

Open Practice Protocol
DTX Studio integration for PMS

Revision Protocol Author Description of change

0 v1.0 Jasper Leemans Original version.

1 v1.1 Jasper Leemans Changelog:
- “UPDATE” command now allowed in

combination with –p, -P via command-
line interface.

- <data> elements now allowed for the
“UPDATE” command via the file-based
interface.

2 v1.2 Jasper
Leemans,
Nathan Steurs

Changelog:
- Added list of known OPP implementers.
- Added a paragraph about versioning.
- Added ACQUIRE command.
- Added UPDATE_CREATE command.
- Added VIEW_DATA command.
- Added InstallDir registry key to get the

install location of the .exe’s.

3 v1.3 Jasper Leemans Changelog:
- Added the forceOpen flag to the XML

based implementation.
- Added the VIEW command to the

command-line and XML based
implementations.

4 v1.3 rev. 2 Jasper Leemans Changelog:
- Added the -d/-D command line option to

pass in the date format for PMS systems
that don’t support the ISO date format.

5 v1.3 rev. 4 Jasper Leemans Changelog:
- Removed forceOpen flag since it was

never used and not really needed
- Added options to pass a patient middle

name

Introduction ... 7

Versioning ... 8

Configuration ... 9

Sending commands (Invoker) ... 10

Command-line interface .. 10

OPP Command (-c, -C) .. 12
Silent flag (-s, -S) ... 12
Patient Reference ID (-r, -R) ... 13

Practice patient ID (-i, -I) ... 13
Path to file or folder (-p, P) .. 13
Date Format (-d, D) .. 13

Path to file or folder (-p, -P) ... 13
File-based interface .. 13
Exit codes ... 14

General/unknown error (1) ... 15
Misuse of shell interface and/or interface not implemented (2) .. 15
Reference not found [Reference ID] (3) ... 15
Could not write (4) .. 15
Command not supported (5) ... 16
Reference already exists (6) ... 16
Invalid data (7) .. 16
Reserved for later [8, 125] ... 16
Bash special meaning [126,255] ... 16

Receiving commands (Receiver) ... 17

Command-line trigger ... 17
File-based trigger .. 17
Exit codes .. 17

XML file schema .. 19

Version, encoding ... 19
Body <opp> ... 19
Command <command> .. 19

forceOpen ... 20

File-based commands .. 20

Software application <software> ... 21
Patient information <patient> .. 22
Patient notes <note> ... 23
Patient (medical) data <data> ... 23

Data reference ID .. 24

Data types ... 24
Supported image formats ... 26

Device <device> ... 26
Level ... 26

Window. .. 26
Hard Tissue threshold .. 27

Scanned region <scannedRegion> .. 27
Tooth <tooth> .. 27
Anatomy <anatomy> .. 27

Known implementers ... 29

DTX Studio .. 30
Enable PMS integration .. 30
Windows ... 30
Mac .. 30

Credits .. 31

References ... 32

Introduction

This document specifies the Open Practice Protocol as implemented by the software
(DTXSync). This is an open PMS interface owned and maintained by us.

The Open Practice Protocol (OPP) aims to be an open communication protocol between
practice management software (PMS) and patient diagnostic / treatment software
(DTS). The protocol is – open – in the sense that its specifications are freely available and
can thus be implemented by multiple vendors.

The scope of this document is to describe the Open Practice Protocol. The document provides
the required input for being able to implement the protocol as a software maker. The OPP
defines both a simplified command-line interface as well as a more extended file-based
approach.

Versioning

Different versions of the Open Practice Protocol specification will exist at some point. And
different applications will have a different (minimum) versions implemented. For this reason,
we keep new versions backwards compatible with previous versions, in that case the second
versioning number will go up x.y. If we would introduce an API breaking change at some
point, the first number would go up x.y. We also encourage implementers to be forgiving:
when an element or attribute is unknown to your implementation simply ignore it, don’t fail
on execution.

Configuration

The Open Practice Protocol has a fixed setup of three software applications. We identify them
as the OPP Client, the OPP Receiver and the OPP Invoker. Depending on the kind of
software your company is making, you might want to implement only the Receiver/Client end
of the protocol or only the Invoker part (or both). The communication between the OPP
Receiver and the OPP Client is not a part of the protocol definition as outlined in the drawing
below. Typically, the OPP Receiver is installed together with the OPP Client.

Typical DTS
software

e.g. DTX Studio

e.g. DTXSyncTypical PMS
software

OPP

handled
vendor specific

OPP Invoker

OPP Client

OPP Receiver

Sending commands (Invoker)

This chapter covers what you, as a software vendor, need to do to send OPP commands to a
Receiver with your Invoker application.

First of all, the Invoker application must be made configurable to point to the correct Receiver
executable for each user action that should trigger an OPP command.

For example, for sending commands to DTX Studio (an OPP Client) the user of the OPP Invoker
application must be able to point to the installed DTX Studio Receiver application.

C:\Program Files\DTX Studio Clinic\DTXsync.exe

This is an example location; the Receiver executable can be anywhere on the system as long
as it’s accessible by the user running the Invoker software.

Next, the implementer of the Invoker application should run the Receiver application with the
correct parameters for the corresponding user action. For a basic collaboration between
applications the command-line interface can be used. For a more advanced interoperability
the file-based approach is recommended.

It is the responsibility of the Invoker application to correctly catch the exit code of the
Receiver and to correctly communicate to the user any mishaps that might occur.

COMMAND-LINE INTERFACE

The command-line interface that is part of the OPP enables a minimalistic level of collaboration
between the software applications. It’s format and capabilities are the following.

> DTXSync.exe –c/C {string} –s/S –r/R {string} –f/F {string} –l/L {string}

–b/B {date} -d/D {date format} –g/G {string} –i/I {string} –p/P {string}

Below, all the command line parameters that a Receiver should support are documented in
detail. Also note that the parameters can be either mandatory or optional based on the
OPP command you are trying to invoke.

Letter Parameter Mandatory Optional Example

-c, -C OPP command Always / -c “CREATE”

-s, -S Silent flag / CREATE,
UPDATE,
DELETE

-s

-r, -R Patient Reference ID Always / -r “c19ea492ca35”

-f, -F First name CREATE UPDATE -f “Rick”

-m, -M Middle name / CREATE,
UPDATE

-m “George”

-l, -L Last name CREATE UPDATE -l “Pickle”

-b, -B Birthdate:

[ISO 8601: YYYY-MM-DD]

CREATE UPDATE -b “1985-07-25”

-d, -D Date format:

yyyy for year, MM for
month, dd for day including
separators

/ / -d ”dd/MM/yyyy”

-g, -G Gender:

[MALE, FEMALE, OTHER]

CREATE UPDATE -g “MALE”

-i, -I Practice patient ID / CREATE,
UPDATE

-i “JLEE1985”

-p, -P Absolute path to file or
folder

/ CREATE,
UPDATE

-p
“path/to/dicom/folder/”

OPP Command (-c, -C)

This obligatory field specifies which OPP action the Receiver/Client combo needs to fulfil. The
following commands are possible via the command-line interface:

Command Explanation

CREATE Creates the patient in the OPP Client application.

UPDATE Updates an existing patient in the OPP Client application.

UPDATE_CREATE Tries to update an existing patient in the OPP Client application,
if the patient is not found it will automatically create the patient.
Take note that all information needed to create the patient must
be passed.

OPEN Opens/selects an existing patient in the OPP Client application.

DELETE Deletes an existing patient in the OPP Client application.

ACQUIRE Opens the image acquisition module of the OPP Client application
for the given patient.

VIEW Opens an existing patient in the OPP Client (viewer) application.

