHEigYGB7N27l+XLlxeq5FYYZDIZd+/eZcmy5UQ+i6CslS2lLaoh
Tk8iLtyf0hVrUNqyNlKJGG1tHaq07o9BmQoffmAgJTacu3tmCv9/8OBBgfqkZDIZwcHBPHz4UBjj
L6yT7p07d5g2bRpeXl6kp6cjkUjU+ndcXV2ZPXs27du35+DBg/k+3suXL+nQoYPa9jp9p2DV4vOP
Uhbz/4Pb2yeRHh+jsq1czaZIxWKy3r0lI/GVyr78ZEG+tEipNEeMx9rhSMQi6tWrh4uLi8bReQVm
ZmZq9gIlSxmhb2CITEubCvU7IJXkYNV6APpG6s3IBUU5YNSk+/MhFL99ZUPjD3H9+nWePn2q1uv5
XyU2NhZnZ2dhnDwvTp06lW//09dAkenwpKSkMH/+fHbu3Fnk3deJiYmULVuWqKgoTExMhBtncHAw
586dw9HRkfj4eFauXEmTJk1U7B8Ux/Xv35/hw4ezevVqAKZNm8aDBw+ws7Nj586ddOjQgbVr12Jg
YEBaWhr29vaEhoaqPM7JkyfZsmULPj4+wrbQ0FB0dHSEC0xgYCClSpVCIpFw+fJl2rdvT+nSpRk7
dize3t6sWrWKJUuWCOeXK1eOihUrqkx5rV+/HkdHRwBWrlyJpaUl1apVw8zM7LN098tkMg4fPoxM
JkNXVxcdHR1iY2Pl1hdmZpw/d044tiAKqsr07NmT7du3FygIjo+P11i2yiuI9vHxQUtLCwsLCyws
LDT61ij+LufPnxemFUC+envz5g1mZmYfzBjmVXYDqNZhGDH3LiCTSum6+Ov3OSvm6ySv34+NjQ0v
XrwgKyuLhnbzCDz1KwBjx47l+PHjZGVlCcceO3aMli1bAvKF1Lp16/hm4hZKV/oykzn39s8jOSoY
ExMTNm/ezE8//fThk5BfU8SZaejqGwhlcMXnUalRZ+oPnq12jkQsIiPxFVnJ8aAF5WyaCY3LyTFP
eXXnNDFBd1TOmTx5MllZWejq6lK7du08y4Egvz6sWbOG27dvY25uzvbt2wtUEgN5ILpo0SJOnDhR
oOP/Cyhn6+rUqcPGjRupWrUq+vr6ZGVlFTqQ/Lf4pICnS5cubNy48YOjfF+CuLg42rVrh46Ojkqg
kpKSQq9evXj9+jW//PKLIE2uYPv27ULNGRCmeXx9fRGLxQQGBuLm5kbDhg3p1q2boJ9gbW3NtGnT
mDVrFj/88IPQODhr1iw2bdokZIgmT57MrFmzWLp0Kd26dSM4OJiNG99LxGtra7N69WoOHjwolE5O
nDjB7t271cbfJ06cyI8//oi2tjamph+/6vkYFi1axFWfRzS336S2T5E21kRBp61APjXVtm1btLS0
WL16tRAsajoud4+N8pi/gpSUFJo1awaAubk53t7edOrUCUtLS2bPns3QoUO5fv06ZcuWxcjIKM+g
TCQSERUVxcuXLz+ov1G90/fYdBlRoPdbTDGgHuyULVuWM2fOUKFCBTWz3fy4f/++ynVBcZOqN2Aa
5vXao6v/8UaWBXr+fY4k/dNg3alTJ2EUGS0dkEk0nlOn7xSMK1bn3h/yoKbLolPo6hsgk8nISHxJ
ydLl0dGTZ8kTnvmTHP2E9Jgg3kY9pbx5RSytLLl/5zYg71syMDVXsbTp168fMpmMxYsXC5nyjIwM
HB0d2bFjR57vZf/+/dy/f59t27YVaEBGGU9PT06cOMEvv/xS4Onfr5WMjAzmzZsnqHorAsD/Gk+e
PGHXrl1cunTp05qWv/32W7Wy09eEQvG4WbNmGiPuGzduMH78eDp37kz9+vWZMmUKAQEBDBs2jF27
dqmIYInFYjZs2ECHDh1wcXERDOSaNGkiNMCamZmhr69P5cqVqVatGo6OjpQpU0YosyQlJQHyct21
a9e4cuUK5cuX59SpUyxcuJAFCxZw584doZwzYcIE9uzZA8j7fxRN119a5drGxobG3y+iQh31DIxy
47Ki9JeVlYW2tnahLxYfIrcq9u7duylfvrzGJmOFLEF+mJub8/q13DVZ0+g6yDNupqamKplDmUxG
ZGSkxibz4omuYvLjbcRDHh5emu8x8+bNIyYmhmPHjlGlShWio6MBqNXTHkmOiIhrh6nWYSgmlrXw
Pyb3gRswYAC//fabELiHhITQt29fKlaqzKuXsbSdvgdDs48f+vgQMpmMq8vel30iIiI09vHolCiJ
sbk1yTHq6ueG5SwFoU+ZTEZm0mvS3kQJ77GypSWOc+fSo0cPYSGVV69Qy5YtadmyJbq6uhgYGCCV
SuW+W4mJhIWF0aVLFwYPHqyWGfbw8MDe3p4VK1YwYsTHLV7c3NyEvtP/Mr6+vowcORKQB7H9+vVD
V1dXMFL92lBYeoSGhvLw4UPi4+N59OgRkZGRzJ8/nyVLlnx8wBMWFgbwr3pzFAUXLlxgxowZHD58
mKlTpyIWi8nIyGDlypX069cPIyMjtXOCgoJwdnbmyJEjjBo1CicnJ/T09NS62/X19Zk+fTppaWns
2rULxWfq7OzMjh07uHnzJj179iQhIYG0tDQkEgnm5uZ4eXkxYMAAgoKCiIiIYOjQofzyyy/4+/uT
kZFBuXLlqFmzpkpW4tatW6SmptKtWzehSbuosLGxwaSyDa0mbNG4//UTH8EjZ9++fWrTcEWJt7c3
Dx48YNq0ady9e1fwPdNU+tKkq5MfebmpV65cGU9PT7y9vQXvl7xQnlArppjc5FW+Wrp0KTY2Npw8
eRJ3d3cOHDjAxIkTVdRpuy8/x9Xl8lKMTddRVO84TOXxFCX23Hypnp7b2yaS/o9thJeXFxYWFpw4
cYKSJUsKwy25mTx5Mr///rvGfablKlC9eg0CHt6nRo0auLm5aTzu8OHDeHl54eHhIYzsKxCLxYL0
RYkSJYRrY2BgIIcPH6Zx48ZIpVLevXvHsWPHqFu3Lnfu3GHBggUqnoqF5dSpU/j5+bFo0aKvogry
MSgPdyjzb9pKSaVSjh49SmxsLNWqVSM+Pp43b95gaGhIfHw8tWvXpmzZsjRp0gRra2tkMhlxcXFU
qlTp00pa/7YvhzKKPp+PQSaTMXv2bFq0aEFISAjJyclMnjyZPn36MHbsWBYvXgzIVZq7dOnCvHnz
+OGHH4Qxd0NDQ65fv05oaCihoaF5mpMqo5x+vnnzplAqKV++PC1btlT5YefufO/atStRUVEsW7aM
UaNGkZOTQ1ZWlso4p6+vL+XKlUMqlTJ16lSaNm36SauNwMBARv34M21nH87zGL/DS0mIeEiNGjW4
cuUKQUFBlChRQhDoEolEhQ7Enj9/zpgxYzh27Bi3bt0iISGBq1evEhwczMKFC+nSpQvdunUTjs9d
0lQ0vn///ff89ddfKo9dokQJsrOzNT6v8g/6zZs3lCxZkqZNm6od17x5c9auXYuFhYWgcqvMN5O2
UbrilxWBK+brJuDEOl4Hewv/V1xHY2JiWLlyJTt37hQyo7t27WLjxo00G7Masxry37coLRlpTrbK
AIEmrzqQ63Api7RaNutB3f7TPvk9iDNS0S5hQPiVvZCZQuqbaJLiotWOW716NcOHDycrK4u//vqL
jRs3kpWVRUREBGKxmKysLAwNDdHS0mLy5MlcvXpVOHfKlCnMmDGjSO4xioAv9/DEzz//jK2tLTk5
ORgaGtK7d+8iVSP+66+/SEhI4MWLF6xevfqrHVfPj9wtBP/2fV8hJnvq1Cmhh9PT0xM7O7sPJl8+
KeD5mK73z4FipLugCswFJS0tDV1dXeE9zpkzBxcXF77//ntWrZKnWJ8/f0758uUxNDRUmVZT0KpV
Kx48eMCKFStYtGgRL168oE6dOnTu3JnNmzcD8lG/ixcv8tNPPzFmzBhKly5NREQEkZGR1KlThxIl
SqCrqyvUoDMzM3n79i0VK1ZEV1eX4cOHY25uzpw5c/Dz88PKykroXVE0Ajdu3BhnZ+eP/iwCAgIY
+/NEmk/YRmbya0oYmlDSpDyS7Cy8t/xMgyGOPPM4RlJUECAP0gYMGIC5uTm3b98WLiLdu3cvVMZF
keUaMWIER48eBeQZHoUehI+PD23atBGONzQ05K+//hJ6H16/fs0ff/zB4sWLsbe3f99XgFx/5/ff
f0dfX583b97g5uZGhQoVhCBWgcKEVJkmTZqwbNkyIRBVlnDPTYe5TpTUIHtfzP9PNGV4QkND+fXX
Xzlw4ICK2JvyNUWRnUl9/Zw7Ox2Ec0sYmpCdLhc8vXDhArVr1xb2yWQyli9fjp+fn2Cg223p2UJJ
UCjUjFNiw4jyPMbrsIdqxyxZskS4Jm7fvp0ePXpQq1YtqlStyo1/dHg0YWNjI1wjAN69e8ePP/6I
np4ex48fL/Br/BBXrlzh5cuX/Pjjjyrb79y5w7t37/j222+L7Lk0sX//fp4/fy58Rv8lNGV5Ll68
+K8pTb99+5a+ffsSHx9f6Mm7/wm3dKlUyv3792nZsuW/Fnn+/vvvuLq6CqaTmihZsiQZGRnExsZi
ZWXFli1bVEbh86Jbt26C7DfAsGHDSE9Pp1mzZpibm6Onp4e+vj5t2rRhzJgxZGVl8fbtW6ytrdm9
e7dQ6969ezfHjx9XuekXlBEjRnD37l0ADEoZkpmRjm23UVi1Hoj3ph9p9MMSyljVFi7m4eHhZGdn
CxkdRcBTmPFOkF+wQ0NDMTU1pW3btsJ2b29vcnJysLS0ZMyYMcIFE+Cnn35i4cL3arP37t1DV1eX
pk2bEhAQQHBwMEuXLuXw4cMqwVJerFmzRhhdz8vHCOT9RVpaWkIJVPGem/+0jrLF1hTF/IMoLRnP
9SNVtk2dOpXt27drVLa1sbHBvE5rGn2/CICU2Aju7pkh7FfuQ8tPOV5ZUgOg3sAZWNTvIDQFa0Im
k+Gxxg7jijVIigrGwUFuADxo0CD69u0rBBARERG8fPmSN2/e0KhRowJfhw8ePEjr1q2FIE0qlbJs
2TIcHBy+WHPsnDlz2LBhQ5E+pkQiYdWqVeTk5GBhYUFoaCgzZ878JB/If4uYmBg6d+4MyHXjqlev
ToUKFf61e61UKuXYsWMEBgYikUioU6dOvsMkT58+pVq1aujr6+cb8HxyY05GRgYxMTEsWrSIXr16
ceLECaRSuWroy5cvsbe3F36on4K2tjatWrXK8w8gk8no2LFjkVg15EVISIjGYMfU1JTDh+VloCpV
qiCRSChXrhw2NjYqkvD5cebMGaFvpGrVqrRt25Y7d+6QkZHB5MmTsbe3Z/To0Vy9ehV7e3vi4+OJ
iooSxrYVbNiwgRcvXqhZORSEoCB55qakkQnSfwLhsGtOpL99Qcd5RyljVVvleC0tLZXylYGBAZUr
V0ZPT0/FfuNDaGlpUbt2bSpUqCA4HQP4+/sLBqOHDh0iIiKCq1evsnfvXpVgB+RO9oqJrMGDB7N0
qbxhdPTo0eQX1INc66lXr15EREQQERGRZ7ADYGxsjJGRERKJhAULFrzfblGtwO+3mP999I3KUKev
qkbLgQMHAPJcNWsp9eVEXHuvG2VsbMzt27eF72d+ml3KwQ5A4t1TPNjtQNa7hDzOkE9g5mRnkRQl
t2XZsWMHwcHBrF+/HisrK+zs7FD0claqVInGjRsX6kb4448/qmSk4uLieP78+Rcr/YjF4iIfrAD5
PUlXV5dvv/0WBwcHtm/f/p8MdrZs2ULnzp05fPgwERERtG7dGnNz83+1pLVmzRrCwsIYNGgQ3bp1
UxNHVGbOnDn06dOHW7duffBxPznguX37Np07d+bEiROEhYWxaNEi4WZrZmaGh4cHbdu2JTIy8oM3
nk9BS0sLe3t7lRtmUbN9+3aNjVwWFha0adOG9evXExYWhpWVFf379+f27dvcu3dPmPTShKI3Jzg4
mEWL5Ku72NhYqlSpwt27d5kwYQLh4eFs3LiRsWPHUqtWLdq1a8eNGzcIDw8nJCQEXV1dxGIxW7Zs
4eLFi4SFhalNJQQGBjJ+/Ph8A6GAgAAuXbpEdkYqhubVafnzb5QwLEMpUwuV4xT+Wbnr4I8fP8bO
zg4HB4eP6iXS0tLi2rVrQqZFk5pntWrVhJWIMoosmqbP2s7OTq23R4FYLGbu3LnY2dkpVgYFeq2p
qamcOvVek0ehQFtMMTKZjFcBHoScV51s7dixI+Hh4UI2ViaTcf/+feF3pNx303DoAtpOlZeFCyNK
GhERwePHjwkLCyMiIgKvW56YmRjyJuROnud4b1b/rcbHxwMwZMgQypUrV6RDK5UqVWLnzp3Mmzev
yB4zL+7cucNvv/32WSaOtLS06NmzJ6dPnwbk08KZmZkEBQVx9epVvL29hcX/10pqaqowup9fUPG5
yOt6q6urS8eOHfnmm2/47rvv8lR2jo+Px8XFBUBQH8+PIilpRUVFUb58ebS1tdVqbcp9DwsXLiyw
UNWXRiqV4u7ujqmp6QfLZsHBwfj7+6uspq5fv07VqlW5fv06EyZMUDleMf2j4OLFi3Tr1k3oQbl4
8SK9evXC1dWVkJAQ5s+fz5AhQ1i3bt0HX3dqaipLliyhYsWKgq/Zjh07BK8vBWFhYYwfP54DBw58
cBXSpUsXoqOjMa/dCtteE4TGyYgbR/n75l80Hb1SGLnN/f1ISEggMjKSJk2a5OlTVhDS09PR1dUV
MkhJSUmUKlWKu3fv0qFDBw4dOsSwYcNUvm+KTI1y1kkkEgnlA2Ubitw4Oztz8+bNAgsogjxYVV65
Fo+qFwPq/TuK30hmZibh4eHs2bOHK1euqJ3XY+UFZFIJPjsdBDXmho2bcuTwnx8lRurl5SWUozov
PIFeSUOV/TKZDI913yPJSufHH3/kwIEDzJ8/X6V0sGzZMmrXrq3i0VdUDBs2jEOHDn3WHtGNGzcS
GxvLmjVrVBaB2dnZn5T1EYlEHDhwgKysLLy9vRkxYgRXr16lXr16mJubY2hoKAxXKBT2vwZEIhE6
Ojro6OgglUqFflhNGmefG0XvmrI0zN9//42bmxspKSn06dMnT8+1/PjkHp6PmbxRJj4+npMnT5KW
lsbevXs5dOiQSq/G18Dly5dxcHCgTJkyuLm5Fai2nDvD0axZM/z8/ChZsqSKOiog9PIonL9dXV3J
zMwkKyuLdu3ace/ePZo2bYquri7p6ekYGhri6OjImTNn8vWnunPnDqNGjeL7779n2LBhlChRQm2U
/WMICgpi0KBBSKVSWtpvpIxVLR7sn0ti1HtPlTt37lC+fPkCP2Z2djZ169bN1yRUgeKz/fbbb6lY
saKKCnK7du3w9vamdOnSPHyo3lyZm2fPnnH8+HEWLlxYZGlaNzc3pk+fLvy/Woeh1Ow2Op8zivn/
wvPbZwm7sl9l26ZNm5g1a5bKtmajV6Gjb4BJ5ZqgpS2f4rp/SS0zNH78eBwdHRGJRHh6ejJ58mTm
zZunpjavjPK1qW7/aVg2U9WSyskWcWP1YJVtf/75J+3atSMhIYFx48ZRrlw56tatq/a6i4oZM2bw
22+/FVi09GNRDDP4+fnx999/o6Ojg66uLoaGhmRnZ/P27Vt0dXUpW7Ys9evXF1on0tPTMTY2RiwW
o6urS82aNbEGugNGQBpwFXALDiY6Oprq1aurLfK2b9+OgYHBB8VMvwS///47mzbJRWXbtGnDgQMH
cHZ2pkePHnlOP2dmZuLu7k6NGjWoU6cOsbGx+Pj40KtXrwKrUufFX3/9JTgSHD16lJYtWzJ58mRA
/rnp6Oh88HodHR3NkSNHWLBggXDsJwU87u7u9OjRAz8/P0xMCm/0lpGRgYGBAVpaWuTk5DB37lyG
Dh36wRve5yAnJ4fU1FQVpVJnZ2caNGiAtbU1jx49onnz5gWuLec2EVXQvXt3fv/9d44fP65iMfHw
4UOMjY1JTk5WU1GeP38+zs7OKl4liovW48ePBVGtvDIUChO41q1b4+TkVKDXXxAcHBy4fPkyLe03
cm+vqvy78uiiTCZjxowZlChRgl9//RVtbW0VV+Tr168jFovp2bMnjo6OhISEcP78edzd3TVmnB4+
fMjQoUNp06YNjRo1Upv62rt3L6mpqXlKx2dmZpKcnEzFihU/6f3n5aquiW7LXNH+hKxWMf875GcI
mp9pprLAZ348fPhQ4w0n9xRpyTIVaDpyGUYVqgr7Yx+688RV1TNJW1sbOzs7Vq1ahZaWFtOnT2fx
4sUaRTqLipMnTxIfH//Z/ah+/PFHLC0t6dSpU75mn6mpqezatQt/f3/q1KlDUlISr169wtbWlqNH
jzIGsATikQc8+siDnhjABc26NbNmzeL777+nRYsWn+OtFRjF4hmgadOm7Nix44N/23fv3jFs2DA6
duxIUFAQb9684ZtvvqFDhw74+vqSmZmJiYkJ1atXZ8iQwhvYJiQk0KdPH7p27cqiRYuEDJyzs7Og
3l+7dm369++fZ+CjGDZRzt5/UsDz5MkT6tatW+hRY5lMhq+vL6NGjWLVqlWfJSVaWFatWsWhQ4eY
MGECc+fOBeQfTmHfmwKFrYG+vj56enqCeJjii5+WlkbPnj2Ji4sD5BLoighbmSVLluDt7U1MjDyN
rbCfqFmzJjo6OhgYGCASiRCLxbRr107N8yklJYUSJUqQlZVFXFyccF5RZDPWr1/PH3/8Ifx/x44d
ODg4YGxsLChPZ2RkMHbsWCHbEhAQAKASKDg7O1O3bl1WrVrFmTNnEIlEgLzJ+8aNG8Jx6enpZGVl
YWZmhkQiQUdHh4SEBBUX5CZNmqj0z2hi//79rF27Fn9/f42ikgXh2rVrgs1IQSguaRWjTMIzfyKu
O1GxcResmvcslFClTCbD79ASEv/2V9v39OlTYVGmaRH0xx9/sH79euH/Vb7pi4lVbdLfRPPumR8J
sc+wtq5GZOTfAOjp6XHt2jUeP36Ml5cXERERhIaG4uvr+9nKTU+ePKFcuXKsXLmStWvXflbRvsDA
QI4fP14g7bTcpKamYmRkxPKaNbEEygC9AIU4xTvAB3AF7P/RRVPGw8MDd3d3DA0NycnJYcqUKYXK
ihcVisXzh1pUZDIZx44d4+XLl2hrazNw4EBhQSqTyVQWuCDvY9q1axcSiYQ+ffogk8mwsrJSSRq8
fv2aR48eIZFIqF+/PomJiURGRpKSkkLv3r3zDLxkMhnr1q1j6NCh1KhRQ+MxMTExnD59munTpxco
w/PBVIZIJOLUqVNYWFh86FAVTpw4IYj5KXooTpw4QUJCgpC2+hIEBQWxa9cuQkNDhbHvt2/fCvs7
d+7M1atXCQwMpGHDhoV6bBMTE65du0ZWVhZSqVTINuzatYuJEydiZGRE3759+euvv0hLS6N58+Ya
H0ckEmFpaUlMTAxt2rQhMzOTUqVKce/ePYYNG0ZkZKRwrCKjpMndu1OnTmzatInatWtjYWGBt7c3
n4qjoyOOjo5kZWXx+PFjWrRogb+/v0oaeu/evSqlpZycHEqXLo2WlhajR4/G1NSUIUOG0LNnTy5f
viwc17t3bxWPM4AePXoIU33BwcHo6OiQkZHB9u3bmTp1Kh07diyQzcmYMWNYu3Ythw4d+qgV5MCB
A1XMXrsvP4eWtrZgngjyEoBisq7LomJT0WJUMavRWBASLCyPjqwQgh0/Pz/27NmDTCbD2NiYq1ev
MnXqVI3naWtr07zl++x5pabdifY9Tzv9dFrVrIFXnA7jFyygR48ewgSkgsqVK9OjRw9sbW2pV6/e
Zwl2AgMD8fPzY82aNVhYWJCamsro0aMZOXIkjRo1onLlyhoNgj+Fhg0bcvPmTfbt21fo0pKxsTHd
bGwYAVQCxgDKnT+lgZ5ARWDtN9+wPldA0blzZ2HIwsfHh3379qlMd34JcjvWa0IqlSKVSnFycuLV
q1fMnj1brY0lMTGREiVKYGxsrLKYnjRpEllZWSxatIgbN27QtWtXhgwZQosWLfD19eX48ePUrVuX
Nm3a4OTkhEQiYejQoYhEImbOnMlvv/2Gubk5qamp7Nmzh+HDh+Pm5kZ6ejoikSjPYAfAysqKGTNm
5Lk/NwXy0lq8ePEHpfZzI5VKmT59Oo0aNRK+ZDY2NtSpU4fz588X6rE+hZUrVwoj4yYmJri7u6tM
PchkMi5fvkyrVq0+WsVZgbOzM/Pnz6dChQr88MMPODg4qLhwjxo1Ch8fHy5dusT169f566+/mDt3
LnXq1MHT05MpU6ao9f4ArF27FlNTU3x8fDh8+DBhYWGIRCKaNGkiaEDExcVRp04dQkLkPTbKrsqf
yuLFi5FKpXmukG7cuMHu3bvJyMigdevWwrTZkSNHWL58uXBcrVq1BIVkTX1JMpmMc+fOMXu2vHSm
8L1SrE7mzJnDmDFj1C6IMpmMrKwswsLCeP36NRkZGdSsWZOLFy9SoUIFtLW1qV27NjVq1KBly5bU
qlWL8ePHqwhtZWdno6Ojw5MnTxg4cKCwXVe/FF0WnZQ/j1QimBb6+fkJ6GgDXwAAIABJREFUwo9t
pu7CqLxV4T7UYorRgEwqFWwlcqOrb4Bl4y48v6vZeqH+oFnoljQkOy2J8rVaom9clhd+V3ji+n66
