
How to integrate NodeRED with Home Assistant – both running inside

Docker containers
Putting together automations in Home Assistant using YAML scripting can be a challenge for us non-

programmers. But automations are a vital part of any successful Home Automation system.

NodeRED is an Open Source graphical User Interface that allows you to create simple as well as

complex automations by just dragging, dropping and connecting nodes on a sheet of paper.

NodeRED can be integrated with Home Assistant. This guide shows you how.

This How-To guide is for those of you with a Home Assistant Core installation. If you have the

bundled Home Assistant installation (previously known as HassIO), you do not need to read this

guide. NodeRED integration is already available as a simple plug-in.

The prerequisites based on my own set-up, is this;

I have Home Assistant version 0.113.3 running in Container Station on a QNAP, and it’s been running

there for almost two years without any major issues. It is beyond the scope of this guide to explain

how to install and run Home Assistant Core. Whether you run your Home Assistant on a NAS, in a

container, in a Virtual Machine, or as a standalone app on a Windows PC or an Apple Mac, makes no

difference. What’s important is that it can be accessed on your LAN using straight forward HTTP to

any reachable IP. It is also assumed throughout this guide that the Home Assistant GUI is available on

port 8123. Thus, if you can reach your Home Assistant by typing http://192.168.10.20:8123 then you

are in business (the actual IP will of course differ).

Install NodeRED in Container Station (CS) on a QNAP NAS, this is how to do it:

Pull the following image from Docker HUB: nodered/node-red:latest
When installing, consider whether you want the container to autostart each time you reboot your

NAS;

http://192.168.10.20:8123/

You can name the container whatever you like, and you do not have to add an Entrypoint. The image

contains that information for you. Next, click on ‘Advanced Settings’ and fill in the following fields:

These two fields are not mandatory. If you do not need a locale for your country, then you can skip

the LANG variable. Of course, you must insert the right locale for your country. The same goes for

TimeZone (TZ). The default setting is UTC time. You only need to change this if your local time is

different, i.e. ‘Asia/Singapore’

Then, in the Network tab, you can choose between NAT or HOST as your Network Mode. Both will

work, but unless you have a particular reason for choosing HOST, you’re better off using NAT. Then, a

random port number will be generated for you which you can change, or just use as-is for access to

the NodeRED GUI.

In the above example, I’d use http://192.168.10.13:32769 to open the NodeRED GUI (of course, your

NAS-IP is different from mine). If you chose HOST as your network mode, then you would access the

NodeRED GUI using this address: http://192.168.10.13:1880.

Last, but not least – you should establish a Shared Folder link in order to have all your work, flows,

designs and config data stored outside of the container, in case it ever crashes, or you decide to

delete it and recreate from DockerHUB. It even makes upgrades and updates much easier, and

backing up your data also becomes much easier;

http://192.168.10.13:32769/
http://192.168.10.13:1880/

The path shown in the above picture can be anything you choose. Just make sure you create the

folder first, otherwise you will not be able to locate it (obviously). I chose to create a folder named

node-red as a subfolder in my Public Folder. The final path will then automatically be set to

/share/Public/node-red. Add the /data path as is. This is the folder name used by NodeRED to store

all user data and designs and it will now be redirected via this symlink to your external folder

automatically.

Now click CREATE and you will be presented with a summary of all settings (those made by you, and

those predefined for the NodeRED container), and the container will be created and started.

If the container fails to start (immediate stop), check the output in the console window as well as the

error log created in the /data folder (Shared folder). It should start only on its own basic

configuration.

If it runs successfully, then it’s time to do the final configuration. Launch the NodeRED GUI as

explained above. This should take you to the opening page of NodeRED. There is no login required

yet at this point.

The next step is to connect NodeRED to your Home Assistant instance.

Open your Home Assistant GUI and go to your account page (click on your name at the very bottom

on the left side menu). Then, scroll down to the very bottom of your Profile page until you see the

option Long-Lived Access Tokens and click on CREATE TOKEN. A small window will pop up asking you

to name your token. Name it NodeRED. That’s an easy name to remember, and then click OK and the

token will automatically be generated for you. Now you need to copy the whole token which is a very

long string. Make sure you get the whole string (scroll to the right), and store it somewhere safe,

because once you accept it, it will never be shown again and cannot be retrieved again in any way.

Now turn back to the NodeRED GUI. Now we’re going to add the Home Assistant component to

NodeRED. Click on the menu icon in the top-right corner (the three horizontal lines) and choose

Manage palette to open the User Settings fly-out. Then click on the Install tab. In the search bar, type

the following:

node-red-contrib-home-assistant-websocket

Then click on the install button and then click Close. This will pull in the node components for Home

Assistant and install them in NodeRED.

