

Perl Programming for
Beginners

An Introduction to Learn Perl
Programming with Tutorials and Hands-On

Examples

Text Copyright © Lightbulb Publishing
All rights reserved. No part of this guide may be reproduced in any form without permission in writing
from the publisher except in the case of brief quotations embodied in critical articles or reviews.
Legal & Disclaimer
The information contained in this book and its contents is not designed to replace or take the place of
any form of medical or professional advice; and is not meant to replace the need for independent
medical, financial, legal or other professional advice or services, as may be required. The content and
information in this book has been provided for educational and entertainment purposes only.
The content and information contained in this book has been compiled from sources deemed reliable,
and it is accurate to the best of the Author's knowledge, information, and belief. However, the Author
cannot guarantee its accuracy and validity and cannot be held liable for any errors and/or omissions.
Further, changes are periodically made to this book as and when needed. Where appropriate and/or
necessary, you must consult a professional (including but not limited to your doctor, attorney, financial
advisor or such other professional advisor) before using any of the suggested remedies, techniques, or
information in this book.
Upon using the contents and information contained in this book, you agree to hold harmless the Author
from and against any damages, costs, and expenses, including any legal fees potentially resulting from
the application of any of the information provided by this book. This disclaimer applies to any loss,
damages or injury caused by the use and application, whether directly or indirectly, of any advice or
information presented, whether for breach of contract, tort, negligence, personal injury, criminal intent,
or under any other cause of action.
You agree to accept all risks of using the information presented in this book.
You agree that by continuing to read this book, where appropriate and/or necessary, you shall consult a
professional (including but not limited to your doctor, attorney, or financial advisor or such other
advisor as needed) before using any of the suggested remedies, techniques, or information in this book.

Table of Contents
1. Introduction
2. Scope of Perl

How relevant is Perl in 2020 and beyond?
What are the prerequisites of learning Perl?
What will I learn from this book?

3. Getting Started
3.1 Installing Perl on Windows
3.2 Installing Perl on Unix-like systems
3.3 Perl Scripts/Programs
3.4 Script Execution
3.5 Hello World!!! Script Execution

4. Basic Syntax
4.1 Statements
4.2 Comments
4.3 Code Block
4.4 Identifiers

5. Writing your first Perl script
5.1 print Function
5.2 Syntax Errors

6. Data Types and Variables
6.1 Data Types

6.1.1 Scalar
6.1.2 Arrays
6.1.3 Hashes

6.2 Variables
6.2.1 Declaring Scalar Variables

6.2.2 Numeric Values
6.2.3 String Values
6.2.4 Display Scalar Variables

7. User Interaction
8. Operators

8.1 Arithmetic Operators
8.2 Assignment Operators
8.3 Comparison Operators
8.4 Logical Operators
8.5 Bitwise Operators

9. Decision Making
9.1 if-else Statements
9.2 unless Statement

10. Loops
10.1 while Loop
10.2 do-while Loop
10.3 until Loop
10.4 for Loop
10.5 Nested Loops
10.6 Control Statements

10.6.1 next Statement
10.6.2 last Statement
10.6.3 continue block
10.6.4 redo Statement

11. Arrays
11.1 Array Creation
11.2 Accessing Array Elements
11.3 Range Operator

11.4 Arrays and Loops
11.5 foreach Loop
11.6 Reading user input into arrays
11.7 Array Manipulation
11.8 Sorting Arrays

12. Hashes
12.1 Accessing and Manipulating Hashes

12.1.1 Check if a Key Exists
12.1.2 Delete Hash Elements

12.2 Fetch Keys and Values
13. Subroutines

13.1 Defining a Subroutine
13.2 Calling a Subroutine
13.3 Passing arguments

14. Strings
14.1 String Basics
14.2 String Concatenation and Repetition
14.3 Search within a string

15. File Handling
15.1 Basics of File I/O

15.1.1 Open Files
15.1.2 File Modes
15.1.3 Close Files
15.1.4 Create a simple file
15.1.5 Writing to a file
15.1.6 Reading from a file
15.1.7 Search text inside a file

16. Programming Examples

16.1 Prime or Composite
16.2 Fibonacci Series
16.3 Sum of digits of a number
16.4 Reverse a number
16.5 Menu driven program
16.6 Lowest Common Multiple
16.7 Search for an element in an array
16.8 Greatest element in an array
16.9 Bubble Sort
16.10 File Copy

17. Final Thoughts

1. Introduction
Perl is a general purpose high level multi-paradigm programming language.
In 1987, a computer programmer named Larry Wall began working on the
development of Perl language at a company called Unisys and released the
first version (version 1.0) on December 18, 1987. Perl is actually a set of two
programming languages – Perl 5 and Perl 6. When we say just “Perl”, we
refer to Perl 5. In October 2019, Perl 6 was officially renamed to Raku. In
this book, we well only focus on Perl 5 and refer to it as “Perl”. Although
“Perl” does not stand for anything, there exist many unofficial acronyms
including “Practical Extraction and Reporting Language”.
Perl is a cross-platform interpreted language that works on over 100
platforms. Being an interpreted language, there is a Perl interpreter that sits
on the host system which executes Perl programs/scripts. Some of the well-
known Perl supported platforms are Windows, Linux, FreeBSD, MacOS,
OpenVMS, Solaris, etc. It is possible to write a Perl program on one platform
(say Windows) and take it to another platform such as Linux or Mac and
execute it. The execution will go ahead seamlessly as Perl is a cross platform
language. One exception to this feature is that your program should not
contain any platform specific code. In case of programming languages such
as C/C++ and Java, there is a compiler which compiles a program and
generates executable code. Perl adopts a different approach when it comes to
program execution – being an interpreted language, a Perl script is executed
line by line by the Perl interpreter.
C programming language is used to implement Perl environment. However,
no knowledge of C is needed to learn Perl. Tools and languages such as
AWK, BASIC, C/C++, sed, etc. have influenced Perl and languages such as
JavaScript, CoffeeScript, Python, Ruby, PHP, etc. have been influenced by
Perl.

2. Scope of Perl
Perl is a general purpose scripting language and can be used for many things.
You can build desktop applications, web applications, web services, GUI
applications, etc. with it. There are powerful set of tools for text processing,
file handling, regular expression and many more. These features led to Perl’s
exponential growth and popularity in the 1990s and early 2000s. In 2020,
Perl does not remain as popular as it used to be back in the day but is still a
formidable language that can do a lot of things. In addition to the mentioned
uses, Perl can be used to build network programming applications, scientific
computing, system administration, etc. In fact, on Unix-like systems such as
Linux, Mac and FreeBSD, system administrators use Perl to automate many
tasks. Because of its power, flexibility and such diverse application space,
Perl earned the nickname – “the Swiss Army chainsaw of scripting
languages”.
Another reason why Perl became so popular is because it emerged as the top
choice for CGI (Common Gateway Interface) scripting. CGI is a web server
interface between the end user and non-native web application. For example,
a user can interact with a Perl script using a simple webpage with the help of
CGI. All this cocktail of useful features, wide use cases, power and
inelegance led to this language being referred to as – “duct tape that hold the
internet together”.
Database management is another powerful application of Perl. Databases
such as MySQL, MSSQL, PostgreSQL, MongoDB, NoSQL, SQLite, etc. can
be accessed and managed using Perl with the help of appropriate APIs.

How relevant is Perl in 2020 and beyond?
Since Perl is a general purpose, cross platform scripting language, it can be
used to build applications and solve problems across many domains and
platforms. Amazon uses Perl for most of its backend. There is a Perl based
web framework called catalyst which powers DuckDuckGo search engine’s
community edition and BBC iPlayer’s backend. Apart from catalyst, there
are some more web frameworks such as Mojolicious, Perl Dancer, etc.
which power thousands of websites, web applications and web services. A
well-known SPAM filter called SpamAssasin is written in Perl. For

developing GUI applications, there are bindings available of several cross
platform GUI frameworks such as PerlQt (for Qt), PerlTk (for Tk), wxPer
(for wxWidgets), etc.

What are the prerequisites of learning Perl?
If you already know programming languages such as C/C++, Python, Java,
C#, etc. it will help you a great deal in learning Perl. If you do not, there is no
need to worry as Perl is an easy to understand programming language.
However, you should be comfortable with using your system and be well
versed with using Shell/Terminal on Linux/MAC and Command
Prompt/PowerShell on Windows.