NCEhgejoaNavX0/v3r3p3bu3Wnn91atXTJgwgRYtWqiU5D8GqVSKt7c3jx49IjQ0FBsbGwYPHqwy
TSsSiYiMjOTs2bPs37+fR48e4enpSceOHTE0NPzkCTGRSISrqytv3779qMW2g40N/YC2vM/s5OYd
cAlg925aK6nC52bo0KHY29ujo6ND586dSU9PFxbieU0ifSphYWHClNrcuXOxt7dHW1ubBw8eULJk
SerXr4+fnx+zZ89mz549eQr7jhgxAktLS3799VeN++/du8eFCxdYvnw5bm5u3LlzhyZNmjBw4MA8
20RevXrFzZs3+eOPP6hatarQ7vDgwQNatGhBr1698gy8FWKJwcHBKsHZJ5W0QG5zcP36dTXJ7vxY
sWIFTk5OKiUFxY3r3Llz9OvXL8/+jc+NIjBRSKIXFYrSS6lSpXBwcGD8+PEkJiZy+PBhOnTowNat
WwkICMDf35/27dvz6tUrQK7LcfHiRbXykYInT57g4eHBunXrGDhwoND1v2zZMry8vATTwVWrVnHu
3DmaN28uBA1FQV7p0NevXyMWi9U8tRTKmAoFaIDz588LYoQtWrTQOCa+YMECTp06xZMnT9DT00NL
SwupVCrolmzfvp3vvvtO5ZyC+F59LN1XnFdZyYSc30nM/UuEh4er9EnoG5elRucfsGzeU9PDFFNM
gQhz/5Pn3nkrpStKpuKsdLWJK03kZGVw87dRSMUijWq1x44d4/r164wePZqwsDD69OlDxYoViY2N
ZcaMGfTq1UtNtbgwpKam0rFjR5YvX07dunU/aOcgkUjYvXs3YWFh3L9/nyZNmnDlyhUuXbqEjY3N
R5Xow8PDOXLkCN26daNly5YfNXzzq40NLZFnd/LDH7g9YAB98xE4jI6O5sWLF7x9+5arV69ia2tL
9erVuXXrljB1WrNmzSJr5NbkDBAcHExcXBz79u2jatWqmJub06dPH0GcMa/P+fnz5xgYGHw1Turf
ffcd4eHhakKcnxzwKBgzZgwdOnSgY8eOSCQStmzZwsiRI9U+AOVRYMVNMjIyEhcXFx4/fiwIBGkq
aXwJnj9/zoQJExg9evRHO+XmRUJCAjo6OvkGhjKZjMDAQAYPlk9JnDlzhoYNG+Lk5MSWLVtISUmh
V69eXLx4kfLly7Nw4UJmzpyJra0tLi4uwjjl6dOnmTdvHiNHjuTIkSPC448dO5YRI0Zw8OBBVqxY
8cm9PGKxmNTUVLUM2KZNm3B2dubNmzcq2w8ePChoInh6ejJu3DgaNGjA48ePVXp/cnP48GFWrlzJ
lStXBBl4f39/Vq1axenTpzE0NKRkyZI4OTlha2srGMIC1Ok7mbLVGmJY7n2a/m/PE0RclzdwGxiV
xrRSdUpWqEH5um0oXdmWKB8XYh9excTSFn1jMywatEdLSwvD8lXUPjNRaiKev8nLia6urhrN9rov
P8ezm38Rc88NccY7ui45jY5e0Rq8FvO/S3J0CPf2yXsLDctXoe1UudmmwvZBSynTkRYfQ/jVQxiU
qYBVy94YlpM7pOeIMnh8aj3xYQ8AqFW7LjOmTxXGfnMTEBDAhQsXyMzMpGzZskyaNImhQ4cyYMAA
Hj58yI4dOz7p+uHh4YGzs3OBytAKEhIShBuYl5cXd+/eJTAwkL59+2JnZ1fgx7l16xahoaH89NNP
nySRsc3GhmbAh7pQgwDf776jx/b3DeE2NjbCZJcxkIp8sutarsWjWCzm7NmzxMbGkpiYiJ6eHsbG
xvTs2TNPO5uCoJg+3rdvH61atSItLY2kpCROnDjBqFGjsLa25ujRo4SGhlK+fHkcHBy+Gu/MD3H8
+HFWrFghVDUUFFnAoyA0NBRtbW0aNWpERkaGmtGYYjpn0qRJQqZh9OjR+Pj44OrqSkZGhtDE/LVY
V3xJNPk2+fv7M2jQIP7+W95IWK1aNS5duiSMqScmJmJlpVo22bdvn4pWj8IENSIigp49e1K2bFnu
3bv3Wd+Lm5sbN27cwNXVFWNjY1JTUwH53zU8PJzvvvuOihUr0qZNG1JTU9m8eXO+qyxl7RAFV65c
4eeff2b06NGsWbOGX3/9FVtbWwYNGoRMJlPJxEglOSCToa2rR05WBqGX95GdFEt8ZDADBgxAT1+f
UydOoKWlTe0+k6jctMcHJ6ukOWKurZSXuZYtW0bFihWZOHGikPnMC+NKNjQdsRR9408rlRZTTG7C
rx4i0ut931iDwbPRNTDi0ZEVgHxg4Pjx4wXOFEilUh4+fMjGjRsRi8XY2Njg5ubGgwcPPkmSJDU1
lXHjxvHHH38UuDqgiRs3brB161Zat25NSEgII0aMoHPnzjx8+JDy5csTEhKClpYWlStXpmHDhkRF
RXHs2DGVceWPZY6NDT2B/BTkpMA9YAEw8R/ZDRsbGyYBIwHlGa37wBFgF3nf/3Jycnjx4gXXrl0j
Ojqanj17ftAiR2Eiq5hYio2NpWPHjpDrefbs2cMPP/yg0iiu3JD8IcaMGUONGjUENfuvjU9qWra0
tOLFixiVbfXq1ePx48dcuXKFmTNnIpFIVGp0RkZG3LlzR2Vscs2aNfTq1QtDQ0Pq1avH9OnT2bp1
q6A58/8BmUyGRCIhODhYbV/jxo05cuQIdevWRUtLCwMDAzp27Ejz5s2ZOXMm1tbWPHv2jEqVKgk9
LD///DOmpqbs2LEDS0tLmjdvjkwmw9XVlbp16+Lq6qrxdfj6+lKpUiWqVKlS4Neenp6Onp6emliX
og9g48aNyGQyLl26JGT8FK/z1atX6Orq8vvvv3/weUqUKIGhoSHlypWjWbNmnDlzRlDsVvzAFAqt
pcqUo2LTbwlx3UJOchzv4l+QkSq3tNA3KEXZKnWo0LgH5vWmEXxmM1dveqOrJaNajZpEPgsn5PxO
3gR50uzH/AUevTa9D8BycnKEya3du3fj4OCgUUQOIPVlBJ6/jS6e3iqmSHkT4qsS7ACYJT/G88x7
F/L58+cXqiyira1N8+bNhVJzYmIiffr0oX///jRu3Bg9PT1GjBhB1apVC9VUbGxszLZt21i3bh3V
qlUT+kcUiEQiSpQoka9l0OrVq0lLS+P06dPcvn2bqVOnMmbMGLlcRsuW+Pv7o6+vT9OmTXn8+DEn
T56kXr163Lt3r0iyFR2XLydp+XJCyLuH5y3yktY94PaoUVhaWjIJWAvkloxsAdQjf3R1dbG2tmbU
qFG4uLgIytf5oej/tLW1JTw8XOi1Ub7fnD17FhcXF6RSKZMmTUIqlQqZntWrVwufl2JCVhOjRo0S
2ij+DUQiEcuWLaNPnz6CwXRB+WCG5+nTpyQlJWnUzVm9ejXW1taC4aQyyqt9kN8okpKSqF69urA9
JSUFExMTtWPzeowvsf1zPrZIJCIxMRF/f38h4jYwMKBLly5ERUUJXlYg/5IqGwxevnxZUE8OCAgQ
gkSZTMbMmTNVPMSaNGlCiRIlSEpKYuzYsYSEhODk5CQ8Z0GbxxUjr8oiey1atGDz5s1qU3seHh7Y
29vj7e2NhYUFL1++xMzMjKCgIIYPH46JiQnOzs5YW1urnBcWFoaLiwtNmzalS5cueTYoKtf/jS2q
oyXL4d3raIyMS9O7Vy++/bYH9erVw8jICF1dXZKTk4VR9jp9J2PVohcymYzMpNck/u2PKC0JUUo8
5vXaY2bTRONzZqen4LV5HJJs9UZykIsiKlL1Xbp0AdB4IajcrAf1+n89aqvF/DeI9j3P04t71LbX
7T+V6DvnSHsTBeSvIP6pyGQy4uLiyMnJwcvLi2PHjnH+/PmPCiTu3LnDgQMHGDRoEN999x1v377l
p59+olq1alSoUAF9fX3q1KmDVCpl/fr1VK9eHVNTU9q1a1conZekpCTmzp1L+/btGTPmQ503BcPR
xobWwHhAOdyTApnAQ8C/Sxf8K1fGycmJMshH1fNTm7sPjALc86lyuLu7s2XLFg4fPqw28p6bcePG
CYr+mzdvZubMmYwcOVJlcOTZs2csWbKERYsWUa9ePZUenydPnggLWsX19uzZszRo0CDf5/3SBAYG
MmjQIDUDaQWflOGpXbs2Vapaa9xnZ2eHjo6O4MGhuMlpSoF27tyZmJgYldSa4oeUezzyf52cnBzE
YjH+/v6CHkF2drZKwFOvXj369+/Pjz/+SFhYGDVq1GDs2LFCBgTkGQZlB+DWrVszefJk3rx5Q3Bw
ML6+vixcuJC5c+eqGGIeOnSIJk2aULduXbKzs/PUqrG1tWXMmDEq0uj379/n22+/xcPDgylTprB3
716MjIwEXRwTExNSU1PVRuaTk5Pp1q0bR48eVdHU8fX1FRq1czvLK3xocpt5psb9jZ3dUIYO3SiI
NObGzMwMR0dH1q9fz5snd7Bq0QstLS1KlbWgVNkPNxeLM9O4+ev7/i5dXV1ycnIYPHiw4J2Tk5Mj
7L9x4wYxMTEYGBjg6emp4hMU6+dO1TYDiye5iikw+QkX5hYNjI6OVltIFBVaWlqCeOfTp0/Zs2fP
R2dNLCwseP36NTdu3MDb25s3b96wdetWqlWTG+/GxMTw8uVLUlJShOkdLS2tfIO548ePEx0djUQi
ISsrCzs7O/bu3cvixYsL9ZlIJBJCQkJITU0lOjqa9u3bq0yRTrt5E7dx4/jt2TP6AnWRBzvJgL++
Po+bN6fbL7/Qv1w5li1bxq//BEj50QLIWwZRjkwmo2vXrvkGO7l1yq5fv07Xrl0pXbq0SrAD8OLF
C4YOHSosprW0tDSW1TZv3syKFStU+nMzMzNZunQpI0aM+CjLh6KiYcOGH90KUyBJ4eio5xq316pV
S+WJJ02aRHBwsNCEq0zjxo3Vbk6KdNSlS5fUOslPnz5NrVq1inxULykpCU9PT/r166fxhxQSEiJM
EynIfZP+VJKTk+nZsyfJycnMmTOHSZMmAfIb/JQpU7h6VZ6adnV1FcpT/v7+WFtbU7FiRYKCgvDx
8VEJdlq1asXYsWPp0aOHIOQkk8mwtbUlMzOTVatWCbLqbdu2JSgoiOzsbIA8S4o//fQTXbt2xcTE
RPg7//nnnzRt2pTLly9z//59fH196datG1OnTmXOnDmCIrSdnR2VK1dmy5YtKo+p0NhRMHr0aMzM
zEhOTlabwBo9ejS+vr4q21atWsXw4cNVBLB69eoliDWCXEhNLBYDUK39EKp3KrxHjLaOLiaWtqS8
kLtEHzlyRNBRWrp0KY0aNRLUo7OysjA2NhZ6rBTj6sr4bJ9UXNoq5qNQvsa+efMGAwMDwWfuc2V2
chMaGkrVqlWpXLlyoc9NSkpiy5YtmJqa4uTklKdiv5WVFVZWVsTGxjJkyBDEYrHKZFlqaioRERH4
+fkRGRmJkZERtWvXxtHREZlMhkgk4vTp0zRp0oSNGzcyfPhwdHR0aNy4cb6aQqdOneLMmTPExsYy
e/ZsmjVrhouLC05OTvzwww/Y2dlhaWnJhCtXOH/kCLv+/BOTpCRKAjnW1jSeNInhuUbRCyqj+KHj
unfvzokTJzT22IhEIjw8PLh06ZKw7fz581StWpX79+9rNOasWbMm165dY9GiRaxcuTLPslXfvn3V
7oMlS5akdevWhdbk+5ooUNPywYMHiYyM5NmzZxw9elTlGOUf44sXL4QR5dw+S1KpFC0tLeGPFhcX
h6OjI2/evMHFxUXlC6mwScj9+IVFJpPx4sULHj16xJ49ewQNGJB7iSj0eZR58uSJICDYsWNHIUWo
uNFHRkZiY2PzSY18yp4m586dE0xElZFIJERGRtKzZ0969uzJb7/9xsmTJwkODsbHx0dQb1YQFxeH
5P/YO++wJg7/j7/YMpQpLpwgbnEvtIqCs9ZRsS4c1Wqto3WL1q1VrKjY1j3qat2KW9wDFVAURQVE
AVmyl+yE/P5IcxKSMASt3/54PY+PcLncXUJy97nPeL/FYk6fPk1ISAi9evXCzs4Ob29v7OzshKwS
lD4FnpWVxdWrV+nWrRv6+vqcOnWKM2fOsHPnTq5cuUKjRo3KJGt34sQJ5s6dC8DSpUsZNWqUwjqJ
iYmF6g0Z1mxI++9Uj4kmhjxF38wCnYryWiTXfvkGUVY6v/zyi1za1MTEhM6dO1O7dm1++03+Tnvs
2LG0aNFCpRBWwTH3cspRxeubhwi+ekBh+VdffYWLi8tH958qyF9//UWbNm2wtrbmzJkzREREcPTo
UdatW0erVq1UPu/Vq1cYGRmxePFiNm3aVOS0VEZGBs2bN8fQ0JDhw4dTrVo1atWqhUQiwc3NjZEj
R1K1alXatm2LmpqaUn2X5ORkLly4wPnz5+nfvz/v3r0jISEBsVhMZmYmNjY2hIaGoq6uLngPOjg4
8ODBAw4cOCDcpMXHx5OTk8O2bduoUqVKiTR8XKysKM5c2hRgXoFrXEZGBjt37kQkEpGVlYWFhYVS
C6NffvmF3bt3C7/nL7EXxdSpU7G2tqZOnTpUrlz5X7F6+liUekqrcePGnD59Wk4TRUbBgEQikRAQ
EEDDhg0LPbkXJnWdl5fH3LlzadiwYalM10JCQlSOY1avXl0Yjy8MZdoRv/76q5w4XUkRi8UkJiZS
sWJFFi1aREhICEeOHFEZhAQEBDB//nw0NTUZPHgw9vb2tG/fnoiICDQ0NEhPT2fWrFmcPXsWd3d3
+vXrh4eHB9evX8fU1JS7d+/Sr18/IiIiWLFihcqM1V9//YWmpiaOjo7k5uYqNCjLylSLFy/m+++/
Z8uWLdjb2ytk50Dx7zpp0iSuXr3Kvn37ipw2EIlEDBw0iIB/xg1Xr16NtrY2AwYMICMjAy0tLaUn
fGWaE52mbcWgsvLgK3/ZoGD2JeHVYx7u/bnQ4ywpTQfPoHqLopLY5ZQjJTUqmPtblQfPU6dOZdKk
SWWuSlyQmJgYli1bhr+/P7Vq1cLGxoZt27bRpEkToRm2bt26TJ48md9//51mzZrRsWNHfHx8qFOn
Ds+fP8fc3JyDBw9y6tSpIjP2sn5BmWRJaGgoSUlJiEQiqlWrVuSNVFxcHGvXrmXEiBE0btxY6Y3p
w4cPqVWrllKLBzc3NywtLeVK60+fPuX06dPMnTu32IGmvZUVeyl5D8/hw4eJiIigV69eVKlSRRjP
z58skDFy5Eihf9bGxob169fLCToWRmJiIkFBQcKE29u3bxk/fvx/4oasVAFPrQ5f8eb+abZv306X
Ll3kNAFKI9x369Yt1NTUBL2Wj8WpU6fw8/NjyZIlwrL4+HgqVaqkcEFXRk5ODllZWZw7dw5TU1Os
rKyoW7dumXwwZB/YmjVrcu3aNYVtikQi9u/fz5YtW5g3bx4TJ06UG+2MiIhg6dKl7Nr13pn59u3b
cp3rYWFhHDp0iLS0NIYMGULfvn0xMDCQS4OCfLAwc+ZM1q9fL2SCQkNDsbe3F1zKQdqzIpvykqlJ
q6urC303fn5+hISECCc4WeB48eLFQgXIoqKi+H7yZJ7/czLdunUrt27dolq1aojFYtLS0tDW1sbB
wUGpFUh+DSiAHj8fI/7lQ6o0sZVbLzX6Nfe3SHuTHJadQSIWEXb3FOZNOqFvKk3bS/LyQMmJRiKR
kPjaj7dPrpMaHULa29cqX09+eiw6gYZW0Z+5cspRRswzT565b0KUlQ7A8OHDWbFixUfbn0QiYeLE
iWhra7N48WKqVKlCQEAAP/74I8eOHcPAwAA7OzvmzZvHwYMHWbBgAUZGRgQGBmJjY0N2djYxMTG0
aNGCnJycYp1vp02bRtu2bYWMRnZ2NidOnKBfv35FunOLxWIWLFjAjz/+qKDiXpLX7OLiQuPGjYVM
v1gsxtXVlbCwMCGDkpeXx7Vr17BXoars7+/P+YEDWYvilBZABtIR9lnBwcTHxzNy5Egys7KIioxU
eWxbtmxh8uTJDBkyhOXLl6Ourk5mZuYH+5DJGsiNjIy4ePEimpqaCq8nPT2dvXv3EhcXh0gkwsnJ
ierVq/P69WsqV65canPmj0GpAh77Jae4skyqGZNfYXb37t0KjakfgqenJ2PGjGHEiBEsX768WM+J
iYlBQ0OjyK71j4W3tzfZ2dmlDtYuX77MggULOHbsmEJkHhMTQ48ePRSsJp4+fcquXbu4evUqYWFh
dO3aVW7aysHBgRMnTmBgYEBeXh63bt3i9evXZGVlsWfPHh48kAqS/fLLLwwdOlRu2/7+/kRERODl
5cX+/fvx9vamXbt29OnThwsXLrBp0ya5BmZl2blp06ahra0tjMTL1pFIJCQlJdGuXTu6devGzp07
hedkZGSwceNG7ty5Q1CQtGdGV1eXEydOcODAAWbOnClX98/Ly2PdunVCuSs/BQMeGV3n7kfHQL5s
lZv5Ds0K+ohzMvF0m0j2u2Sg+CagyhpLuy88SrjXWV5e2avwWHkPTzllgSg7g2urhvLDDz8wc+bM
j7IPsVjMxIkTuXnzppxA7N9//82iRYtYtGgRY8aM4fbt25w/f57k5GQSExNp2rQpKSkp1KxZExMT
EzZs2MDly5fllHDzI7v+vHnzhuPHj3PmzBm2b9+Ovr4+33zzjaBGf+TIkUJLZyDVl6lRo4ZcduZD
kEgk7NixgzZt2gj7zM7OZurUqQwaNIi+ffsKpbf8PHnyhFWrVnH48GFhmTIdnnvAIaQ6PEUxduxY
vvnmG6pUqUJsbCxjxowR+iAfPXpUKusN2Y3n9evXeffuHb/88gtLly6lXr16xMfHM2rUKF69egVI
rxebNm0SWilkU8gTJ05Ueh7+EMRiMR4eHkybNg1TU1OcnJzYuHFjiQP7UgU8PZefFU7s+e/qy4L8
JbKnT58WOz3722+/4ebmVqLnlCW///47GzduxNfXt8i7juIgEom4cuUK9erVE96P9PR0VqxYgamp
KU2bNmXZsmXEx8dTtWpV7O3tGTx4MLVq1cLIyIhnz56RnJyMjY2N8CE1MTEhMjISa2trIcty5coV
UlNThf3Onj2bQYMGKShli8ViMjIyAGkW6osvviAsLIw2bdrQunVr7t69S+PGjVVqIKSlpdGyZUvm
z5+vUJK0tbVl2rRpDBs2jKSkJKZOnSonazBnzhwGDx5M5cqV2b59O3379lWaxnZzcxNG5ZVRlIw9
gGndZrQet1ohcLFf4l6kGCFAfLAvusbVEGWmUsGwsiAwKM7JIvLRFSJ8zvEuVqphZTf/b7T0Pp4j
dDn/vwi7507ghR107dqVnj178s0335Tp9ocMGcLjx1Lz0sOHDwuN+PHx8fj6+uLg4ICPjw++vr60
aNFCCAbGjRuHubm50FsTExODu7s7qamp5Obm4unpKYiivn37lrCwMCwsLNDT08PAwIBjx47RqVMn
hg0bhrOzM61atWLKlClFarXduXOHc+fOsXr16jJ5/bm5uSxbtkzIXl++fBkbGxu8vLzIzc3l+fPn
Kp9rbm5Oy5YtmTVrFvXq1cPeygoHwACIA84BSfnW7zp3P0mh/jw5ItXN0dLSwsvLS+W15cWLF0yc
OFEIBgEWLlxYYhsQWeYepCPtFy5cICoqSni8TZs2TJgwQU47KTQ0lKCgIBwcHIRlZSEe7O3tzYgR
yodLvv/+e2bNmlXsqkqZBTwgjSo/NIWmjNTU1BIHDbm5ufz+++9MnTr1kzfvwXu7hBs3bpRJc65M
V+DLL79UmGoqKbm5ubx69YrAwEAqVqyIubk54eHh3L9/n5ycHBITE+XUgdXU1KhQoQKZmZkAGBsb
k5Qk/TpOmyaVpJeldmUUbHqWBRc3b96kevXqqKmpcfToUZydnVU2SNvY2JCeLk3Njx49mkWLFsl9
oKOioti8eTPOzs7Y2NgoZBSVBTwdOnRg+vTpjBgxgpycHKXN4Pmp1b4/mYmRxL30VXisldMyzOor
TluVU87nwpMjLrz1vw2gYKBYGrKzs7GxsUEkEmFiYsKmTZto27YtIpGIESNGkJmZSUhICBKJhIYN
G9K9e3devXpVpE3Q1atXmTRpEkFBQYSHh5OdnS3c4C1ZsoR69erRuXNnYmJiOHjwIL1791aYFEpM
TOTGjRsEBwejrq5OcnIyycnJmJubM3fu3DJzeL9z5w4BAQGMHz+e6dOnM2TIEFJSUti5a5dQbrdb
cBh1DS2urhiscjvBwcEKN1/dFx4lPsiHqs3en88kEgmXl7x/rS9evCjy2paYmEiPHj3k9N5KGnz4
+vri5eVFVlaWXMNzWFhYkcmNyZMnc+fOHU6dOlWifeYnPj6e8+fPF6u6U9zXViodHgDj2k1JCvPn
wYMHZRrsAB+UIdHS0mLGjBllehwlQVbW69atW5lEt82bN+evv/4SxslLg5aWFgcOHODQoUOANPVo
YGCAsbExenp6QklLhkQiEYIdQAh2QJpJ++2331i4cCEtW7ZET09P6Sjs8uXLWbx4sZyMeXx8PCDt
Mzp79iyVKlXC0dGRO3fuMGvWLNLT0xk7diyzZ89WepLy8PCgQ4cO2NjYANIRedm237x5w99//42F
