Deep Learning Approach to Link Weight Prediction

October 17, 2016

1 Experiments

We evaluate Model R experimentally and the results show that Model R can achieve much lower prediction error than the baseline models [1].

1.1 Datasets

The experiments use 4 datasets summarized in Table 1.

Dataset	Node count	Node type	Link count	Link weight type		
Airport[2]	500	busiest airports in US	5960	number of passengers trav-		
				eling from one airport to		
				the other		
Collaboration[4]	226	nations on Earth	20616	number of academic papers		
				written by authors from the		
				two connected nations		
Congress[5]	163	102nd US Congress com-	26569	interlock value of shared		
		mittees		members from the two com-		
				mittees		
Forum[3]	1899	users of a student social	20291	number of messages sent		
		network at UC Irvine		from one student to the		
				other		

Table 1: The datasets used in experiments.

1.2 Experiment process

We do the identical experiment for each dataset. All the weights are normalized to ranger [-1, 1] after applying a logarithm function. Each experiment consists of 25 independent trials. In each trial, we split the dataset randomly into 3 subsets:

- 70% into training set
- 10% into validation set
- 20% into testing set

We use MSE (mean squared error) as the prediction accuracy metric of a trial. For each experiment, we report the mean and standard deviation of the 25 MSE's. The pseudo code of the experiment process is as follows:

```
def main():
    for dataset in [Airport, Collaboration, Congress, Forum]:
        (MSE_mean, MSE_standard_deviation) = do_experiment(dataset)
def do_experiment(dataset):
   MSEs = list()
    for trial in range (25):
        testing\_error = append(evaluate\_model\_on(dataset))
        MSEs.append(testing_error)
    return (MSEs.mean(), MSEs.standard_deviation())
def evaluate_model_on(dataset):
    (trainning_set, validation_set, testing_set) = split(dataset)
    while validation_error decreases:
        training_error = estimator.learn(training_set)
        validation_error = estimator.predict(validation_set)
    testing_error = estimator.predict(testing_set)
    return testing_error
```

1.3 Experiment results

In our experiments, Model R's prediction error is lower than every other model on every dataset, shown in Figure 1. Now we compare Model R with only best baseline model - pWSBM. We calculate the error reduction from this best baseline model to Model R as:

$$Reduction = \frac{BaselineError - ModelRError}{BaselineError}$$

The reduction in prediction error is significant: ranging from 25% on Collaboration dataset to 73% on Airport dataset, shown in Table 2.

Table 2: The MSE's of 6 models on 4 datasets: Model R has lower error than every other model on every dataset, reducing error by 25% to 73% from the best baseline model - pWSBM. The number in every parenthesis is the standard deviation of MSE in 25 trials in the last digit of MSE.

Dataset	pWSBM	bWSBM	SBM	DCWBM	DCBM	Model R	Reduction
Airport	0.0486(6)	0.0543(5)	0.0632(8)	0.0746(9)	0.0918(8)	0.013(1)	73%
Collaboration	0.0407(1)	0.0462(1)	0.0497(3)	0.0500(2)	0.0849(3)	0.030(1)	25%
Congress	0.0571(4)	0.0594(4)	0.0634(6)	0.0653(4)	0.1050(6)	0.036(3)	35%
Forum	0.0726(3)	0.0845(3)	0.0851(4)	0.0882(4)	0.0882(4)	0.037(1)	48%

1.4 Computing resources

We ran our experiments on a Lenovo ThinkCentre M83 machine with the following specifications:

- Python implementation: CPython 3.5
- Operating system: Ubuntu 16.10 64-bit
- Memory: 16 GB
- Processor: Intel Core i
7-4770 CPU @ $3.40\mathrm{GHz}$ \times 8

The program - coded in Python - uses all 8 threads of the processor. Each experiment takes about one hour to finish, depending on the dataset and parameters in the learning algorithm.



Figure 1: The MSE's of 6 models on 4 datasets: Model R has lower MSE than every other model on every dataset.

References

- [1] Christopher Aicher, Abigail Z Jacobs, and Aaron Clauset. Learning latent block structure in weighted networks. *Journal of Complex Networks*, page cnu026, 2014.
- [2] Vittoria Colizza, Romualdo Pastor-Satorras, and Alessandro Vespignani. Reaction-diffusion processes and metapopulation models in heterogeneous networks. *Nature Physics*, 3(4):276–282, 2007.
- [3] Tore Opsahl and Pietro Panzarasa. Clustering in weighted networks. Social networks, 31(2):155–163, 2009.
- [4] Raj Kumar Pan, Kimmo Kaski, and Santo Fortunato. World citation and collaboration networks: uncovering the role of geography in science. arXiv preprint arXiv:1209.0781, 2012.
- [5] Mason A Porter, Peter J Mucha, Mark EJ Newman, and Casey M Warmbrand. A network analysis of committees in the us house of representatives. Proceedings of the National Academy of Sciences of the United States of America, 102(20):7057–7062, 2005.