
OSGi
OSGi — Open Service Gateway Initiative

OSGi is a Java framework for developing and deploying modular software programs and
libraries.

i. Specification for modular components called bundles, commonly referred to as plug-
ins. The specification defines an infrastructure for a bundle's life cycle and
determines how bundles will interact.

ii. The second part of OSGi is a Java Virtual Machine (JVM)-level service registry that
bundles can use to publish, discover and bind to services in a service-oriented
architecture (SOA).

OSGi provides a way that bundles can communicate with each other without being
coupled together (interfaces, etc)

Summary

Note: Bundle and plug-in can be used interchangeably; plug-in is preferred by Eclipse,
bundle is preferred by OSGi.

Most applications consist of several different parts, called modules or components, which
interact with each other through an Application Programming Interface, or API. The API is
considered to be the classes/methods which are accessible to other components. A
component also has a set of classes/methods that are considered internal. Using an API from
another component creates a dependency on the component, as it now requires the other
component to be present in order to work correctly. Currently, Java doesn't provide a
structured way to describe the various dependencies of a component; rather, every public
class can be called from another component.

OSGi is a specification framework that defines a component and service model for creating
loosely coupled modular bundles. Each bundle can define its API through a set of exported
packages and also specify its own required dependencies.

Bundles

A bundle can define exports or dependencies on other bundles in its manifest file. OSGi
prevents access to classes without a defined dependency (except for packages from the Java

runtime). Dependencies can be defined as either bundle or package dependencies. Bundle
dependencies enable accessing all exported packages from the bundle while package
dependencies enable accessing a specific package without worrying what bundle exports it
(enabling a later change). The OSGi runtime ensures that all dependencies are present
before starting a plugin, activating them if necessary.

Bundle Lifecycle

Status Description

1 Installed Bundle has been installed

2 Resolved All bundle dependencies have been resolved

3 Starting Bundle is starting

4 Active Bundle has started and is running

5 Stopping Bundle is stopping

6 Resolved N/A

7 Uninstalled Bundle has been uninstalled

NOTE: Bundles must all contain an Activator class that is responsible for managing the
bundle's life cycle, including a start() and stop() set of methods. These methods are
responsible for handling any necessary preparation or clean up during the beginning and end
of the bundle's life cycle.

Declarative Services

A service in OSGi is defined by a standard Java class or interface, composed of the
class/interface for which you want to provide a service and the implementation class for the
service interface. This enables switching out the service implementation but still using the
existing service interface. Services can be dynamically stopped/started, so bundles that use
these services must be able to handle this behaviour, typically done by the
 ServiceListener handlers.

It is good practice to define a service with a bundle that contains only the service interface
definition, with another bundle providing the service implementation. This way, the
implementation of the service can always be changed at a later time. Since dependent
bundles only communicate with the service through the service interface, updating the service
implementation should not break existing dependent bundles. For example, if an existing
implementation used a SQL database to persist data but the developers wanted to switch to

another database vendor, the only requirement would be that the new implementation
correctly supports the existing service interface.

 This is a code sample with no background color?

//Sample Java code
public void sampleMethod(String input) {
 if (input.equals("test")) {
 return true;
 }
 return false;
}

Declarative Services remove the need for registering and consuming services
programmatically. Instead, Declarative Services can be declared by a Component Definition
file, which is either manually configured or rendered automatically by Eclipse annotations
(which will also update the MANIFEST).

List of Lifecycle Methods (duplicate)

Installed

Bundle has been installed

Resolved

All bundle dependencies have been resolved

This can cause problems?

Starting

Active

Bundle has been started and is running

NOTE: A Service Component Runtime bundle must be installed and activated on the device
if using Declarative Services. However, this bundle will likely already be installed as part of
the environment.