What will I learn from this book?
Once you have gone through the whole book, you will be able to write simple
command line based desktop applications that can do various things. This
will set the base for learning advanced concepts. Perl is an incredibly
powerful language for developing web applications. Learning web
programming using Perl is pointless without understanding core web
development technologies such as HTML5, CSS, JavaScript and hence web
application development using Perl has not been covered in this book.

3. Getting Started
A PC/Laptop with Windows/Linux or a MAC system is needed to write and
execute Perl scripts/programs. Perl programs can be written using any text
editor including Notepad, Wordpad, vi, etc. I suggest Notepad++
(https://notepad-plus-plus.org/). Simple Perl scripts are plain-text files and
carry the extension .pl. Other extensions of Perl file types are – .pm, .xs, .t,
.pod. We will only be working with the .pl file type.
As mentioned earlier, a Perl interpreter is responsible for executing Perl
scripts. In this chapter, we will learn how to install Perl Interpreter.

3.1 Installing Perl on Windows
There are two major Perl implementations for Windows – ActiveState Perl
and Strawberry Perl. Both implementations are official and using either one
is fine for a beginner. We will be using Strawberry Perl to work with Perl
scripts through the course of this book. You can choose to go ahead with
ActiveState Perl should you so desire. Log on to
https://www.perl.org/get.html and download the Perl interpreter of your
choice. Here is how you set up Strawberry Perl on your Windows system:
Execute the installation binary. You will need Administrator rights to do so.
You will be greeted with a welcome screen that looks like this:

https://notepad-plus-plus.org/
https://www.perl.org/get.html

Click Next, you will be presented with the EULA:

Read the agreement, accept the terms and click Next. Here, you will be given
an option to choose the installation directory. It is best to leave this
unchanged unless you are an advanced user and you know what you are
doing.

Click Install in the next Window.

The setup process will now begin and will take a few minutes.

Once the installation is complete, you will see something like this:

Now, open Command Prompt/PowerShell, type perl -v and hit Enter.
You should see Perl’s version and some more information like this:

If you see an error message like – “perl” is not recognized as an internal or
external command, operable program or batch file, it means either Perl has
not been properly installed or the PATH variable has not been properly set.
In such a case, make sure that Strawberry Perl has been installed by going to
the installation directory (C:\Strawberry in case you did not change it during

installation process). Navigate to <drive>:\Strawberry\Perl\bin directory,
make sure there is an executable called perl.exe. If it does not exist, re-install
Strawberry Perl. If it does exist, add <drive>:\Strawberry\Perl\bin to your
environment variable PATH by going to System Properties.

3.2 Installing Perl on Unix-like systems
If you use a Unix-like system such as Linux, MAC, FreeBSD, etc., it is likely
that Perl environment is already present on your system. The best way to
check is – open the Shell/Terminal and enter the following command at the
prompt:

$>perl -v
This command will display Perl’s version if it is present and you should see
something like this:

If Perl is not present, you will see an error message. In such a case, go to
https://www.perl.org/get.html, download and install the appropriate version
of Perl for your operating system.

3.3 Perl Scripts/Programs
A Perl script is a plain-text file containing instructions which can be written
using any text editor or a supported IDE. To keep things simple, I prefer
using Notepad++. A script once written should be saved with the extension
.pl. This file is referred to as – Perl script, Perl program, Perl source, source

https://www.perl.org/get.html

code, source file or simply script/ program/source.
Writing Perl scripts on Windows is straight forward. Just open your favourite
text editor, start writing the script and save it as <file name>.pl. On Unix-like
systems such as Linux, MAC, FreeBSD, etc., you have to one extra thing –
add a shebang line. A shebang line is a sequence of characters beginning
with #! followed by the location of the environment or the script interpreter.
In our case, it is the Perl interpreter. This line should be the first one in your
script. The Perl interpreter is usually located at /usr/bin/perl or
/usr/local/perl. Hence, on Unix-like systems, the shebang line will look like:

#!/usr/bin/perl
#OR
#!/usr/local/perl

A good way to determine the location of the Perl interpreter is to use the
where or locate command on Linux as follows:

$>where perl
OR
$>locate perl

On MAC, you can use the which command:
$>which perl

These commands will return the location of the Perl interpreter, simply copy
it and use it as a part of your shebang like.
Note: A shebang line is not always required but is considered as a good
programming practice. Hence, I suggest you always insert this line in your
Perl scripts on Linux/MAC. We will look at a condition where the shebang is
always required later in this chapter.

3.4 Script Execution
A Perl script can be executed on Windows and Unix-like systems by
invoking the Perl interpreter using the perl command inside the Command
Prompt/Powershell or Terminal/Shell. When we say perl command, it refers
to the Perl interpreter’s executable binary which is perl.exe on Windows
(present at Perl’s installation directory, eg. C:\Strawberry\perl\bin\perl.exe)
and /usr/bin/perl or any other appropriate location of the Perl interpreter on

Unix-like systems. The script to be executed should be passed as a command
line argument to this command as follows using Command
Prompt/Powershell or Terminal/Shell:

perl <script name>
Example:
perl myscript.pl

In the above example, the Perl interpreter will start executing myscript.pl Perl
script. It goes without saying that the script to be executed should be present
in the current working directory. Alternatively, you can provide the complete
path of the script file.
There is another method of executing scripts on Unix-like systems. That is by
making the script itself executable. In Linux, MAC, FreeBSD, etc. there are 3
file permissions – read, write and execute. This is a vast topic and covering it
is beyond the scope of this book. What we are interested in is the execute
permission. A script can be made executable by giving it the execute
permission. To do so, we have to use the chmod command.
In order to give execute permission to a file, we use the +x flag with the
chmod command. General Syntax:

chmod +x <file 1>, <file 2>, … , <file n>
Example:
chmod +x demo.pl
chmod +x myscript.pl, yourscript.pl, ourscript.pl

Once this permission has been given to a script, it can be executed as:
./<script name>
Example:
./myscript.pl

Note: When a script is made executable, it is mandatory to have a shebang
line pointing to the environment or the location of the Perl interpreter.
Without this line, the script will not execute as it will not know which
interpreter to invoke in order to begin script execution.

3.5 Hello World!!! Script Execution

Let us get hands-on experience in executing a Perl script. Open the text editor
of your choice, copy-paste the following code and save it as helloworld.pl at
a convenient location:
#This is a simple Hello World Perl Script.
#Uses print function to display text on the console.

print ("\nHello World!!!\n\n");

Side Note: You do not have to understand the code for now, we are only
learning how to execute a script.
Let us execute this script first on Windows and then move to Unix-like
systems. Open Command Prompt/PowerShell, navigate using the cd
command to the directory where helloworld.pl has been saved. Enter the
following command:

perl helloworld.pl
You should see the output as follows:

If you use Unix-like systems, modify the above code by adding the shebang
line pointing to the Perl interpreter. For demonstration purpose, I am using
Debian Linux and this is what my code looks like:

This script can be executed on Unix-like systems in two ways – by invoking
the Perl interpreter and by making the script itself executable. Let us look at

the Perl interpreter invocation first. Open Shell/Terminal, navigate to the
directory where helloworld.pl has been saved and enter the following
command:

perl helloworld.pl
You should see something like this:

As seen this method is the same as script execution on Windows.
Let us now look at the other method where we will make this script
executable using the chmod command. Open Shell/Terminal, navigate to the
directory where helloworld.pl has been saved and enter the following
command:

chmod +x helloworld.pl
The above command will add execute permission to helloworld.pl. Enter the
following command to execute the script:

./helloworld.pl

Note: The script execution process on Window and on Unix-like systems
remain mostly the same. As a beginner, it does not matter which OS/Text
Editor/IDEs/Tools you use to learn Perl, it is advisable to use the tools you
are most comfortable with. The scripts demonstrated in the book have been
written and executed on Windows and hence they do not contain shebang

lines. Should you choose to execute these scripts on Unix-like systems, make
sure to add the shebang line pointing to the correct location of the Perl
interpreter.

4. Basic Syntax
One of the most important things about Perl you have to understand when
learning it is – Perl is a case-sensitive language. Which means, “Laptop” and
“laptop” are two different things to the Perl interpreter although they mean
the same to us humans.

4.1 Statements
A statement is an instruction or a set of instructions that carries out a certain
task or a set of tasks. A task can be anything from printing something on the
console, opening/closing a file, adding two numbers, comparing two
variables, etc. A statement ends with a semi-colon (;). Although you can have
as many statements as you want on one line, separating each one with a semi-
colon, it is a good practice to have one statement on one line. Here are a few
examples of Perl statements:

print (“Hello!!!”);
$number = 5 ;
$x = 7 * 10.6 ;
$y = $number + $x ;

4.2 Comments
Comments are usually used to mark or explain the code and are ignored by
the interpreter. That is, having comments in your code will have no impact on
its output. Perl supports single line comments as well as multi-line comments.
A single line comment begins with a hash (#) symbol and ends on the same
line. For example:

#This is a comment.
This is also a comment.

A multiline comment starts with an equal-to sign (=) and ends with this
character sequence =cut. When a multiline comment begins, the equal-to
sign (=) should be immediately followed by an arbitrary character without
leaving any space between the equal-to sign and the character. For example:

=Multiline comment begins here

Spans over many lines.
On this line too.
=cut

Note: Many programming examples have been demonstrated in this book.
Each script is explained with comments wherever possible. It is advisable
that you read through the comments for better understanding of a program.

4.3 Code Block
A code block is a group of statements. The beginning of a code block is
marked with an open curly bracket ({) and the end is marked with a close
curly bracket (}). Close blocks are very common when dealing with
decision making constructs, loops and sub-routines. For example:

sub DemoSub
{
print (“This is a code block!”);
}

4.4 Identifiers
An identifier is a name given to a variable, class, object or a sub-routine. It
starts with $, @ or %. An identifier name can contain alphanumeric
characters and underscores. No other characters are permitted.

5. Writing your first Perl script
All the Perl scripts demonstrated in this book are essentially console
applications. That is, the scripts are designed to run inside Command
Prompt/Powershell or Shell/Terminal depending on the OS that you choose.
In Section 3.5, we saw how to execute a Perl script, in this section we will
learn how to write a script to display text on the console.

5.1 print Function
One of the simplest ways to display text on the console is by using the print
function. A function is reusable code designed to carry out an operation. We
will be learning more about functions in depth in the Sub-Routines chapter
later on, let us simply learn to use the print function for now. The print
function can be used to display a constant string, variable, etc. To keep things
simple, we will start with how to use print function to display a string; other
features of this function will be covered as and when required. A string is a
sequence of characters enclosed within double quotes (" ").
The general syntax of print function to display a string is:

print (<string>);
#OR
print <string>;
Example:
print (“This should work!”);
print “This is another example.”;

Let us write a simple Perl script with one print statement to display text on
the console. Open a text editor, write a print statement to display the string of
your choice, save the file using .pl extension. Run the script using the perl
command. Here is my script:
#This is the first program we're actually writing.
print ("This is my first Perl script!");

Output:

Let us now insert one more print statement to print another string after the
first one and see what happens:
#This is the first program we're actually writing.
print ("This is my first Perl script!");
print ("Wow!!! This works!");

Output:

Notice how the second string is printed on the same line as the first one. In
fact, not even a space has been left between the end of the first line and the
beginning of the second one. If we leave space at the end of the first line, it
will obviously reflect in the output. Modify the first print statement to the
following and verify the output:
print ("This is my first Perl script! ");

Output:

Text can be printed on the next line by using the escape character sequence
\n. Another useful one is \t which is used to inset a tab-space. Here is an
example:
#Escape Character Demo
print ("\nLet us see how to print on the next line.");
print ("\nThis is how you do it.");

print ("\nAnd \tthis is how \tyou leave a \ttab-space.\n")

Output:

Note: Backslash (\) is the character used to escape characters such as
restricted ones’ like @, $ and %. For example, if you want to display $ using
a print statement, you cannot do it directly because $ means something else
in Perl (we will cover it later). This is where the escape character backslash is
very useful. Instead of saying:

print ("$");
You would say:

print ("\$");

5.2 Syntax Errors
Syntax errors will be encountered when proper syntax has not been followed.
When you try to run a script containing syntax errors, sometimes the
interpreter will point out exactly where what has gone wrong and sometimes
the error description will be vague. Hence, it is advisable that you follow the
correct syntax and check your code thoroughly before running. Let us take an
example of a code with syntax errors:
print ("Forgetting semi colon on purpose.")
print ("\nLets see what happens.")

I have omitted semi-colons at the end of print statements on purpose. When
you try to run this code, this is what you should see:

This error message gives you a fair idea of what is wrong with your code.

6. Data Types and Variables
A data type is used to understand the category of data we are working with.
A variable is a name given to a memory location. Perl offers three basic data
types – scalar, arrays and hashes.

6.1 Data Types
Let us take a look at each of these 3 categories very briefly.

6.1.1 Scalar
Scalar variables are used to store numbers and strings. Numbers can be
integers, floating point values, hexadecimal and octal. Scalar variable names
begin with a dollar sign ($).

6.1.2 Arrays
An array is a collection of items. Array variables begin with at the rate sign
(@).

6.1.3 Hashes
Hashes are used to store data using key-value pairs. Hash variables begin
with percentage sign (%).

6.2 Variables
A variable is an identifier used to address a memory location. When a
variable is declared, some amount of memory is reserved for it to store its
contents. This memory location can be uniquely addressed using its memory
address. Because it would be difficult for programmers to remember memory
location every time they access data from a memory location, there is a
concept of variables. In this section, we will only talk about Scalar
Variables. There are dedicated chapters on Arrays and Hashes later in this
book.

6.2.1 Declaring Scalar Variables
A scalar variable name begins with a dollar sign ($), can contain
alphanumeric characters and underscores. The first character has to be either
an alphabet or an underscore. Assignment operator given by the equal-to sign
(=) is used to assign values to variables. A variable can be declared and

initialized in the simplest way using the following syntax:
$<variable name> = <initial value>;
Example:

$name = "Rose";
$age = 29;
$weight = 45.74;

6.2.2 Numeric Values
Integers, floats, octal, hexadecimal and scientific notations are supported by
Perl as numbers in general. Here are a few examples:

#Integers
$num1 = 9;
$num2 = 27;
#Floating point values
$x = 5.86;
$y = -66.356;
#Octal (Begins with 0)
$m = 0464;
$n = -033;
#Hexadecimal
$hex_1 = 0xFA;
$hex_2 = 0xceb;
#Scientific Notations (Used for large floating point values)
$r = -3.5E6;
$s = 8.65E-2;

6.2.3 String Values
A string can be formed by enclosing a sequence of characters either in single-
quotes or double-quotes but not in a mixed order. Here are a few examples:

$name = "Yuan";

$address = ‘Xiamen’;
If you want to include a restricted character such as $, %, @, etc. you have to
use the escape character (\) just before the restricted character. For example,
if you want to store an email address in a string variable you cannot do it
directly as the @ sign will cause problems. Instead of the following
statement:

#This statement is wrong, used only for demonstration
purpose

$email = “user@xyzdomain.com”

You will have to use the escape character as follows:
$email = “user\@xyzdomain.com”

6.2.4 Display Scalar Variables
The contents of scalar variables can be displayed using the print function. It
is possible to display a single variable, multiple variables separated by
commas or make multiple variables part of one big string. Consider the
following code snippet, all the print statements are syntactically valid:

$name = "Jody";
$company = "Microsoft";
$package = 120;
#Display single variable
print ($name);

#Display multiple variables, separated by comma.
#No space will be left when these variable will be printed.

print ($name, $company, package);
#Display multiple variables, separated by comma.
#Insert space between variables.

print ($name, " ", $company, " ", package);
#Make variables part of a larger string
print ("\nName: $name \nCompany = $company \nPackage =

$package \n");
Let us write a Perl script to demonstrate the usage of variables:

#Variables Demo
#Declare and initialize different types of numbers
#Integer
$x = 25;
#Float
$y = -54.7098;
#Scientific Notation
$z = 1.397E-2;
#Hexadecimal
$h1 = 0x4a6b;
$h2 = -0x3c;

#Octal
$oct = 0345;
#Display everything
print ("\nx = $x \t\ty = $y \tz = $z \nh1 = $h1 \th2 = $h2 \toct = $oct\n\n");

#Declare and initialize strings
$name = 'Maggie';
$country = "South Africa";
$email = "maggie\@somedomainxyz.com";
#Print everything
print ("\nname: $name \ncountry: $country \nemail: $email \n\n");

Output:

Suggestion: Whenever you use variables to store any data, always use
meaningful variable names. For example, if you want to store salary of a
person, you would be better off using a variable name such as $salary or $sal
as compared to $x, $y, etc. This is not only considered a good programming
practice but will also make your code readable and easy to understand.