hYXgR3blyhXi4+NJTpaWpWT/q0JdQ4s3XqqFF7NS4wt9fjnl/Ns0HzpPCHhevHhRZtooOjo6+Pn5
oaOjg5ubG3v37uXGjRskJSWxcuVKuSDE399fuODt3LkTV1dXnj9/LnfzUrDMfP36dXr0eN+8f/Pm
TXJzcwWRQEtLS5o1a0bfvn3x9PSkWbNmZGRkcPz4cWxsbOjXrx8DBgxALBazbds2GjZsqHSCszRk
ZGRgZWXF+PHjcXR0pG7duoK4KEDr0SsEA9eey8+SnhBJ2F13UiICSYt+pXK7DktPo6auLhfsAMS+
uCf8PPjrr4uVzTAxMRF8CXfv3o2enrJuIeWoKv0fO3ZMOKcWRmRkpJyX4YcQHh7OoEGDhHN1jx49
sLW1ZcCAAXTo0IHc3FyOHj3KwYMHFVo7PpQSZXj+P/peKUNmSw8YuM8/AAAgAElEQVSf33siyxaB
VCwvPDycxMREHB0dhTSso6Mjly5dEtSN4+LiCAoKIj4+nocPHwJSccIRI0YwatQoDh8+TI8ePdi6
davKL2JycjJLly6VU3wujO+++04Q53v79q2g7ZCeno6LiwtmZmZMmzZNCC5r1KhBZGQkwcHBxMbG
CpNesgySRCLh2rVr+Pn5FWphYW5uTmxsLEZGRiqDom7zDqKtr1wrpJxyPidC7hznpcceQKqVUxqT
TGXcv3+fo0eP4urqKiy7c+cOZmZmmJiYYGxsjJaWltzQg+ycKDMDVoZsyrRTp06cPHmSJ0+eKG1q
zsvLIyEhQbjgjRw5UmG6VtbroapP6EM4fvw4O3bsIDg4mFOnTgkXXoDOP+1Ez0RRiyb0xkGCrkmt
OXr16sWqVaswMjJSyPBo61eiorE5CRHy1w5LS0uaNm2Ki4uL0nH7siQ6OlroQR0xYgQTJ06kWrVq
ClPYMl6+fMm2bduIj4/HzMyM33//nezsbKZMmVKi5ENycjJPnjwhJCQEd3d31NXV+eOPP0hJSWHy
5Mno6ury9OlTDhw4wLhx4zA1NeXevXsl6lMqdUnr5roxZKcmfHYX93+LgIAAoTHuc3pPgoODGTRo
kJCxkTUKjxw5kgsXLmBhYcHChQtxcHAgMTGRmzdvMmfOHJYtW8b06dNxdXUVuv8BqlWrRkBAAAMG
DODGjRv07NkTb29vfHx8VAY+aWlpnDx5ktOnT9O0aVOGDh3KkiVL5BzSHRwcuHz5Mr/++itRUVFs
2LCBI0eO8Pfff1OpUiUCAwP5448/BNXm3NxcBad2gC+//JKAgACF5Xqm1clIiFJYPnDgINat+5Xk
5GRBRDA/5U3F5fyvkRjqT9DxNaSmJPPNN9+watWqMtt2Wloas2fPxsjISPBlKowzZ87Qrl07oScw
/4XeYak7kb6XeX76d7nn1KxZi9On3fH09BTEBGW9KcnJydSvXx+xWExOTg6NGjXi+++/Z+DAgXLH
k5yczJ9//snLly9L5MpeFIcOHeLnn3/GxsaGefPmMWLECKy6j6JeN+WTyZE+53h25n0rcv5G60eP
HhXp9B4QEPDRAx2Q9mjOmTOH06dPIxKJigySfX19ad26NXXr1qVr166YmZmRkZHB5s2bsbe3Z8uW
LSqvB9HR0Xh6ehIeHo6amhoVK1bExsYGPT09Ro4cycOHD7G2tqZx48YKHpPh4eFCWS1/H1lRlLqk
lZ2aoFId83MgIyMDDQ2NMqthF4azs7Ngo/CxiIqKIi0tjQYNGhT7OW/fvhW8tkA6/p2ZmYmtrS0v
/tGzmTt3rqBLZGJiwqBBg1ixYgUPHjzAyMhIUPOURfHR0dEYGhri4eHBjRs38PDwENzbRSIRb968
UZhUiI+PZ/ny5TRv3pwbN25w4MB78TSZCer8+fMB6UlA9hqTkpL45ptvSExMZO/evXh7e+Pg4CCU
UDMyMti3bx/9+/dHLBbLpZdlWHUfRfC1A2QkRPH995MZM2a0nKDWqVMnOXXqpMLzvpi1hwqGipoc
5ZTzuRPhc4HUlGTMzMyKNfZdEvT19alRowbGxsZFrwwK/TZeXl6C3peaugYWbXorBDzh4W+oWLEi
z58/p2PHjkgkEpycnADphTk2Nla4mG7YsAErKyuFiVYjIyOmTZtGgwYNCAwMxMLCglevXtGsWbNS
yYcMGzaMn3/+GT8/P6GhVlWwA1CjbT9qtO0nTNG5ubmxfft2Vv2yhhMnpHY0xjUbUqlaPdS0ddGv
XIvMpLdEPbxIVloSnTt35sKFC8V+vz8EsVjMqFGjBJX8woKdu3fvEhERITTEu7i4yE3KFWdCcP/+
/QwfPpyvC5TpVq9ejaOjI1ZWVtSpU0eprp2zs7Pwc0Gh3Q+l2OHkp4g8P4SoqCihmfVTZFvatWsn
BDwFv+Blxfnz51mzZg0zZ85Uqu4ZGxuLmZmZkInJzc2VM61cs2YNvXr1IiAggMDAQLy8vPD29law
bpCloWXZDhMTExITE4mMjERPTw9tbW0aNWokjK/Xq1eP169fs3LlSo4dOwYgCAlKJBIyMjKEyY4n
T54AsH79eoWmZ1mzsbOzM7q6uowc+d6zKjs7m82bNysIRsoCq/x2Gvmx7vktQR5S1dFVq1ahq6sr
WGcow37xSdQ1P33DeznllCUZCVLdlpUrV6rUhPlQ1NXVqVKlikJv4fz584Xvf2EirDIle6Na73tF
HJa6c/ePaaTHvT9fWVlZ4eLiwrVr1+RMQjU0NOR0XlxcXPj1118VzmOydb28vLh69Spubm7cuHGD
lStXCuX9DyF/9aOZ4xzM6itmhZWiJj0ve3p60qRJEyrXbULLcWvQ0q1EBUNFKZVa7b8k9ObfhN4/
S9u2bZk+fTq9e/dWWV4qDX5+fvj4+DBy5EilWe789OnTR26qd+jQoSXOQuno6AiWO/lJTk4mNzcX
NTU1QkJC5B6TSCSMHDmSv/+Wlgd9fHzKLAgsdg/PgQMHBLuHzwl3d3d27NiBpaVlkVMCZcmdO3do
3LgxJiYmREdHk5CQUKa+X0FBQVSoUEGhUz48PBw7OzuOHTsmNCn27NmT169fc/36dezs7Hj48CGt
WrXiyy+/RE9PT+moZnZ2NkuWLOHYsWPY2trSrl07BgwYQGpqKuvWraNRo0bMmTMHkNbR4+Pj2bJl
C4cPH2bHjh2cO3eOEydOoKamJlhWFOT69etKP+yFqWyD1Lri0aNHVK1aVaVSdgWjKnwx873g4sN9
S0gIfkhAQACTJ0/m+vXrwmMa2rrkibKxX3wSNfWy7XEop5x/kyvLBjJn9iy+++67j7L9mJgYtm/f
TkpKCm3atOH4iZM88n2osF6jRo04ffq0QkZF9l1v9vUsqjbvJvd4QTkIb29vNm7cyOzZs1UOs1y7
do3jx4/z888/qxS9S09Px8bGhjogNw5+B7hS4JwjEol48OABr1+/5u3bt+Tl5dG6dWusrKyoWrUq
jRo1UtmzUxjZaUlE+11H37wWZvVbFyvTJJFIiH1xj5TQJ7zxucDw4SNYuMC5TDN3eXl5nD59muXL
l+Po6MiaNWtU6tnt2rWLo0ePcu3aNTw8PKhWrVqJEx+q5EM8PT0ZP348mzZtonPnznKO7BkZGYIM
wdq1a0sctJaqh8fO+RDXVw8r07HHsqRr166IxWJBAfjfoKgLeFny6tUrevXqJScP8MMPPxATE0P/
/v0F81bZcf3444/07dtXYTvHjx8XmoZlX26ZdcOff/7Jli1bFJrtoqKi2LlzJ0eOHMHU1BRTU1Nq
1Kghp9rcv39/zpw5g7GxMT4+Pgr7lU0HKHt80KBBVK5cmUGDBjFt2jSF5xamVKzKXbp8vLycz4ln
7r8R+fASANVbdEeUk4WeSTXEOVmEe5+jdscB1OniiI7Be0V1iURCnihX4bMvycvj9toRnD196oPc
0mU2QA0aNFDZFJqdnU2LFi3kbmq6zf8LbT1pQJKTkcqNNdJyj6Ojo8LNVVxcHEOHDiU8XKpHZWk3
Eku74QDkiUWCqK2MzZs34+npybBhw+RU/WW8efOGJUuW4OrqqrSvT2b+PBEYiby1wz3gILAd6cVc
V1eXy5cv88UXX2BtbY25uTnJyck8e/YMf39/QkJCOH78eLF1ucqSjMRogs9vpoq+Opt/34SpqWmZ
VlnevHlD9+7dsbW1LfLa2a9fPypUqICLi0uJS4QFxWpl5K/MyBg9ejRz585l6NChwoDNkiVLMDQ0
FKoEycnJ+Pv7Y2RkRJ06dTAwMCAyMpJt27Yxc+ZMoUn8g3t4rq+W1iw/JNiRHYi/vz9Hjhz5KGWx
GzduKHWF/ZTIVCdXrVrFggULPqofiaWlpUJgtWHDBtTU1Jg0aZKcAJlEIiEoKEhpwNO9e3dBJnzC
hAmcOXMGDw8PGjduTE5ODiKRSG79jIwMhg4dioGBAXXr1sXU1JSMjAySkpIYMmQIhoaGxMXF4enp
CUgnJ2JjYxXS4Xv2SCdK8quRykhKSuLp06cKDZL2S06hrlH4Z6fHouNcXSE/TlletirncyD7XTI3
1yqOTUc9vqawLOyeO2H33Eu0/ZIGO1lZWdjZ2ZGRmUX6uzSFxz09PalSpQpubm6CQW7Fapa0He+C
pra8hIS2XiVkVYCjR4/KBTyZmZloaWlx/fp1MjMz2ejmxq6dOwEJlnYjUNfQFAYFZDcsshL+wb/+
Ys3q1XIlrgcPHjBs2DBat26tMuux759gR5mlQ0fABtBAquSemZnJzJkz5cRrjY2N6dy5M4/9nnD6
9BkqGBh+8mAHQM+kGk2HLyX0+gHs7LpjbGyEubk52traWFpa8uOPP1KlShWysrJKpT2Uv51AFbt2
7cLGxgZ3d3cGDBhQouubqmtz/r/fkCFDMDY2ZseOHXKG3uPGjcPJyYkrV64wYcIE0tPTqVChAjVq
1CAjI4PExERycnLQ0dGhd+/eDB8+nEmTJhV6PMUyDzU3N+fu3bvFfpEyLl26xLFjx6hbty7Ozs6l
CgTc3NxIS0vj55/L1tCxLJBIJPz000+cO3eOWrVqce2a4onsU9CkSRNu3rwpNAq6uLgwf/78YmWe
oqKi6Nq1K4aGhgwcOBBnZ2e5hrbExEQmTZpETEwMUVFRfPXVV/Tp04d3797h7e2NpqYmvr6+9OjR
g06dOjFq1CimT5+uEN3n5uaSnZ2NgYGB0uPIP97aZcYudI2rKF1PFZK8PPLEuWhofX7ZyHL+f1Iw
+3j79m2hHCMbFMhPRkYGnp6eBAcHo6Wlxd27d3n79i1BQUG0atUKX1+pUKaxsTFqamoMGzaMbt26
FWm9INuf7PtV3340tTsNIjbgvqDyqwxVNw7xLx8SfHU/bcb+Qva7JDw3TWL//v3CoMCoUaOIiYnh
8uXLwnOcnRdw9OgRpROReaJcrixX7Ad6+fIl4eHh7Ny5k379+lGrVi327NlDo0aNsLOzE/wFNy9d
yokDB4o07bwHjEPetDM/vr6+DB06lGZD5mBYswF6xiUrZ5U1SWHP8dk1lwq6ejRrbkOfXg54eHhQ
oUIF0tPTycjIID09nQ0bNsiVhorCysqKXbt2CRpnheHg4MCVK1cYNGgQY8aMwdLSslguB6pKWhKJ
hH379lGrVi3s7OwAePz4MZaWlh+s9ZeTk8OoUaPw9fUtnVu6Kt8sT09PTE1NadiwobDsr7/+Embq
ywqJRIKNjQ2Ojo4sWrTog7eTk5NDXl5emalxFiQ6OpqkpKQiFX4/Fk5OTowZM0aIcjMzM9HT0ysy
4MnNzeXbb78lNTWVjRs3UqlSJf7++28iIiIwMjISfK+qV69OdHQ0EomEAQMGyGlzwPvSnp+fX5FS
8DJEIhEpKSmChkZ+heTyMfFy/gvkD3g+Rtk7Li6OS5cu8fr1a/T09MjKyuLZs2c0bdqU3NxcmjRp
woABA9DW1hYkGRr0/o7anQYo3V5iyFOin9zA0m44FSop9nekvX3Nvc3vb2Q6TPmD+39MEX6fOHEi
M2fOZNeuXXLioSDN4rZt25Ymg36iRkvFJuvczHdCVSE/nTp1YsKECXzxxReIxWKePHnC/PnzmTNn
jtCsPcbKisZAcQbTpwDzlPwtsrKyhF7Mz+n8I5FIyEiIIuTm30T53WD58hWMGDFcePz27dv8+eef
3L17l0GDBnHnzh3evXuHrq4uCxcupFevXgoTWRs2bMDd3Z3nz58XK8gIDw/nyy+/5NmzZ4jFYjkt
NVWoCnjCw8M5f/488fHxzJ49u8zaZRITE2nXrl3pxtI3btyoNOCRKWPm/xLr6uqWib9UftTU1ISp
n9Lw7bffoq2tze7du8vgqBSpVq3av+oea2hoKPfBvX//fpGeUhKJRK5Wvnz5cm7fvs3kyZNp1qyZ
cDcJYGFhQVpaGlOnTmXs2LFKt6euro6Pjw/dunUr1jHLtBhkn6F/K1gsp5yPRfOh84QMirKMTmmp
XLmyoDScl5cHSM+ZampqeHt7M3HiRC5fvky9evVITEwEIPDiDpUBj0ndZpjUVZ0pkAU7+vr6pKen
k5kYjc2wBeiZVCP6yQ22b9/O9u3b6dChA7169ZJ7rrGxsbTP7+RG4l7cx2bYAtTy9Q9p6RoIgUZK
ZBARDz2IfHCRu3fvcvfuXerVq0d0dDTdunWjUaNGQuk9NTWVSKBdMd8z5fll5AZPghZ/SWegMu+b
nq3/pSBITU0NfbMaNP16NqZWrVm8eBHffDNUCGK6dOlCly5dOHz4MNeuXWPr1q1ERETQoEEDJkyY
wPz58xWuoT/88AOBgYEMGDCACxcuFBl01KxZEz8/P1JSUjAyMsLU1JS4uDi8vb159+4d5ubmdOvW
rcjPd2pqKi4uLly8eJFTp06xZs0aTE1NqVmzJra2tqUyBVfW15WfIjM8htXqkRL9Wumdyb179/Dz
8+P7778H3qv8enh4UK9evQ8+6I9F7969CQ4O/mwbsEuLq6srkZGRuLu7k5CQQMuWLVmwYIHKSSeQ
NgmuX79e+L1Ro0Y0bNgQKysrjIyMCA0N5cKFC0RERDBlyhRGjRpF5crKNWtSUlLQ19cvUa+Wj48P
r169YtiwYaSmpiqk5bUNjOk2d3+xt1dOOZ8jsixP+/btGT9+PBYWFkRHRxMWFkbNmjWxs7MjJiaG
ypUrf7D7dVFIJBJycnIES4EPzWDIXsvBgwcZOXIkttO2oF9ZOo2ZJxaTHPaMl5f3kBL5krlz5zJx
4kSFbVy+fFmhCmBcuwn1ug3H1FLRIiPtbQj3Nr8fZHB3d8fa2pqtW7cKyumiLVLRvw/J8Ny8eZPn
z5/j5+fHlStXimx6VvbeZaclEvviPpnxYWTFhqJnVoO0+GgqVqnD63tSG5uy0PyS+W6tW7eOgQMH
Frm+WCzG1tYWXV1dunbtyoIFC4QeGpFIxLRp0zAxMWHHjh3FyvSsXbuW33//HV1dXaHsampqKkgL
9OzZk7Ztpf7w27dvF/7+jx494ty5c2hrazNw4EDB61FDQ4PQ0FBiYmI4e/ZsiZzRlVFY03KR3yyr
ntL6XkJCgsJjHTt2FIIdkN7dq6mpFRlllZS0tDT69eunoMRYUlxdXZkxY8Z/MtgBaSr59OnT2NnZ
Ub9+fQYMGFBosAPIBTudO3emffv22NnZcebMGXbv3k1eXh7Lly8nICCAGTNmqAx2QJphKmljetu2
bRk2TJrCVtaDkPMuSWFZOeX8L+Lo6Mj48eN58+YNR44cISoqipYtW7Jr1y4mTZqEra1tqYwYZRQc
OADpRfL+/ftMmSbNztRspzjIUFJkDa+yYAdAXUMDk3rNaTdxPc2/mc/atWtxWfurgnSFg4MDvr6+
cj2ZSWHPeHZKubRIxap16bn8LKaWLQEYMGAAWlpapKWl4eTkxKxZszAALgOKs6Hy+AAy++SQkBAc
HR05deoUw4cPx83NjclIm54L9gF1/Gd5wfAtNSoY/2NrufnraF6c3Uy3Rub88vMsnPp0pLdtC+wa
mwuv03fPPDwWf4nXlqlFHKVqctJTpP/n5CAWi7l7966cgWhBNDQ0uH//Pj/99BN+fn5MmzZNmKzV
1NRk0aJFPHjwgPbt2yu9zhekTp06hIeHExQURHR0NMnJyeTk5KCrq8uCBQu4fv26oAuX36fx0KFD
ODs7M3fuXKytralWrZqQoapTpw6tWrXi8uXLhIaGfuhbUyTF0uG5u34sbq4ugjnkp8bPz08wNCss
qvX29ubEiROsWbOmTPf/7t07WrRowaxZs8q0N+ljEBAQwIsXL2jfvj3Vq1cvcv38niqAYBI6bNgw
evfu/VEmzl6/fk3Pnj2Lta66phb2ixXVkcsp538JVX6EYrGYQ4cO8eTJE54/f65Uy6a45J+qkqmr
Hz9+nJycHLZs3UpcbCwNen9HlSa2SgXwiosoJ4trK99PTzksO6PymLNS4rjlOg6AuvUsCXn9iqNH
j9KyZUu59SIjI4XrS9WmXbDsMQp90xoK25NlN2TDIWPGjGHq1Km0bduWlVZWaCHt0/gVUDbHlQPM
AUSAztSpiEQigoKCyM3NZc+ePdhbWXEQaFvI65c1Pdecu5/H+xaR8jaUDh078t2ECYVeI7Oysrhz
5440qzJ9OpJ/yo8GVerQ7OuZaFYwQNfo/VSrKCsDSZ4YLT1p1iUzOZaYZ3eIvO9OekoCM2fOJCUl
BUNDQy5evMiwYcNwdHTE19eXsLAwAgICSEhIoEqVKqSkpDBixAj++OMPBg4cSGhoKBUqVMDc3JyH
Dx8yevRoDh48yIsXL7h//34hr176N5BlIWXxw8qVK/ntt98YO3YsTk5OrF69moYNG+Lt7Y21tTW6
urocO3aMP//8s9Cb5hUrVtCkSRP09PTQ09MjLi6ONm3aKKhrF0apdHjsl7hzZdkArl69KrdTV1dX
RCKRXNNSZmZmsTq3P4RBgwbx9OlTABYtWiT0D+WnSZMmZGdnl3ljYF5eHlu3bsXc3FxuTPK/hlgs
LnPzwfzkb0hWRocffqNS1bokBD9CQ1sH713zaTF8IeYN23+0YyqnnE9B6J0TBHnsVjg3TZ48mXHj
xtGuXXG7T1Tz9OlTnJ2dmT59OtnZ2YKpY912vdEyro5Z/TYYmNcqYiuFc3/rT2jpVSIh2FdueVHl
sYRXj0l7+5rQO8eFDMXTp0/lrhepqamMHTuW0NAwUlNTMK3dCOt+k6lY9X17hCzgqVmzJtevX2f5
8uXCKLMV0kAmFJgMjEI+cPEBDgBbAGOg26BBnDx5El1dXW7evImJiQkuVlbFKol9C7gbGmNeuTJH
Dv9dYuul0NBQLl26xNOnT7l48aKwvJK5Bdq6BsSHvfcINK9ljURNjbiwQLr1sGfEN0Oxs7OTCzLX
rVvH7t27qVq1Kh06dEBTUxNNTU3OnDlDgwYN+PHHH3n16pWQaRozZgyOjo5ERETQpUsXdHR0EIvF
dOvWjXnz5jF9+vRCA29PT086d+7MwIEDadSoEfPmzaN169ZCe8KSJUuIjY2latWqiMViMjMzycrK
EnzWCiMgIIC8vDxevnxJjRo1uHXrFn379pUbjiqMUgU8lRu0JS7Qh5cvX8q9AbJmWJlbdUJCAj16
9MDNze2jZIIyMjKYP38+58+f5/Tp00ovnBEREbx48aLIMk45nx6RSFToB7bcobyc/zKP/15F7It7
CgHP8uXLmTFjxgeP4irD399fyIKX9aSRLFO1ePFinJychBH3kuwn/9RaN7vu7NyxXe7xtLQ09uzZ
w6FDh4iNjQXeS1REPb6K/4kNQpYoPj6ekSNH8urVKw4fPsyNf3TIfgWaIlVargikIS1j+QJzgeNW
rRBlvSMlIkhu3zOAom1SYT7wQxneWKelpfHy5UtCQkKIjo6mbt26gsnzjRs3MDMzo2PHjiqnX3Nz
cwkPD8fV1VUwUA0KCsLJyQl9fX3mzp1L165dWbZsGbdu3UIsFnPx4kUFy4aXL1/St29funbtiq2t
Lc7Ozkr3uXv3bsaPH6/0WO7fv1+qxuOCpKamsn37dmbOnFms/rZSCQ9qaWrQrVs38vLy5O7+C35x
K1asyOzZsxk/fjxff/210Piav1xSGvT09HBzc2Pjxo0qX7SFhQUWFhZlsr9yypaCfQV2Cw6jVaF4
o+vllPO/TnLoUwW3bJFIJJSeyorY2Fgh2Pli1p5C130XF47X9pl0mvKHXCmlMNTUNZDkiXFyckJN
TY32HTrgVUQJpCA9l5/l+ZnNGNVqxI3jruzdu5fu3btTs2ZNxGKxQrkL4O7vk2kzbjWaFaTzVWvX
ruXgwYOYmJhQq1Ytdu3ahYWFBXd//FGwGCpYmrqHNNjZDnQZMJ3b678VXo+MuGK+BtUdMx9GxYoV
adWqlUIfY9WqVYUex8LQ0tKiRo0axMfHC8uMjY1JSEggISGB9evXY2xsXGS7h5WVFQ4ODoJhdHR0
NLt27VJYz8fHBycnJxYvXkxcXBxJSUmYmZlhYmJS5m0QlSpVwtbWlj179qgMsopLkeFSPYcJPA2O
YNacwufttbW1GTlyJMOHD6dx48asXr2aqVM/vDFLGWpqah9tgqGcsufy5cvCWHt+7aOey8+WBzvl
