-
-
Notifications
You must be signed in to change notification settings - Fork 444
/
Copy pathmaths.dm
250 lines (196 loc) · 9.15 KB
/
maths.dm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
// Credits to Nickr5 for the useful procs I've taken from his library resource.
// This file is quadruple wrapped for your pleasure
// (
#define NUM_E 2.71828183
#define PI 3.1416
#define SQRT_2 1.414214
#define INFINITY 1e31 //closer then enough
#define SHORT_REAL_LIMIT 16777216
//"fancy" math for calculating time in ms from tick_usage percentage and the length of ticks
//percent_of_tick_used * (ticklag * 100(to convert to ms)) / 100(percent ratio)
//collapsed to percent_of_tick_used * tick_lag
#define TICK_DELTA_TO_MS(percent_of_tick_used) ((percent_of_tick_used) * world.tick_lag)
#define TICK_USAGE_TO_MS(starting_tickusage) (TICK_DELTA_TO_MS(TICK_USAGE_REAL - starting_tickusage))
#define PERCENT(val) (round((val)*100, 0.1))
#define CLAMP01(x) (clamp(x, 0, 1))
//time of day but automatically adjusts to the server going into the next day within the same round.
//for when you need a reliable time number that doesn't depend on byond time.
#define REALTIMEOFDAY (world.timeofday + (MIDNIGHT_ROLLOVER * MIDNIGHT_ROLLOVER_CHECK))
#define MIDNIGHT_ROLLOVER_CHECK ( GLOB.rollovercheck_last_timeofday != world.timeofday ? update_midnight_rollover() : GLOB.midnight_rollovers )
/// Gets the sign of x, returns -1 if negative, 0 if 0, 1 if positive
#define SIGN(x) ( ((x) > 0) - ((x) < 0) )
#define CEILING(x, y) ( -round(-(x) / (y)) * (y) )
#define ROUND_UP(x) ( -round(-(x)))
// round() acts like floor(x, 1) by default but can't handle other values
#define FLOOR(x, y) ( round((x) / (y)) * (y) )
// Similar to clamp but the bottom rolls around to the top and vice versa. min is inclusive, max is exclusive
#define WRAP(val, min, max) ( min == max ? min : (val) - (round(((val) - (min))/((max) - (min))) * ((max) - (min))) )
/// Increments a value and wraps it if it exceeds some value. Can be used to circularly iterate through a list through `idx = WRAP_UP(idx, length_of_list)`.
#define WRAP_UP(val, max) (((val) % (max)) + 1)
// Real modulus that handles decimals
#define MODULUS(x, y) ( (x) - (y) * round((x) / (y)) )
// Cotangent
#define COT(x) (1 / tan(x))
// Secant
#define SEC(x) (1 / cos(x))
// Cosecant
#define CSC(x) (1 / sin(x))
#define ATAN2(x, y) ( !(x) && !(y) ? 0 : (y) >= 0 ? arccos((x) / sqrt((x)*(x) + (y)*(y))) : -arccos((x) / sqrt((x)*(x) + (y)*(y))) )
// Greatest Common Divisor - Euclid's algorithm
/proc/Gcd(a, b)
return b ? Gcd(b, (a) % (b)) : a
// Least Common Multiple
#define Lcm(a, b) (abs(a) / Gcd(a, b) * abs(b))
#define INVERSE(x) ( 1/(x) )
// Used for calculating the radioactive strength falloff
#define INVERSE_SQUARE(initial_strength,cur_distance,initial_distance) ( (initial_strength)*((initial_distance)**2/(cur_distance)**2) )
#define ISABOUTEQUAL(a, b, deviation) (deviation ? abs((a) - (b)) <= deviation : abs((a) - (b)) <= 0.1)
#define ISEVEN(x) (x % 2 == 0)
#define ISODD(x) (x % 2 != 0)
// Returns true if val is from min to max, inclusive.
#define ISINRANGE(val, min, max) (min <= val && val <= max)
// Same as above, exclusive.
#define ISINRANGE_EX(val, min, max) (min < val && val < max)
#define ISINTEGER(x) (round(x) == x)
#define ISMULTIPLE(x, y) ((x) % (y) == 0)
// Performs a linear interpolation between a and b.
// Note that amount=0 returns a, amount=1 returns b, and
// amount=0.5 returns the mean of a and b.
#define LERP(a, b, amount) ( amount ? ((a) + ((b) - (a)) * (amount)) : a )
// Returns the nth root of x.
#define ROOT(n, x) ((x) ** (1 / (n)))
/// Low-pass filter a value to smooth out high frequent peaks. This can be thought of as a moving average filter as well.
/// delta_time is how many seconds since we last ran this command. RC is the filter constant, high RC means more smoothing
/// See https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter for the maths
#define LPFILTER(memory, signal, delta_time, RC) (delta_time / (RC + delta_time)) * signal + (1 - delta_time / (RC + delta_time)) * memory
// The quadratic formula. Returns a list with the solutions, or an empty list
// if they are imaginary.
/proc/SolveQuadratic(a, b, c)
ASSERT(a)
. = list()
var/d = b*b - 4 * a * c
var/bottom = 2 * a
if(d < 0)
return
var/root = sqrt(d)
. += (-b + root) / bottom
if(!d)
return
. += (-b - root) / bottom
#define TODEGREES(radians) ((radians) * 57.2957795)
#define TORADIANS(degrees) ((degrees) * 0.0174532925)
/// Gets shift x that would be required the bitflag (1<<x)
/// We need the round because log has floating-point inaccuracy, and if we undershoot at all on list indexing we'll get the wrong index.
#define TOBITSHIFT(bit) ( round(log(2, bit), 1) )
// Will filter out extra rotations and negative rotations
// E.g: 540 becomes 180. -180 becomes 180.