7. User Interaction
Whatever scripts we have seen so far, did not involve any input from the
user. A user simply had to execute them. In this section, we will see how to
accept input from the user. There are various input/output devices (I/O)
connected to a computer. The standard output device is the monitor in most
cases and the standard input device is the keyboard in most cases. It takes a
lot of things internally for such devices to be interfaced with a computer and
deal with input and output. But for an end user, there is nothing much to
worry about as these things happen implicitly. The standard input and output
devices are abbreviated as STDIN and STDIO respectively.
In order to accept input from a user, we use the Prompt; given by <STDIN>
or simply <>. A scalar variable is needed to receive the input coming from
the user. General Syntax:

$[Scalar Variable] = <>;
#OR
$[Scalar Variable] = <STDIN>;
Example:
$name = <>;
#OR
$address = <STDIN>;

When a prompt is used, it will introduce a blocking I/O operation into your
program. That is, whenever the interpreter encounters a statement containing
<> or <STDIN>, the program will halt and wait for the user to enter
something through the keyboard (and press Enter). No other I/O interaction
will happen with the program until the user gives some input. When the user
enters something and presses Enter, that data will be stored in the variable
specified on the left hand side. If the user does not enter anything at all, the
script will wait at that point indefinitely until the process is terminated
externally.
Let us write a Perl script which will ask the user to enter a message and the
same message will be displayed back.
#User Input Demo 1
#Ask the user to enter something

print ("\nEnter some text: ");
#Use prompt to receive the input in the variable $message
$message = <STDIN>;
#Display the contents of $message
print ("\nYou have entered: $message");

Output:

This is a critical chapter as it introduces user interaction during runtime for
the first time in this book. Let us take another example where we shall ask the
user to enter name, age, address and country. We will then display the
entered data. Here is the script:
#User Input Demo 2
#Ask the user to enter name
print ("\nEnter your name: ");
#Use prompt to receive the input in the variable $name
$name = <STDIN>;
#Ask the user to enter age
print ("\nEnter your age: ");
#Use prompt to receive the input in the variable $age
$age = (<STDIN>);
#Ask the user to enter address
print ("\nEnter your address: ");
#Use prompt to receive the input in the variable $address
$address = <STDIN>;
#Ask the user to enter country
print ("\nEnter your country: ");
#Use prompt to receive the input in the variable $country
$country = <STDIN>;
#Display Everything
print ("\nYou have entered: \n\nname:\t\t$name \nage:\t\t$age \naddress:\t$address
\ncountry:\t$country ");

Output:

When we enter something through the keyboard and press Enter, newline
character (\n) is appended to our input. Take a look at the print statement
from the previous example:
print ("\nYou have entered: \n\nname:\t\t$name \nage:\t\t$age \naddress:\t$address
\ncountry:\t$country ");

Except for \n\nname, there is only one \n each in front of age, address and
country. Yet, one extra line is left when we try to print the contents of the
variables. This is because, the newline character that got appended to our
input whenever we entered something and pressed Enter is leaving one extra
line. To circumvent this, we can use the chomp function which will remove
the trailing newline character. It can be used either while taking the input
with prompt (<> / <STDIN>) or once the input is received into a variable,
chomp function can be used on that variable. General syntax:

chomp ($[scalar variable] = <STDIN>);
#OR
$[scalar variable] = <STDIN>);
chomp ($[scalar variable]);
Example:
chomp ($name = <>);
#OR
$name = <>;
chomp ($name);

Let us modify the above code to demonstrate both ways of using chomp
function:
#User Input Demo 2
#Ask the user to enter name
print ("\nEnter your name: ");
#Use prompt to receive the input in the variable $name
#Use chomp at the time of taking input.
chomp ($name = <STDIN>);
#Ask the user to enter age
print ("\nEnter your age: ");
#Use prompt to receive the input in the variable $age
#Use chomp at the time of taking input.
chomp ($age = (<>));
#Ask the user to enter address
print ("\nEnter your address: ");
#Use prompt to receive the input in the variable $address
$address = <STDIN>;
#Use chomp after taking the input
chomp ($address);
#Ask the user to enter country
print ("\nEnter your country: ");
#Use prompt to receive the input in the variable $country
$country = <>;
#Use chomp after taking the input
chomp ($country);
#Display Everything
print ("\nAfter running your input through chomp function: \n\nname:\t\t$name \nage:\t\t$age
\naddress:\t$address \ncountry:\t$country ");

Output:

As seen, an extra line has not been left after the input has been run through
the chomp function. The usage of chomp function is not mandatory every

time user input is received but is advisable. This is because, the trailing
newline character can make your code unstable in certain situations.
Note: Whenever an input is received via the prompt, its datatype is
determined implicitly. For example, if a user enters alphanumeric characters,
it will be treated as a string. If you enter any form of number be it integer,
float, scientific notation, hexadecimal or octal, it will be treated as a number.
Whenever, you are dealing with numbers, it is highly recommended that you
use the chomp function either while taking the input or soon after.

8. Operators
An operator is a symbol or a group of symbols used to carry out an operation
such as arithmetic operation, logical operation, assignment operation, etc.
Perl offers arithmetic operators, assignment operators, comparison operators,
logical operators and bitwise operators. We will take a look at each of these
categories of operators along with programming examples at the end of each
section.

8.1 Arithmetic Operators
These operators are used to carry out arithmetic operations such as addition,
subtraction, multiplication, division, etc.

Operator Description Sample
Usage Explanation

+ Addition $a + $b Performs addition and returns the sum of all the
operands.

- Subtraction $a - $b Subtracts the operand on the right from the operand
on the left.

* Multiplication $a * $b Multiplies operands and returns the product.

/ Division $a / $b Divides the operand on the left by the operand on the
right and returns the quotient.

% Modulus $a % $b
Divides the operand on the left by the operand on the

right and returns the remainder. This operator will
work correctly only with integers.

** Exponent $a ** $b

Raises the power of the operand on the left by a value
specified by the operand on the right. Eg. 5 ** 2 is

equivalent to 52 in mathematical form which is equal
to 25.

++ Increment $a ++ Increments the value of the given variable by one.
$a++ is equivalent to $a = $a + 1.

-- Decrement $b -- Decrements the value of the given variable by one.
$b-- is equivalent to $b = $b - 1.

Here is a Perl script that demonstrates the usage of arithmetic operators:
#Arithmetic Operators Demo
#Declare some variables
$x = 35;
$y = 3;
$z = -9.34;
#Addition Operator
$sum = $x + $y + $z;

#Subtraction Operator
$diff = $x - $z;
#Multiplication Operator
$prod = $x * $y * $z;
#Division Operator
$q = $x / $y;
#Modulus Operator
$mod = $x % $y;
#Exponent Operator
$exp = $x ** $y;
#Display Everything
print ("\nx = $x\ny = $y\nz = $z");
print ("\nx + y + z = $sum\nx - z = $diff");
print ("\nx * y * z = $prod\nx / y = $q");
print ("\nx % y = $mod\nx ** y = $exp\n");

Output:

Let us now write another program where we will accept two numbers from
the user and calculate their sum, difference, product and quotient. We will
use the chomp function at the time of taking the input.
#Arithmetic Operators Demo
#Declare some variables
print ("\nEnter the value of x: ");
#Use prompt to receive the input into variable $x
#Use chomp at the time of taking input.
chomp ($x = <STDIN>);
print ("\nEnter the value of y: ");
#Use prompt to receive the input into variable $y
#Use chomp at the time of taking input.
chomp ($y = <STDIN>);
#Calculate sum
$sum = $x + $y;
#Calculate difference
$difference = $x - $y;

#Multiply
$product = $x * $y ;
#Divide
$quotient = $x / $y;
#Display Everything
print ("\nx = $x\ny = $y");
print ("\nx + y = $sum\nx - y = $difference");
print ("\nx * y = $product\nx / y = $quotient\n");

Output:

Note: You can use multiple arithmetic operators in one expression like $a = 4
* 3 – 2 / 9. In such cases, mathematical rules of evaluation will apply. That is,
2 / 9 and 4 * 3 will be performed first and then subtraction will be performed.
You can also use brackets to avoid confusion. Here is an example – $a = $b +
(3 * 5.1) / (1.4 + (2 * 1.6)).

8.2 Assignment Operators
We have seen the usage of the default assignment operator given by the
equal-to (=) sign. There are more such operators which are used to assign
values to variables.

Operator Description Sample
Usage Equivalent Expression

+= Add operands, assign sum to the operand on
the left. $a += $b $a = $a + $b

-=
Subtract the operand on the right from the
one on the left and assign the difference to

the left operand.
$a -= $b $a = $a - $b

*= Perform multiplication and assign the
product to the operand on the left. $a *= $b $a = $a * $b

Divide the left operand by the right one and

/= assign the quotient to the left operand. $a /= $b $a = $a / $b

%= Divide the left operand by the right one and
assign the remainder to the left operand. $a %= $b $a = $a % $b

**= Calculate exponent and assign the value to
the left operand. $a **= $b $a = $a ** $b

Here is a script that demonstrate the usage of assignment operators:
#Assignment Operators Demo
#Initialize some variables
$a = -12;
$b = 65;
$c = 3;
$d = 5.68;
#Display all values
print ("\na = $a, b = $b, c = $c, d = $d");
+= operator
$a += $b;
print ("\n\$a += \$b = $a, a = $a, b = $b, c = $c, d = $d");
-= operator
$a -= $b;
print ("\n\$a -= \$b = $a, a = $a, b = $b, c = $c, d = $d");
*= operator
$b *= $c;
print ("\n\$b *= \$c = $b, a = $a, b = $b, c = $c, d = $d");
/= operator
$a /= $d;
print ("\n\$a /= \$d = $a, a = $a, b = $b, c = $c, d = $d");
%= operator
$b %= $c;
print ("\n\$b %= \$c = $b, a = $a, b = $b, c = $c, d = $d");
^^= operator
$c **= $d;
print ("\n\$c **= \$d = $c, a = $a, b = $b, c = $c, d = $d\n");

Output:

Note: These assignment operators will assign the value resulting from an
operation to the operand on the left (which is also used in the arithmetic
operation itself). This will make the left operand lose its original value and
hence usage of these operators may not be suitable in every situation. In the
above example, there are four variables – $a, $b, $c and $d. All these
variables are printed after every operation to show their changing values.

8.3 Comparison Operators
Comparison operators are used to compare one operand in relation to another.
The result of these operations is either Boolean True or Boolean False. We
will only learn the theory behind comparison operators, their usage will be
better understood in the Decision Making and Loops chapters.

Operator Description Sample Usage Explanation

== Equal To $a == $b Returns True if both the operands are equal,
False otherwise.

!= Not Equal To $a != $b Returns True if both the operands are NOT
equal, False otherwise.

< Less Than $a < $b
Returns True if the value of the operand on the
left is less than the value of the operand on the

right, False otherwise.

> Greater Than $a > $b
Returns True if the value of the operand on the
left is greater than the value of the operand on

the right, False otherwise.

<= Less Than OR
Equal To $a <= $b

Returns True if the value of the operand on the
left is less than OR equal to the value of the

operand on the right, False otherwise.

Returns True if the value of the operand on the

>= Greater Than
OR Equal To

$a >= $b left is greater than OR equal to the value of the
operand on the right, False otherwise.

8.4 Logical Operators
Logical operators are used to carry out logical OR, AND and NOT. Outcome
of logical operations result in Boolean True or False and are usually used
with expressions that result in Boolean True or False in the first place. For
example, an expression could be a comparison operation such as $a > $b. The
usage of these operators will also be clearer when we learn Decision Making
and Loops.

Operator Description Sample Usage Explanation

and
#Alternative#

&&

Logical AND (Expr1) and
(Expr2)

#Alternative#
(Expr1) &&

(Expr2)

Returns True if all the expressions
evaluate to True, False otherwise.

or
#Alternative#

||

Logical OR (Expr1) or (Expr2)
#Alternative#

(Expr1) || (Expr2)

Returns True if any one of the
expressions evaluates to True. Returns
False if all the expressions evaluate to

False.

! Logical NOT ! (Expr) Inverts the result. If the expression
evaluates to False, True will be

returned and if it evaluates to True,
False will be returned.

8.5 Bitwise Operators
Bitwise operators carry out logical operations like OR, AND, XOR and a few
others on each bit of the operands. In order to understand this class of
operators, you need to understand the basics of binary number system and
Boolean algebra.

Operator Description Sample
Usage Explanation

& Bitwise Logical
AND $a & $b Performs logical AND on each corresponding bit

of the operands.

| Bitwise Logical
OR $a | $b Performs logical OR on each corresponding bit of

the operands.

Bitwise Logical

~ Inverter ~$a Computes binary one’s compliment.

^ Bitwise Logical
XOR $a ^ $b Performs logical XOR on each corresponding bit

of the operands.

<< Left Shift $a << $b

Left shifts bits of the operand on the left as many
times as specified by the operand on the right. Eg.

2 << 3 will left shift 2’s bits (10 in binary) 3
times. So, 2 << 3 will be equal to 16 (10000 in

binary)

>> Right Shift $a >> $b

Right shifts bits of the operand on the left as
many times as specified by the operand on the
right. Eg. 7 >> 1 will right shift 7’s bits (111 in
binary) 1 time. So, 7 >> 1 will be equal to 3 (11

in binary).

Let us write a Perl script to demonstrate the usage of Bitwise operators:
#Bitwise Operators Demo
#Initialize some variables
$a = 13;
$b = 11;
$c = 2;
$d = 3;
#Display all values
print ("\na = $a, b = $b, c = $c, d = $d");
#Bitwise OR
$x = $a | $b ;
#Bitwise AND
$y = $a & $b ;
#Bitwise XOR
$z = $a ^ $b ;
#Left shift
$p = $a << $c ;
#Right Shift
$q = $b >> $d ;
#Display Everything
print ("\n\na | b = $x \na & b = $y \na ^ b = $z");
print ("\na << c = $p \nb >> d = $q\n");

Output:

Note: There are a few more operators such as the ones used to work with
strings. They will be covered in the relevant chapters.

9. Decision Making
So far, we have seen how a Perl script executes from top to bottom statement
by statement. This is a normal flow of execution. If we want to alter this flow
of execution and introduce conditionality, we have to make use of Control
Structures. Perl offers control structures in the form of Decision Making
constructs and Loops. In this chapter we will learn about the various decision
making constructs and in the next chapter, we will learn about loops.
Let us take a look at the various decision making constructs available in Perl.

9.1 if-else Statements
if-else constructs are used when we want to execute a block of code when a
particular condition is true. The simplest way of using this construct is to use
a single if statement. Here is the general syntax:

if (<condition>)
{
#Code to be executed if <condition> is true.
}
Example:
if ($x > 1)
{
print (“$x is greater than 1”);
}

The if statement should be supplied with a condition, given by <condition>
in the above code snippet. When the execution control encounters an if
statement, this <condition> will be evaluated. If it evaluates to true, the
statements inside the if-block (enclosed within { } following the if statement)
will be executed. If the condition evaluates to false, the if block will be
skipped and the script will resume execution from the end of the if-block
provided there are statements after the if-block.
Note 1: The <condition> that we talked about should evaluate to Boolean
true or false. It is usually an expression made up of comparison operators or
a group of expressions combined together with logical operators. Some of the

examples of valid conditions are:
($a > 5)
($b == 0) && ($a > -6)
($x > 10) || ($y < 20)

Note 2: Number 0 and empty strings (“”) are considered as false.
With a single if statement, we check for the validity of one condition; if it is
valid, we execute some statements, if it is not valid, we do nothing. If we
want execute a block of code when the given condition of the if statement
evaluates to false, we can use an else block. General syntax:

if (<condition>)
{
#Code to be executed if <condition> is true.
}
else
{

#Code to be executed if <condition> is false.
}
Example:
if ($x > 1)
{
print (“$x is greater than 1”);
}

else
{
print (“$x is NOT greater than 1”);
}

When there is an if block and an else block. If the given condition of the if
block evaluates to false, the if block will be skipped and the statements inside
the else block will be executed one by one. Let us understand this with an

example. We will write a script to accept one integer from the user and check
if it is odd or even:
#If-Else demo. Check if a number is odd or even
print ("\nEnter an integer: ");
#Use prompt to receive the input into variable $num
#Use chomp at the time of taking input.
chomp ($num = <STDIN>);
#Check if the number is divisible by 2.
#If so, it is even.
if ($num % 2 == 0)
{

print("\n$num is even.\n");
}
else
{

print("\n$num is odd.\n");
}

Output:

A pair of if-else blocks will check for one condition, do something based on
the validity of the given condition and do something else upon its invalidity.
If you want to check for multiple conditions, you can nest if-else blocks. That
is, you can place if-else blocks inside other if-else blocks where outer blocks
will check for one condition, the inner ones will check for another condition.
Another way of checking for multiple conditions is to use the elsif statement.
The way this works is – there should be a mandatory if block, then there
could be multiple elsif block, where each elsif statement will have its own
condition. Refer to the following code snippet:

if (<condition 1>)
{

#This block will be executed if <condition 1> is true.
#Statements…
}

elsif (<condition 2>)
{

#This block will be executed if <condition 1> is false
<condition 2> is true.

#Statements…
}
elsif (<condition 3>)
{

#This block will be executed if <condition 1> and
<condition 2> are false and <condition 3> is true.

#Statements…
}
else
{
#This block will be executed if <condition 1>, <condition 2>

and <condition 3> are false.
#Statements…
}

When the condition of an if statement evaluates to false, the interpreter will
look for an elsif statement. Its condition will be evaluated. If it evaluates to
true, the statements inside that elsif block will be executed. If the condition
evaluates to false, the execution control will jump to the next elsif statement
(if it is present) and its condition will be checked. This process will go on
until one of the conditions (either of the only if statement or one of the elsif
statements) evaluates to true or there are no more elsif blocks left. When
none of the conditions evaluate to true, the else block will be executed if it is
present.
Let us understand how the combination of if-elsif-else blocks work. We will

write a Perl script where the user will be asked to enter a number and we will
check whether the number is positive, negative or zero:
#If-ElsIf-Else demo. Check if a number is positive, negative or zero
print ("\nEnter a number: ");
#Use prompt to receive the input into variable $num
#Use chomp at the time of taking input.
chomp ($num = <STDIN>);
#Check if the number is greater than 0.
#If so, it is positive
if ($num > 0)
{

print("\n$num is positive.\n");
}
#Check if the number is less than 0.
#If so, it is positive
elsif ($num < 0)
{

print("\n$num is negative.\n");
}
#If the number is neither positive nor negative, means it is zero.
else
{

print ("\n$num is zero.\n")
}

Output:

Notes:

1. An if-block can be standalone while elsif and else blocks cannot.
They need a preceding if-block in order to work.

2. if and elsif statements should be supplied with a condition while else
statement should not be.

3. Other than elsif blocks, there should be no other statements
sandwiched between an if block and an else block.

4. When an if block is followed by multiple elsif blocks, ONLY ONE of
these blocks will be executed when a corresponding valid condition
is found. Rest of the blocks will be skipped. As the execution control
will proceed sequentially, even if there is an elsif block with a valid
condition somewhere further down, it will be skipped if one of the
blocks before this block gets executed.

9.2 unless Statement
Contrary to the if statement, the unless statement is used to execute a block
of code when a condition is NOT true. This construct also needs to be
supplied with a condition. Here is the general syntax:

unless (<condition>)
{
#Statements to be executed if <condition> is NOT true.
}
Example:
unless ($a == 0)
{
print (“a is Non-Zero”);

}
The unless block can be followed by an else block which will be executed if
the <condition> of the unless statement evaluates to true. In comparison to
the if-else combination, the unless-else combination does the exact opposite.
Here is how to use the unless-else combination:

unless (<condition>)

{
#Statements to be executed if <condition> is NOT true.
}
else
{
#Statements to be executed if <condition> is true.
}

Example:
unless ($a == 0)
{
print (“a is Non-Zero”);
}

else
{
print (“a is Zero”);
}

Let us re-write the odd-even script using unless-else blocks:
#Unless-Else demo. Check if a number is odd or even
print ("\nEnter an integer: ");
#Use prompt to receive the input into variable $num
#Use chomp at the time of taking input.
chomp ($num = <STDIN>);
#Check if the number is not divisible by 2.
#If so, it is odd.
unless ($num % 2 == 0)
{

print("\n$num is odd.\n");
}
#Otherwise it is even.
else
{

print("\n$num is even.\n");
}

Output:

We have seen that using if-elsif-else, we can check for multiple conditions. A
similar thing can be done using unless-elsif-else blocks. There will be a
mandatory unless block, then there could be multiple elsif blocks followed
by an optional else block. This is how such a combination will work – the
condition of the unless statement will be evaluated. If it evaluates to false,
the unless block will be executed, rest of the blocks will be skipped. If it
evaluates to true, the unless block will be skipped and the execution control
will jump to the first elsif block, its condition will be checked and if it
evaluates to true, that particular elsif block will be executed. This process
will go on until an elsif block with a valid condition is found or there are no
more elsif blocks left. If there is no elsif block with a condition that evaluates
to true, the else block (if present) will be executed. Refer to the following
snippet in order to understand this concept in a better way:

unless (<condition 1>)
{
#This block will be executed if <condition 1> is NOT true.
#Statements…
}

elsif (<condition 2>)
{

#This block will be executed if <condition 1> is true
<condition 2> is true.

#Statements…

}
elsif (<condition 3>)
{

#This block will be executed if <condition 1> is true
<condition 2> is false and <condition 3> is true.

#Statements…
}
else
{
#This block will be executed if <condition 1> is true and

<condition 2> and <condition 3> are false.
#Statements…
}

Let us re-write the program to determine whether a number is positive,
negative or zero using unless-elsif-else combination:
#Unless-ElsIf-Else demo. Check if a number is positive, negative or zero
print ("\nEnter a number: ");
#Use prompt to receive the input into variable $num
#Use chomp at the time of taking input.
chomp ($num = <STDIN>);
#Check if the number is NOT greater than or equal to 0.
#If so, it is negative
unless ($num >= 0)
{

print("\n$num is negative.\n");
}
#Check if the number is greater than 0.
#If so, it is positive
elsif ($num > 0)
{

print("\n$num is positive.\n");
}
#If the number is neither positive nor negative, means it is zero.
else
{

print ("\n$num is zero.\n")
}

Output:

Notes:

1. An unless-block can be standalone and the unless-statement should
be supplied with a condition.

2. Other than elsif blocks, there should be no other statements
sandwiched between an unless block and an else block.

3. When an unless block is followed by multiple elsif blocks, ONLY
ONE of all of these blocks will be executed depending on whether
one or more conditions are true or not true. When a particular block
is done executing, rest of the blocks will be skipped.

10. Loops
Loops are Control Structures which are used to run a piece of code over and
over again as long as a particular condition is met (or not met). Perl offers the
following loops – while, do while, for, foreach and until. Out of these, the
foreach loop will be covered in the next chapter.

10.1 while Loop
The while loop keeps executing the statements present inside the while block
over and over as long as the given condition evaluates to true. General
syntax:

while (<condition>)
{
#Statements to be executed as long as <condition> is true.
}
Example:
$count = 0;
while ($count < 5)
{
print (“Count: $count\n”);
$count++;
}

When a while statement is encountered, its condition is checked. If it
evaluates to true, the statements inside the while block are executed on by
one. This is known as one loop iteration. When the end of the block is
reached, the execution control will jump back to the while statement and
check the condition again, if it evaluates to true again, the block will be
executed one more time. This process will go on as long as the condition
evaluates to true. The moment the given condition evaluates to false, the
execution control will come out of the while block. If the condition never
evaluates to false, the loop will go on executing indefinitely and such as loop
is also known as an infinite loop. In order to keep track of the execution of
the loop, we can use a loop variable. This is not mandatory, but it makes

logical sense. In the above code snippet, we initialize a variable called $count
to 0. We run the loop for as long as $count is less than 5. This means, the
loop will stop executing when $count becomes 5. This variable $count is our
loop variable as it will be used to keep track of the numbers of iterations this
loop will go through.
Note: If you are ever stuck in an infinite loop, press CTRL + C to come out
of it.
Let us write a program to display numbers from 1 to 10 using while loop:
#while loop demo
#Initialize a variable to 1
$number = 1;
#Loop from 1 to 10
while ($number <= 10)
{

#Display number
print ("\n$number");
#Increment number
$number++;

}
print ("\n");

Output:

10.2 do-while Loop
The do-while loop is similar to the while loop and will keep on executing the

loop block as long as the given condition is true. General Syntax:
do

{
#Statements to be executed as long as <condition> is true.