/L9BnJtNTuY7pdIeLVq0oGLFisTExNCnTx+srKyK5UKtjPT0dDp16oSZZQsclp5WmAYS52bjsfhL
4d/d3yYjzs7k9vqihedk2AxbAMDevXsBShzsyGjc/weqNfuC6i3tWbFiBXZ2duzevVswZu7+8zG6
LzxK7U4D/zn2HHIz32HesD3mjTvh4+ODtbU1U6dOZcqUKcKN7rRp0wgODuYC0imrKcA8pCWogcC9
IbNBTZ3brmNBkicEOxoaGgQHB3MHaWBUGPmbnj8ndHR0cHBwYPv27WzatIng4GCOHj3K119/jba2
tpwRqCo8PT3x8PDgyZMnhIeHC36KBWnUqBH79++nfv36dOrUiQYNGmBqavrRXAY6duzIo0ePOH/+
vMJjz58/x9HRkezs7CK3U2T0oGdSlaYjlnD29CkhvagKNTU1VqxYwZgxY3j48CE7duwo8gDK+W+R
nZ2NlZUVVlZWTJ48maFDhyKRSIrUAyrnv0l6XDgei79ElJXxbx/Kv0KeKFewPMnv8r1582YmT54s
iPLp6uoKflMhISGsXLmyxPuysbFBTV2Dlk7L5bRtZBS0XjFv3AkD89pK11WFLIiSZfs1tbQwqFKn
xMcK0mxR00E/0XP5Wer3GMXpM2cJCwsD4NXF7UgkeTToPYE2436hQZ/vMLWSZj9qtH6v7ePh4SGY
KOfH3c+PUOB8yx54TnTlxdiVtF5yimrNu9HoS+ngSbOh86jvMO6fg1HDysqKS4GBHAJUfVozkPYB
qVJp/reZMGECw4cPR01NDVdXVzZs2EDFihVp164d/v7+TJkyhXfv3iGRSLhw4QIrV65k7dq1QjB0
8eJFLCwsaNasGRYWFirbEAoq6F+9+vFDwLVr13L16lWGDGvNCTQAACAASURBVBkiWBiBdNKsffv2
aGkVbSNUrE+6tp60t+Lhw4ckJCSwdOlSQcCqIHFxcXTq1AlfX98yacQr538LmcZHfmR1fvi81EvL
+fiIRdJx5Nysd//ykfw7JIdLS1YFhx0mTZokOHODNG3v7+9PcHAwT58+5c8//xRGe0uCJE8sF8DI
sjkgPz4O0GLYAjpN/QOHpaeLvf2Ac1sBWLZsGVZWVohyczG0sC7xcRakZseBhIZHMmjQIG7dukXY
Aw+Cr0r1t0zqNqd2x/ceTpXrt6Zyg/fFqk6dOilca2TSI5GPrvL2yQ1M67VAXUOTnPQUarbtQ8/l
Z1FX1+DlZWnZT/xPyV1DQ4MtgDOK4+0+/yzfUsRref36Ne3atcPKykrldbKsycvLIygoiISEBH7+
+We0tLQ4fPgw1apVw8rKioYNG1K7dm2uXLnC1atX+fnnnzEyMmLhwoW8efOGZ8+e4e7uzqFDh0hO
Ti7WPp2cnISflWVeyho9PT1cXV3ZuXMnW7duZcGCBWRlZWFtbc3s2bOLVf0pVsCjpq6OVgV9li5b
RlJSEgcOHGDJkiVK183MzCQ2NlaItuLj4/npp5+UakOU898hKChIQQvi7Fn54KY82Pn/R6Vq9ei5
/KzKHpGMhCgSXj3mxdkt5IlyeeHuxo21o+T6Kv6XSX4jDXiOHTtGTk6OsFxDQ4O2bdty5coVhefs
27ePR48eUatWySaqZL0rPjtmAxBy57jc47bTttBz+Vnsl7h/8Hexeovucr9XbdoF616l66sAaaD2
LjmBvn37MnCwNBOlY6Baz63lyCX0XH4WQ4sGxMbGkpiYSEREhPB4/szEm/tneHrclWen3LjhMpLQ
OycAqGzdFm0D+aZdKysrgoODmRUcLJTE5v/zvxMwKzhY6F+9efMmZ8+elfu7AixcuJDExESMjIzk
emo+Bnfv3mX+/PlYW1vTt29f2rdvz4gRI9DU1ERDQ4M1a9YgFosJDQ3l/PnzdOzYkcTERBYvXkzH
jh3Jycnh5cuXmJmZMWvWLECaYSwO27Zt4/Hjx4BUCDIp6dNophkZGbF//37atGnDsGHDBM+24lBs
lTjbn3ZwY80Ievfujbe3t0pxwVq1ask1NOfl5fHgwQMyMjLK3HKiJKxbt46tW7eWeQd5OdJxdmWO
7Pkj7vJgp5yC5IlyueP2XsYt3PscJrUbk/MumTxRLhran96luqypVP19Kbdx48bCuVEmGCfrhclP
p06dSryfhIQEwbMo+5+x7zq2g6lQyUwuGwKUyv3bok1vzBt1JCc9pcQj7qpsNbJS4nl9W9q7065d
O8ISMrGb+DuaOgX9zgtsL09MSkSg8Hu3bt2oW7eu0gt2tN914WcTS2kZMScjRUHYtGbN91mwKwXK
Vvm7WFNTU9m2bRve3t4KJslt27bFx8eH7OxsrK1Ln/0qjNGjR8v9/ujRI/T09Ni5cyfjx48nPj6e
3r17Y2pqqvT919HRYcGCBWzZsgUzMzMuXrxY7Oujrq4uNjY2nD9/ntmzZytMfH1sBg8ezODBg3n4
8CGzZs1CR0dHwd+xIMUOeLT1KmG/5BRXlg0U0ofr16/nq6++KvR55ubm3Llzp7i7+SBSU1PR19cv
VEPG1tYWQ0PDMleBLkc1yoKgcsqRoa6pRftJG4h55klWSiz1e36LbgFBPEleHjnpyehU/N/83prV
b00rp2X47pfPiKurq1O3bl1cXV2ZPXt2qfczcKDUZbzLzN1CNk1NTY1qzcteIkRb37DYEhJpMaHc
+0N+eKV2p4Fo6xuRHvmcqOfewvJatWrx4mUIVv1+KNZQQ0qkYh9NcbITET4XaNR/Chraippxsj4q
ZcisOXR0dIRpqtGjRytows2cOZPhw4cLLu6l4eTJk8yZM4e7d+9ibq6YJd22bRu//fYb/v7+LF68
mIoVK5KXl0dcXBxRUVGCRIwqA3CArl270qJFC5ycnApVbC6M/LIKEomEJ0+e4OPjg5mZGbdu3cLc
3ByxWIyenp6gD1VWtG7dmgMHDuDp6VmkMHCJfADUNTRp1G8SL85tA6R/2KICno+NTLV3zpw5gku4
Mjp27EjHjgXFwsspC2QTDqoak8uzO+WowrBGfQxr1Ff5eJTfNZ6d3AhA3Y5fUb+Poi/T545Z/dZo
6RrQpsV7Q87o6Gi0tbXl+iA+hKioKPbv3090dBRfzN5LhUqmpT3cMiXgvFRjp0GDBvTv35/Nmzej
EeNPyzZtaNixN2/ftmD79u3oG5uTiQ6NHX/E0KJBsbat7HPz6NEjsrOzuXfvnsoLa8SDi0Q8uIjD
sjO0GrOCkFtHSQp5b6ypKhPVpk0bcnNzycjIQFtbm0aNGrFv3z727dunINNSVibSnTp1wtDQUOX0
U48ePejRo4fcssTERIyNjYmLez9k/+233/LixQuVjb2Ghoa0bt2affv2YWtrW6wGYBlxcXFCMJaW
lsbatWuxtbVl6NChpKWl0aVLF0xNpZ/LCxcusHbtWvT19WncuDFaWlpYWlqWyftla2uLra1toQMy
JTM+Amq270/F6tZ475DW+y5fvvyvCP1JJBLCw8MFi4Jv/hGcKufjIJFICA4OlmtALojMPTk/PX4+
9rEPrZz/MNVt7BDnZCERi6jc4H93CELPuKqcz9yePXsIDg7G1ta20AtRYUz6/nuu5usB0tD6tB6B
iSFPSYt+ReDFndgMW4B5o44KF+YmA6bx/NhaAgMDCQwMpFevXmzatEnIxssuTrYzdpd4/2rq6nSe
sZM7GyZQq+MA3txzZ+fuPcz4cToZGaqnAjW0KyDOySLt7WvC754kKeQJ1Wy6E+13DZAOWRQU2gWp
TcfZs2extLQUXOAXLlyIn59fiY+9uFSpUoWHDx8qfUwkEpGYmEh0dDQhISGYmZnRtm1b4uLiWLRo
keAduWHDBuH4C9P0mTx5MrNnz8bQ0JDMzExatGjB7du3MTBQ5S0vpWnTpixcuJDTp0/j6enJ6NGj
heGVgm0sffr0oU+fPmRmZnLjxg2ys7M5d+4cCQkJcq4NIFWjjo+Pp02bNkW+T7Ls27FjhV9viuWl
pQxZ5/+uXbs+ucdWVlYWTZs2FX4fMWIEy5cv/6TH8DkhkUiwt7cnOTmZBw8efBQthLS0NFq2bEmb
Nm04dOgQeXl5cj06EolEIRhqNmQ21Zp3K/NjKef/H7Ev7hNwfitdZu75aFofHwtxThZXV6q2pGnT
vgPLFi+iQYOiMxsSiYRnz57x+PFjli5dSptxv2BSt3mxj0UikSDKzkBNXYM3908jysqgYpXaaFYw
wLBmA7T1KpEU9pzE1495df0vuedWt7HDsJa0xyrs3ilEWfI3N5UbticuwIvK1m1oOWqpwn5fXTvA
65uHhWW3bt0Syiz2S9xL1VsEcHXlEMQ5WRgaGnLixAkh89F08Eyqt+jOo79WEhdwn4b9JhHwT5UC
pM3cOpVMubZqqMI2t2zZonBDL5FI8PX1FeQ2iipd5S+FgXTAIycnR+4aJiMpKYmKFSsqmDAHBgbi
4eFBbm4u6urqSCQSKlSogJeXF23btqVbt27ExMTw5MkT9PT0OHnyJBUrVmTGjBk4OTmhq6uLu7s7
9erVU9hnQdLT04mOjsbFxYWcnBxcXFywtbVVWC87Oxt/f3/27NnDH3/8wbp16xgwYMAHfT8PHTrE
s2fP6N69O3Z2dgCcOnWKN2/eKIzAF0QsFjN//nzq1q1LtWrVmDNnzodbS6gKeERZGVx3GYFELCpz
76r4+HgCAgLo3Lmz0sclEglTpkzh4cOH3Lp16z/rfl5c8gcbXl5eQvowP1OmTOHSpUv4+/vLiQCW
hD179tC1a1dMTEzkou78QW/+dGLTwTOo3qKHwnbKKaekpEYFc3/rT4UaVX6uSCQSQm4fpbJ1W0TZ
Gfjsmkcrp2WY1W8tFwzJsgoZGRn4+fkxYcKEQsXUGvWbRM32/VU+npUaT0LwI/LEUmmAtIhAov3v
IM6V32bzlq2Ji40hOjJCbrmuri6ZmZnUrWdJRvo7YmJiaGbTklfBQfTp3ZuFCxdSqVIlhZsdC5sv
aPz1XJXHlRoVTMzTm4R4vjcFdlh6ukR6QMoIvLiTsLuKbvOya5jsJv2LOfu59WvJSokNGzYUpk7X
rFnDzp07hcesGzRk3NgxCkraAI8fP2bajz8RHRmBnr4+Gfky4KtXr8bLy4uaNWuio6NDTk4Oenp6
REdHU7FiRbS1tYVAqXLlynz55ZdUqFABkUhEWFgYly9fpkOHDgo6RBKJhJiYGN6+fcvJkydxdnZG
W1u7xKK9IpGIw4cPs2vXLvT19WnevDlNmzbl1atXPHnyhMDAQGnf1T9q4fv27fughvv8HDt2jNjY
WCpXroyBgYGcdpUqrl69iqamptw1qMwDHgD/465E+V3n2bNnZRZ0hIaGYm9vD0jn/FWNv5cjT4MG
DRCLxQQEBCjcHQD07NmT169f8+jRo1L79kgkEjp06EBCQoKw7OXLl0gkEp4+fSo420N5/0455RTF
26e3eHJ0Lfb29rRs2ZJff/0VM4t66JrXxaLDADS0dUmLfk2lGvXJTIqhYtW6iLLS0TVWbsSY8Oox
bx+cJfblIyoZGlKzZi1MTIzJycqkXbt2DBw4EBMTE3R0dOSCRy8vL27evMm4ceNUOlr/9ddfpKSk
KDSHJiQk0L59e8zrNKb56FWoaxZdost+l0Rq5Esq1bBGx6D0Db4gvRH3O7yahFePhGX2i0+irqlF
fLAvsS/u07j/DwRe3IV5404Y1rDmyrIBALSf6Eri6yfEBT8kOdS/yH31XH6WrJQ4InwuEO51muHD
hjFn9ixevnzJjRs32LRpEwBW3Udh0bYPYXdPEnJbWnKpbG5OTnY2J0+eRENDA319fYVMUVZWltKb
U1dXV0HhuLCJKn9/f9avX0///v0ZNGhQ0W+eCkQiEQEBAQQGBhISEkKVKlVo0qQJ9evXL1MPOBnR
0dFIJBJcXV1Zt25doTc48fHxrF+/nhUrVsiVST/YS6swGvSdxLu3r+jyRVdu37pZJkFP/jG7/fv3
8/r1a6Wjm/8Gqamp/+pofWH07t2bc+fOqXzcw8OjzPalpqaGl5eXwnIXFxe5Ox+QjsjqlJuCllOO
Sqo2k5Z1rhxdK+jytJq4SW4dPRNpU6dsAktL931fRZ5YRFr0K/wOryEnI5W83GwWL15M797rlU72
qKJ9+/a0b9++0HXq1KmjdBo2N1eaRarba0Kxgh1ZtqWsb4g0K+jReswK8sQiriwbiEHlmsLxmFm1
wuwfteYGvd9rB8mOISc9BS29ECHYqVTdkg7fu5GREIXXjtnkZvxjzaCmRrOvpZN1FQwrY2U/Got2
/bh4bDX79r5vTAeo0/lr6nWT9s3UdxiLVY/RXF76FVXMzbGwsMDQ0FCl07qqTLyurm6xhoWmTp1K
REQE1apVQ0dHB0tLS2rUqFFkT05BNDU1adq0qdIS3MdA1sBcqVIl0tPTFY43KCgIf39/oqOjCQ8P
Z8qUKYVOaOenVAGPlq4B7Sa54blxPE2aNMHDw6NYNcLC8PDwQCwWk5SURFBQULFFkD42R48exdnZ
uVANon+TlStXMnr0aKXZnU9FwWAH4KbLyPIsTznlFEHOP9o5MjKTYxXEGjOTYlDT0JSbxIp4eInn
7r8Jv9dv0JAtf/xOnTp1PspxamhoKB1drlq1KgMHDebUtpk0GTCdGq17fpT9Fxd1DU2FUhZAh+83
kvDaj2rNuqLzz/soyyDccBkJQIvhP6NZQR+TutLgRc+0Onbz5fuZClKhkiktvl1HblY6ErEIDW1d
3sWG4rtvCaF3jtN4wHQsWvckPljagDx+/Hj691ddjiyM1NRURCJRkef6S5cuERQURLNmzbhy5QoT
J05k/vz5xSoTfQ5YWlqybds2pkyZgpqampBQGT58OH/99ReDBw8u8TZLfXVU19TC9qddXFk+iJ49
e6rsISkusqhWX1//s3I+NzIyYt68eZ9lsANSHQSZTP2/QWGl0XLKKadwAs5vY/DgwaxYsYK+/fpx
e/23VG9qS/Sze0gkedS26UyYn1TPrFaH/mjq6BP95DqZSTHUrFmT69evF7GHssHIyIibN28KbQf5
WffrWk6dPEHw1X1FBjz/1k3Q/a0/AfDSQ95J3uYbZ/RMa5CREIl5ow4l3m5uRhpRj64Q9fgKaTFh
co8ZmNeiRkvp+yUToiyNCbaGhkaxbmx1dHRo1qwZIpGI77//nurVq9O9e/cin/e54OvrS//+/dm9
ezeRkZFCo7abm1uxGvyVUSbpAHVNLb6Y9Se3XMdy7NixQvVw/lf52KP3EomEBw8e0LRpU3R1FQWx
ikNMTAz29vZkZmZy/vz5Eql8qtKeKC5///233O+207fy3P13Wjkt/eBtllPO/wfiX0rv+hctWoSO
jg5Xr1zh8ePHeHl58dBch/bt26Ovr09ij3asX7+e2MdXyMrKBKSTLJ+q1ABS3R9VemYy0b7sd8lE
+V2nuo3dJzuuwmg9ZiU575JIiwkj9I7ysWUTyxZ0bqI4iVRc4oJ8CLy0i5YtW9J/0hgOHTpEUFAQ
AJ2mbiYvL4/chCiMol9jDcTcv09U06ZUr127xPv6EAkDkPocfuhzPzUSiQQjIyPs7Oyws7MjLS0N
kUiEkZFRqa5TpWpaLogsddinX3/MzUzo2LGj0juBchTZuXMna9asoUGDBoX24hRGZGQkv/zyC5cu
XQIodHru5MmT7NixgxMnTggnzA/RA5FIJPTu3ZtXr17JLS8vY5VTTtHkiUX47XVmwvBBjB//bbGf
J5FI6NWrF5cuXfpkU2uBgYHs2LEDZ2dnuSx+Xl6ecHOlrqlNniiHZkPmfBSV59KSJxbzLjYMXSNz
uT6o0iLJE3PbdRxZaVKz0Hqd+mNu48D9LdPRB3KA7kD9f34OB14Abi4uWPbrV+zJ2ZMnT2Jubq4w
Ju7n54eFhYXS6srJkyc5c+YMu3eXXOvo3+Knn35i6NChHzT19dGmtAqSm5FGhK8HUY+ukp4QCXli
mtu0oFnTJtSsWZMJEyaU+OD/14mPj2f//v0YGRkxbtw4leuJxWLCw8OpXbt2mZzAcnJy0NbWVvm4
bHw8ICCA7777jtu3bzNx4kRmz57NmzdvsLe3L1S9WiKRkJCQQIcO0vSvSd3mtBn3S6mPu5xy/r8g
kUi4vETaxxEYGFjsxksZy5YtY968eR8sM1ESfHx8uHr1KjNmzFAYTtm8eTPr168HoPvCo2jqfFiG
+r+AJE+MODcbTR09PBZ/SWsgAegMVAbeAXeRllaGIg16DlD4zalIJOLq1as8fPiQFi1aKLXskZ3P
b9++za5duzh16hT37t1DS0sLNzc32rZtW+qR8U/F+fPnOXXqFBs3bkRPr3A/NWUUFvCUTvigAFp6
FalQyYz0uDeQJ6bJwB/JrNycgwcPsmbNGqysrJQ2vBV0m/0vceTIEf744w9WrVpV6HoaGhrUqVOn
zO7WCgt2QOr06+vri6amJnv27KFhw4Zs374da2troSs+JyeHzMxMoqKiyMvLE55769Yt6tevLwQ7
LYYvLA92yimnmIhzc7ix1kkIdm7dulXiYAekfXti8adxlffy8hIMGgsi67XU0NHj2ipHfHbP/yTH
9Dmipq4hZ3oq00iWhYCZQDrQCbgIpACTgeg3bxS2lZaWxt69e9m6dStmZmY4Ozur9CeUjbR36dIF
bW1tkpOTOXToECD9nMTFxX2yz0ppiYyMZN26dR8U7BRFmWZ4VJG/S96gkiE7t28ThOsePXqEo6Mj
Y8aM4ef/Y+88A5o62zB8hb0RRVkKiICoKFq3deOetdbdOmurdWtdrQNH66i4Z7XWurdVceGeuFAB
URmCgKCAsleAJN+PmEhkb+yX64/m5D3nvBnkPOd5n+e+58377ETFCsKDBw+ws7MrETO50kLmSda3
b18Fx9nbt28zYsQIDA0NcXNzY/PmzRw4cIAvhi+mik3DYouFKVHy/0JMsA++x1aRmiDVr5o7dy6j
Ro0qcgHrwYMHcXBwyCY8Vxr4+/vz8OFDhg4dmuPzst8JGY2GLczm0v7/hOyaNx4YDGStevIA9gF/
fni+DrAWcP+Q5YmIiGD//v1oaGjQv39/LCws8j1fWFgYvXv3ZuTIkdja2jJ16lROnDhB/frSTrP5
8+ejr6/PrFm5C0JWFJ4+fcqPP/7I8ePHMTHJWWsqL8psSSs3fI+v5t3LJ7SZ9hfvAjzxO7kGjzu3
0dPTIyMjg0GDBuHt7Z2raJ6S8uXKlSusWbNGrqgJyhodJf8dJBIJqbFvUdPUKbALeGEJufMvfud3
MGr0aMb9+GOxOllleHt7c/fuXX74oWwMVTdv3oyamhpjx47N8cZUIpFw8+ZNRo/+WItU/5uZVLZp
QHpyPG99bmLeqCPahtUKpNVTGCRiMTFBXiS/ew0CAUbWjuibWJfoOQqD9YJeqALLgJzyFCnALKRB
jyPQHPj26lUOHz6MkZERr1+/Zv78+QVOAMjslszNzbl+/bpc+drU1JSbN28iEAho2rQpmzdvpmnT
ih2IPnjwgNevXxdZLLHcA56gawd4ee0gnV1OAh+j38OHDxMXFyf37khLSyM8PFzBfExJ+SEUClm/
fj3btm1T2P45yvsrUZIbye/Dub1OWqvWYMAsuRBgSRF4cRdBN48yY8aMbArFxUEikfDLL7/Qv3//
AhkslgTXr19HRUWFNm3a5Dlu0aJF1KxZk+1/7SQ+Ph6JWExqSjJ6BoYkJcRj7tAY81YD0Ktmibq2
fpF/T2JDfHn74DSvfW6jpaNLx47OPH3qQ0hwEABahsa0nbGrSMcuKv4frm//oJjZ+RQPYBTgDOgB
uvPmMXDgQHR0dAr8PmdFVsczZcoUBg4cmKP/lZmZGfXr12fhwoX5Zk+Cg4Pp3LlzmXtVxsbGcvjw
4SJ3e5ea0nJBsWk/BJv2Q+SPq9ZuRrTffSIjI7GwsKBWrVq0a9cOPT09/P39OXr0KO7u7jRq1Iim
TZuiq6tbFtNU8gkjRozg4cOH8sdNRi2Ti3EpUfJfQbeKBS3Gryfl3WtM6uXs31ccgm4eZePGjXTr
1q1EjpeUlIREIkFfX59JkyYxZcoUDh8+XCY3IS1atGDdunVER0fz1VdfZVuOi4uLw83NDXV1dYYP
H66gnC8jISGBrVu3cfHq33i+DKCqdR0afPd7ocxDJRIJnn/PQRT/lmlTJtHtz1UKNgtisZj27dsT
ERFB8I0jBFz6h3az9paYhUVetEZas5NXsMOH552By0hreiaMHCl/rm3btsyfPx8bGxvMzc0L9Nnu
3LmT0aNHY2Njg4mJCYGBgURERMgNWkFq2/DmzRscHR3x8/Nj7dq1uR7byMiIiRMnMnBgdlPV0sTI
yIj4+Pj8BxaBMsnwfIpYJMJzxwxiwwMVuhNEIhG1a9emRo0aXLp0SZ6yFQgEqKur07ZtW2xtbQv1
hx0TE5NNFM/AwKDc9AjEYjFvw8JIePYMtYwMMtXV6TNpEo4NGnD8+PFymVNOtGjRgnfv3gFQ76vJ
