Skip to content
Rumale is a machine learning library in Ruby
Branch: master
Clone or download

README.md

Rumale

Rumale

Build Status Coverage Status Gem Version BSD 2-Clause License Documentation

Rumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, DBSCAN, t-SNE, Principal Component Analysis, and Non-negative Matrix Factorization.

This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

Installation

Add this line to your application's Gemfile:

gem 'rumale'

And then execute:

$ bundle

Or install it yourself as:

$ gem install rumale

Usage

Example 1. Pendigits dataset classification

Rumale provides function loading libsvm format dataset file. We start by downloading the pendigits dataset from LIBSVM Data web site.

$ wget https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/pendigits
$ wget https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/pendigits.t

Training of the classifier with Linear SVM and RBF kernel feature map is the following code.

require 'rumale'

# Load the training dataset.
samples, labels = Rumale::Dataset.load_libsvm_file('pendigits')

# Map training data to RBF kernel feature space.
transformer = Rumale::KernelApproximation::RBF.new(gamma: 0.0001, n_components: 1024, random_seed: 1)
transformed = transformer.fit_transform(samples)

# Train linear SVM classifier.
classifier = Rumale::LinearModel::SVC.new(reg_param: 0.0001, max_iter: 1000, batch_size: 50, random_seed: 1)
classifier.fit(transformed, labels)

# Save the model.
File.open('transformer.dat', 'wb') { |f| f.write(Marshal.dump(transformer)) }
File.open('classifier.dat', 'wb') { |f| f.write(Marshal.dump(classifier)) }

Classifying testing data with the trained classifier is the following code.

require 'rumale'

# Load the testing dataset.
samples, labels = Rumale::Dataset.load_libsvm_file('pendigits.t')

# Load the model.
transformer = Marshal.load(File.binread('transformer.dat'))
classifier = Marshal.load(File.binread('classifier.dat'))

# Map testing data to RBF kernel feature space.
transformed = transformer.transform(samples)

# Classify the testing data and evaluate prediction results.
puts("Accuracy: %.1f%%" % (100.0 * classifier.score(transformed, labels)))

# Other evaluating approach
# results = classifier.predict(transformed)
# evaluator = Rumale::EvaluationMeasure::Accuracy.new
# puts("Accuracy: %.1f%%" % (100.0 * evaluator.score(results, labels)))

Execution of the above scripts result in the following.

$ ruby train.rb
$ ruby test.rb
Accuracy: 98.4%

Example 2. Cross-validation

require 'rumale'

# Load dataset.
samples, labels = Rumale::Dataset.load_libsvm_file('pendigits')

# Define the estimator to be evaluated.
lr = Rumale::LinearModel::LogisticRegression.new(reg_param: 0.0001, random_seed: 1)

# Define the evaluation measure, splitting strategy, and cross validation.
ev = Rumale::EvaluationMeasure::LogLoss.new
kf = Rumale::ModelSelection::StratifiedKFold.new(n_splits: 5, shuffle: true, random_seed: 1)
cv = Rumale::ModelSelection::CrossValidation.new(estimator: lr, splitter: kf, evaluator: ev)

# Perform 5-cross validation.
report = cv.perform(samples, labels)

# Output result.
mean_logloss = report[:test_score].inject(:+) / kf.n_splits
puts("5-CV mean log-loss: %.3f" % mean_logloss)

Execution of the above scripts result in the following.

$ ruby cross_validation.rb
5-CV mean log-loss: 0.476

Example 3. Pipeline

require 'rumale'

# Load dataset.
samples, labels = Rumale::Dataset.load_libsvm_file('pendigits')

# Construct pipeline with kernel approximation and SVC.
rbf = Rumale::KernelApproximation::RBF.new(gamma: 0.0001, n_components: 800, random_seed: 1)
svc = Rumale::LinearModel::SVC.new(reg_param: 0.0001, max_iter: 1000, random_seed: 1)
pipeline = Rumale::Pipeline::Pipeline.new(steps: { trns: rbf, clsf: svc })

# Define the splitting strategy and cross validation.
kf = Rumale::ModelSelection::StratifiedKFold.new(n_splits: 5, shuffle: true, random_seed: 1)
cv = Rumale::ModelSelection::CrossValidation.new(estimator: pipeline, splitter: kf)

# Perform 5-cross validation.
report = cv.perform(samples, labels)

# Output result.
mean_accuracy = report[:test_score].inject(:+) / kf.n_splits
puts("5-CV mean accuracy: %.1f %%" % (mean_accuracy * 100.0))

Execution of the above scripts result in the following.

$ ruby pipeline.rb
5-CV mean accuracy: 99.2 %

Development

After checking out the repo, run bin/setup to install dependencies. Then, run rake spec to run the tests. You can also run bin/console for an interactive prompt that will allow you to experiment.

To install this gem onto your local machine, run bundle exec rake install. To release a new version, update the version number in version.rb, and then run bundle exec rake release, which will create a git tag for the version, push git commits and tags, and push the .gem file to rubygems.org.

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/yoshoku/rumale. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the Contributor Covenant code of conduct.

License

The gem is available as open source under the terms of the BSD 2-clause License.

Code of Conduct

Everyone interacting in the Rumale project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the code of conduct.

You can’t perform that action at this time.