#define SIMPLIFY_DEGREES(degrees) (MODULUS((degrees), 360))
#define GET_ANGLE_OF_INCIDENCE(face, input) (MODULUS((face) - (input), 360))
//Finds the shortest angle that angle A has to change to get to angle B. Aka, whether to move clock or counterclockwise.
/proc/closer_angle_difference(a, b)
if(!isnum(a) || !isnum(b))
return
a = SIMPLIFY_DEGREES(a)
b = SIMPLIFY_DEGREES(b)
var/inc = b - a
if(inc < 0)
inc += 360
var/dec = a - b
if(dec < 0)
dec += 360
. = inc > dec? -dec : inc
//A logarithm that converts an integer to a number scaled between 0 and 1.
//Currently, this is used for hydroponics-produce sprite transforming, but could be useful for other transform functions.
#define TRANSFORM_USING_VARIABLE(input, max) ( sin((90*(input))/(max))**2 )
//converts a uniform distributed random number into a normal distributed one
//since this method produces two random numbers, one is saved for subsequent calls
//(making the cost negligble for every second call)
//This will return +/- decimals, situated about mean with standard deviation stddev
//68% chance that the number is within 1stddev
//95% chance that the number is within 2stddev
//98% chance that the number is within 3stddev...etc
#define ACCURACY 10000
/proc/gaussian(mean, stddev)
var/static/gaussian_next
var/R1
var/R2
var/working
if(gaussian_next != null)
R1 = gaussian_next
gaussian_next = null
else
do
R1 = rand(-ACCURACY,ACCURACY)/ACCURACY
R2 = rand(-ACCURACY,ACCURACY)/ACCURACY
working = R1*R1 + R2*R2
while(working >= 1 || working==0)
working = sqrt(-2 * log(working) / working)
R1 *= working
gaussian_next = R2 * working
return (mean + stddev * R1)
#undef ACCURACY
/proc/get_turf_in_angle(angle, turf/starting, increments = 1)
var/pixel_x = 0
var/pixel_y = 0
for(var/i in 1 to increments)
pixel_x += sin(angle)+16*sin(angle)*2
pixel_y += cos(angle)+16*cos(angle)*2
var/new_x = starting.x
var/new_y = starting.y
while(pixel_x > 16)
pixel_x -= 32
new_x++
while(pixel_x < -16)
pixel_x += 32
new_x--
while(pixel_y > 16)
pixel_y -= 32
new_y++
while(pixel_y < -16)
pixel_y += 32
new_y--
new_x = clamp(new_x, 1, world.maxx)
new_y = clamp(new_y, 1, world.maxy)
return locate(new_x, new_y, starting.z)
// Returns a list where [1] is all x values and [2] is all y values that overlap between the given pair of rectangles
/proc/get_overlap(x1, y1, x2, y2, x3, y3, x4, y4)
var/list/region_x1 = list()
var/list/region_y1 = list()
var/list/region_x2 = list()
var/list/region_y2 = list()
// These loops create loops filled with x/y values that the boundaries inhabit
// ex: list(5, 6, 7, 8, 9)
for(var/i in min(x1, x2) to max(x1, x2))
region_x1["[i]"] = TRUE
for(var/i in min(y1, y2) to max(y1, y2))
region_y1["[i]"] = TRUE
for(var/i in min(x3, x4) to max(x3, x4))
region_x2["[i]"] = TRUE
for(var/i in min(y3, y4) to max(y3, y4))
region_y2["[i]"] = TRUE
return list(region_x1 & region_x2, region_y1 & region_y2)
#define EXP_DISTRIBUTION(desired_mean) ( -(1/(1/desired_mean)) * log(rand(1, 1000) * 0.001) )
#define LORENTZ_DISTRIBUTION(x, s) ( s*tan(TODEGREES(PI*(rand()-0.5))) + x )
#define LORENTZ_CUMULATIVE_DISTRIBUTION(x, y, s) ( (1/PI)*TORADIANS(arctan((x-y)/s)) + 1/2 )
#define RULE_OF_THREE(a, b, x) ((a*x)/b)
/// Converts a probability/second chance to probability/delta_time chance
/// For example, if you want an event to happen with a 10% per second chance, but your proc only runs every 5 seconds, do `if(prob(100*DT_PROB_RATE(0.1, 5)))`
#define DT_PROB_RATE(prob_per_second, delta_time) (1 - (1 - prob_per_second) ** delta_time)
/// Like DT_PROB_RATE but easier to use, simply put `if(DT_PROB(10, 5))`
#define DT_PROB(prob_per_second_percent, delta_time) (prob(100*DT_PROB_RATE(prob_per_second_percent/100, delta_time)))
// )
/// Taxicab distance--gets you the **actual** time it takes to get from one turf to another due to how we calculate diagonal movement
#define MANHATTAN_DISTANCE(a, b) (abs(a.x - b.x) + abs(a.y - b.y))
// )
/// A function that exponentially approaches a maximum value of L
/// k is the rate at which is approaches L, x_0 is the point where the function = 0
#define LOGISTIC_FUNCTION(L,k,x,x_0) (L/(1+(NUM_E**(-k*(x-x_0)))))
// )
/// Make sure something is a boolean TRUE/FALSE 1/0 value, since things like bitfield & bitflag doesn't always give 1s and 0s.
#define FORCE_BOOLEAN(x) ((x)? TRUE : FALSE)
// )
/// Gives the number of pixels in an orthogonal line of tiles.
#define TILES_TO_PIXELS(tiles) (tiles * PIXELS)
// )
/// The number of cells in a taxicab circle (rasterized diamond) of radius X.
#define DIAMOND_AREA(X) (1 + 2*(X)*((X)+1))