As a result, you should now be able to find a collection of Home Assistant nodes at the bottom of the

node list on the right edge of the NodeRED workspace:

The next step is to configure a connection to your Home Assistant instance so that NodeRED can find

it. To do this, just grab and pull an Events: all node onto the workspace and then double click on

it to open the Edit events fly-out. Click on the pencil icon next to the Server field;

This will open the Edit server node dialog. Here you should fill in the following three fields:

Name, Base URL and Access Token. Leave the rest as-is and Add/Update the config and then Deploy;

The Name is whatever you choose. The Base URL must be the address you use on your LAN to access

the Home Assistant GUI. The Access Token is the one you generated and copied as explained earlier

in this guide.

If all goes well, your node symbol should change to:

Meaning that the red triangle is replaced by a blue circle on top and the green box below the node

briefly says Connected followed by the state changed at as seen in the picture above.

What we have done, is to use a node to configure the initial and permanent connection between

NodeRED and Home Assistant. Now you can safely delete the events: all node. The connection

setting is stored and remembered as default for all future use of every Home Assistant node in the

node list.

Now you should test your connection by creating a small automation;

This assumes that you have some entities in your house already configured and available in Home

Assistant that you can use. In the above example, I use light bulb named LB1 as a trigger to turn on

and off another light bulb named S1. So, when I switch on LB1, the above automation also switches

on S1, and vice versa.

You know for sure that the integration between NodeRED and Home Assistant works as it should as

soon as you add the first node which in this example is the events: state node, and open it to play

with the Entity ID field. As soon as you start typing into that field, it will look ahead and populate it in

real-time with whatever it finds in your Home Assistant list of available entities. If it doesn’t, then

your connection isn’t working and you have to go back and check your setting all over again.

If you decide you need to delete the container and start over again, you should also consider if you

need to delete the content of the /share/Public/node-red folder. Otherwise, incorrect settings may

be carried into a new container and you’ll find yourself going in loop.

How to build automations using NodeRED is beyond the scope of this guide. Now that you have

things running, the rest is up to you. But allow me to make at least one additional recommendation;

In order to be able to produce a fancy graphical UI from your NodeRED flow projects, you should add

the Dashboard component to NodeRED. You do this by selecting the Manage pallete option on the

main menu and installing the node-red-dashboard component. This will give you a host of new nodes

to play with along with the Dashboard tab in top menu:

How to update
Normally, the easiest way to update [any] container software to its most recent version, is just to

delete the container and recreate it using the “latest” version. But sometimes you may wish to have

manual control over the update process, so here is how to do it manually:

NodeRED depend on NPM (Node Package Manager). In order to update NPM to the latest version,

you need to log in to your container as root user. To do this, use an SSH client like PuTTY to first log

into your NAS, then log into your NodeRED container using its containerID which you can find in CS:

With the ID from the above example, log into the NodeRED container as follows:

docker exec -it --user root 013f36e8107c /bin/bash

Once inside the container, issue the command:

whoami

This should return root to verify that you indeed are logged in as user root. Then check your current

NPM version by typing:

npm -v

This should give you the current version of your installed Node Package Manager. Then, to update

NPM, issue the following command:

npm i npm -g

This will take a while, and when finished it will report the number of packages added, removed and

updated, like in this example:

npm@6.14.7

added 16 packages from 2 contributors, removed 17 packages and updated 22

packages in 115.481s

It’s a good idea to restart the container after a successful update, just to see if everything is ok.

Then, after successfully updating Node Package Manager, you should update NodeRED itself. To do

this, jump back into the container as root user (as explained above), and issue the command:

npm install -g --unsafe-perm node-red

This should perform all necessary steps required to update NodeRED. Remember to restart the

container after the update.

To see what version is currently out, just visit https://nodered.org you’ll find the version number in

the web heading. To find out which version of NodeRED you currently have installed, just observe the

console output when you restart NodeRED. It will display something like this:

mailto:npm@6.14.7
https://nodered.org/

Adding logon security
Adding logon authentication is a must if you plan to access NodeRED remotely. The various options

are thoroughly explained here:

https://nodered.org/docs/user-guide/runtime/securing-node-red

In short, you have to edit the adminAuth setting in your settings.js file located in your /data folder;

adminAuth: {

 type: "credentials",

 users: [{

 username: "admin",

 password: "$2a$08$zZWtXTja0fB1pzD4sHCMyOCMYz2Z6dNbgENOMcxWV9DN.",

 permissions: "*"

 }]

},

To generate the password hash, jump into the container and type:

node -e "console.log(require('bcryptjs').hashSync(process.argv[1], 8));"

your-password-here

(all on one line)

https://nodered.org/docs/user-guide/runtime/securing-node-red