WHxRvsqpSpR8jry+f4bw24e4deN6kfW1ZAQEBHD48GGqVauGuro6cXFxREVF0bp161yLWUsLLy8v
fHx8+Pbbb+Xbrl69yuPHjxk4cGCBRWMlEglNm7fEYdACDMwKrtIf/ugivv+u4/bt27lmKjIzMxkz
ZgyZIgn37t5ReM6m3SBsnQtnIFpQ6i3ohQBYXoCxc4BEpEHPuQ9eVZ6enrx79w4DAwM0NDSIjY1F
VVWVPn36FKmmJSuvX7+mffv2rFmzBi0tLcLDwxmZJdCqKGzatIkJEyYUad9yz/B8ioqqKsZ1viQ2
PJDw8HAsLS2l2z/cLYSFhcmVFJ07dWLb1q3ExMRw8+ZNTp48iYaGBk5OTrRo0SJP/67379/j6upK
nTp15NtkBpfTp0+Xe3aUFWlpabw8cwbrlBTsZKZrQiF9AF9vb86cOUPPnj3LdE65IQt26vT6SRns
KFFSBGKCfXjmtoVLly4VK9hZunQpWlpaVKtWjcmTJ5eKYWNhcXJykvt+AWzYsAEDAwOmTZtWqBtS
gUDAgG/6c+baPmr3nYq6TsFeW2ZaMm3btc8zAFBTU5P7MEokEoKDg4mPj2fAgAEEXT9ExvtQ4t+8
RM/YAo1K5mgZ10DXuDqVbZxyfQ0SsYiry4eSmSZ1PdetbEpyzFvg41J/UoFfvTTYkakBbdmyhRo1
avDll19iYWGhMIfY2FiOHTtGbGwsvXv3xsHBoRBn+Uj16tUVkgwV1Zw7ISGBx48fY2FhgbGxcbGU
qbNSLhkekBaZPdm7kISw5/j6fnSmtbW1xaR+WwRIXYRlfPvtt7i4uADSyP3x48fcu3dP3mqnqqqa
re1OJBLRrl27bJYLiYmJHDlyBDU1Nb777rsyq0fxPXaMxh/mmpWnT5+yc9cuAvT1Ofj4cc47lyGy
tWBQFicrUVJUHu9ZiJl2RrEzt23btuXw4cOYmpqW0MxKhn/++YcePXpQtWpVli1bxty5c4t0HKFQ
yC/zF3L+7Fn0KldDTV0DrcpmaJnYUa1uq2yeYiD1Fbu/dRLu588VqIspK/Pnz8fOzo7KlSvj6OhI
QEAA9+/f5+mz5zy4dxcdwyqoaupg1qgL+mY2VLZ2RCIW43tiDW+yXJMAfvjhR/78U7HG0frDv/uA
vMqDHwDfIV3OinNyYu2xY/nOXSgUcubMGQIDA7Gzs6NTp05FDoDFYjHr169n6tSpRdq/NHn37h1P
nz4lPDyc4OBg5s2bV+B9K1yGB0CgooLjgNlcXTaYdes3MGXyJPlzkT436LLYjQYDZsldb7N2CKmp
qdG0adMiV5vr6+szevRoPDw8WLhwId9++22hbBiKQkRICNYpKajm8OV0dHRk1IgR6FapwpvQUMw+
ZLwKw7Fjx5g9ezaBgYEkJSWRkZGBkZGRwpgLFy4wSqW0+wAAIABJREFUYcIExo0bx88//5zvMVv8
tCHfMUqUKMkZNS1dUlPfFHl/oVDIwYMHadWqFSEhIRUu4Pnyyy+5desW/fr1QyAQkJGRUaRSAU1N
TVxXLmeJywJCQ0NJTU0lKCiIcxcucmPt3xhWs8CiRT/Mv/ho75ORloQwNaVIoovGxsb069dPHihY
W1vLrYMSExO5cOECz54/JyEhltN7FqJjYIRYlIllDQsWbNmCs7OzQsbBzs6WmTNnKpzDHqmgoBOQ
kyJayofnuyHV42nfuDEBAQHy7qrc0NTUlJtmBgcHs3v3blJSUujevXuhLUYEAgESiURe+1ORMDY2
pn379ohEokIFO/lRbhkeGcG3jhHg/jfXrl2jevXqnDx5khkzZihkFkI9/iXoyh4eP3qU5xJWUUhN
TcXV1ZWBAweWatDz4tw5GguF+Y7z1NTEIRc32wcPHnDw4EFq1apFnTp1GDt2bKHmcOPGDdq2bZuv
/86oUaO4efPm/71qqhIlxSH48m4Crh/Gy8urUI0XcXFxbNmyBW1tbbp3715ko8TSRiKR4OrqiqOj
I9HR0Xz3XcnXxAiFQvbv389vv/2Ged3mVHPqTHyoL8G3T7Bu3bpClwBIJBKWLl3KnDlzChScSSQS
fH19MTAwkJde5IQsK37v3j0GNW/Oqw/bxwPfopjp8QAOAluAH4BLwOGHD1mwYAErV64sdBCXmZnJ
b7/9hpOTE7a2tgUOfFJTU+U6PatWrVK4Cfb29kZVVbXEr7eFITMzk1WrVtG/f/98A8GslJnSclGw
+BC1y1qfZWuTqXFR8jE1WvQlXSjk77//zn6AYqKtrc3PP//M4cOHS/zYWVHLyMj1OR9vb2b8/DPH
jh3jxZMnTJo0CaFQSFJSEq9fv+bIkSMALFu2jJMnT7J69ep8gx01rew/sCNGjMDT05OvvvoKW1tb
bG1t8fX1zTbu5s2bgLTlU4kSJUXDtLG0K6sw9QfR0dGsXbuWcePGMXXq1Aob7IA0w+Dl5YWKiopC
8XJJoqmpyahRo3j8+DG9WjdEEHCRupXF7N69u0j1jgEBAdSsWbPAmSiBQICjo2OewQ7A0aNSU9Lm
zZtjnGX7G2AYMAFpgfIEpK3oGsBXSHV4tl28yJ9//smvv/5apIyVmpoaM2fOpGHDhpw7d65A+/j4
+LB9+3b5Tf6nGf8GDRpQr169bA0/ZUVaWhorVqxg8ODBhQp28qPcVf40dAyo338GBw+toWXLlvTo
0QN9fX1urh5NvX7TyEhJoHrjrjh0/55du/cwePDgElcs1tLSQl9fn1evXmFtbS3fnp6eztKlS3n/
/j21a9fGx8eHq1ev0qRJE7lsd0HJVFeHLBmeGTksKd3x8OCWhwehkO2L+/TpU/755x8aNWqksL3N
9J05rnFnJT48gHvbphEcHJytnqlv374sWbKEIUOGZNvv8V4XZQ2PEiVFIFOYwotjK+n3df9cC5YD
AwOJjo7m3r17pKeno6enh7a2NlOnTq3QquwyatasSYMGDWjcuHGp10FKVYJn5j8wH2xtbeXBSVFJ
SEjAxcWFhQsXYmgoFaqsVauW/Pl3H/7tBTz58P8kPhYnmwOnkdb62ABPnjxh0KBBxerA0tHRwcrK
SsECKDdSU1M5d+4c06dPz5ZE+HLSFhLeBqFrXJ27W6Ywesz3bNu6JV+ropLmwoULBAQEcP78eZo1
a0b9+vVzDFIzMzMJCQlBTU2NxMREPD09czjaR8psSSvq+V0q2zjluEQikUh4432Nl+5/Yaivy29L
FvP69WuWr1hBakoKAM4LTnB5sVR5MTejtTFjxpCRkcHmzZvlflAFRSgUsnXrVgwMDPjyyy+xt7dn
27ZtNGzYkObNmwMQEhKCs7MzAL6+voVK90WEhGB44wbV9PVJS0vj1yzrkqZ1WqGiroHA2IIrVWrw
NuAe0X73SU9NLtCxC/IZxbx6StC1A1RzaIFlC6mHT1bzQvj4vtra2mJqasr72DhaTd6Opr5RjsdU
ouT/jaSoEN75e2Ld+utcx4hFmTw79gfm2pkc2L83WzAQFBTE4cOHMTY2pl69emRkZChopXxOJCQk
sGfPniK3EJcHf/zxB9OmTSuyqn/jxo2Jj4/nn3/+kYv7paSk0KxZc9LSUlm+fDk35swhDGkXljlQ
D2nAEw3Efdh2G6m3lnsexqGFQSKRcOrUKSIjI0lPT8fR0ZHnz5+TnJyMRCKhQYMGtGzZki1btjBi
xAgyMjLo0KEDAE6Df8WkrqJykDApjusrpZm7vMxNS4sTJ04gFoupUqUKvr6+ZGRkyP+WJBIJAoGA
2NhYGjVqRGZmJnp6ejRp0oTmzZuXr9KyRCzioktfLFv0xqFH7uqJErGY1w/P8txtKy4uLnz55Zfy
YrJmY125v32GfGxOH4BsHdXNza3IbXsxMTEcOnSIkJAQ9PX1mTt3braU9MuXLzl69CizZ88u0DFj
Y2M5cOAAVWNi0HvxAo+7d+XP1e8vfU0isYhHQFKjTtn2v7x0AKL01FyPX5zPSPbZyAgMDOT48eNI
JBJ+/fVXMjMzlcrKSv6TZKQm8frheWo07YGaVv5GhaH3z/DCbQuQ89+cRCIh2u8+EXeOUtOsMtu2
bFK48UpJSWH79u2YmJjQr1+/cq2PKEnWrFnDtGnTynsaBWbfvn106dKFqlWrFml/kUiEQCDIdl2Y
NGmSPDOvBoxGGtzcBzojDXjeIQ10EoDqSAOf9aUQTCQnJ3Po0CFCQ0Pp06cPAOfPn+f58+dYWlpS
tWpVVFRUMDc3Z86cOTQdswIjq+zuBjJXBCcnJ44VoIusJJFIJEybNo0lS5YUqhOt3K0lAAIu7ca8
kTO6VXJvIUyNjUSrUjVe3T5OgPvfrF69munTpwOgrluJjOQ4VNU1EWUI+eabb1i2bJnChTg0NBSh
UFiia3654erqSteuXfMtEJOJKcqwQxrtf9Hte9Q/+PYkpCbjp6lFnGNb1NQLljqMC3vB0+OraTVh
U4n40si+2IGBgfz++++Eh4fTpk0b5s2bh0F1e1r8sLrY51CipCLx1vcW3oeWU6/fVMydOvIu0JOn
x1aTkZpIp4X/oqL6MQMgykjn8hJpVqfVpC3oVa2hcCyxSIT3fheiAh7j6upKz549s2UQZs2axfTp
0ytct1VxWbt2bYVsbc6NAwcO4OzsTLVqeZcCFJbExETad3QmPjaGykhNQcORKi9XRbqsdRnQ/bDN
G2mNT0lleHJCJBLh7u6OhoYGLVq0UCiev3z5Ml5eXly/fh1fX98cm1TEIhGXFklviMsjyxMVFcXG
jRvp2bMnDRo0KJCeVYUoWrbrNDzPYCdTmMrNNWOIenaHmq37AzB9+nQCAwPZvn07GclxNP/BFef5
x7Bs0ZujR49iZ2fH+/dS5+GkpCQ8PT0VNGRKk59++omtW7fKz58T/v7+2YoODUYsJW7Kn3gaGPNY
IOCuqjr37BqT1KhTgYMdgEo1HGg95c8SCXY+DXqHDBnCpEmT6NJFKjiY8Nq/2OdQoqSiUdW+KdWb
dkPHyJSLLn14vHcRGamJ6FWzxP/8dtwX9CIpKpRMYao82FHT1Eavag3EokySosMIe3AO32OruL9h
LJZGmnh7e9O3b98cl0ssLCz+c8EOSOsoPicEAkGBal0Ki76+Pgf27UVdXYMYoCYwA3iINNjRR2ol
IQHqfni+NIMdkGq+de/eHWdn52ydgs7OzgwfPpzNmzcDcG9b9iydiqoqbWdI63zKI6itVq0ac+fO
RSgUsnz5cg4cOFCs45V70bIMVQ0t1LX18Dq0DN3KisVbHTp0oJadPQGXdtN4+GIcevyIQFWdkNvH
5fU1q1atYubMmXTu3LnQ9TtFQVtbGxcXF/744w8WLVqULT2dlpamIPfe/MfVGFp8bHtPrWKObJGq
vD+EZyfXy/8v02QYOXIkiYmJ8u2ijHRUCxGQKVFS0fE++Buxoc+xaCRdNrdq3oOE8AAcB87l5mqp
Lkng5d3U+0r6Q2/fZTQ1mvciIyURr73zyUh8j5aWBvUdHRkzaw22trakpaWRlpYGfKwzkFGUDpzP
AQMDA4RC4WezRKehoVFqS/T29vbs2vU3w4YNYy9Sp/QfkS5naQDpQH3gGVIdHpdSmUXBkfmPmZiY
EBn5mjc+1zGr305hjJahdOnPzc0NNzc3VFVVcXd3x8rKqkzmqK2tTdu2bWnbtm02I+vCUu46PFlJ
T47n2ophCttkabTLly/L3VNlc5KJEoJUoyYuLg5jY2NGjx7N1q1bqVKlSqnPOSQkhCVLlrBjxw6F
7VkzTW1n7kZLv3Kpz6WoZC1elhVj//XXX1SqVImOHTvKBR6VHVtK/kt4bJqIQFWVFuPWZXsuwusq
4gwhFl90QfBpDd+lXWi+e07//l8jEAjQ1tYmNTV7jd2n21++fMmiRYtK/oWUIxKJhJkzZ7Jq1ary
nkqBOXjwIB06dCi2L1VeyH7/q9g2Rj/QU76sFQ3cofQzO4VFLBYr6NDl9FsfF/qc+ztmYl6vJRG+
HkycOLFAWZ+EhAT09PRKxB5i+fLlzJ49O8+AtUIqLeeEhq4hnRedxu/UekI9L9Kla1d8fHy4fv06
Q4cO5dSpU/Tp0wf3Bb3o7HISFVU1HL+eztPjq+UXZU9PTx4/fszt27flxVqliZWVFQkJCTg7O3Pp
0qUcP4iKHOwACnOuV68eu3btwszMjJ07d+ZamC0Ri0EgQCAQEO3/AC2DKuibFtz8T4mS8qblhI25
Pmfu1CHH7cLEWF4/OMuFc2cLbJApY/z48WzatImhQ4dmU0H/XMnMzPzslunKQlvm/PnzdOvWDX3T
mtgPX0QUEIW0ljX4xmG8vb1p0KBBqc+joKioqCgoPd9a9yOtJmxUKJmoZFlHHgjFrRnDxo0b8Xzi
ww9jRtKmTRuF40VFRdGqVats5yluHZBQKKR37978+eefmJubF3r/chce/BSBQIBD3ym0nvIn7hcu
0K9fP9auXUuzZs2oW7cunTpJu5guuvRFLMrEvGFHOi86Ld+/cePG7N69u0yCHRmPHj0iJCSEPXv2
yLdVpC9zQcga0Y8cOZLu3bsTGhoKwIoVKwBpBg6ky1sXXfpwcWFv3Bf04vHeRXhsniwvfFai5L9I
yvsIAs5upmvXboUOdkAqqjp48GCOHj3K9u3bSUoqjM1kxURdXZ2YmJhyE6grCp8uNZYGsgxP2H3F
TIldp+GY1PuSr7/+mmfPnpXqHAqLQCDAz8+PPn36kPI+nEuL++X6ubae9hftZ+/jva4to0aNolmL
Vtja2uLi4sKkKdNyDHYAIiMjizQ3iUTCs2fPqFu3LmZmZlSuXLQkQoULeGToVDGn86LTNB29HD0T
a0D6JeratStmHyK7l1f2A9IPqstiN+y7SNfdhw8fTkYeysYlzePHj9HV1WXt2rXs37+f9PT0YhsG
lgfO8z/OWSAQcPv2bfbv30+vXtJARqbeLEx4p7Bfm+k7y26SSpSUMWJRJi/+XcODbVPo2qIeSxYV
3WG6SpUqjB07lp49e/Lnn3+yZ88ehAWwnKmISCQS1q5dS+3atT872YqymO+FCxcQSMQkRr5S2O40
aC4IVBg79odSKZ4uDqqqqqxevZqGDRsCcHFhb2JePSXa/yGZQsVlWw1dQ6y/7Ef72fuoPXA+Zg3a
c/VRAH4J6qhp6WLW0JlaHRUVuCdPnlzoOT179oyJEyfi4eGBk5MTixcvLnI9XIVa0voUgUCAkbUj
rSZsJFOYyrWV3zJz5kzc3NwYNGgQwTcPU9WhOZVqSDuhrFt/jb+79OL7qSN5aaKvr4+trS1eXl6Y
mZmxZMkShfY5iViEQKXs5lNUVNU1aDdrD9dXfoetrS0rV67k66+/lksDyNp0daqYK2SEYoK9y2W+
SpSUBe/8H5L62pc7t2/JlXWzcvz4ccLCwrJtNzAwICEhQf44677m5uZMnz6doKAgtmzZgpWVFX36
9CnT363iIhKJEIvFDBo0qLynUii0tLTKJCNVq1YtxowZw7ZNE+nsclLhGtBhzn6uLhuMvb19ubR7
58eTJ0/k/3+4c478/x3mHkRdW7EpSEPXEA1dQ+p/89E9wLbzaNJTEri2fKh8W2Wbhnh6ejJs2DDW
r19foBpbiUTC1atXWb16dYkUxVfogCcrapradJp/DPcFvejVqxfDhw9n9+7dCBNzbgu3t7dnx44d
tG/fvkzml1WUqUOHDowbN+7jk4IKm0jLhqbex9qCWbNm0aBBA06dOpXnPpVrNqBun4m8f/kE9wW9
aPStC1Xtm5T2VJUoKXUkYjGvbx3i17mzcwx2AMLCwpgyZUqRjm9jY8PUqVPx8vJi7dq1NGnShLZt
234WGRM1NTWGDRuGq6trjgKtFZXU1NQym+vUKZPZtnULV34fhPO8j5YWWYOGcePGsXXr1jKZT0G5
c+dOjstSqXGR2QKenPi0vKH5j2tQ09Di9obx3Lt3T95dnZXWrVujra3NxYsXadq0KQcOHCA8PByR
SISmpqbCUuSdO3cYPnw4IA3O/Pz8eP36tUJncU5UqC6t/MjaTRQYGChfJ60/YBZm9T9Ks3/6Zj95
8qRMWtWzkrVLqyK9hwXl9safSI4KVdj26euQvc8OPcfx4sxWHHr9xAu3zbmOV6LkcyMhIhC/I7/h
cftmrlYE69atK3LAA9JCzIyMDMRiMTdu3MDDw4OhQ4dSr1525duKyL1790hKSpLb7lR09u3bR9eu
XeUt2aVNWFgYHTp0oOWEjeh/KM8AeON1FZ9jrkDx3AFKi6NHjzJnjjS7c/nyZZydnbHvOgbrL/vl
uV+E11WefnhdskLoFuPWYmD+8Zr4YOcctI1MEaioEO7pnuNx1NTVyfykNEVNTZ3MzPzLVcpdabkk
iHhymafH1wBw9uxZLC0tPygdC+iy+HS28f4XdvLqtrQu5cWLF0X2TikKsoDnc7VlkIjFhD08J5fS
/zQlmylM4cpvAxX2aT9nPyoqalz5XbrdonEX6vUt/JqtEiUVhTdeVxEHXOHk8SO5jiluwDNnzhxs
bW1RV1eXi/ilpKSQlpbG8OHDS7V9uiSIjIxk165dBbbaKW/KOuAB+HXefM5f86D5T4qdgeLMDC4t
7kefPn1Yvbriqdk7ODgoCEs2/8EVw+q1cxwrEYu56CJtFtq3bx+6urqsWLECDw8PDKvXpvkPrgU+
b2Z6GlHPPeSBk56JNdUbd8XMqQOijDQkYjHalaohEYt5F+BJJcs68syT+4Jen0dben6Y1P1SHvD0
6NGD33//naYtWvHg7h0uLe6HnfN3WH350dTPvutoecDj4ODAzZs3MTMzK/V5Zk2rfY7BDoBARQXL
Zj2xbNYzx+cT3wQpPJYFRBKJBIGqGnV7T8T337UkRYYU6ouuRElFIfyRO0EXd7Ls999K9TympqZ8
//332bYnJSWxd+9e1NXVGTZsWIUVLjQxMaFp06asWLECFRUVdHV1adOmDfXr1y/vqVUYpk2dwqGD
Bwi7d5oazT8aNsvavk+dOsWpU6fK/MY8P+7evcuuXbvYuFEaqMWGPMOwem1SYt+irq2PAAExr3x4
sn+JfB9XV1eaN2/OmTNnGDRoEAYGBly4cIHEt8Hom9Ys0HnVNLQwd+qQozxE1iU1gYoKVWs3LfDr
+awyPDJC7p7G76xUcVFPT0+hvdN5wb+ofvKFyZrpuXXrVpnoRtja2qJd2Yw2U7eX+rnKi9ee7nKV
Zr1qVrSauEnhedmSV5fFbrgv6EXNtgOx6zS8zOepRElhyExP48rSb1BRUeHMmTP5evNt27ZNLopa
FHbu3MngwYPR0cnZwDQsLIx9+/bRuHFjOnXqVOFvolJSUvjrr7/o3bs31tbW5T2dbBw+fJj27duX
uJcWwK5du7C3t8+x/uX69euMGTMG7UrVFDpbM1KTuLpssPzx1atXqVGjRrb9ywuJRMK48eO5fOlS
vmOtra25dOkScXFxbN26lbi4OJYvX86uXf+wbtNWarQdTCXLuugaVy+173FeGZ7Po8rsE6xa9KbL
Yjc6/noEQytHrGxs5RHoi39XZ6vAt+86ms4up9CpYk7r1q0JCQkpk3maNWhfJucpL6o37iL/f1LU
x/c06NpBhTqqjJREHHr+SPUm3cp0fkqUFIUrS78BpIFMQYyIZVYSRcXExITXr1/n+nyNGjWYM2cO
+vr6LF26lOfPnxfrfKWNjo4OP/74I3///Tfx8fEF3i+/gtOSIjMzs1Qutv7+/ixdulReTPspbdtK
60xVNRUDW3VtPbosdqP97H3oVa1Bhw4dePr0aYnPr6gIBAK2bd2Km5s0+WFsbMy9e/cICAjg4cOH
/Pvvv5w5c4aAgAAufQiKIiMjqVKlCsuWLQNg5MgRbFrnSuW4p9zZMF6u4ea+oBeijPSyey2fY4Yn
KxKxmAivK4Rc/pstmzby3Xff0X7OfjR0DLKPzVL0vHv37lzFkUoCW1tbanUYRq0OQ0rtHCWBRCIh
5X0E7/wf4Hd+B1qGVclMT0WUnoZElEmVWo2o23cS2pUKfjckTIzh+h+Kf/Sfay2Tkv8vZNmdTp06
5dk5IxKJ+PfffwkODsbU1JRvv/0217H54ePjQ2RkpFxUNc/5ZWZy9OhRoqKiGD58OJUqVSryeUuL
yMhIDhw4gKqqKjo6OvJARlNTkzZt2nyou5QikUi4ffs2N2/exMTEhKioKOrXr0/nzp3R0Cgd7779
+/fTuXNnqlatWqLHvX37NiNGjAByVxS2tbXFafAvmNTN+dpT3u7k+fHHH38wc+bMfMetWLGCiRMn
ZjMsBamNRWRkJAsWLODq1atAyTa4/GdqeHJCoKKCRaNOhFzfz3fffYdt229yDHZAGql2/PUIV34b
wPDhwxk/fjzTp08v8QuxLIjMTKu4SqoPd80jJuhJtu2WJkakpmrJdUXev3wsN1IE6DDnAOo6+nke
W1O/svwLLMv0+J3/i1CPfwHotPAkKp+R3oiS/x9CbknlJbZs2ZLnuGXLlvHVV1/Rv3//Yp+zRo0a
PHjwoEBj1dTUGDx4MDExMezcuZMaNWrQv3//CtES/u7dO/bv34+mpiZjxoxBX1/xdyI1NRU3Nzfu
