Skip to content

yuqirose/tensor_train_RNN

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

Higher-Order Tensor Recurrent Neural Network

Build Status Coverage Status Dependency Status

Clean code repo for Higher-Order Tensor recurrent neural network (HOT-RNN), implemented in Tensorflow. See details in our paper Long-Term Forecasting with Tensor Train RNNs

Getting Started

install prerequisites

  • tensorflow >= r1.6
  • Python >=3.0
  • Jupyter >=4.1.1

import module

from trnn import TensorLSTMCell
from trnn_imply import tensor_rnn_with_feed_prev

Classes

  • TensorLSTMCell(num_units, num_lags, rank_vals) – creates a TensorTrainLSTM object with num_units hidden nodes, num_lags time lags, with rank_vals is the list of values for tensor train decomposition rank

Methods

  • tensor_rnn_with_feed_prev – forward pass for a single TensorTrainLSTM cell, returns an output and a hidden state.

Running the test

Run the Jupyter notebook

  • jupyter notebook test_trnn.pynb

A simple example of using TensorTrainLSTM by

  • loading a set of sim sequences
  • building a tensor train Seq2Seq model
  • making long-term predictions

Directory

  • reader.py read the data into train/valid/test datasets, normalize the data if needed

  • model.py seq2seq model for sequence prediction

  • trnn.py tensor-train lstm cell and corresponding tensor train contraction

  • trnn_imply.py forward step in tensor-train rnn, feed previous predictions as input

Citation

If you think the repo is useful, we kindly ask you to cite our work at

@article{yu2017long,
  title={Long-term forecasting using tensor-train RNNs},
  author={Yu, Rose and Zheng, Stephan and Anandkumar, Anima and Yue, Yisong},
  journal={arXiv preprint arXiv:1711.00073},
  year={2017}
}

About

Clean repo for tensor-train RNN implemented in TensorFlow

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published