Skip to content

ythu2/ss_layer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

ICML 2023 (PDF)

Yuan-Ting Hu, Alexander G. Schwing, Raymond A. Yeh1
University of Illinois at Urbana-Champaign
Purdue University1

Overview

This repository contains code for Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction accepted at ICML 2023.

If you used this code or found it helpful, please consider citing the following paper:

@inproceedings{hu-icml2023-surface,
  title = {Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction},
  author = {Yuan-Ting Hu and Schwing, Alexander G and Yeh, Raymond A},
  booktitle = {International Conference on Machine Learning (ICML)},
  year = {2023},
}

Setup Dependencies

To install the dependencies, run the following

conda create -n pytorch3d python=3.8
conda activate pytorch3d
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c conda-forge matplotlib
conda install pytorch3d -c pytorch3d
conda install conda-build
cd surface_snapping_code
conda develop .

Run Tests

python -m unittest discover tests/

Demo

To run the demo code, simply run

python tests/demo.py

The demo code runs the proposed surface snapping algorithm to refine the input mesh (data/before_snapping.obj) using the predicted surface normals (data/normal_map.npy). The resulting snapped mesh is stored in output_[alpha].obj.

We also provide a juypter-notebook version of this demo (demo/surface_snapping_demo.ipynb). To run the notebook, please follow the instructions below:

conda install -c conda-forge notebook
conda install -c conda-forge nb_conda_kernels
jupyter-notebook demo/surface_snapping_demo.ipynb

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages