
Developing Burp Suite Extensions
From manual testing to security automation

Luca Carettoni - luca@doyensec.com

Public Release

Welcome
• This is a brand-new class!
• Hands-on and highly interactive
• We have 14 hours to go from manual testing to

security automation

Public Release

Ingredients

Public Release

Agenda - Day 1

1. Intro
2. A quick recap of Burp Suite’s tools
3. Understanding Burp’s Extensibility APIs
4. IDE setup and templates
5. Hello Burp extension
6. Customer logger

Public Release

Agenda - Day 2

7. Replay tool
8. Passive check for the scanner

Detect pages missing SRI attribute
9. Active check for the scanner

Detect EJL vulnerabilities
10.Security automation toolchain integrated in

Jenkins
11.Intruder payload generator case study

(Bradamsa)

Public Release

About me

• AppSec since 2004
• Doyensec Co-founder
• Former AppSec

@LinkedIn, Director of
Security (Addepar),
Senior Security
Researcher (Matasano),
….

Public Release

Relevant work
• First edition of Instant Burp Suite Starter
• Packt Publishing, 70 pages, ISBN-10 1849695180

• Numerous extensions:
• Bradamsa - https://github.com/ikkisoft/bradamsa
• Blazer https://github.com/ikkisoft/blazer
• ParrotNG https://github.com/ikkisoft/ParrotNG
• etc..

• Burp Suite’s anti-debugging patch me
• http://blog.nibblesec.org/2013/01/anti-debugging-

techniques-and-burp-suite.html

Public Release

Contact Details

• If you have questions, problems - even
after the training:

• Email: luca@doyensec.com
• Twitter: @lucacarettoni

Public Release

Getting to know you

• Builder or Breaker
• How many pentesters?
• How many software engineers?
• …

• Have you ever used Burp? How often?
• Let’s talk about coding in Java
• Hello World or Cocktail Shaker Sort algorithm?

Public Release

Tactical Testing

Setup
Getting all ready…

Public Release

Java / Python / Ruby

• I will be coding in Java with Netbeans
• You can follow examples in any of the

three languages
• For hands-on exercises, I would highly

recommend coding in Java too!

Public Release

What you need

• Laptop :)
• Recent Java JDK installed
• Oracle Netbeans IDE installed
• You can use Eclipse or IDEA (if you’re

very familiar with those)
• Git command line installed

Public Release

Burp Suite Professional

• Since we’re building Scanner extensions,
this training requires a Pro license

• You can either use your own license, or I
can provide a temporary license kindly
offered by

Public Release

Burp Setup

• Configure your browser to use the Burp
Proxy listener as its HTTP proxy server

• Firefox is probably the best browser for
security testing

Public Release

Setup Proxy in Internet Explorer
• Go to the Tools menu, select Internet Options, go to the

Connections tab, and click on the "LAN settings" button. Make
sure the "Automatically detect settings" box is unchecked.
Make sure the "Use automatic configuration script" box is
unchecked. Make sure the "Use a proxy server for your LAN"
box is checked. Enter your Burp Proxy listener address in the
"Address" field (by default, 127.0.0.1). Enter your Burp Proxy
listener port in the "Port" field (by default, 8080). Make sure
the "Bypass proxy server for local addresses" box is
unchecked. Then click on the "Advanced" button. Make sure
the "Use the same proxy server for all protocols" box is
checked. Delete anything that appears in the "Exceptions"
field. Then click "OK" to close all of the options dialogs.

Public Release

Setup Proxy in Chrome

• The Chrome browser picks up the HTTP proxy
settings configured on the host computer. If you
are using Chrome, you can open your computer's
built-in browser and follow the instructions for
configuring that. If you aren't sure where the built-
in proxy settings are, open Chrome, go to the
Customize menu, select Settings, click on "Show
advanced settings", and click the "Change proxy
settings ..." button. This will open the relevant
configuration options for your host computer.

Public Release

Setup Proxy in Firefox

• Go to the Firefox menu, click on Options, click on
Advanced, go to the Network tab, and click on the
Settings button in the Connection section. Select the
"Manual proxy configuration" radio button. Enter
your Burp Proxy listener address in the "HTTP proxy"
field (by default, 127.0.0.1). Enter your Burp Proxy
listener port in the "Port" field (by default, 8080).
Make sure the "Use this proxy server for all
protocols" box is checked. Delete anything that
appears in the "No proxy for" field. Then click "OK" to
close all of the options dialogs.