Silent flag (-s, -S)

This optional flag, when turned on, specifies that the OPP Client application should NOT be
started and/or brought to the foreground when the command is executed. It will obviously be
ignored for the “OPEN” and “ACQUIRE” commands. Without the silent flag the Client
application is supposed to present itself to the user (for all commands). E.g. CREATE/UPDATE
commands will open the software with the newly created/updated patient opened or selected.

Patient Reference ID (-r, -R)

This obligatory field will be used by both the Invoker and the Receiver to uniquely identify a
patient during any OPP communication. Typically, this is the patient’s main identifier in your
PMS database.

Practice patient ID (-i, -I)

This optional field can be used to store a practice specific patient identification scheme.

Path to file or folder (-p, P)

This optional field can be used to pass in a file path or folder. Note that an absolute path is
expected here. The Receiver can either do something with it or ignore it, depending on the
expected behaviour of the given OPP command. In case of the update commands the
application will add the (DICOM) image or volume to the existing patient record.

Date Format (-d, D)

This optional field can be used to pass in a more specific date format according to the
specifications defined in https://doc.qt.io/qt-5/qdate.html#fromString-1. If not specified, the
default is the ISO 8601 date format: yyyy-MM-dd.

Path to file or folder (-p, -P)

This optional field can be used to pass in a file path or folder. Note that an absolute path is
expected here. The Receiver can either do something with it or ignore it, depending on the
expected behaviour of the given OPP command. In case of the update commands the
application will add the (DICOM) image or volume to the existing patient record.

FILE-BASED INTERFACE

> DTXsync.exe {absolute/path/to/xml}

The file-based approach takes only a single command-line parameter, namely an XML file.
This XML file has all the parameters the command-line interface supports but extends it with

more advanced options. Where the command-line interface is rather limited, the XML file can
be easily extended in later versions of the OPP to add more features. The full schema for this
XML file is fully documented in chapter 0 below.

IMPORTANT: The rule is that the Invoker application writes out the XML file to a location that
is suitable for both the Invoker as well as the Receiver (in terms of access permissions).
Typically, the system’s TEMP directory is a good solution, but the path and file name can be
freely chosen as long as the file extension ends in .XML and is passed as an absolute path.
The Invoker is responsible for cleaning up the .XML after the Receiver returned its exit code.

EXIT CODES

When being run, the Receiver application must correctly output one of the following error
codes when something went wrong. This way the Invoker can communicate any errors
appropriately to the user.

 Receiver exit code

Success 0

General/unknown error 1

Misuse of shell interface and/or interface not implemented 2

Reference not found [Reference ID] 3

Could not write 4

Command not supported 5

Reference already exists [Reference ID] 6

Invalid data 7

Reserved for later [8, 125]

Bash special meaning [126,255]

General/unknown error (1)

The OPP command was not successfully executed by the Receiver application. For example,
this could be because the XML file could not be parsed or an invalid value was passed to the
command-line arguments (e.g. non-existing Command).

Misuse of shell interface and/or interface not implemented (2)

The implementer of the Receiver application is allowed to implement only the command-
line interface or the file-based interface of the protocol. When implementing only one of
the two, the application should return this error code when somebody tries to invoke it in the
other way. Of course, we recommend implementing both interfaces for more flexibility.

Other than that, invalid command-line parameters (e.g. non-existing letters), also yield this
error.

Reference not found [Reference ID] (3)

For the commands [UPDATE, OPEN, DELETE, ACQUIRE, VIEW] it can very well be that the
patient was never created, or doesn’t exist anymore, on the Client side. In that case this error
code is returned. The Invoker can also use this code to check if he still needs to [create] the
patient or not. In the case of the [VIEW_DATA] command it can also mean that an unknown
data reference was passed.

Could not write (4)

It could be that the Receiver application cannot make modifications to the patient [UPDATE,
DELETE] due to the fact that the Client has that specific patient currently open. Since no
modifications could be done this should definitely be relayed to the Invoker application via a
special return code.