} while (<condition>);
Example:
$count = 0;
do

{
print (“Count: $count\n”);
$count++;
} while ($count < 5);

The difference between while and do-while loops is that instead of checking
the condition at the beginning, the do-while loop checks the condition at the
end of the loop block (as seen from the general syntax). As a result, the do-
while loop is guaranteed to execute at least once even if the condition is false.
Let us write a Perl script to display numbers from 10 to 1 in a descending
order:
#do-while loop demo
#Initialize a variable to 10
$number = 10;
#Loop from 10 to 1, check the condition at the end.
do
{

#Display number
print ("\n$number");
#Decrement number
$number--;

} while($number >= 1);

print ("\n");

Output:

10.3 until Loop
Unlike while and do-while loops, the until loop keeps on executing the loop
block as long as the given condition is NOT true. General Syntax:

until (<condition>)
{
#Statements to be executed as long as <condition> is false.
}
Example:
$n = -5;
until ($n == 0)
{
print (“\nn = $n”);
$n++;
}

Let us write a Perl script to print multiples of 5, from 5 to 50:
#until loop demo
#Initialize a variable to 1
$number = 1;
#Loop until number becomes 11
#This loop will run till number becomes 10
until ($number == 11)
{

#Display number
print ($number * 5);
print ("\n");
#Increment number
$number++;

}

Output:

10.4 for Loop
The for loop keeps iterating as long as the given condition evaluates to true
but has more features. It allows you to initialize the loop variable, check for
the condition and increment/decrement the loop variable all in one statement.
Here is the general syntax:

for (<variable initialization>;<condition>;
<increment/decrement>)

{
#Statements to be executed as long as the <condition> is true.
}
for ($i = 0 ; i < 10 ; i ++)
{
print (“\n$i”);
}

Let us write a program using for loop to find the values of this polynomial –>

 for x = -5 to x = 5.
#for loop demo

#Run for loop from x = -5 to x = 5
for ($x = -5 ; $x <= 5 ; $x++)
{

#Calculate the value of the polynomial for x
$value = ($x * $x) + (3 * x) + 2;
#Print x and value
print ("\nx = $x \t\tvalue = $value");

}
print ("\n");

Output:

Let us take another programming example where we will ask the user to enter
a number and calculate its factorial. Factorial of a number n is given by n!
where n! = n x (n - 1) x (n - 2) x … 1. This can also be written in a recursive
manner as n! = n x (n - 1)!. Factorial of a negative number cannot be
calculated and factorial of 0 is 1. Let us take an example. Factorial of 4 is
given by 4! = 4 x 3 x 2 x 1 = 24. Here is the Perl script:
#Factorial demo.
print ("\nEnter a number: ");
#Use prompt to receive the input into variable $num
#Use chomp at the time of taking input.
chomp ($num = <STDIN>);
#Initialize factorial to 1
$fact = 1;
#Run loop from num to 1
for ($i = $num ; $i > 0 ; $i--)
{

$fact = $fact * $i;
}
#Display result
print("\nFactorial: $fact\n");

Output:

10.5 Nested Loops
Loops can be placed inside one another. This process is known as nesting of
loops. You can go for any level of nesting. Let us programmatically print the
following number pattern using nested loops:
1
2 1
3 2 1
4 3 2 1
5 4 3 2 1
6 5 4 3 2 1
7 6 5 4 3 2 1
We will use two for loops, the outer loop will take care of the rows and the
inner one will take care of the columns:
#Nesting Demo
#Outer Loop
for ($i = 1 ; $i <= 7 ; $i++)

{
#Inner Loop
for ($j = $i ; $j >= 1 ; $j--)
{
print ("$j ");
}
print("\n");

}

Output:

10.6 Control Statements
Depending on the type of the loop, as long as the given condition is met or
not met, the loop will go on iterating. Control statements are used to alter this
linear execution pattern of loops. Let us take a look at the control statements
that Perl offers.

10.6.1 next Statement
The next statement is used to force the loop into beginning the next iteration.
When next statement is encountered, the remaining statements after this
statement will be skipped and the execution control will jump to the
beginning of the loop where the condition will be checked and the next
iteration will begin. In case of for loop, the loop variable will be
incremented/decremented and then the condition will be checked. In case of
other loops, only the condition will be checked and the next iteration will
begin. Taking care of the loop variable’s increment/decrement will have to be
done separately otherwise the script may end up being unstable.
Let us understand how the next statement works with an example. Let us
display numbers from 1 to 20 and skip numbers which are multiples of 3.
Here is how to do it:

#Control Statements Demo - next
#Run for loop from 1 to 20
for ($num = 1 ; $num <= 20 ; $num++)
{

#Check if num is a multiple of 3
if ($num %3 == 0)
{
#Skip this iteration, go to next one
next;
}
#Print num
print ("\n$num");

}
print ("\n");

Output:

10.6.2 last Statement
The last statement is used to terminate the loop. When this statement is
encountered, the execution control will come out of the loop. Here is a Perl
script that demonstrated the usage of last statement. There is a loop which
counts from 0 to 9 but when the count reaches 5, we break out of the loop
using last statement.

#Control Statements Demo - last
#Run for loop from 0 to 9
$count = 0;

while ($count < 9)

{
#Check if count is 5
if ($count == 5)
{
#Come out of the loop
last;
}
#Print count
print ("\n$count");
#Increment count
$count++;

}
print ("\n");

Output:

10.6.3 continue block
The continue block is placed soon after the end of the loop block and gets
executed just before the condition is checked before the next iteration. This
block is an ideal place to take care of the loop variable. The continue block
can work with while loop, until loop and foreach loop. Here is the general
syntax:

#While
while (<condition>)
{
#Statements
}
continue

{
#Statements
#Increment/Decrement loop variable
}
#Until

until (<condition>)
{
#Statements
}
continue
{
#Statements
#Increment/Decrement loop variable
}

Here is a script where we print numbers from 5 to 1 in a descending order.
We decrement the loop variable inside the continue block:
#Loop Control - continue
$i = 5;
#Loop as long as i is not 0
until ($i == 0)
{

#Print i
print ("\n$i\n");

}
continue
{

#Decrement i inside the continue block
$i--;

}

Output:

10.6.4 redo Statement
If there is ever a need to restart the current iteration of the loop, redo
statement can be used. When a redo statement is encountered, the execution
control will jump to the beginning of the loop without checking the condition
again. Let us take an example where we will count from 0 to 9 using a for
loop and reset the loop when count reaches 7.
#Control Statements Demo - redo
#Run for loop from 0 to 9
for ($num = 0 ; $num < 10 ; $num++)
{

#Print num
print ("\n$num");
if ($num == 7)
{
redo;
}

}
print ("\n");

When $num is going from 0 to 6, it will be printed normally. When $num
reaches 7, it will be printed and the if block will get executed (because $num
== 7 will evaluate to true) that will force the loop to start the current iteration
again. Without checking the condition and without incrementing $num, the
iteration will restart where it will print $num, check if $num is 7 (which will
be true forever from hereon because we there is no other statement that
increments $num) and restart the iteration. This process will go on
indefinitely and this loop will qualify as an infinite loop. Here is what you
will see:

Pressing CTRL + C will get you out of this infinite loop:

Now, if you want to get something meaningful out of the redo statement, you
have to increment/decrement the loop variable separately. Let us modify the
above code to count from 0 to 9 and skip printing 5 using the redo statement:
#Control Statements Demo - redo
#Run for loop from 0 to 9
for ($num = 0 ; $num < 10 ; $num++)
{

if ($num == 5)

{
$num++;
redo;
}
#Print num
print ("\n$num");

}
print ("\n");

Output:

In case a continue block is used alongside a while/until loop, the redo
statement will skip the continue block where the loop variable is usually
incremented or decremented. Here is an example where we count from 0 to 9
and reset the iteration at 6:
#Control Statements Demo - redo/continue
#Run for loop from 0 to 9
$num = 0;
while ($num < 10)
{

#Reset at 6
if ($num == 6)
{
redo;
}
#Print num
print ("\nInside while block - $num");

}
continue
{

$num = $num + 1;

print ("\nInside continue block - $num");
}
print ("\n");

Output:

As seen, the script gets stuck when 5 is printed because when $num becomes
6, the iteration is restarted there by skipping the continue block which used to
increment $num. Incrementing $num inside the if-block will solve this
problem. In this case, the loop will skip printing 6 inside the loop block but
will do so in the continue block:
#Control Statements Demo - redo/continue
#Run for loop from 0 to 9
$num = 0;
while ($num < 10)
{

#Reset at 6
if ($num == 6)
{
$num++;
redo;
}
#Print num
print ("\nInside while block - $num");

}
continue
{

$num = $num + 1;
print ("\nInside continue block - $num");

}
print ("\n");

Output:

The foreach loop has been kept out of this chapter on purpose because, in
order to understand the working of this loop, some knowledge of Arrays is
required. Loops in general are very useful in many situations especially when
working with arrays. Hence it is recommended that you understand this
chapter thoroughly before proceeding to the next one.