Public Release

Setup Proxy in Safari
• Go the Safari menu, click on Preferences, click on

Advanced, and by the Proxies label click the "Change
Settings" button. This will open the Network
configuration settings for your current network adapter.
In the Proxies tab, check the "Web Proxy (HTTP)" box,
and enter your Burp Proxy listener address in the "Web
Proxy Server" field (by default, 127.0.0.1), and your
Burp Proxy listener port in the (unlabeled) port field (by
default, 8080). Ensure the "Bypass proxy settings for
these Hosts & Domains" box is empty. Repeat these
steps for the "Secure Web Proxy (HTTPS)" checkbox.
Click "OK" and "Apply" and close the open dialogs.

Public Release

Clone the training repo

1. Open the terminal
2. From your working directory, clone using

$ git clone https://github.com/
doyensec/burpdeveltraining.git

Public Release

Training Repo Structure
‣ BurpExtensionTemplate

‣ Eclipse

‣ IDEA

‣ Netbeans

‣ Bradamsa

‣ DetectELJ

‣ Java

‣ Python

‣ Ruby

‣ DetectSRI

‣ Java

‣ Python

‣ Ruby

‣ HelloBurp

‣ Java

‣ Python

‣ Ruby

‣ ReplayAndDiff

‣ Java

‣ Python

‣ Ruby

‣ SiteLogger

‣ Java

‣ Python

‣ Ruby

Each extension includes Work In Progress
versions:
• /WIP1/
• /WIP2/
• /Final/

Burp Suite Intro
Overview

Public Release

• Burp is the Swiss-army knife of Web Application Security
• Multiple tools, seamlessly integrated
• Proxy
• Spider
• Scanner (Pro version only)
• Intruder
• Repeater
• Sequencer
• Decoder
• Comparer

Public Release

From Burp v1.0 - June 2003

Public Release

To v1.7.17 and counting…

Public Release

Proxy

Public Release

Target

Public Release

Spider

Public Release

Scanner

Public Release

Intruder

Public Release

Repeater

Public Release

Sequencer

Public Release

Decoder

Public Release

Comparer

Public Release

Burp Suite Trivia 1/2

• One question, twenty seconds and win
Burp Suite merchandise!

• No Googling!

Public Release

• What’s the default name used
by Burp for form submissions?

Public Release

and the two answers are…

• Peter Wiener
• Peter Winter

• Also, don’t spider network devices!

Burp Suite Extension APIs
Overview

Public Release

Extender

• Lets you extend the functionalities of Burp
in many ways

• Available since v1.1 (although radically
different). Starting from v1.5.01, as known
today

• Extensions can be written in Java, Python
(Jython) or Ruby (jRuby)

Public Release

Free vs Pro

• Extensions are compatible for both Burp
Suite Free and Professional versions

Public Release

Core Principles
• Allow multiple extensions to run simultaneously
• Support dynamic loading and unloading of extensions at

runtime
• Support languages other than Java
• Provide a much, much richer API that allows extensions to

really integrate with Burp's internals
• Use a more future-proof API design, to allow easier

enhancements in future
• As far as possible, ensure backwards compatibility with

legacy extensions

From http://blog.portswigger.net/2012/12/new-burp-suite-extensibility.html

Public Release

Extender GUI 1/4

• Load/Unload extensions
• StdIn and Stdout (Console, File, Show in UI)

Public Release

Extender GUI 2/4

• Burp App Store (BApp)
• Available since March 2014
• All BApp extensions source code is available on

Github - see https://portswigger.net/bappstore/

Public Release

Extender GUI 3/4

• Java APIs reference
• https://portswigger.net/burp/extender/api/

Public Release

Extender GUI 4/4

• Runtime settings
• Automatic

reload
• Execution

environments,
dependencies,
etc.

