
Modern Code Review

A case study at Google

Presented by Zachary Hayden



Introduction to the 
Paper

Questions of focus:

1. Why does Google need code review?
2. What does a code review at Google consist of?
3. What are the perceptions of code review by 

Google developers?

Research Methods:

● Semi-structured interviews with Google 
developers

● Logs from Google’s internal code review tool: 
CRITIQUE

● Survey to non-developing Google employees

Goals:

● Identify which features and practices in modern 
code review are most effective and why



The State of Code Review: The Old vs. the New

Old

Peer code review originally put reviewers and the author 
together to reason about the application logic and primarily 
identify defects. This approach was formalized in 1976 [4], 
called code inspections, and was successful in improving the 
quality of software projects [2,3]. 

Although successful, this approach came with drawbacks. It 
was a time consuming and labor intensive task because it 
involved multiple reviewers going through the codebase 
line-by-line, and due to its synchronous and highly structured 
nature, required a lot of logistical coordination among 
development teams and management.

There had to be a better way…

New

The modern approach for code review utilizes tooling to 
automate tasks and create organized asynchronous 
workflows for improved efficiency.

A common example that has been demonstrated in class is 
git pull requests wherein entire teams are able to 
asynchronously review and comment about source code 
before it is ultimately merged to production. For this purpose 
Google uses Critique, an all encompassing collaborative code 
review tool. This allows for a more streamlined flow and 
focuses on reviewing code changes rather than the codebase 
in its entirety, allowing for improved efficiency.



Motivation

Google initiated in code review processes since 
their inception. The purpose of these reviews 
however, weren’t specifically intended to find errors 
(although that was great if they did), but instead to 
ensure and prioritize readability of code. This 
created an environment where the codebase itself 
would stand as an education tool for the rapidly 
growing development team. 

With a focus on code readability, the motivation for 
reviews grew to include ensuring uniform style / 
design, safety, history tracking, and testing.

Taken from: Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. 
Modern code review: a case study at google. In Proceedings of the 40th International Conference on Software 
Engineering: Software Engineering in Practice (ICSE-SEIP '18). Association for Computing Machinery, New York, 
NY, USA, 181–190. https://doi.org/10.1145/3183519.3183525



Foundation for Review Process

Ownership

● Google uses a hierarchical model for representing 

code ownership

● Each directory in the codebase is “owned” by a 

set of developers

● The ownership set is in charge of mainly writing, 

as well as reviewing / approving changes made to 

their directory

Readability

● Given Google’s intense focus on readability, it 

follows that there is an internal readability 

certification for each language

● Only developers granted a readability certification 

may write and/or review code

● Readability is granted by reviewers that ensure 

the author is utilizing clean code practices and 

has a deep grasp on the language’s features



Workflow and Critique

The flow of code review very much emulates that of using Critique, Google’s internal code review tool, which 
follows a procedural approach. Code is first created, then previewed with static analysis output, published to 
reviewers, audited / annotated, iterated, and finally approved.

One interesting note about the selection of reviewers chosen for a specific change, Critique will recommend who 
to review based on how recently they’ve previously reviewed that code and how many changes they’ve made in the 
past to that code.

Google integrates pre-commit hooks that ensure no commit will cause build failure nor will it fail to adhere to style 
checks. The results of these along with other static analyses are displayed as color coded comments in the 
margin via Critique’s interface.



Statistics Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, 
and Alberto Bacchelli (2018) reported:

● 80% of developers make < 7 changes a week
● Median developer makes 3 changes a week and 

reviews 4
● 80% of reviewers audit < 10 changes a week
● Median latency for entire code review is < 4 

hours
● 35% of edits only modify one file
● Median number of lines modified in a change = 

24
● < 25% of changes receive more than one 

reviewer
● 70% of edits are committed within a day of 

being published for initial review

The takeaways from this are that having smaller 
changes in each commit and fewer reviewers that are 
well versed with the code at hand is more effective 
than the alternative



Review Challenges

The researchers of the paper identified 5 key 
themes that posed as challenges for the code 
review process.

1. Distance

2. Social Interactions

3. Subject

4. Context

5. Customization

Distance is a challenge that many people are familiar with notably 
in the last couple years with covid. Being physically far from 
someone reviewing your code reduces streamlined communication 
pathways. Additionally inter-department reviews can pose as a 
distance of sorts where expectations and norms are different.

Social interactions of any type give rise to potential character 
conflicts such as using a demeaning tone or trying to exert their 
power / authority in a review exchange. This leads to overall 
frustration and reduced productivity.

Discrepancies in what each party thought the topic of discussion is 
can also lead to inefficiencies in the process. This is why it’s 
essential to clearly state the intention of the review especially for 
design reviews.

There are varying levels of necessity for making a change and 
misunderstanding around the severity can cause communication 
problems.



Observations and Takeaways of Modern Code Review

The authors findings boiled down to the following:

● Lighter is better
○ Having only 1 reviewer improves productivity
○ More efficient than original code inspections

● Less is more
○ Having more frequent but less cumbersome commits 

is better for streamlining the entire process from edit to 
commit

○ Large edits reduces quality of comments and 
lengthens the review process overall

● Google has the most lightweight and quick code 
review process out of its industry peers

● Google’s Critique review tool largely guides and 
facilitates the workflow of code review and analysis

○ Static analysis integration is priceless
● With experience at Google comes the quality over 

quantity approach in terms of code review and 
authorship

Taken from: Caitlin Sadowski, Emma Söderberg, Luke Church, Michal 
Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at 
google. In Proceedings of the 40th International Conference on Software 
Engineering: Software Engineering in Practice (ICSE-SEIP '18). Association 
for Computing Machinery, New York, NY, USA, 181–190. 
https://doi.org/10.1145/3183519.3183525



References

[1] Rachel Potvin and Josh Levenburg. 2016. Why Google StoresBillions of Lines of Code in a Single Repository.Commun. ACM(2016).

[2] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski. 1989. Softwareinspections: An effective verification process.IEEE Software6,3 (1989), 31–36.

[3] A.F. Ackerman, P.J. Fowler, and R.G. Ebenau. 1984. Softwareinspections and the industrial production of software. InSym-posium on Software validation: 
inspection-testing-verification-alternatives.

[4] M.E. Fagan. 1976. Design and code inspections to reduce errorsin program development.IBM Systems Journal15, 3 (1976),182–211.

Original paper:

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at google. In Proceedings of the 40th 
International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP '18). Association for Computing Machinery, New York, NY, USA, 181–190. 
https://doi.org/10.1145/3183519.3183525