Command not supported (5)

This error code is returned when trying to execute a command that is not supported by the
Receiver/Client. This could be the command in its entirety (e.g. UPDATE) or a specific
extension to it (e.g. UPDATE with new medical images).

Reference already exists (6)

This error code is returned when trying to execute the CREATE command for a patient that is
already known. Or on UPDATE when adding a data item that already exists under the given
patient (the latter for file-based implementations only!).

Invalid data (7)

This error code is returned when one or more data items could not be loaded. This can be
due to an unsupported file format or an invalid file path. In case of a CREATE/UPDATE it can
be that other (valid) changes were correctly made to the patient record.

Reserved for later [8, 125]

These return codes are still free and can be used later if we need more specific feedback.

Bash special meaning [126,255]

Our return codes are based on the commonly known Bash Exit codes [10]. Here it is specified

that this range has a special meaning and should not be used for anything else. Even though
we don’t implement them, we stick to the Bash specifications.

Receiving commands (Receiver)

This short chapter covers how you, as a software vendor, need to implement an OPP compliant
Receiver application for your specific Client application.

An OPP compliant Receiver application can have any name, however it is recommended to
keep it static across releases for compatibility. For example, NobelClinician/DTX Studio Implant
(Client) has an OPP compliant receiver called NCSync.exe. We advise to always install the
Receiver together with the Client application. Hence, on Windows systems the Receiver .exe
will typically be installed in the same Program Files folder as the Client application. On OS
X (Mac) systems the Receiver executable can be embedded in the Application Bundle (.app)
of your installed Client software application.

IMPORTANT: The Receiver application is by no means your actual Client application but acts
as a proxy between your Client and the Invoker issuing the OPP commands. Hence, it is
expected to be small, lightweight and very responsive.

COMMAND-LINE TRIGGER

Just implement the specifications as outlined in paragraph 0. When your process is finished,
which should be in a timely manner, throw the correct exit code.

File-based trigger

For this interface, you only need to take one command-line parameter into account: the
absolute file path to the XML, see paragraph 0. However, you will need to implement an XML
parser that is compatible with the specifications outlined in chapter 0. Remember that the
Invoker writes the XML and is responsible for deleting it afterwards; when the Receiver has
returned its exit code. This is true for both the “success” as well as any “fail” scenarios, see
0.

Exit codes

All exit codes that the Invoker expects the Receiver to throw are outlined in 0.

NOTE: It’s good practice to have the Receiver application keep a local log file where more
detailed error information can be logged. This is of course vendor specific and not defined in
the standard; but a good idea none the less.

XML file schema

This paragraph outlines the XML schema for the file-based interface to OPP. When
implementing the Invoker part of the OPP for the file-based interface one should make sure
this schema is validated. For this we also provide an official external XML schema (.xsd file)
and some example XML files. Lastly, the XML file should always be left in a human-readable
state, so no encryption can be applied on it.

VERSION, ENCODING

The XML file is expected to use XML version 1.0 and UTF-8 encoding. This means the
document should always start with the following line:

<?xml version="1.0" encoding="UTF-8"?>

BODY <OPP>

The body of the XML file starts with the <opp> element and can have the following attributes.

Attribute Value Type Mandatory Optional

version The version of the OPP used. string Always /

Example:
<opp version="1.0">
…
</opp>

COMMAND <COMMAND>

Inside the <opp> element the <command> element needs to be present. Here it’s specified
which OPP command should be executed by the Receiver. The <command> element can have
the following attributes.

Attribute Value Type Mandatory Optional

type OPP command string Always /

silent Silent flag (see 0):

[YES, NO]

string / Always

forceOpen Force open the software, even if a
command could not be executed due
to an error: [YES, NO]

string / Always

Example:

<command type="CREATE" silent="YES"/>

forceOpen

This option will still bring the software to the foreground and will try to open the item with
the given Reference Id, even if something went wrong with processing the command. The
correct Exit Code is still expected to be returned. For example, the software will still OPEN
even though an unknown patient Reference Id was passed in. It is up to the Receiver
application to handle that and communicate this issue to the user as it sees fit. This issue
might contradict with the silent flag, but overrules it.