Public Release

In a nutshell, we can write code to:

• Analyze, tamper and reply HTTP requests/
responses for all Burp tools

• Customize Intruder and Scanner payloads
• Modify Burp Suite’s configuration
• Initiate actions like scanning and spidering
• Access runtime data
• Create custom UI tabs and context menu

items

Public Release

Java Interfaces Summarized 1/2

System-wide UI

• IContextMenuFactory
• IContextMenuInvocation
• IMenuItemHandler
• IMessageEditor
• IMessageEditorController
• IMessageEditorTab
• IMessageEditorTabFactory
• ITab
• ITextEditor

Core

• IBurpExtender
• IBurpExtenderCallbacks
• IExtensionStateListener
• IHttpListener
• IScopeChangeListener
• ISessionHandlingAction HTTP objects

• ICookie
• IHttpRequestResponse
• IHttpRequestResponsePersisted
• IHttpRequestResponseWithMarkers
• IHttpService
• IParameter
• IRequestInfo
• IResponseInfo
• IResponseKeywords
• IResponseVariations

Helpers
• IExtensionHelpers
• ITempFile

Public Release

Java Interfaces Summarized 2/2
Collaborator

• IBurpCollaboratorClientContext
• IBurpCollaboratorInteraction

Intruder

• IIntruderAttack
• IIntruderPayloadGenerator
• IIntruderPayloadGeneratorFactory
• IIntruderPayloadProcessor

Scanner

• IScanIssue
• IScannerCheck
• IScannerInsertionPoint
• IScannerInsertionPointProvider
• IScannerListener
• IScanQueueItem

Proxy
• IInterceptedProxyMessage
• IProxyListener

Public Release

Javadoc for the win

• https://portswigger.net/burp/extender/api/

Public Release

public interface IBurpExtender

• All extensions must implement this interface
• Implementations must be called

BurpExtender, in the package burp, must be
declared public, and must provide a default
(public, no-argument) constructor

• The following method is invoked when the
extension is loaded and provides callbacks

void registerExtenderCallbacks(IBurpExtenderCallbacks callbacks)

Extension Templates
Netbeans, Eclipse, IDEA

Public Release

Project Templates 1/2

• To facilitate development and debugging,
you can use our empty extension template:
• https://github.com/doyensec/

burpdeveltraining/tree/master/
BurpExtensionTemplate

• Available for Netbeans, Eclipse and IDEA

Public Release

Project Templates 2/2

• The template includes:
• burp.BurpExtender class
• Setup for executing Burp’s Main

(burp.StartBurp) together with our
extension - which makes debugging make
better!

• No need to import all Interfaces
• Since we are referencing the original

Burp’s JAR

Public Release

Netbeans

1. Open NetBeans
2. File —> Open Project and select the /

BurpExtensionTemplate/Netbeans folder
from git repo. Click Open
3. Click Resolve Problems. Then Resolve and

select your local copy of the Burp’s JAR.
Click Close.
4.You can now click Run

Public Release

Eclipse 1/2

1. Open Eclipse
2. File —> Open Project (or Import…)
3. Choose “Select an import source:” Existing

Projects into Workspace. Click Next
4. Click Browse, and select the /

BurpExtensionTemplate/Eclipse folder from git
repo. Click Ok and then Finish
5. On the project Name (top left), right click and

select Properties. Go to Java Build

Public Release

Eclipse 2/2

6. In the Libraries tab, click on the Burp JAR
reference and click on Edit. Then, select your
local copy of the Burp’s JAR and click Ok
7. If you’re NOT using JavaSE-1.8, you may also

need to fix the runtime environment. In the
Libraries tab, remove the JRE System Library
[JavaSE-1.8]. Then, click on Add Library —> JRE
System Library —> Workspace Default JRE. Click
Ok and Finish
8.You can now click Run

Public Release

IDEA
1. Open IntelliJ IDEA
2. Select Open and choose the /

BurpExtensionTemplate/IDEA from git repo. Click
Open
3. File —> Project Structure. Select the Burp’s JAR

reference (in red). Right-Click and choose Edit..
4. Click + and select your local copy of the Burp’s

JAR. Click Ok. Select the old reference (in red) and
Click - to remove the item
5.You can now click Run

Public Release

Pro Tip: Burp JavaDocs

Public Release

Add Burp JavaDocs to Netbeans

1.Click on “Attach Javadoc…”
2.Select Burp JAR

Public Release

Pro Tip: Avoiding Project Options At Startup

• If you’re debugging your extension, Burp
startup project options will slow you down

• You can disable it, by adding the —project-

file argument. Burp will generate a new
project file with default configs

Our First Extension
Hello Burp!