3bvH0KFDOXfuHO7u7gwZMoTZs2fLX4O3tzfr169HV1eXfv36lUoJQknp8EgkEvz8/Bg6dKiC5tKn
REZGcufOHQC8Dv5Og4FzMKn3ZbZrT9bfxYMHDzJ48GAqEs2bN2f16tWoqKhgYGBAzZo1sba2pnr1
6qirS+uRRCIR6urqOQY7ILWxMDMzY/v27Tx69IiBAwcS6nESy5Z9S33+n32GR4YwKQ5xhhBto/w7
GrJmenbu3ClPNZYUr169olOnTjjPO4qqRsUrNHzutoWw+2eyba9m7UDUqxcAbNq0iYYNG2JiYkJQ
UBB//vknR48ezbYPQGeXU9kMFrMS+ewOusYW3Nk4AYAvvltE9PM7hD28QNufd6FlUHbdEkqU5EZq
XBT3tkxi8cL5fPPNN3mOdXV1ZcaMGSVyXolEwrp16wpkxPgpPj4+HD9+nP79+ytkTsqSuLg49u+X
qt4PHTo036xTUFAQx44do1evXty/f5+ePXvm2DEVGxvLyZMnSUtLo1GjRjRr1qxEbk4PHDiAs7Nz
idTwnDlzRqFDr127dixevBgLCwuFcX/88Qfdu3fH3NycZs2aAWDeoB31vp6R42+n7EaxImZ5ZMTH
x/Pq1SuCgoKIjY2VB3wJCQkkJibKi9jzw9/fnx49egBS1f7CrCbkRF4Znv9MwFNYZEGPqakpt27d
KvFj29nZYdmyLw7dx5bosYuDWJTJ7Q3jSY15k+05m/aDsW79jbx+QUYH5868Cn7J8WPH0NDQYN68
eZw4cSLb/q2n/YVOHsFmRloyV3+XKrJ2XnQa3+OrifC6SuPhS0EArz0v0OCbnz8LRWol/z1k38/W
bduxa+df+Y5fs2YN06ZNK7HzF+d4YrGYI0eOEBERwejRo3MVSCxpkpKSOHDgAKmpqQwZMqRIS0Te
3t68ffuWLl265DpGJBJx7do1Hjx4gK2tLb169SpWx5rMHLlKlSqIxWIEH0yQQboKINsmFotRUVGR
C95JJBJUVVXJzMxEVVWV5ORkRo+WZr9HjhxJo0aNMDY2RkdHhzp16qCmpsbu3buJiYnhiy++ULix
fvnyJV27dgWg46+HUfukrudzCHjy4sWLF3h4eDBq1KgCjZcFPW1n/I2WYfGWGv/TS1qFJejyP2hW
MsWisfTL9vbtW6Kiokq0Yl/2xxPqcZLKNRtQzSG7qmRJIZFIiHh8kagX96hsXR8dYwsC3P9GTUuf
Zt+vUBibEB6gEOxUq9uKun0mcW35EIKuHSTo2kG6LHZDmBTL9ZXfoWNcnUjd2gQHXaRRo0YAdOnS
hQEDBnDkyBFcXFxwcXEB4NaaMahp6dLxl0M5zlNdS1dhKcu+2/dUb9YLn2Or5HO6+PQm7WbtRVOv
4tUlKPlvE3bvDPYOdQoU7AAlvoRUnOOpqKgwaNAg3r9/z+HDh6lUqRL9+vUrtfZmoVDI4cOHiYqK
YsiQIUVyrZZhYWGhYGOQE6qqqjg7O+Ps7ExAQACbN29GW1ub/v37F+l3W0VFhczMTDIyMhAIBIhE
InmAk/WcIA22RCIRIP1dV1NTQywWIxaL5cHOrl270NDQkFttxMbGsnz5cvT09KhSpUqOmbtatWrh
7++Pvb09/hd2UrfPxEK/joqMnZ2dvMi5IMxfuAibL78qdrCTH/93AQ8qavKLbuMRS/H8Zx6tWrUq
8Uh60aJFLFy4kCf7l5RoQZYwKY63PtdJjXiOMD6ayFd+AFSrZoKdvSm3zpwgKVZqtxF88yg123zM
2FSyrEOXxW6kJ8ejrmMg/WPP+GhcKFt+09QzUphz9Sbd8Du/g5A7//Io8A2xr28A4OLiQmBgIP/+
+y8///wzmWnJuC/ohXalahhY2GPVqp/c5wyWaJegAAAgAElEQVSk69MSsYho/4cEXz9IZmoiLX5c
y7tAT3yO/AGQ7U5HiZKyIOmNP5WQLi2pq6tnMx+WSCTo6uqSnJwMSBVkSxKJRFJsF2+ZMamvry/L
ly+nVatWdOjQocRqFEUiEadPn+bFixcMHDgQGxubYh9TT08PPz8/0tPTC1SkbGdnx/Tp04mJieHU
qVNER0fTu3fvQqkUa2ho0Lhx42LXBtnZ2TFz5kxat26d7bmClEnIgtzXD8/j0HOc3Kvwv8CdO3do
2bJlvuMSEhIY99NE/F++otmE0heu/L9d0gKpbPzdrVOZMmUKkyZNKvHjy9SWS+o9jHx2B6+Dv9O9
V286dWiPlZUVpqammJiYKPyoZWRkUKdOHcwbdcKxX+HrAgrCnU0TSfrgArxp0yYcHR05ePBgtmLP
T7u8ZK8BwKHbaCxbfY0SJeWNbAlh+fLl+dbvlAa7d++mZ8+eBTJULCgXL14kNjaWgQMH5j84H27d
usW1a9fo06cPDRo0KIHZfSQkJIRDhw4xa9asQu8rFAo5c+YMfn5+tGnThi+/zF4I/CkHDx6kffv2
ZaLHlh+TJ0/m7NmzVKvbioaDf5Fvf/v0Ft6HlzNs2DAWLVpUjjMsGitXruTnn3/OM3MpFAqpV68e
lk26YNf9R1TVi28OCv9BHZ6S4u5WaTCQVTpbRmJiIoGBgQiFwmzPFZSDBw8C0kxLSSALFDasXUPf
vn1p2LAhpqamCn/giYmJ9OglLcjWqlR6kvQtf9og//+ECRNo164dW7ZsITAwUCFbJuvycl/Qi8TI
VxjbfoHT4F9oNtaVGi3z9mRRoqSsqN5EusQ9Z84cNm/enM/oksfS0pLQ0ND8BxaCFi1a4OPjw59/
/lnkYwiFQtauXUtycjK//vpriQc7IO1SS09PL1LWTFNTk6+//po5c+YgEolYtmwZp0+fzpah+5SK
IpGxatUqABy6/6Cw3dSxNRp6Ruzbt4+dO3eWibt7SZGQkICenl6uwU5KSgq2trZyrzhhUlyJBTv5
8X8d8MiYMGGCwmNPT08aNWpEt27d6NAhu7R1QWnSpAlz5swh4OIuudJzaTNu/HhCgl8BYNagZLvP
siIQCOiy2C1b9srLywtXV1caNWrEX38p1kN4bJpIfEQgJnVboa6rz6M9C4nyuw9IU/rpKQlkClMR
JsaU2ryVKMmJun0mSWvM1DTKxdOoRo0aJR7w6Ovrs2TJEmrWrMmqVatYs2YNkZGRBb54hoSEsGzZ
Mr755hu6du1aakGCiooKkyZNyrULtCAIBALatWvHL7/8Qs2aNVmzZg179uwhJSUFkC7HxcXFERsb
S2pqaklNvdjIlvHEouw33e1n7QHg999/x87OrkKJEebF6dOn6dkzZ0sigNlz5io8Nq7zZWlPSc5/
Z9GwCDT6diGP9y5i5cqVzJs3T779iy++4Pz58/j5+RU7xfz9999jY2PDDz/8gGn9dmgZFO14mWnS
P9xatWrlOubx48fcu3sXKDun8qwKywDfjhxDamIcAGPGjJFvt2zaFa3K1alUvTY+h37nja9Uk+J9
4KMcj6uupYN5424YWdUr1aJvJUpkqKiqIs4sO9XXrFhYWMhF2Eqazp0707lzZ0JCQrh27RovXryg
a9eutGjRItd9Ll68yKtXr/jll19KTQAwK8eOHWPs2JLpaHV0dMTR0ZFXr17x999/o66ujomJCeHh
4RgZGaGhoVHhBBvjX/uhUzn7EluXxW5IxGKeu23iq6++onv37mzYsCGHI5QfEomEgIAAbty4QVxc
HFZWVlhZWeU4NjMzk3Nnz9Ds+z8wrG5PSswbdI2rl9lc/68Dnqr2TdGpYsGuXbvYtWsXPj4+aGtr
IxAIsLW1ldfgFJeOHTuio6PDizNbaDhkXv475EBsqC8A58+fz3XMgAEDinTsnJDVNOSnkKxXzYp2
s/agqqGNWgE1h4wdWhId8IjMdEVJ/mHDhjFu3Djev3/Po0ePWLx4MSEfMmNVbJxoPLJ0TRyV/H+T
npK7cFxpo6WlpeAJWBrILkRhYWH8+++/8oBHIpHw5s0bAgICCAwM5N27dzRp0qTEApCCkJCQUOLu
5dbW1kyYMIGoqCh27dpFvXr18sw8lCc+R//ArEG7HJ8TqKhQt88kIp95cO7cOUJDQ7G0tCzjGSqS
mprK3bt38fLyQiQS4eDgQP/+/TEyMspzP9kyl4ZeJQQqqmUa7MBnHvAkRYchSk/D0CJ/v5vcaD1l
m1x1uH79+nz//VimTJmMtra2fMzdu3dZunQpp08X3R5hy5YtjBgxAvcFvXCefwwVVfU8xfoAJGIR
ca/9eLBjFjp6Bqxdty7X8/v6+sr/X7dvyRRgG5jbFuj1aurl/SX/lCq2X1DZqg5RAY8BqdbEzz//
TPv27TEzM8PMzAxHR0e+++47uZfR+yAvHv45FYd+M9CrWnGM9ZT8d1DX0kVFTR0nJ6fynkqp8vr1
a4KCgli7di0aGhqEhobSsGFD7O3tGTBgAAYGOSvVf65Uq1aNWbNmsW7duvKeSp5IxOI8rwkd5uzH
fUEvOnbsWKb6PBkZGYSFhREUFIS/vz/x8fEYGBjQsmVLJk2aJG/hz4vExESuXr3Ko8dSCYLkd+Ho
VDYr7aln47MOeCK9riCMj8Kwf/7eHnnRZORSAGKCvTlz6wRHjrbl5o3rcvfis2fP8uLFC+zs7Fi/
fr1cFbKgREREYGBgwOjRo9m5cyeXl0jl6A1Ma9LiQ/Hv+5dPiPZ/QKjHyRyPsWjhfHrlcncSHR1N
375SWW4z+0ZU/6AxVBwKsiQW4nGSqOceZKQkYmzfFE29StRo1hMVNfVsY4NvHCHg0j/yx+paH2XH
u3fvTlRUFLq6urRv357g4GBEIhGZmZmMGjWKqlWrcvLkSWrXrs2pDeNpMW4tBua2pKckEO7pjkQs
IikqhLc+N7Dt+C012w7MN5hUouRTBCqqtJu5h6vLBpOQkPCfu/DLaNmyJU2bNkVNTY2IiAhu375d
otlhJYVjw4YNTJo0iYsufWg5YSP6Jta5jrVpN4ig64fYsWMH33//fYnOw9/fH3d392xNPGpqalSv
Xp1atWphY2PD+fPn+emnnwp83JiYGJo1a4Z5nWbo1qhHnV4/UalGwWUESpLPOuCp1WlEiR6vcs0G
GFnV486GcTRo0AD72g506dyJsWPHyqXTZR5ThUGmybBz505++UXaeujo6EjC22AFV3EZtra2uLq6
0rdvX6qZmDLhp/F89dVXOR5bIpEoSJuLNcvmR1oiFuN3brv8cRUdFfxeBeN3fgeQfSksOTJYYf+M
tGT5/18GBaGqosKTJ09w7tSZ0JBXOZ7Tz0+qOaT5oQ7q5eW9hD04qzAm8MpeAq/spf3sfWjolo3i
rJL/DuraepjZOfHo0SPat29fpudWUVFBJBIV6I65uJSWKGFR+Jw6kEqD7t278+zZM5ycnPDYJBUg
zO2G09b5O4KuH2L58uUlFvB4eHhw9epV7O3t+f777/NVsVZRUSEyMhITk4LZOLm7uwPgOGRBicy3
OFScb30FQaCiSqtJW3n79Bbxr1+w95gb2//6G4B69erJ1TULw/3795kwYYJCTdDTp0+ZOXMmJ06c
oH79+qxZswZra2uF/bKmLS9duoS/vz8gFetKSkoiOjqa5ORkZs2aJdcOse0wtNDzKwoCFRWajlmB
z+EVpCXGEPJKMaB5+/QGZvU/rkk7DpiFVZtveHp0FUnvI6jddQwZaUkgkWBk5Yjvv2vly3LNxroS
F+KLce2mCstXL85sw6hm/Y9LaHlkcSKeXMb/ws48vVnu/zUb03qtsWzRu6hvg5L/IGqa2vm2NZcG
lpaWvH37NpsPU2kjM30sL4RCIZUrVy7183xqZlqR0NDQwNfXF3t7ewCend5M3d45Z1FaTtiIx6aJ
2Nracv369WJ9X27cuEFUVBRz584tcLnG0KFD2b9/P+PGjct1zLIVKzh8+AhJiQlIxGIaDSv/YAeU
AU+OCFRUMWvQTl5EJpFISI19y621Y6lTpw4LFy5k6NChBb4Tq1y5MgcOHMi23dzcnCtXrmBpaUlE
RAQZGRk5/vikpaXh5eUlF0eUKbJevHgRGxsbeQFbo29d0DUuux9LI6t6tPn5H5KiQuR3Jm1/3kVa
XDSVLOtkG69vakPLiTlrnDQe9Tv3tk6lTp+JVKpRW0GhWYZDzx8VHtfpOY46PXP+o4t+cRe1DzUZ
WXnjeZ6Q+2dpMX49cSG+xIX4KgOezwCJWEymMAV1bb3SPY9EQmJkSLkUhVarVo3w8PAyDXgEAgFp
aWn5DyxFEhISyiTjlJiYWOrnKCpPnz7lxIkTNGvWjO7du7No0SLsu4zMUXle38RaHvS0a9cOf39/
0tPTWbNmDZUrV6ZGjRpERESQnp6OWCzGwcEBOzs7qlatioaGBmlpaejp6fH8+XOePXuWZ+CSEwYG
Bujp6fHy5cscu4a9vb35a/t2Wv60Ae3KZqiqaVSYEgNlwFMABAIBOpXN6OxykvDHl3Bdv5nVa9fT
tm1bLKubF9k1WWYW6OPjQ79+UhG+x48fK9yJSCQS2rVrR9euXeXtoba2towdOxYnJycEAoFcHNHI
ql5xXmaREAgE6JtYK6Rgi+J+rmNkSoe5B0tsXlUdWuTo66VpZEbCmyDSk+NL7FxKSp+LLn0AaDpm
JUZWdRWeiwnyxsi6XokYz0a/uEflSobY29tz7do1UlJSCl2zV1QsLCzw9PSUu2mDtGD05MmTWFtb
06RJE0Baa7F161ZOnToFfBQtnDVrFl9//XWhup0yMjLkXlHlRUxMTJlkeCoi/v7+HDp0iOTkZObP
n4+urrS28fTZC0S/uIeZU846cMnvI9AyrEZafBRNmzZjxYrlVK9enY4dO/Ly5UsGDBiAlpYWqqqq
eHt74+npSWJiIgkJCbx//57GjRtz9+7dIqs4Dxw4EFdXV+bOnUtYWBgrVqzkXWwcD+95AKCiqo6+
ac2ivSmliDLgKQQCFVWqN+5K9cZdSY2LIsDnBme2bGHLli20ae9MUMAL9uzZk+fdYWRkJNu2bWP+
/PnyFGLdunW5cOECz58/R09Pj8TERHnQIxAI8PDwYPXq1XJ/rg4dOmBqakpycjK6urrs2LFDPr+s
pMS+JSMlsVhdbP81Kts40WWxG0GXdlG5ViM09SqREBGIgXnJSBAoKR1qtu5P8K1jhHic5MFfs9Cv
ZknLiZsRZQh5uOsXzJw6UL9/0W48svLqym7S4qPo0qULwcHSZdrJkycDUu+kc+fOFfscuWFmZkZE
RIT88aZNm1izZg0AOjo6qKmpkZCg2Dpva2uLk5MT4eHhrFy5kpUrVxaqg+fNmzfFMv8sLsnJyRw6
dIjx48eX2xzKk7t378rtOrIuKdlYVefoUddcAx7vD6r7APHxcRw5coRu3bphYWGRLUP4xRdf8MUX
X8gfi8Vinjx5gouLS5EyaxkZGdy4cQPvp740+qIxiQnxGNWoTfUWfbDEmNB7p2kzvWAmvGWNMuAp
ItqVqmHd5hssW/YlNsSX2MQYwsMv07FjR7r16M34H7+XS2dnJTw8nN27d5OUnIIwI5Pq5mb06N6N
unXrUqtWLRo1akRiYiJ16tTh1KlTcgfeyZMns3jxYoYNG8a+ffsA2LFjBxs2bOD4calWjar6R4Gw
5Hfh3F4vXQJqPXU72kam0rZHgaDCpBfLE4vmfRHdOUHw7eO88bpK2xl/l7pTr5KiY9dlFHZdRiFK
T+Pys9uoakmXtlTVNVFV1yL2VfFVaNNTEomLlKody4IdAENDQ+Lj4wkICMDW1pa6devKsyslicxx
28vLCycnJ5o3b868efNYunSpXDF43rx5DBo0SEE2A2DFihXcuHGD+fPnc+fOHVq1alWgcz58+LDM
Mlif8v79e9avX8/kyZNL1EPscyIyMhJra+ts9TOtW7eWK0+/8bqKThVzDKt/XObvvOg04Y8uomVo
zKPdCwgPD5evEuSHioqKQgBUGMRiMUO/G0HE+0Qq1W5N/eHD0a1aQz5/s/rtspUeVCSUAU8xUVFT
p0qthgCYN+xI8rtwXgU8ZOCgIWhqaWFiasaQgf2pVasW9+7d4+iJfwG4GxRLJct6vHgeyf5D3yNK
T2XjhvU0bdqUK1eu8Pz5c+zs7Bg7dqw826Ojo6OwfCYWi+XBDnwUC6zRsD1qesZYNGhLdIAnt9aO
pbJpDdJTk0mKl9o22Dl/i3Wb/9/2bU19IwRq0gBRVV2TTGHFkZtXkjuqGlrZOlhEGWmI4otfhxL/
WtoF+Mcff3DkyBF5Z6YMWcbl2bNnLFmyhPnz5xfouIXpvLKzs0NPT48NGzaQlpbGtm3b5AEXgJub
GyNHjsxx37Zt2xIXF8fw4cMJCAjItwg1NTUVdXV1atYs+6WH169fc+LECWbOnImeXunVZSUkJPDu
3TueP38uLwiuKKSnp6Orq4uhYfZu0h49ejB16lR8T64n3FPa5dTx18Pymh6BQED1xl0AUNPUKbPP
8MGDBzx+eJ/OLqc+y2uHMuApYXSNLdA1tqB6s56kJ8WSEPGSf07fJPX9AdDQxcL5BxrYOCkU09p0
/JbQu6cYPXo0X33dnxcvXhASEsL27duZMWNGjmnHR48esXLlSvljbW1tevfujaenJ+0b10JTUxNd
3ZqYDO9D27ZtCQkJwdDQEA8PDxYuXEjA5b0EXN4LQGeXkyVS//C5Yev8LXEhT4l59RSdMlb8VFI8
hIkx3N8xC8uWfbBu3R/7LqOKfcz3z26gqqpKv379crxbnjBhgrzb8p9//iElJYVly5YBMHfuXDIy
Mvjll1+4desWKSkp1KxZE19fX/744w+FwlBdXV2Sk5OzHV9TU5Po6Gi6deuGn5+fvJ130aJF9OjR
g19//ZVGjRrl+RqePHnCzZs38fb2xsnJiczMTFJSUkhJSSEtLQ2hUEhISAjp6encuXOHH374Ic/j
lQYJCQn89ddfzJ07t1RtK86dO8ejR4+oW7cuYrGYbt26ldq5isKpU6cU6rWyoqKigpWVFSEfgh2A
K78NzBbshz+6SKYwRV77U1q8f/+e1WvWcOiDIfbnGOwACPLSQBAIBJKy8mRSAmnx77jhOpIGDRvx
25LFuLm5MXNmzqKKycnJTJ06FQ0NDUaOHEnTpk0Lda5PbTP+Xz/n154XeHZyAx1+OYy6VvaOCCUV
i6SoEALddxLl76mwvTjfX7FIROitw6QH3+P0yRPZlos+RSKRyBXAL168iEQi4eLFiwwePJjZs2fT
pUsXGjduzNu3bzExMcHc3LxIF/ZTp04xffp0GjZsmKexZnp6OocPHyYmJgZbW1sMDQ0ZMWIEY8aM
QSQSYW5ujpGREQKBAE1NTbS0tNDV1cXJyQlNzbJxqZYhEonYuHEjI0aMKHU/q5UrVzJw4MBsch8V
hYULF+Li4iLPxMm6b2WIRCJq11bsVm03ay+aeh/ftxCPU/id+xOgRNWXY2JiuHPnDu6XruDj60tY
8EuMzG2wajeEqg4tKozbfE64L+iFRCLJcYLKgKeCIUpPI+DMJoh5xYBvvmb8+PEMGzaM+vXrM2fO
HIWxy5YtY/DgwQVOZ3p6erJixQqaNWvGw4cPSUlJ4dmzZ8D/b8ADH5cC6/adLE8TK6mYRD67Q8DZ
rdTtP5OHf89Fr5olzX9YjWoBfdw+RSwScWmRVKVcJhFRUNLT03FxcSE1NZURI0bQsGHDIs0hL2xt
bVFXV+f58+fZzn3t2jV8fHwQi8VyS4iYmBhWrVqFvb0927Zt4+LFi+Xuu5SV3bt3Y21tLRdjLQ0k
Eglbt27FyMiIwYMHl9p5isvatWuZOnUqIC0E/umnn6hfvz4TJ04kNDSUly9fIhaLefXqFStWrJDv
V6/3T1g0/Vh35bl7Ae8DHxVoGTMv0tPTWbp0KfcePiY8LJS01GRqdxuDYY06GJjVylFBvyKSV8Cj
XNKqYKhqaFH7q+m8un4QV1dXdHR0GTlyJNWrKy65LF68mNDQUNzd3Rk1alS+d5ARERHMnz+fffv2
kZKSwpQpU1BXV2fz5s2sXr26NF/SZ0Oox0llwFPBManbCpO60oLckgjSVVRVqd19LFHeV+jYsSN+
fn4FrrfR0NBg+PDh7Ny5s0SDnb1797JkyRKMjIx49OiRQo1LSkoKx48fJy0tDRsbG6ZPn65wkTM0
NERPT4/Ro0fz+PFjYmJiKkzA8/79e7y8vBg+fHipnkcsFnPnzh12795dqucpLiEhISxZsoTHj6We
gqtWrSIxMZGFCxdiaWnJihUr+OabbzA0NOSrr77C0dGR6OhoTpw8QUZaMtZtpHYgdftO4qbrKMLC
wgr9Waenp5OUlIRAIGD48BGERcZQu/dEag6pj0oZKH6XNcqApwIiEAio2X4IxnVa8teRv4l44Ymu
nh4m5jWwMDNBQ02Vzp07s2DBAq5fv86yZctIT0+nUqVKDB8+HBMTE4RCIQEBAVy4cIHQ0FCqVavG
0aNH0dHRkTvaSiQSVq9eTc3W/cv5FZcvRjUbEBvsjU37IeU9FSXlgFXLvpg7deTq8iHUrl1bvjQQ
GRlJYGAgtra2ucroOzg4YGVlhVgsljtBF4UnT56wbt06bt68Kd/WpUsX9PX15QFNZmYmy5cvZ/To