File-based commands

The following commands are available in the file-based implementation:

Command Explanation

CREATE Creates the patient in the OPP Client application.

UPDATE Updates an existing patient in the OPP Client application.

UPDATE_CREATE Tries to update an existing patient in the OPP Client application,
if the patient is not found it will automatically create the patient.
Take note that all information needed to create the patient must
be passed.

OPEN Opens an existing patient in the OPP Client application.

DELETE Deletes an existing patient in the OPP Client application.

ACQUIRE Opens the image acquisition module of the OPP Client application
for the given patient.

VIEW Opens an existing patient in the OPP Client (viewer) application.

VIEW_DATA Opens a specific data item directly for viewing in the OPP Client
(viewer) application.

SOFTWARE APPLICATION <SOFTWARE>

Inside the <opp> element the <software> element needs to be present. This element is
filled in with the software information of the Invoker application. Hence the application that
generated the XML file. The <software> element can have the following attributes.

Attribute Value Type Mandatory Optional

name Name of the Invoker application. string Always /

version Version of the Invoker application. string Always /

Example:

<software name="My first PMS software App" version="1.0.0.1"/>

PATIENT INFORMATION <PATIENT>

Inside the <opp> element the <patient> element needs to be present. This element is filled
in with all the patient information or a subset thereof. The <patient> element can have the
following attributes.

Attribute Value Type Mandatory Optional

reference Reference ID (see 0). string Always /

firstName First name of the patient. string Create Update

middleName Middle name of the patient. string / Create,
Update

lastName Last name of the patient. string Create Update

birthdate Birthdate:

[ISO 8601: YYYY-MM-DD]

date Create Update

gender Gender:

[MALE, FEMALE, OTHER]

string Create Update

patientID Practice patient ID (see 0). string / Create,
Update

clinicianFirstName First name of the referral
clinician.

string / Create,
Update

clinicianLastName Last name of the referral
clinician.

string / Create,
Update

Example:
<patient reference="PMS3489" firstName="Marty" middleName=”George”
lastName="McFly" birthdate="1992-03-31" gender="MALE"
patientID="MCFLY1992" clinicianFirstName="John" clinicianLastName="Bunsen"
>

…
</patient>

PATIENT NOTES <NOTE>

Inside the <patient> element the <note> element is optional. A note is like a “post-it” with
some remark about the patient. Only one <note> element is allowed under the patient
element. Currently a <note> doesn’t have any attributes. Hence, the content must be set via
the text field of the element.

Example:

<note>Patient is a heavy smoker.</note>

PATIENT (MEDICAL) DATA <DATA>

For OPP Clients that might benefit from it, the protocol foresees that you can pass in other
files as well. Typical examples are DICOM scans, clinical pictures, or other medical data. Links
to these separate data files can be passed via the optional <data> element which resides
under the <opp> element.

IMPORTANT: <data> elements are only useful in case of the create and/or update commands.
They have no effect when running other commands. When you do pass them, in such case,
they will be ignored by the Receiver end. In case of the update commands the application will
add the data to the existing patient record.

A <data> element can have the following attributes.

Attribute Value Type Mandatory Optional

reference Reference ID (see 0). string / Always

type Predefined set of types possible
(see table below).

string Always /

path Absolute file or folder path that
points to the separate data files.

string Always /

direction Direction specifier that specifies
how the data was acquired:

[FRONTAL, LATERAL]

string / Always

acquisitionDate The timestamp at which the
medical data was recorded.

[ISO 8601: YYYY-MM-
DDTHH:mm:ss]

date/time / Always

Example:
<data reference="IMG98656" type="CEPHALOGRAM" path="C:/example_ceph.dcm"
direction="LATERAL" acquisitionDate="1997-07-16T19:20:30">
…
</data>

Data reference ID

The reference ID attribute for data is optional. The OPP Receiver/Client is allowed to
internally generate an ID for the data item when not provided by the PMS. Starting from OPP
v1.2, which has the VIEW_DATA command, the PMS has to provide a unique reference ID for
the data item in order to identify it on both sides of the communication protocol.