Public Release

Let’s write some code…

• In BurpExtender.java, let’s customize the
registerExtenderCallbacks method to
implement our Hello Burp! extension

• We want to:
• Issue an alert
• Write to StdIn and StdOut
• Create a new UI component (Tab)

Public Release

Alerts

• Useful for info, error and other user
notifications

callbacks.issueAlert("Hello Burp!");

Public Release

Stdout and Stderr

• Stdout and Stderr can be customize from
Burp’s Extension UI, and it’s transparent

• Simple use a PrintWriter on callbacks.getStdout()

Public Release

Custom Tab and UI Components

• Create a class that implements ITab and
implement the getTabCaption() and
getUiComponent()

• Pro Tip: Use
callbacks.customizeUiComponent() to
adjust your custom UI with Burp's style,
including font size, colors, table line
spacing, etc.

Public Release

Our custom Hello Burp AWT Component

• AWT coding is fun!

Public Release

Coding Time!
•We will do this

together!

Public Release

Code Complete Extension

• https://github.com/doyensec/
burpdeveltraining/tree/master/HelloBurp

• To run this exercise in Python/Ruby, remember to
set the Environment option

Public Release

Exercise

• Consult https://portswigger.net/burp/
extender/api/ and extend our HelloBurp
extension:
1.To issue an alert displaying Burp version

number
2.Unload the extension

Building a custom logger
SiteLogger

Public Release

Requirements

• Save all HTTP Requests and Responses for
a specific site

• Save all scan results (active and passive)
for the same site

• Persistent storage using MongoDB
• Easy to use tool. It should be possible to

setup and save from a UI

Public Release

Plugin Structure

registerExtenderCallbacks()

BurpExtender

burp package

getTabCaption()
getUiComponent()

SiteLoggerTab implements ITab

Your package

SiteLoggerPanel

Note:
For Python/Ruby, a single file
with three public classes is used.

Public Release

getSiteMap and getScanIssues
• IHttpRequestResponse[]
getSiteMap(java.lang.String urlPrefix)

• IScanIssue[]
getScanIssues(java.lang.String urlPrefix)

• urlPrefix - This parameter can be used to
specify a URL prefix, in order to extract a specific
subset of the site map/findings

Public Release

MongoDB

• There’s a MongoDB instance running on 27017/tcp
(no authentication required)

• It’s a shared environment - be nice!
• Please name your db sitelogger_<yourName>

• For a quick intro to MongoDB with Java:
• http://www.mkyong.com/mongodb/java-

mongodb-hello-world-example/

Public Release

MongoDB Driver

• [Java] Download mongo-java-driver-2.13.3.jar
• [Ruby] Set Extender->Options-

>JavaEnvironment “Folder for loading library
JAR files” to a folder containing mongo-java-
driver-2.13.3.jar

• [Python] Set Extender->Options-
>PythonEnvironment “Folder for loading
modules” to a folder containing pymongo

Public Release

Add MongoDB Driver to the IDE
1. Select Project Name
2. Right-click on ‘Properties’
3. Select ‘Libraries’
4. Add JAR/Folder

Public Release

MongoDB Client

• You can use Robomongo

Public Release

SiteLogger UI

Public Release

Coding Time!
1. Let’s review together the

basic skeleton using WIP1
files
2. Let’s build together the

swing.JPanel using
Netbeans WYSIWYG editor
3. Implement the remaining

logic (~45 mins)
4.We will complete the

exercise together

Public Release

Extension dependencies
java.lang.NoClassDefFoundError: com/mongodb/MongoClient

 at
com.doyensec.sitelogger.SiteLoggerPanel.logButtonActionPerformed(SiteLogg
erPanel.java:121)

 at
com.doyensec.sitelogger.SiteLoggerPanel.access$000(SiteLoggerPanel.java:2
1)

…

• How can we import extension libs?
• (a) Setup Burp Java Environment
• (b) Embed libs within the extension JAR

Public Release

(a) Burp Java Environment

Public Release

(b) Embed libs within the extension JAR

• Build.xml for the rescue!