0YSEhNC6detsd/Sqqqp06tSJGzdusGfPngKdWyKREBkZiUgk4tGjRxgaGtKqVasSFQMUCoX8+OOP
PHnyhFatWtG/f+n95hw4cICGDRtW6GUXQN6UIhaLCQ8Px8bGBkBuXvupW314eDhHjhxh/do1DB48
GP+L/9Bq4ibubJyAoVlNfhw3jnNnz2Y7T06IxWLOnj3Lb8tWEB35BgBjKwe+GL28SDpqnwvKgKcC
o29ijePQRdjGvyMpKgQ1LT2euv9NbMhTXgS85Lz7ZWpaVefRo0fs3buX5s2bs23bNtq1a8eAAQN4
8uQJ/fv3p0qVKhgYGGT7AZMtZ9l2HlkOr67ioG9qQ2ywN8b2UmE3cWYGSVEhSm2e/yPUdT6Kfcrq
2+rWrUvVqlXR0dHB0NAQU1NT6tevT7t27RT2TUxM5NatW4VephEKhcyYMYOHDx/y7t07ADp06MDS
pUvlAZafnx/e3t507tyZ7t2788svv2BtbZ1nXUq3bt3YsmULP/zwA9OmTaNOneyq5zJevnzJP//8
g729Paqqqjg4OJCamsqOHTuIjo5m/PjxciHDxMREtLS0crWiePfuHe/evUNNTQ09PT1MTU3lr3Ph
woV4eXkBMHv2bB4/fsyYMWNybMkuLj4+PixZsqREj1nSBAcHo6GhIX8vZcFOXpiYmKCnp8epU6dY
uXIls2bN4s7GCTQb60p6chxP9uf8mpOSknBzcyM0NIyY2BjexcRz/54H2gbG1Owxmf+1d54BUZxd
G76WjoAgCIIINlAiQVBMiCY2UGPhS2wxdhM1ojG+aiwx2At2I7YAsSS2qGCLsRuxRkWxREQRUBQE
lA5Lh939fmwYXSnSNJa5fsHMM/PMLOzumfOcc9+OVnZI1DVe+wCxOhADnjcAHcPa6BgqP3Q+GLGY
wrwcpI/vk5D0iNO/Kt3Wn+3eOHPmDFlZWcyaNUsoriyJ/Px8gHfiH7005IUFRF/cj23nr9D4tw4k
Jeom17bOpuWQudS2df6Pr1Dkv6Jdu3YMGDCA8PBwLl68iEKhKNGP6auvvsLLy4u4uLgK1Yw8q9Pl
4uLCli1bVJbTEhISmD17Ni4uLixatIjFixcXC7ZKY8yYMYwYMYIzZ86UGfAEBgYyceJEIetbRJs2
bcjOzmbx4sW0atWKO3fuYGBgQE5ODjVq1GDo0KFCZ1BAQABRUVGYm5tjamqKTCYjLS2NpKQk5HI5
gYGBLFy4EDc3N0FgcOfOnez8t+PH29sbd/fiJsp79uyhXbt2mJqWXx/rwYMHaGtrk5eX91I7wKpK
QECAoLRfXsLDwzl16hQbN25k27ZtbNy4kREjRnB5/SRs3IYAkJ6eLrS5KxQKDhw4wM9+68lRr4mu
uS1ItNA2sOODb4c89SR8hxCLlt8C8jJTyc9KJyvpETd3LQaUHR6NGzdGKpWWKjVf9CT7OvyNZQX5
yPJzVBzOH4eeR01NHbP3Wr/UubOT49CtZS60WsoK8nl86xwWDu3emEI9kapTVLy+bNkyevXqRVxc
HIGBgUL3jLa2NmlpadSsWRNra2tcXFyEZSy5XE6HDh04e/ZsmXOEh4fz2WefsXz5clq1akXt2rVL
XToKCAjg2rVrQut7RXn06BGbN2/GycmJxMREOnbsSP369YX9ERERnDhxgm+/LdmkEpR1N48ePVJR
Ao6Ojmbfvn0oFAoKCgpwcnKic+fOJR4vlUpRU1MTgqPnu0MBJk2aVKLScvfu3Zk8eTKurq7lvueF
CxdSp04dWrVqJSwNvU7k5OSwY8cObt68ibe3d4WPf3bpdOvWrdSqVUsofC6idZs2XLxwQfjdvtcE
6jq6vpRW8schZ7l/cjNqWrrUqGVOvY8+w7hh82qfpyKIXVrvEDFXDnPnT1WDTl9fX1q3bl1Mq+F1
CXjOLBtKnlQpiGjdogNNeyrFFa9smExazF06/LCd00sGoaahiWljJ/QtbGjsOqjK8+akJfDoyhFs
Ow+r8rlE3nyKAh5QegU1btyY7t27o6WlJdS5eHt7M23aNLZv305ycjKmpqYYGRmRmZnJ+fPn8fLy
4v333+fWrVvUr1+frKwspk2bhr29PVOnThXE73755ZcXfpEPHz4cLy8vLCwsKn1PCoWCkJAQrl+/
TkhICLVq1aJJkyb07duXefPmMX369Fdi3FlEeno6AwcOJDw8nDFjxlBYWMjUqVOr7fxSqZTk5GR+
/vlnFZ2y14WlS5fSt29frK2t0dDQICIigoULF2JsbMySJUsq9LcoUuAvLCzE3Nycbdu20ajDQNIe
3sLAvCE1LZsgkUgwd6i+jriUqBCCf/bJotwAACAASURBVP2RNuN80De1IuzAaqKDn2oFNWzbF9v/
uERC7NJ6h7D6oDsWjq4Eb/qR3OQYTGubMHr0aLS0tJg5cyb9+/dHIpFQWFj4X18qBdlS/tm1SAh2
AKKvn6aB6zASwi6RFqNUvtXUVS4jyAsLyMuWknrlULUEPOd+Gg4gBjwiADh/5cXV36YD4O/vDyil
H77//nu+/fZbsrOzMTExoXHjxsyaNQt4qp1SJCS4a9cutm/fjoWFBYaGhiQlJbFixQo2bdokaKps
2bKlVOuHlJQUNmzYgK6uLh06dKhSsAPK5ermzZvTsGFDjhw5wqhRo0hISGDlypXo6Oi80mAHlF1k
hw4dAmDOnDlkZGSQm5uLjk7lZAWex8DAAAMDA7Kzs0lMTKzQctjLICkpiYCAAMaMGUNAQADNmjVT
qdf59ddfhUL17777rtwSIwqFgh07dvDNN9+gra3Nkn+DuzrNWmPjOrBarl0hlwumvQ1cutPQbRha
/2oA5Welg6kVdp/9DwvnrhTmZmNg3lAlQ/86IgY8byEaWjq4jFrBxTWjiY2NBZRKzH5+fty9e5c5
c+Ygl8uBp8HEq+Deqd+RqGlg4dhBCDZAmbo+/G93QWPXQWjXrE3YIT9h/4k5n1G7vh3GTT+ibovO
1fam6jRrH7ICpdO8rCCfe6e2Y9tp6DupOi0CJo0cATVArrI9IiKCRYsWoaurW6zereh3PT09QSer
oKBApbD3999/Jzw8HIVCgZeXV5k+VwqFguvXr7Njx45quacHDx4QGRlJfn4+rq6uNGnShCZNmnDh
wgXWr19P3bp1cXNze+UGomlpacTGxtK8eXPu3btXou9gVXB0dOTGjRt06tTpP61RnD59OidPnqRB
gwaEhYUVsyMZMGAAZ86c4cmTJxWyhzh58iSamprMnDlTaD4B0NStuE2HQqEgKzEaNU1tFLJCksIu
kRR2kZy0BAA8PT1ZuHAh9Vr3Qt/UqtiKgKHl62XZURZiwPOWIlFTo834X7hz0IeYy4dIT09HT0+P
bdu24eTkJJjHtRg856VeR2FeNoFe/VS2RZ5U6mN8/PHHDBgwgMDAQGHfoytHeXRhn8p4T09PNDU1
2ekfwOnjv2HfczyWLUuuGVAoFMRcPkSdZh+joa3L2Z+GU5Cdwfu9JlC3RSeVsWoamkKNzsn5vQEw
bfIBtRq8X7WbFnljMbX7kMSwSyrb/vzzT3bu3EmrVq3KdY7nu5iKskGWlpbcvHmTL7/8stRj7927
V6amT3x8vOCrBUpdHi0tLQoLC7l06RIPHz6kXbt2NGzYkN9//53AwEBmz56NpaUl3bp1E44bMmQI
KSkpbN26lblz52JjY8PRo0fLdX9VITMzk/Xr1yORSFiwYAGbN2/Gzs6uWudQKBR06dKFX375BXt7
+//UDd7Hx4dp06YRHh5O8+bFa1scHBw4f/58hc+7YsUKDAwMmDhxIhMnTqRdu3YcPnyYyGPrsf/i
x2JBnlxWiJq68uu+IDeLRxf2knj7PHrGdchOS0SWm4VETYKmphbN3nuP/l/3p1mzZrRs2ZK9e/di
YGJODeOqZRtfB8SA5y2nUfsvibmsTCH36dOHqKgocnJyWLxYWdx8ef2kl1bDEx9yhpCAZSrbnlUD
vXnzJlevXmXp0qWCCWqeNJm//vqrxLbbIUOGYGNjQ+j+VSCRkJeRTG56IkgkaGjpkvIghFZfLyLs
kC9pMXew6zaKguwMAG7t8+bWvrKLBNtN3oxOzXfTtVlEyfs9x3Nq8SXMHdohlxWScFtZ/Nm/f/9K
S/f7+PhgZ2dHUFAQF54pJgXll/P58+eJjo5m0KBBHDt2jHHjxpV4ntzcXJYvX46rqysaGhrIZDI0
NDTIzMwkMjKSNm3akJCQgJmZGfv37yctLY3jx49To0ZxyxQLCwuMjY3ZsWMHrq6uREZGqnT4vCw2
bNhAr169hPe3kZERiYmJQgt7VVAoFOzZs4egoCAcHBzIz88nOTn5Pw14FAoFtWvX5sSJEyxfvrzE
MZXJQM2YMYPg4GByc3P5+uuvMTExYeHChfT+4kvC/1xNo84j0NTVJzMxhtigP3h4WRnMWtg6kRZ3
j5YtW+C1diWJiYkYGxvj7Oxcqo5U7dq1kSY/RlaQj7rm69v5Vh7EgOctR9vAWPh5zZo1HDhwgGbN
mjFgwADCwsJwd3fn+Cz3ag965IUFQrATGRlJdHQ02traKm/uP/74QzBdLMLLy6tMjZHff/+dgQMH
ErrPm1omJtQ2qU1WViYyNTUyYmMIXNCXVl8vQsewNqeXVKzORwx2RDRrGKi8F/KkqZxZpmz5tbe3
559//qlw3UtRB5OVlRUxMTH4+fnx999/07FjR2JjY3n06BFXrlwhPj6eqKgotm7dytixY4t9Aamp
qREXF0ePHj1KnUtXV5eVK1cyceJEgoODS/UFKypmzszMFOqPXnawk5mZiZaWlsr7u2vXrvzyyy/M
mDGjSsKNoFSTDw4OZunSpUgkEmQyGevXryc7OxsXF5cqXn3liIqKwtramt27d1dbnRIos+Mff/wx
gCBCqa+vzx7/ncydt4DDK4cjlxVSWJDP8BEj6TP7EGpqaty9e5fmzZtXSJF5xIgRANz0X0SLQbOr
7R7+C95My1ORSvPZZ58J7ZB2dna8/75y+ebCuu+qdZ6ctCeA0gIDwNraWkWtNj8/H3NzczQ0NPjf
+PEAvN/7e6ZPny7UHZXEhx9+SFBQEACe06YREX6XmTNmcOrUKfr27QuA9PIObv72g3BMREQEkZGR
REZGcurUqRLPW8+pYxXuVuRtRdugFq4zlMadeXl52NnZ0b270seosLCQLVu2sGXLFpYuXcqSJUsE
m4DSsLe3Jz4+Hj8/P5o1a0abNm3w9fVl27ZtdO/eHR8fH0DpkK5QKARhwFWrVnHkyJFS3bWLcHZ2
xtHRkUaNGtG8eXNWrVpV4riIiAicnJxU2tRfNmvXrqVr165IpVIWL16Mt7c3/v7+ZGdnq3hFVYZj
x46xa9cupkyZIjxUqaur4+HhQXBwMBkZGdVxCxUmIiKCxo0bV2uw8zxDhgxh9+7dPHjwAAMDA5Yv
W8K5M6c4fSqQ0NBQPH+cRtOmTbG1tcXd3b1CwY5CoUCipsaH3yyn+Rc/vPiA1xyxLf0doCAnk/tn
/Xn4916V7UFBQZiYmPDXX38xevRoANpP2aKSFSri2ZbdIhp83JvGroOLpTll+bmcXNBXZY4iinQk
du7cSf369WndurXQHt/mu5+5uWMeo78eLFxPWeTn59OmTRv8/Pxwdi6/QGDfvn25ceMGX/YfwK6d
T4tDO/yw/bXvMhD578iIi+SSr1LzJCwsjA0bNmBtbY2zszNmZmbI5XIWLFjAoEGDStSbAWUXl5aW
Fr169Sp1HoVCwerVq9m/fz9OTk5MmDABQ0NDdu3axZEjR9i5c2eZX6A2NjYcPnyYJk2asGDBAjw9
PVWyJ0+ePGHevHksXrwYAwMDLl68SGhoKCNHjqzkK/Nirl27xp49e/Dy8sLX15ePP/4Ye3t7JBIJ
CoWiStmd/fv3c+/ePSZNmlTi/kOHDmFhYSHULb5Kli9fzuTJk1/6PLm5ucyePRsvL69q7byLjo6m
U6fOuM3e/8YI1JbVli5meN4BNHX1afrpcNpN+g23mXsFZ2kXFxd69+6NjY2N4NtyZtlQjs9ypzA3
G1lBPn+vHs2lNaNKPO+Dv/dycn5vlWBIIZdxY+ss4XdjY9XgqUmTJrRo0YJ169bh7e1NYWEhX3yh
NMG7sPZbslKelNnF8ixubm54e3tXKNgB+OijjwA4fSqQyMhI4Sk44q/X22xQ5L+lZl0batsqC5ft
7OyQy+V0796dOnXqIJFIUFdX53//+x8TJkygtAdJd3d3/Pz8iIuLK3UeiUTC+PHjOXXqFCtXrqR+
/foYGRnh4eGBhYUFjx8/FsYmJiYycODTNmSZTMbo0aPZvVuZlWrbti379j1tAkhOTsbX15fx48cL
qtHa2tosXrwYGxsbevfuTXJycuVfpFJYtmwZs2crl0OGDx/O7t27iY6ORiKRVCjYefDgAeHh4Vy4
cIE1a9YwbNgwMjIySg12AA4fPoyVlVWV76EyvKq2fx0dHUaNGsXcuXMJDg4u9f+vIigUCrxXr8G8
qfMbE+y8CDHgeYfQMayNuqYWbjN2C3UKN2/epFOnThw8eJCvvvpKGBu4sB8n5/dGoyCT/3kML+WM
Tzk+y53wY5s4MedzMuIjuX79OpGRkcXeKKampmzcuJFz587x9ddfExwczKJFixg4cCADBw5k//79
JXYzPI9CoUBXVxdLS8uKvQhA797KjqwnT54wffp0AgICAIi9eoxbe1eSnRJf4XOKvBu0HDJH+Lmo
9uVZatWqRYsWLYiOjgaUAciz6OnpUb9+fVJSUoodWx769OnDzZs3AaWqcOvWrbl8+TI2NjZkZmYy
ePBgfH19hQeN9u3bExMTIxy/ceNGunbtKgggArRs2RIfHx+cnJy4efMmLi4u2NjYsG7dunJf1/P3
WUReXh4nT57Ezc1NsHrQ0tJixowZHD16lHXr1pV67PPcunWL4cOHc/PmTfLy8ujZsyc+Pj4vdF8P
CQnh6NGjgvTFm4BcLlepbSwPjRs3Zt68eSQnJ/PTTz+xcuVKTp48SXZ2dqWu4fDhwxz/6yQ2PUpX
4n7TEJe03mEij67n/oU/Stx3+PBhjIyM0NHRUUkFd577Jydm/5/K2Llz5wpPbwB37twp1WDwWQoK
Cli0aBHffPNNlQXWSiMtLY3s7Gx27Ngh1Ec8i7W1NdHR0WhqalJQUICuri45OTkAtB67FoM6DV7K
dYm8uTyb0Sypc2vo0KFkZGTg6OjI9u3bOXv2rNAptGDBAtLT07G0tCxmCQC8sFNKoVCwYsUKJk+e
zO+//y60vD9Pu3bt8PHxQVtbmwULFjBjxgxAKaQ4ZcqUMjMPvr6+1K9fn3HjxuHk5CRki0riyJEj
QldZSa/FkiVLMDQ0ZNSoUSVmckJCQggKCirXctq5c+cICgqq8BJRVlYWWVlZjBw5klmzZtGkSRNq
1qxZoXNUhG3btnHjxg10dXVxcHCgX79+Lz7oOYpejw0bNlT6OmQyGTdv3uTixYtkZ2djZWWFi4tL
mU0hRUilUjp/2g3ztoOo6/hm1TeKSssiJWLT9RvqdxhI+LFNxF49prKvqDBz/fr1AJjaudBi4FPR
LCOr90iLuQNAr169CA0NFdRpyxPsFI2zs7Pj/v37VQ548vLyCA0NFT5c2rVrV6KvkZmZGR4eHgwb
Vlxd+cmTJxw4cICHDx+SmJjE5W0zqevyGdYf931rUroiVafZ5+O4/YfStDcwMLCYRUTHjh3R1tZm
4MCBdO7cmcDAQAYPHgxA69atOX/+fInBTrt27YiLi+PGjRvo65csILdr1y7BG68oK1pQUFDMINTG
xkbIqDzblm1oaKhiUFoSRfVza9asYdy4ccXqkbp160ZcXBw9e/Zk7ty5ACXaOBQUFKCjo1NmPZ6D
gwOXLl0SAr2UlBTy8/MxMzPj+PHjREVFoaGhQVZWFgYGBmUuXZWGnp4eenp6+Pj4cOvWLdatW0eb
Nm3KbcRaEeRyObdu3WL+/Pmldsi9iK1bt3L69Gm2b99epWtRV1enRYsWgrF0QkIC586dY8+ePair
qyORSIiNjWXUqFEqf+P8/Hw6df4UQ5tWb1yw8yLEgOcdR1NHD/vPx9Hs/8YiUVMj5cEtgjdNE/Yf
OHAAgMSwIPIyU9HWr0WXeQdVZMc7duxInz598PHxqXDXx8OHD3Fzc6v09SsUCjZu3CjoCoEykCoK
dqysrPjmm2/o27cv586dw8PDg/nz5xcLeDIyMpg+fTpz584VlskeP37MJ598Qnr0HRwGzBSDHhEA
6jl/KgQ8o0aN4sqVK4Lb+OnTp4mLi2P6dKVFRfPmzdm+fTuff/45Q4YMQSKRsHLlyhLPW1TXM2LE
CHbt2lVsv1QqJTY2ttiXvqamJp06deKvv/4StoWHhwv/r892KD158oTMzMwSXd+fp0gbp3///gwd
OpSEhASWL1/OkSNHAKUVwrO6Ws+zb98+2rV7sY+To6MjX375JYMGDeLy5cvIZDIUCgW9e/dmxIgR
1eZ6bmlpiaWlJZ06deKLL76gbdu2VW6Ffx41NTVcXFxYuXIlcrkcDw+PCtlbXLx4kQULFmBkZFTt
rfRmZmb06dNH+H3Xrl2YmZnRuHFjlXEXLlwgOSkB5/+9PUtZRYgBjwiA4KSra2QGQN0WnXh86xx/
/vknAJo1aqKuqaMy3r7XREL3rSQ5OVmlHbQi9OvXj9mzZzNy5EjS09Np0KABt2/fpk6dOtjb26Ot
rV3qsRkZGcJyW7Nmzdi7d6+Qqi9aqn32msp6otPT0yM5OZmQkBAh4DE3N+fatWs4OzvTKDEGfbPy
t3OKvN20/X4TQb9MIj8zlXbtO6CpocGnn3bho48+wtPTUxiXlZVF7dq16dWrF6tXr8bf3/+FSwpX
r14tcfvp06dL/RIcO3Ys9erV47fffgOUGc8inv25yGeqPAFPeHg4oFyGA2XDwSeffFLi2MzMTMLC
wmjatCkGBgakpqayZ8+eEgO3Z5FKpfz6668sX74cU1NThgwZouII/jJQV1fH09OTuXPn4uDgQO/e
vat1vl69etGrVy8yMzOZPHkyq1evLnfQpqurS4MGDYpZUFQn+fn5rF27ltatW9O6dWuVfY8fP2bK
Dz++dAX+/wox4BFRQdfITChobvbZd+RnpqFd06TEYMayhRva+kZc2zobW1vbMp/2SqN+/frMnz9f
qBk6efIkTZo04eHDhxw+fBg3N7dib8oiMjMzAWXq/VnZfChZvbSoOHLOnDkq28PDw9m6dStNmzbF
yMhIZV9UVBQKhYILa7/FyqkDtj2+RUO7uHKtyLuFrpEZHaZuBSA3PZGzK74mICCAgIAAPvvsM2Gc
hYUF8+fPB5QZnMTExFLP6e/vT79+/WjWrFmxfQqFgsDAQFasWFHisc+3uaekpAjGppcvXwaU///h
4eFoampy4sQJNm3aRJ06dfjhhx9KXFL++++/X/AqKK9r0aJFZGRkCGJ/Hh4ebNq0Sagvio6OpmbN
msXeWwB+fn788MMPKkHgywx2imjVqhWtWrXi6NGjLFy4kEmTJlV6Cao09PX1mTp1KlOnTsXDw6PY
suPzXLx4EXV1dY4dO1bmuKoglUpZsWIFw4cPL1GPZ8oPnpg4uGLapHw2Km8aYsAjUipq6hroGNYu
c0xtW2dM7VxIDAsiOzsbPT29Cs9Tq1YtBg0qrorcq1cvfv75Z2rUqIGVlRVaWlrIZDISEhIIDQ0V
ihe7du1arnm0tbW5fft2sRqj/fv389VXXxVL7YLyAxlg0qRJXLocTKBXP1oMmoVp07IF4ETeHXQM
TVWK+W1tbZk0aRJjxoxRGTdz5kySkpI4ffo07du3LxaUt2zZskz7CjMzs1KDAT8/Pzw8PITfPTw8
WL16NS4uLqSnp2NjY4O6ujpyuRz3z3uREP9U3PPIkSP8+OOPDBs2TOWaStMSKiIlJYWlS5fSr18/
IdOakZHBnDlzaN++vWAIWlTjtHXrVpWHl6CgICwtLctVRPuy6Nq1KydOnCA8PBxHR8dqP3+jRo1Y
vnw5Xl5ezJo1q9QHwtTUVIYMGYKFhYXgnl7dxMXF4evry8SJE4Ul2GeJiIggJDSUj8Z//1Lmfx0Q
u7REqkzEX1uIOuuvUstQXSgUCjZs2EB2djaamppoampibm6Oubk5np6erFq1qsQn4vKSk5PDvHnz
mDZtWondMdnZ2dy9e5cWLVoQFhbGiBEjePLkCboGhhhbNiYp9iF50qe6JTp6NTFt2IzcAhlmzT6h
rpOrWPvzDhF77Tih+1cD0Ly5IwEB/ipFwomJiWzbto20tDSmTJlSanHy88TExDBlyhR+/fXXMjMR
gwYNwsTEhOvXrxMfH4+BsTkGljZItPTQNTZHz8QS/Tr1yZemol+nAQXZGaQ8uMXtP1YL5ygKulat
WsWaNWsIDw8vFmjdunWLw4cPM2rUqBIzN8+SmJjIF198wdGjRwXBxGvXrrF7927mzZv3yrRqSiMu