Data types

The following data types are currently part of the specification.

Type Description Example File Folder

CT_DATA Image set for a CT
image volume.

Typically one or more
files in a DICOM
format.

Yes Yes

CEPHALOGRAM Single cephalometric
radiograph.

Typically single frame
DICOM or image file.

Yes No

INTRAORAL Single intra-oral
radiograph of a
subset of teeth.

Typically single frame
DICOM or image file.

Yes No

PANORAMIC Panoramic
radiograph, dental X-
ray.

Typically single frame
DICOM or image file.

Yes No

PICTURE Generic clinical
picture.

Typically single color
image file.

Yes No

Take into consideration that some data is coming in as a single file, while other data can
contain a set of files. In the that case the Receiver should check whether it’s a file or folder
and act accordingly. For example, for data type CT_DATA (see table below) you can pass in
either a single file (multi-frame) or a folder with a set of separate DICOM slices.

Supported image formats

For data types in the above table that handle single image files the most common image
formats should be supported: DICOM, JPEG, PNG, BMP, TIFF.

DEVICE <DEVICE>

Inside the <data> element the <device> element is optional. This element can be used to
pass information about the acquisition device that was used to acquire the data. It has a set
of optional attributes that might help the OPP Client application to visualize the data in a better
way.

Attribute Value Type Mandatory Optional

manufacturer Manufacturer of the device. string Always /

model Device model name. string Always /

level Default image level threshold. integer / Always

window Default image window value. integer / Always

hardTissueThreshold Hard tissue (bone) threshold. integer / Always

Example:

<device manufacturer="KAVO" model="OP3D" level="200" window="1100"

hardTissueThreshold="850"/>

Level

Only valid when the data is a greyscale image (single, volume) and “window” is also filled in.

Window.

Only valid when the data is a greyscale image (single, volume) and “level” is also filled in.

Hard Tissue threshold

The grayscale value in the image that matches the bone density. Only valid when the data is
a greyscale image (single, volume). This value can for example be used by medical imaging
software to segment bone out of the image.

SCANNED REGION <SCANNEDREGION>

Inside the <data> element the <scannedRegion> element is optional. This element
specifies which region of the patient was acquired for that particular data item. The
<scannedRegion> element currently has no attributes, only nested elements. An empty
<scannedRegion> element is ignored by the Receiver.

Tooth <tooth>

Inside the <scannedRegion> element the <tooth> element is optional. This element
specifies a tooth that is part of that particular data item. The text field of the <tooth> element
contains a specific tooth number. Multiple <tooth> tags can be listed.

IMPORTANT: The numbers are in the Universal Numbering System.

Example:
<scannedRegion>

<tooth>4</tooth>
<tooth>5</tooth>
<tooth>6</tooth>

</scannedRegion>

Anatomy <anatomy>

Inside the <scannedRegion> element the <anatomy> element is optional. This element
specifies a specific anatomical structure of the patient that is part of that particular data item.
The text field of the <anatomy> element contains one of the predefined anatomical structures
as shown below. Multiple <anatomy> tags can be listed.

Anatomical structure Description

CRANIUM The skull base.

MAXILLA The upper jaw.

MANDIBULA The lower jaw.

CHIN The chin.

LEFT_JAW_CONDYLE The left condyle of the jaws.

RIGHT_JAW_CONDYLE The right condyle of the jaws.

LEFT_MANDIBULAR_NERVE The left nerve in the lower jaw.

RIGHT_MANDIBULAR_NERVE The right nerve in the lower jaw.

LEFT_MANDIBULAR_RAMUS The left ramus of the lower jaw.

RIGHT_MANDIBULAR_RAMUS The right ramus of the lower jaw.