Public Release

Code Complete Extension

• https://github.com/doyensec/
burpdeveltraining/tree/master/SiteLogger

Building a replay tool
ReplayAndDiff

Public Release

Requirements

• From the database, retrieve a login HTTP
request with credentials in order to obtain a
fresh session

• Issue the login request and add the new
cookie to Burp’s Cookies Jar

• Replay a scan on the site previously saved by
SiteLogger

• Compare results and generate scan report, if
the new scan includes new findings

Public Release

Plugin Structure

registerExtenderCallbacks()

BurpExtender

burp package

• This extension should be executed in headless mode
• At startup, add the following JVM flag:
-Djava.awt.headless=true

Public Release

Parse Command Line Args
• java.lang.String[]
getCommandLineArguments()

• String[]can be parsed with an external library (e.g.
JSAP, Apache Commons CLI, etc.). For now, let’s use a
simple loop:

String[] args = callbacks.getCommandLineArguments();

for (String arg: args) {

 if(arg.contains("-h=") || arg.contains("--host=")){

 MONGO_HOST = arg.substring(arg.indexOf(‘=')+1);

 }else if {

 …

Public Release

makeHttpRequest and analyzeResponse

• byte[]
makeHttpRequest(java.lang.String
host, int port, boolean useHttps,
byte[] request)

• IResponseInfo
analyzeResponse(byte[] response)

• IResponseInfo contains key details about an
HTTP response including cookies, using
getCookies()

Public Release

Burp’s Cookie Jar

• Burp maintains a cookie
jar that stores all of the
cookies issued by sites
you visit

• The cookie jar is shared
between all of Burp's tools

• void
updateCookieJar(ICookie
cookie)

Public Release

Run a scan
• Two types of scan:

• IScanQueueItem doActiveScan(java.lang.String
host, int port, boolean useHttps, byte[]
request)

• void doPassiveScan(java.lang.String host, int
port, boolean useHttps, byte[] request, byte[]
response)

• Passive checks are executed immediately on
stored request/response pairs, while Active checks
require live traffic

• IScanQueueItem can be used to check the status
of the queue items

Public Release

Caveat

• When executing an active scan, Burp
expects all target URLs to be in scope

• If the request is NOT within the current
active scanning scope, the user will be
asked if they wish to proceed with the scan

• Since we’re running in headless mode,
make sure to add:

• void includeInScope(java.net.URL url)

Public Release

Diffing
• For this plugin, let’s adopt a simple heuristic
for (IScanIssue finding : allVulns) {

//Search in MongoDB for a finding with the
same type, name and URL
 //If cursor.size() == 0, we have a new
finding!

• If there is at least one new finding in the new scan,
generate the report
void generateScanReport(java.lang.String format,
 IScanIssue[] issues,
 java.io.File file)

Public Release

Login Request Setup 1/4

1. With Burp enabled, perform a login to the page
2. Go the request, and right-click to open the

contextual menu. Select “Save Item”
3.Open the saved file, and copy the Base64

request

Public Release

Login Request Setup 2/4

Public Release

Login Request Setup 3/4
• <request base64="true"><!

[CDATA[UE9TVCAvYnVycC5waHAgSFRUUC8xLjENCkhvc3Q6IDU
yLjI0LjEzNy4xNDANClVzZXItQWdlbnQ6IE1vemlsbGEvNS4wIChN
YWNpbnRvc2g7IEludGVsIE1hYyBPUyBYIDEwLjEyOyBydjo1My4
wKSBHZWNrby8yMDEwMDEwMSBGaXJlZm94LzUzLjANCkFjY2
VwdDogdGV4dC9odG1sLGFwcGxpY2F0aW9uL3hodG1sK3htbC
xhcHBsaWNhdGlvbi94bWw7cT0wLjksKi8qO3E9MC44DQpBY2N
lcHQtTGFuZ3VhZ2U6IGVuLVVTLGVuO3E9MC41DQpSZWZlcmV
yOiBodHRwOi8vNTIuMjQuMTM3LjE0MC8NCkNvbnRlbnQtVHlw
ZTogYXBwbGljYXRpb24veC13d3ctZm9ybS11cmxlbmNvZGVkD
QpDb250ZW50LUxlbmd0aDogMjQNCkNvb2tpZTogc2Vzc2lvbml
kPWZhYzEzMjNmZWU5MjUyYWYyZg0KQ29ubmVjdGlvbjogY2xv
c2UNClVwZ3JhZGUtSW5zZWN1cmUtUmVxdWVzdHM6IDENCg
0KZW1haWw9dGVzdCZwYXNzd29yZD10ZXN0]]></request>