Lo6xY8fSt29fvvzyy5dyPSdOnEBPT69UjbHPPvuM27dvC4KR1c3du3c5efIkI0aMKLVMYJrndK49
ysGma8m6a28KZXVpiQGPSJUJCVhKfMhZTp48+cqk6n19fXFzc8PW1rZK5ykqem7atClt27Z94Xi5
XM6KFStwc3MjLS0NP79fuHo1mGXLljFlyhR27dpFUlISY8eOBcDYsiEaNc2x6TQUfdP/RvxM5NWT
lRzL36uUGZe9e/eqaEspFAqWLFlC/fr1GTBgQLnOt2XLFubNm0ffvn1VCvSLOHv2LH/8eZDjx46R
X1CgNHrU0qH91G1oaL3Y1qAgJ5NTi/oLv0dGRgoZnpKyTuPGjWPx4sWVyuiC8jWYN2+eipzFq6aw
sFAluDl9+jQHDx4s1eSzKuTl5TFz5kyGDh2Kra1tsaCje/fuDBgwgCFDhlT73Ddu3ODUqVOMHz++
1AzhwYMHmTFnAR+MWYumbvmC8NcVsS1d5KWSny0FeGXBjlwu586dO4waVfUnEYlEwsiRI9m6dSvb
t2/H3Nycnj174uTkVGxsXl4eR48e5dSpU0yZMgV4mq6Xy+XI5XK0tbXJyMhg+fLl9OjRg82bN+Pn
9wsX1iiXNzrPOSAUiIu8veiZWOI2U6lE3rt3b1q3bs2vv/6KhoaGkPEr0nsCZWdMkYCeqVkdEhOe
UK9+Ix49vK9y3kOHDuHu7k7Lli05ePCgSoE0QOtvV2Ng3qjC16upq0/Dtl8QdS5A2Obl5cUHH3yg
Mi4+Ph4DAwOMjY0rHewUUZZnXmnk5eXxxx9/IJfL6dmzZ4U8qopa/l1dXfHx8eHMmTMYGBigqalJ
165dSUlJ4dGjRzx8+LDaP8u0tbX5+uuvOXv2LD4+PsVEHatTFPHZou8LFy7wzz//MGHChFIzzdev
X2f6rDm8P2DWGx/svAgxwyNSZTITormw9luCg4NfmN6uDhQKBcuWLWPq1KnVds4zZ84QEhLC559/
zt9//03//v2Ljfn0008ZPHgwbm5uKtom8FRDBZTLCkX6JEUsXrxYEBFrN+lXdAzL36oq8mYTceI3
os4pxfs6dOjAxIkTWbVqFRMnTmT1mjWcOH5cZXyTT0egkMuobeuMtoExaTFhJEdeIz0uAoPadXkS
epHCgqedV3Y9RmNm51Ll/ymFQiHUIYWGhhIfH0+nTp2E/ZMmTVIpmt63bx8ODg6Vnm/x4sVMnjy5
3EtIUqmU+fPnC+7dhw8fxsHBQeUan70XLy8vrK2tMTAwIDg4mPz8fKysrJBKpTRu3Jh+/fqhpqZG
Tk4Ot27dwtDQUPhsmT59Og0bNhTOl5ycTGxsLA4ODhVeot66dSvh4eFIpVLu3r2Lvr4+pqamrFu3
rtqWu5OSkvD39yc3NxdDQ0OkUuVDaN26dcsUPpRKpXTu2o16riMwe6/k5pA3DXFJS+SlcmrxQAqy
M8qtsFxVcnJyWLZsWakqs6BMV//zzz8l+mzJ5XIKCwvJy8tj//79XLx4kY4dO/LFF19w4MABjh49
yogRI1SOTU1NZdOmTaUKnz1b4Dly5EimTZtWbMyhQ4cY/68zvEHtunwwyhsNHbHj611AIZcTduQX
YoKKf542bPcljdp/WcyEtywS7lzC0Kop2vrVWzN3/6w/keX0lLO3t2fDhg1oampW6kEnLCyMHTt2
4OnpWab8BChrmJYsWcLcuXNVzIh//vlncnNzUVNTw97eHg0NDZo1a8bRo0cxNTWlbt26FBQUFMtU
lUVycjLe3t5oa2sTHx9PjRo1SEtLw9TUlA8++KBM49dnkcvlQlBjZWWFRCIhKiqKTZs2kZWVxYAB
AzA0NMTBwYEuXbq8MPh58OABurq61KlTB1Bmux4/fkxMTAzHjh1j8uTJZap0P092djbDv/EgSWFE
E/ex5T7udUcMeEReKi+S2n8ZeHt7M27cuFJVY/Py8hg/fjwNGjRAV1eXGjVqIJFIcHd356effqJO
nToYGBjg4OBQohbF2rVrBf0RgOPHj6Ourl6mSGJRG/DKlSvp06dPiW2f0dHRwjKYvqkVbcYVt7sQ
ebspzM0m6d41jBs2R6vGy7M4qCzpseEE+X1PDeO6GFg0wsKxA7UaOKCpo1zCKszP5ermGaTHhAnH
VPZ9v3LlSpydnV8oUJiSksLhw4cFxernSU5OJioqCplMxu3btwWl66qQlJSEkZERGhoayOVyJBIJ
mzdvpqCggN69e2NgYIBMJqOwsBB9fX0kEglSqZSHDx/SoEEDfvvtN27fvs2qVatUHgQ//fRT7t27
x/bt23FxceH06dPcunULV1fXEhswjh07RkhICHXq1CEuLg4dHR0KCwtJTU2lZcuW1KtXj+bNm1do
eS8jI4OvR44iTWJIk//7HxK1stW33yTEgEfkpZKXmcqZpcpiu1cV8Ny5cwd/f39mzJhRatBT1DY7
ePBgTExMiI+PZ/PmzXTu3Bl3d/cSjwGlf42xsbFgMgpPU+SDBw+mXr16Zabhs7OzWbp0KbNmzVIp
ElQoFKxatYpBgwYJQZb4/hJ5k5DLCvlrbk8A9Mzqk5XwEKj8+z45OZnVq1czadIkatasiVwuZ+vW
rTx+/JjMzEwkEglmZmbcuXOH9957j++++67a7qWy3L17l7Fjx9K0aVNsbGyQSqUUFBSgpqZG3bp1
MTMzIzY2lv79+3PgwAGuXr2qUrNTlA3esmWL0LVVWFjIH3/8QUREBI8fP8bW1hYTExOkUimWlpaC
1Q9Abm4uy5YtY8yYMYLNSEV4/Pgxg4YMQ93CnsZdRr51NYVi0bLIS0MhlwvBzokTJ17ZvHp6eqSm
plJYWFhqwGNsbIyTkxM1atTAJfKajgAAC0dJREFUwsICCwsLFSPU0ggODsbX11dlm0QiYfTo0Sxc
uBArKysmTpxY6vEKhYK0tLRiHREbN27kww8/xNTUVDB0LMoKiYi8CRRkP7WpaD1mFekxYVzZNI2l
S5dWqqbOxMSE77//nhUrVtCjRw+0tLTQ09NjwoQJaGtrI5fLkUqlZGRksG/fvuq8lUrTtGlTRo4c
iaWlpdDZmZOTg46OTrH38vDhw7l79y75+fmC2nK3bt04cuQIBw4c4MMPP0RDQwMNDQ0V24e0tDRi
YmLIycnhww+fan7J5XL8/Pzo06dPpYKdqKgohn41nJrNOmL9yRfv3GfP2xXaibwyFHI551ePFvy0
zM3NVYr8XurcCgVz585lyJAhL1z779q1q+D9Ux5kMhmNGpXc5VK7dm1++uknAgICKCgoKLY/MzOT
goIC4uPji50jJSWFx48fC090X375JaAsaBUReVPQNjCm06x9dJq1DzV1DWo1eB+gSn54hoaGeHp6
EhAQwD///KNiKaOmpoahoSH+/v4vpWW7sshkMmrUeFp/p6urW2rwMHjwYBVz1aKfd+/ejbe3d4nH
GBkZ4eDgoBLsAFy5cgU3N7dKaY8dO3aMz3v1wdj5c+q37ffOBTsgZnhEKklRoFPE+fPnX9ncEokE
Hx8fvL29KSwsLNNkz8jICIVCgbe3N6ampiUqOj+LmpoacXFxSKXSUv2GlixZwvr16/n222/ZuHEj
9+/fR1NTk8TERGJjYzE0NGTOnDmsXLkSY2NjHB0dCQgIYPjw4Sr30Lt3b/bu3YOR9XuY2X1UuRdD
ROQVo6bxtB4lNz0JgPfee4/c3FxAWfty9uxZatWqRV5eHgYGBmhra6Ojo4Ojo6PwRZubmysIL2pr
a9O4cWNCQkKE9vwiXF1dcXJyKlXUVKFQkJ6ezrVr17h//z6JiYk0atSInj17vvCBqLI8fPiQoKAg
BgwYgL+/f4kyFkU4ODiwb98+4uLiqFu3Lrq6uly9ehVnZ+cSH5zKwsXFhUuXLlXomPj4eHx/Wc++
Pw7wfv+ZGFmXbXHxNiMGPCIVJiNOuV6vqanJnTt3Xvp8z6aD09PT2b17N3Xr1iUhIYFDhw690FW4
Tp06xMbGYmX1YuE/iURC165duX79eomFlMHBwVy/fp27d+/i6elJ7dq16dChA507dwaUqe29e/dy
4MABunTpwpMnTwgODua7774r5lc0YMAA9u7dy43fF4h2FSKvNflZ6WjpFe8AenjxD0BZj1IUyERE
RODu7k7dunWRSCRkZmaSkZHBxo0bcXBwQEdHh9TUVK5du4alpSUmJiYYGxuTnJzM0KFDi2UeoqOj
heWyvLw81qxZw86dOykoKCAvL4/CwkJhrL6+Ptra2qSnp7Nw4UKGDx8udEZWJx07dmTcuHHI5XKh
ayo2Npb27dvTokULJk2ahK2tLTKZDDMzM7p160ZYWJggZ2FoaMjly5epWbPiRetBQUF89NGLH5Ci
o6Pp338ACQlPaPCROx+MXlPtXX1vGmLAI1IhFAoFl3wnAPD555+/9PkWLVqEjo6OUA+TkpJCdnY2
1tbWLFy4kCFDhpSajZFKpezcuROACRMmlHvODz74gKlTp2JkZETz5s25cuUKf/75J4WFhTRq1Igx
Y8YQExODgYEBjx49UvEC0tXVVcki2dvbC11Zz9OiRQu8vb3xXrWK69vn0errhRg3bF7iWBGR/4qo
c7uJOPFbMdFMhULBwwvKuprRo0cL2w8ePEi9evVUpBpSU1M5deoUI0eOJCoqCmtra8EiIzc3F6lU
ys8//1ysLiU/Px9Q+pNdunSJYcOGCSbA7u7uuLq6IpVKiYiIYMKECUJ7fEJCAsuWLWPdunXk5+cL
QqHVwb59+4TzNWzYEDMzM3x9fQWF5uvXr6t0k0VGRpKUlKSyBAbKGsPK8CKn+8LCQhYvWcLOXQGY
2X9CuyH9X+iJ+K4gBjwi5UKhUHDv1O/cP71D2NaiRQtkMlmpRcPVwePHj+nZsyctW7YsUWPCyMiI
9evXM3HiRKEtVFNTE29vbwoKCrC1tRXqZcqLiYkJ69evZ/PmzWzevBl1dXVmzJhBjRo1hO6sohod
U9Oqib25u7tz+fJlHkRFkSdNq9K5REReBvXb9MK4kWOxbp6/VyuDnEaNGqmoJqelpSGXy1XG1qxZ
k8DAQDQ1NbGzs8PX15cVK1agpqaGjo4OOjo6JdpMzJkzB4Bt27axfft2WrVqxdSpU1WWxkrCzMyM
ZcuW4eTkxJw5cwgMDGTQoEGltrWXl5ycHCHY8fDwYMKECairq+Ph4UFMTAy7du0SxoaEhJCTk0Nw
cDAHDx4spq5cWYpEBUvi/v37dOnSBUPz+jh/swI9E8tqmfNtQWxLF3khhXnZBHop1TpNTU3Jyspi
9+7dZGZmcv78edLT0/n2229VBMGqg9zcXI4dO8Y///xDZGQkW7aULIh248YN9u3bh7GxMREREdy7
dw9vb2+aNm1ardfzMggNDRUyZR09/dEUhQhF3hAS7lzixg6lVtXz/l49evQo0+TUz88PJyenFy5H
29nZCUtWc+fOfWENXkmcO3cOPz8/goKCaNy4MUeOHKl0we6KFSsoKCggNTWVJUuWlDimaKlNX1+f
6OhoNm3apCJRcevWLa5evcqwYcMqdQ2rVq0qcZnu7NmzjBs/EfOWn9KwwyDUXuKD6OuM2Jb+BiOX
yUiLDsW4YXOe3DyFQlaAeYsur/Qa1NSVRYo9e/YsZqzXsmVLoqOjmTlzpvLJwtCQgwcP0r179yp1
bgCsX78ec3NzunXrVqaolpOTE46OjshkMrKzs8nLy6ty5uVVcOnSJZUnzlML+9Fh2g60apSdshYR
eRUEb5hMSnRYqVpRRcEOKAuLy7tEs2nTJmQy2QuDHVAu36SmpgJUKtgBaNu2LW3btuXKlSuCtk9l
iIuLQ1tbm++++67EYmh/f/9i3mYfffQRvr6+KhIVaWnVn8k9cOAAs+YuoFk/T2rVt6/2878tiAHP
a871bbNJvneDhu36IVFTw7TJqy9svXtU6QH1/Bp0EdbW1qxdu5arV6+SnZ3NtGnTOH/+PN9//z3G
xsZ06dIFZ2fnCi991axZE3d39zKfFIvIzc0lJCSE1NRUHB0dAeUyXGpqKg8ePKBevXqYmZlVaP6X
ybP1Dc9yevEAGnzSByPrZhha2qJtULl1fhGRqpISHfbiQf9y//79cgU8CoWChISEEq1XnkcmkwnB
DigDhap49VXEXuJ5wsPDmTJlCqGhoXh7e6sILd69e5cePXqUeNylS5fw9PRET0+PhQsXIpFI+OST
T/jkk08qdR23b99W+V2hUDB7zlz+PHwMh8HzMKjToFLnfVcQA57XHG1N5Z8o6qw/AEbWFddfqArS
x1HEXD7E1FkL6Orek+iU3FLH1mmsNBLMAZzbdyPiYTyFhQUEng/iyMmzfO1RMZVUazsnFi735pux
pYv8FdGt7Qfk5alem7aODnn/tsqqq6uzbe8R6ljULenwV8rhP/YU2+bo/CFR9+9hbGyCXuZDki7e
JN2iGbZdv/kPrlBEBDrN3l+m5YCD+yjaNanFpz0+R9+gZpmfDUUoFAoK1bSZ9ONMxk+ZXubY/Dyl
QaqmphZzFv9EhlyHjHLM8TL4bdtOQkNDaduhE8PHjFO516On/hZ+TpdmCRmks2fP4t69q+CEPvCb
8RhW0Vz51IVgGjZrIczv+qFSB6nt95vQNXp9HuheV15Yw/MKr0VEREREREREpEpUyktLRERERERE
RORtQLSWEBEREREREXnrEQMeERERERERkbceMeAREREREREReesRAx4RERERERGRtx4x4BERERER
ERF56/l/8d71NzpZoPgAAAAASUVORK5CYII=
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>I've been abroad a couple of times. But obviously most of the time I've been in my own country, so let's visualize that:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">radius</span> <span class="o">=</span> <span class="mi">3</span>
<span class="n">country_data</span> <span class="o">=</span> <span class="n">data</span><span class="p">[((</span><span class="n">data</span><span class="o">.</span><span class="n">longitude</span> <span class="o">-</span> <span class="n">data</span><span class="o">.</span><span class="n">longitude</span><span class="o">.</span><span class="n">median</span><span class="p">())</span><span class="o">.</span><span class="n">abs</span><span class="p">()</span> <span class="o"><=</span> <span class="n">radius</span><span class="p">)</span> <span class="o">&</span>
<span class="p">((</span><span class="n">data</span><span class="o">.</span><span class="n">latitude</span> <span class="o">-</span> <span class="n">data</span><span class="o">.</span><span class="n">latitude</span><span class="o">.</span><span class="n">median</span><span class="p">())</span><span class="o">.</span><span class="n">abs</span><span class="p">()</span> <span class="o"><=</span> <span class="n">radius</span><span class="p">)]</span>
<span class="n">plot_places</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">country_data</span><span class="p">,</span>
<span class="n">title</span><span class="o">=</span><span class="s1">'places I have visited in my country'</span><span class="p">,</span>
<span class="n">padding</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span>
<span class="n">markersize</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8VNXZx79nJpnJTGaSyb6QlQQCgYQQEGRXUHFBxRX3
utfWtX2rvrXqa7VVW1uXVqlaV9SyqAgKqCCoCCigIUBYAoGQfV9mySSz3vePO0kDJhBIYEhyv58P
H+bOPffe597M/OY5z3nOc4QkSSgoKCgMZFT+NkBBQUHhZKMInYKCwoBHEToFBYUBjyJ0CgoKAx5F
6BQUFAY8itApKCgMeAad0AkhZgghyvxtR08QQhQLIWb6247uEEJMFULs6UG73wshXu/D634thLj1
VFxLYWAw6ITOx2mRPNifRLcrJEnaIEnSyB60e0aSpDsBhBDJQgivEOKkfPY6X2uwc7r/UJ5KBqvQ
nU6cFqJ7ChHI9yz8bchgRwih9rcNp4oBKXS+X7L/FULsEkI0CCHeFEJoumn7sBCiSAhhEUIUCCHm
HrH/DiHE7k77c3zvxwkhPhJC1AohDggh7u10zBlCiK1CCLMQokoI8bde3M5YIcR2IUSTEGJh+30I
IUxCiM9812/wvY737btaCLH1iPv4jRBime+1RgjxNyFEic+++UIIbRfPRuO7bman9yKFEHbf/4d5
pL5nWe57VnuEEGf73v8/IcQCX7Nvff83+9pN9LW51fecG4QQnwshkjqd91zf+ZqEEP/kKCLpu9Z7
vtft3uNNvnutFUI8cpRj3xZCvCKEWCWEsAohvhNCxAghXhBCNPrsG+Nr+zshxEdHHP8PIcQL3Zw7
QQjxsc+GOiHEP3zvCyHEo0KIQ0KIaiHEO0IIo2/fzzz+zl6a714XCyHe9T3LnUKIXN++BUAS8Jlv
3+86PY9bhRAlwFohxAohxD1HXGO7EOLS7p5Tv0SSpAH3DygGdgDxgAnYADzp2zcDKO3U9gogxvf6
KsB2xHYZkOvbHgokIn/RfgT+AKiBFKAIONfXbhNwve+1HpjQjZ2H2dLNffwAxPjuYzdwp29fOHAZ
oAWCgcXAJ759OsAMpHU61xbgKt/rF4BlQKjv2OXAn7ux4Q3gqU7bvwZWHWk/MBwo7fTskoBU3+v/
Axb4XicDHkB0OuelwD7fOVTAI8BG375IwOK7VzXwAOACbu3G3iOv5QVeAzRANtAGZHRz7NtALZDj
a78WOAhc7/ubPwWs87WNBaxAiG9bDdQAOV2cVwXkA38Dgnznnuzbd6vv3pN9n5WPO9n/s8+H7zMx
s9O92oHZPvueBr4/ou3Znbbbn8c7Pju0yJ/xHzq1GQPUAQH+/h73qSb424CTclPyH/iOTtsXAPu7
+/Accew24GLf6y+Ae7toMwE4dMR7/wu86Xv9re9DGHEMO3sidNd22v4LML+btjlAQ6ftBcCjvtfD
kIVP69u24RMh3/Yk4GA3550FFHXa3gDccKT9QBpQ7WsfcMQ5uhI6Vaf9q4BbOm2rgBbkH5UbgU1H
nK+MngudB4jrtH8zcHU3x74NvNZp+x5gV6ft0UBjp+2VwG2+13OAgm7OeyayCKq62PcVcFen7eGA
w/cMeiJ0qzvtGwm0dNX2iOeR3Ok9LdCA70cReA54uS+/j6fDvwHZdfVR3ul1CbJ39zN83Zptvm5R
EzAK2YsA+Yt2oIvDkoEhvu5Mo++43wPRvv23AhnAXiHEZiHERb24j5pOr+2AwWe3Tgjxmq/L04ws
riYhRHu3biFwre/1dcAySZIcQogoZM/hp3b7gc+BiG6u/zWgE3J3PBn5F/+TIxtJknQA2dt6AqgR
QvxHCBHbw3tMBl7qZE8DchxvCPLf7cgBm+MdwOnyGfagbWsX252PXQDc4Ht9PfBeN+dMBEokSfJ2
sS8e+fPZTgkQiOzF94TqTq/tQJA49kBPx3dDkiQHcm/gBt9n51q6v49+y0AWusROr5OByiMb+OJA
rwO/liQpTJKkMGAX/40BlSF7KkdShuwBhfv+hUmSFCpJ0sUgf+klSbpOkqQo4K/AR0IIXd/dGgC/
Q/bUzpAkyQRMb78t3/9rgChfTOka4D++9+uRvxCjOtlvkiQptKuL+L6cS5DF8lpghSRJLd20XSRJ