Example:
<scannedRegion>

<anatomy>MANDIBULA</anatomy>
<anatomy>LEFT_JAW_CONDYLE</anatomy>
<anatomy>RIGHT_JAW_CONDYLE</anatomy>

</scannedRegion>

Known implementers

Below we list a table of known implementers of the OPP protocol. An OPP Invoker application
can easily get the installed location of these by checking the supplied registry keys. Take
note that no such equivalent keys exist on Mac, where we recommended looking into the
default /Applications path.

OPP Client OPP Receiver Registry key install location

NobelClinici
an 3.2+

NCSync (OPP v1.1) HKEY_LOCAL_MACHINE\SOFTWARE\NobelBiocare\NobelClinician\InstallDir

DTX Studio
Implant
3.3+

NCSync (OPP v1.2) HKEY_LOCAL_MACHINE\SOFTWARE\Medicim\DTXStudioImplant\InstallDir

DTX Studio
Clinic 1.3+

DTXSync (OPP v1.1) HKEY_LOCAL_MACHINE\SOFTWARE\Medicim\DTXStudioClinic\InstallDir

DTX Studio
Clinic 1.5

DTXSync (OPP v1.2) HKEY_LOCAL_MACHINE\SOFTWARE\Medicim\DTXStudioClinic\InstallDir

DTX Studio
Clinic 1.6

DTXSync (OPP v1.3) HKEY_LOCAL_MACHINE\SOFTWARE\Medicim\DTXStudioClinic\InstallDir

DTX Studio
Clinic
1.6.10+

DTXSync (OPP v1.3
rev. 2)

HKEY_LOCAL_MACHINE\SOFTWARE\Medicim\DTXStudioClinic\InstallDir

DTX Studio
Clinic
1.7.2+

DTXSync (OPP v1.3
rev. 4)

HKEY_LOCAL_MACHINE\SOFTWARE\Medicim\DTXStudioClinic\InstallDir

DTX STUDIO

Enable PMS integration

Windows

On Windows the OPP Receiver application (DTXSync.exe) is installed next to the Client
application (DTXStudio.exe), by default this means you run it like:

C:\Program Files\DTX Studio Clinic\DTXSync.exe -c "CREATE" -r "PMSID" -f

"Rick" -l "Pickle" -b "1985-07-25" -g "MALE"

Mac

On Mac the OPP Receiver application (DTXSync) is embedded in the Application Bundle of the
DTX Studio application, which by default is installed in /Applications, so you run it like:

/Applications/DTXStudio.app/Contents/Applications/DTXSync.app/Contents/Mac

OS/DTXSync -c "CREATE" -r "PMSID" -f "Rick" -l "Pickle" -b "1985-07-25" -g

"MALE"

Credits

The Open Practice Protocol is completely open for any software manufacturer to implement.
This accounts for both the Invoker as well as the Receiver side. However, the Medicim NV
company owns the current specification and any future updates made to it. If you have any
remarks or request for a future version of the protocol, please contact Medicim NV directly.

References

[1] Medical practice management software,
https://en.wikipedia.org/wiki/Medical_practice_management_software

[2] CT scan,

https://en.wikipedia.org/wiki/CT_scan

[3] Cephalogram,

https://en.wikipedia.org/wiki/Cephalogram

[4] Dental anatomy,

https://en.wikipedia.org/wiki/Dental_anatomy

[5] Panoramic radiograph,

https://en.wikipedia.org/wiki/Panoramic_radiograph

[6] Universal Numbering System,

https://en.wikipedia.org/wiki/Universal_Numbering_System

[7] Ramus of the Mandible,

https://en.wikipedia.org/wiki/Ramus_of_the_mandible

[8] XML schema generator,

http://www.freeformatter.com/xsd-generator.html

[9] XML schema validator,

http://www.xmlvalidation.com/

[10] Bash Exit codes,

Bash Exit Codes With Special Meanings.pdf,

http://tldp.org/LDP/abs/html/exitcodes.html