Public Release

Login Request Setup 4/4
• Using Robomongo, create a new collection named “login”
• Then, insert the following entry:

use sitelogger
db.login.insert({
 host: '52.24.137.140',
 port: NumberInt(80),
 protocol: 'http',
 request:
'UE9TVCAvYnVycC5waHAgSFRUUC8xLjENCkhvc3Q6IDUyLjI0LjEzNy4xNDANClVzZXItQWdlbnQ6I
E1vemlsbGEvNS4wIChNYWNpbnRvc2g7IEludGVsIE1hYyBPUyBYIDEwLjEyOyBydjo1My4wKSBHZWN
rby8yMDEwMDEwMSBGaXJlZm94LzUzLjANCkFjY2VwdDogdGV4dC9odG1sLGFwcGxpY2F0aW9uL3hod
G1sK3htbCxhcHBsaWNhdGlvbi94bWw7cT0wLjksKi8qO3E9MC44DQpBY2NlcHQtTGFuZ3VhZ2U6IGV
uLVVTLGVuO3E9MC41DQpSZWZlcmVyOiBodHRwOi8vNTIuMjQuMTM3LjE0MC8NCkNvbnRlbnQtVHlwZ
TogYXBwbGljYXRpb24veC13d3ctZm9ybS11cmxlbmNvZGVkDQpDb250ZW50LUxlbmd0aDogMjQNCkN
vb2tpZTogc2Vzc2lvbmlkPWZhYzEzMjNmZWU5MjUyYWYyZg0KQ29ubmVjdGlvbjogY2xvc2UNClVwZ
3JhZGUtSW5zZWN1cmUtUmVxdWVzdHM6IDENCg0KZW1haWw9dGVzdCZwYXNzd29yZD10ZXN0'
})

Public Release

Coding Time!
1. Let’s review together the

basic skeleton using WIP1
files
2. Implement the remaining

logic (~1 hour)
3.We will complete the

exercise together

Public Release

Code Complete Extension

• https://github.com/doyensec/
burpdeveltraining/tree/master/ReplayAndDiff

Building a custom
Passive Scan check

DetectSRI

Public Release

Requirements

• Create an extension that detects whether
the specific HTTP response does not use
SubResource Integrity (SRI)
• “Subresource Integrity (SRI) is a security feature that enables

browsers to verify that files they fetch (for example, from a CDN)
are delivered without unexpected manipulation. It works by
allowing you to provide a cryptographic hash that a fetched file
must match”

• https://developer.mozilla.org/en-US/docs/Web/Security/
Subresource_Integrity

Public Release

SubResource Integrity (SRI)

• Check the login page source

Public Release

Plugin Structure

registerExtenderCallbacks()

callbacks.registerScannerCheck(this);

BurpExtender

burp package

• In this simple passive check, we can include the
heuristic code in the BurpExtender class itself

Public Release

doPassiveScan

• java.util.List<IScanIssue>
doPassiveScan(IHttpRequestResponse
baseRequestResponse)

• Extensions should only analyze the HTTP
messages provided during passive scanning

Public Release

IScanIssue interface

• We will return our custom implementation
• getConfidence()
• "Certain", "Firm" or “Tentative"

• getSeverity()
• "High", "Medium", "Low", "Information" or

"False positive”
• getIssueType()
• 0x08000000

Public Release

consolidateDuplicateIssues
• int
consolidateDuplicateIssues(IScanIssue
existingIssue, IScanIssue newIssue)

• It’s your responsibility to handle duplicates
• The Scanner will invoke this method if there are

multiple issues for the same URL path

Public Release

HTML Ascii Art anyone?

Public Release

Coding Time!
•We will do this

together!

Public Release

Code Complete Extension

• https://github.com/doyensec/
burpdeveltraining/tree/master/DetectSRI

Building a custom
Active Scan check

DetectELJ

Public Release

Requirements

• Create an extension that detects
Expression Language injection
vulnerabilities
• Type of injection that occurs when

attackers control data that is evaluated
by an Expression Language (EL)
interpreter

Public Release

Expression Language (EL) injection

• Example:
• ${1336+1} —> 1337

• Think about Struts2 OGNL, Apache
Jakarta, Spring’s SPEL

• If interested, read https://
www.mindedsecurity.com/fileshare/
ExpressionLanguageInjection.pdf

Public Release

Plugin Structure

registerExtenderCallbacks()

callbacks.registerScannerCheck(this);

BurpExtender

burp package

• We can re-use the same passive scanner check
skeleton, and instead implement doActiveScan()

Public Release

Understanding Response Changes

• Burp Extender APIs provides a useful helper method
to analyze variations between two or more HTTP
Responses

• IResponseVariations
analyzeResponseVariations(byte[]...
responses)

• IResponseVariations is a list of String representing the
specific attributes that changed between those responses
• content_length

• whole_body_content
• and so many others

Public Release

IResponseVariations Attribute Types

• status_code

• input_image_labels

• page_title

• visible_text

• button_submit_labe
ls

• div_ids

• word_count

• content_type

• outbound_edge_tag_
names

• whole_body_content

• etag_header

• visible_word_count

• content_length

• header_tags

• tag_ids

• comments

• line_count

• set_cookie_names

• last_modified_head
er

• first_header_tag

• tag_names

• input_submit_labels

• outbound_edge_count

• initial_body_content

• content_location

• limited_body_content

• canonical_link

• css_classes

• location

• anchor_labels

Public Release

Scan Issue

Public Release

Coding Time!
1. Let’s review together the

basic skeleton using WIP1
files
2. Implement the remaining

logic (~30mins)
3.We will complete the

exercise together

Public Release

Pro Tip 1/2

• When creating a new issue, we can also
specify markers to show specific strings
within requests/responses

• This is done using the following callback
method:
IHttpRequestResponseWithMarkers
applyMarkers(IHttpRequestResponse
httpRequestResponse,
java.util.List<int[]> requestMarkers,
java.util.List<int[]> responseMarkers)

Public Release

Pro Tip 2/2

• Within our implementation of IScanIssue,
we can customize the object returned by
getHttpMessages()

Public Release

Scan Issue Improved

Public Release

Code Complete Extension

• https://github.com/doyensec/
burpdeveltraining/tree/master/DetectELJ

Building a security
automation toolchain

Jenkins + Burp

Public Release

Typical CI Environment

• Continuous Integration has become a
widely adopted practice

Public Release

Moving fast means testing fast

• We have a site logger
• We have an headless replay tool
• We have custom Scanner checks
• Let’s integrate all components in a new

Build Step (SecTesting) using Jenkins and
the Build Pipeline View plugin

Public Release

Jenkins Setup 1/2

1. Download Jenkins - jenkins.war
2. Run it using $java -jar jenkins.war
3. Open the browser and visit

https://<HOST>:8080
4. Type your auto-generated admin

password
5. Select Select Plugin to Install
6. Search and install Build Pipeline Plugin

Public Release

Jenkins Setup 2/2

7. Coffee Break
8. Create your admin user
9. It’s time to create our build pipeline!

Public Release

Training Environment

• Multiple Jenkins instances already setup
and ready to go

• Login with admin:admin

Public Release

Our pipeline plan

Build Deploy Test

echo “Build” echo “Deploy”
curl http://target

java -jar
burp.jar ….

Public Release

(1) Build
• To simplify our setup, build is just simulated

using a simple execute shell
• Click on “New Item”->”Freestyle Project” named

“Build”
• In the Build section, select “Add Build Step” ->

“Execute Shell”
• Type echo “Build"
• Save

Public Release

(2) Deploy
• To simplify our setup, deploy is also simulated
• Click on “New Item”->”Freestyle Project” named “Deploy”
• In the Build section, select “Add Build Step” -> “Execute Shell”
• Type echo “Deploy”; curl http://127.0.0.1/index.html | grep Burp

• Additionally, we can verify if the live endpoint is up and running with “Exit
code to set build unstable”
• If the exit code != 1 —> Build Unstable

• Finally, in “Build Triggers” select “Build after other projects are built” and
type “Build”
• Save

Public Release

Create New Build Pipeline View

• From the home, click on the +
• Select “Build Pipeline View” named

“Security Pipeline” and then “Ok”
• (Optional) Type a description
• In the configuration “Select Initial Job”,

pick “Build”
• This is our first step for the overall

execution

Public Release

Our Security Pipeline (so far)

• It’s time to perform security testing on the
“newly deployed code”

Public Release

(3) SecTesting

• A new task where we will execute Burp and
our extensions

Public Release

SecTesting Plan 1/2

1. Using Burp and our SiteLogger plugin, we
have already recorded the traffic to our
deployed application
2. With ReplayAndDiff, we can run a scan in

headless mode, performing diff and
generating a new findings report
3. Using DetectELJ and DetectedSRI, we

can enhance our scanners capabilities

Public Release

SecTesting Plan 2/2

• Let’s just put all together so that our build
step will execute Burp with our plugins
• Additionally, we want to fail the build if

there’re new findings

Public Release

SecTesting Setup 1/4

• First, let’s start Burp with the GUI and load
all extensions. Then, close it gracefully.
• In this way, Burp will reload all

previously-loaded extensions at startup
• We can use $ ssh -X for X11 forwarding
• This step was already done by me

Public Release

SecTesting Setup 2/4
• Create a new Freestyle project named

“SecTesting”
• In the newly create SecTesting task, create a

new “Execute Shell” with the following code:
echo "Launching Burp Pro..."

java -Xmx256m -Djava.awt.headless=true
-jar /home/ubuntu/burpsuite_pro.jar
-h=127.0.0.1 -p=27017 -o=/home/ubuntu/
reports/ -r=report.html -t=40

Public Release

SecTesting Setup 3/4
• Click “Add Build Step” and select “Conditional

Step (single)”
• File: /home/ubuntu/reports/report.html

• Then, “Execute Shell” again

Public Release

SecTesting Setup 3/4
• As shell script use:

echo "New report - Send email out!”;
echo "Burp ReplyAndDiff identified a new finding. See
attached report." | mail -A /home/ubuntu/reports/
report.html -s "Burp Scanner - New Finding" <email>
rm /home/ubuntu/reports/report.html
exit 1

• Exit 1 will force the build as ‘unstable’
• In a real-world scenario, you could use Jenkins’ Email

Notification to send a custom email to the developers

• In the configuration “Select Initial Job”, pick “Build”
• Save

Public Release

Ready To Go
• Click on Run to execute the entire pipeline

• Jenkins will display the progress. You can
review the console output by clicking on
the symbol

Public Release

SecTesting Console Output

Public Release

Moment of Truth

• Wait for the email :)

Intruder Payloads Generator
Case Study: Bradamsa

** EXTRA MATERIAL **

Public Release

Intruder payloads

• Let’s study the implementation of Bradamsa
• Radamsa for Burp
• Original project:

https://github.com/ikkisoft/bradamsa
• Simplified code to study:

https://github.com/doyensec/
burpdeveltraining/tree/master/Bradamsa

• This extension provides a custom Intruder
payload generator

Public Release

What is Radamsa

• Radamsa is a command-line test case
generator for fuzzing

• It is scriptable and super easy to use

$ echo "aaa" | radamsa
 :aaa

Public Release

Install Radamsa
 $ git clone https://github.com/aoh/radamsa.git
 $ cd radamsa
 $ make
 $ sudo make install
 $ radamsa --help

• You need gcc/clang, make and git
• On Mac OS, change the Makefile to install in /usr/local/bin/

Public Release

What is a payload generator?

Public Release

Generator and Processor

• Extensions can register themselves as
registerIntruderPayloadGeneratorFactory
or registerIntruderPayloadProcessor

• For payload generators, Burp expects the
extension to return an implementation of
the IIntruderPayloadGenerator
interface

Public Release

In pseudo-code
class myGenerator implements IIntruderPayloadGenerator{

 @Override
 public boolean hasMorePayloads()
 { ... }

 @Override
 public byte[] getNextPayload(byte[] baseValue)
 { ... }

 @Override
 public void reset()
 { ... }
}

Public Release

Bradamsa Demo 1/2

Public Release

Bradamsa Demo 2/2

Public Release

Let’s have a look at the code

• https://github.com/doyensec/
burpdeveltraining/tree/master/Bradamsa

• Focus on RadamsaPayloadGenerator.java
and BradamsaPanel.java

Conclusion

Public Release

Final Remarks

• Building extensions is fun and useful to
improve efficacy and efficiency of security
testing activities

• When analyzing custom protocols, Burp
extensions make a big difference

• When Burp Scanner is integrated in the
SDLC, creating custom check can ensure
test coverage (regression, application-
specific bugs, …)

Public Release

What’s next?

• Study the Burp API Javadoc
• https://portswigger.net/burp/extender/api/

• Check the source code of BApp Store
extensions on PortSwigger’s Github
• https://github.com/PortSwigger

• Build your extension!

Thank you!

Please email your feedback at
info@doyensec.com

Luca Carettoni - luca@doyensec.com