11. Arrays
An array is a collection of elements. An element can be of any scalar type
such as numbers or strings. A collection of mixed data types is permitted but
it is best to stick to a collection of a single data type unless you absolutely
have to mix different data types. Elements of an array can be uniquely
addressed using index which begins at 0 and ends at 1 less than the size of
the array. For example, if there is an array of 10 elements, the first element
will be present at index 0, the second one at index 1, the third one at index 2
and so on; the last element will be present at index 9.

11.1 Array Creation
Array variables begin with @ sign as opposed to $ sign in case of scalar
variables. An array can be created by enclosing the list of elements within
parenthesis where each element is separated by a comma. General Syntax:

@<array variable> = (<elements separated by comma>);
Example:
@numbers = (5, 0.7, 6.3, -2, 55);
@names = (“Isla”, “Ester”, “Fido”);
@mix = (3, “Tom”, -6.54, “UK”);

In the above examples, the indices and corresponding elements are listed
below:
@numbers array:
Index 0 – 5
Index 1 – 0.7
Index 2 – 6.3
Index 3 – -2
Index 4 – 55
Here is how @numbers array is going to look inside the memory:

@names array:
Index 0 – “Isla”
Index 1 – “Ester”
Index 2 – “Fido”
Here is how @names array is going to look in the memory:

@mix array:
Index 0 – 3
Index 1 – “Tom”
Index 2 – -6.54
Index 3 – “UK”
Here is how @mix array is going to look in the memory:

There is another way of creating an array using the qw function. General
syntax:

@<array variable> = qw / <elements separated by space> /;
Example:
@x = qw /1 2 3 4 5/;
@msg = wq /Hello World/;

11.2 Accessing Array Elements
All the elements of an array can be accessed at once using the array variable.
For example, if there is an array called @arr_1 and you want to display all
the elements of this array, you can simply use the print function like this –
print (@arr_1); and all the elements will be printed.
Individual elements of an array can be accessed using the access operator ([
]). General Syntax:

$<array variable> [<index>]
Example:
$data = $x[1];

Consider the following array declaration:
@num = (8, 2, 9, -2, 6);

Element at 0 (value of 8) can be accessed as $num[0], element at 1 (value of
2) can be accessed as $num[1] and so on. Since the size of this array is 5, the
last element is at index 4. That is, $num[4] will refer to the value of 6.
Alternatively, the value at the last index can be accessed with the index -1
(Eg. $num[-1] will refer to the last value of 6). Note that while declaring an
array, we use the @ sign and while accessing individual elements, we use the
$ sign.
The maximum index of an array is given by:

$#<array variable>
Example:
$max_index = $#names;

The size of an array can be determined by the scalar keyword. General
Syntax:

$<variable> = scalar @<array variable>;

Example:
$size = scalar @arr_1;

Let us write a Perl script that demonstrates the basic concepts of arrays –
initializing arrays and accessing elements.
#Arrays Demo
#Declare a few arrays:
@num = (4, 7, -20.4, 5.764, -12, 8.84);
@country = ("Germany", "Ethiopia", "Poland", "Singapore", "Brazil");
@temp = qw/16 23 19 32 11/;
@record = ("Dino", 29, "M", 68);
#Determine size and last index
$size_num = scalar @num;
$size_country = scalar @country;
$size_temp = scalar @temp;
$size_record = scalar @record;
$max_index_num = $#num;
$max_index_country = $#country;
$max_index_temp = $#temp;
$max_index_record = $#record;
#Display array contents together
print ("\n\@num: @num\nSize: $size_num Max Index: $max_index_num");
print ("\n\n\@country: @country\nSize: $size_country Max Index: $max_index_country");
print ("\n\n\@temp: @temp\nSize: $size_temp Max Index: $max_index_temp");
print ("\n\n\@record: @record\nSize: $size_record Max Index: $max_index_record\n");
#Display individual values of @num
print ("\n\@num values accessed individually:\n");
print ("\nValue at index 0: $num[0]");
print ("\nValue at index 1: $num[1]");
print ("\nValue at index 2: $num[2]");
print ("\nValue at index 3: $num[3]");
print ("\nValue at index 4: $num[4]");
print ("\nValue at index 5: $num[5]\n");
#Change values of @record
$record[0] = "Diorah";
$record[1] = 26;
$record[2] = "F";
$record[3] = 52;
#Display entire record array
print ("\n\@record array after updating its individual elements:\n\n@record\n");

Output:

11.3 Range Operator
The range operator is given by double dots (..) and can be used to fill arrays
sequentially with numbers or letters. General Syntax:

@<array variable> = (<starting sequence> … <ending
sequence>);

Example:
@x = (0 .. 5);
@m = (A .. Z);

Here is a script that demonstrates the usage of this operator:
#Range Operator Demo
#Fill array with numbers from 1 to 20
@num_array_1 = (1 .. 20);
#Fill array with alphabets from A to Z
@alpha_array_1 = (A .. Z);
#Fill array with numbers from -5 to +5
@num_array_2 = (-5 .. 5);
#Fill array with alphabets from p to z
@alpha_array_2 = (p .. z);
#Display everything
print ("\nnum_array_1:\n@num_array_1\n");
print ("\nnum_array_2:\n@num_array_2\n");

print ("\nalpha_array_1:\n@alpha_array_1\n");
print ("\nalpha_array_2:\n@alpha_array_2\n");

Output:

Note: The range operator will fill an array in ascending order only. Hence,
the start sequence should be less than the end sequence in case of numbers
and in case of alphabets, the start sequence should appear earlier than the end
sequence with respect to the alphabetical order.

11.4 Arrays and Loops
Loops are very useful when it comes to working with arrays. We know that
the index of an array begins at 0 and goes up to size - 1. This makes an ideal
case for accessing arrays with loops. If we initialize a loop variable to 0 and
set the condition of the loop as the loop variable should increment up to size -
1, we can iterate through the whole array one index at a time. Here is a script
where we initialize a few arrays and display their contents using loops:
#Array Access with Loops
#Initialize a few arrays:
#Fill array with numbers from 10 to 15
@num_array = (10 .. 15);
#Create an array of strings
@food_items = ("Pasta", "Tortilla", "Ful", "Pad Thai");
#Array of random numbers
@x = (6.8, -4.56, 0, 31, 22, -23.4, 9);
#Determine size of each array
$size_num_array = scalar @num_array;
$size_food_items = scalar @food_items;
$size_x = scalar @x;
#Display elements of num_array using while loop
print ("\nDisplaying \@num_array using while loop: \n");

$i = 0;
#Run the loop from 0 to size_num_array - 1
while ($i < $size_num_array)
{

print ("\nIndex: $i\t\@num_array[$i] = $num_array[$i]");
#Increment $i
$i = $i + 1;

}
print ("\n\nDisplaying \@food_items using until loop: \n");
$i = 0;
#Run the loop from 0 to size_food_items - 1
until ($i == $size_food_items)
{

print ("\nIndex: $i\t\@food_items[$i] = $food_items[$i]");
#Increment $i
$i++;

}
print ("\n\nDisplaying \@x using loop: \n");
#Run the loop from 0 to size_x - 1
for ($j = 0 ; $j < $size_x ; $j++)
{

print ("\nIndex: $j\t\@x[$j] = $x[$j]");
}
print ("\n");

Output:

11.5 foreach Loop
In the previous chapter, foreach loop was excluded on purpose because it
works only on lists such as arrays. General syntax of this loop is:

foreach $<element> (@<array_variable>)
{
#Statements…
}
Example:
@x = (6, 2, 9);
foreach $num (@x)
{
print ($num);
}

An element from the array will be fetched and assigned to $<element> scalar
variable during each iteration of the loop starting from the first element of the
array (at index 0). During the next iteration, the next element will be fetched.

This process will go on happening until the last element is fetched. Instead of
accessing the array elements using their index, the foreach loop offers a
simpler way. The number of times a foreach loop will iterate will be equal to
the number of elements present in the array. Here is a sample script:
#Foreach loop demo
#Initialize an array
@arr = (8, -2.6, 7.12, 8.32, -3, 5);
#Variable to count the number of iterations
$count = 0;
#Loop through the array
foreach $element (@arr)
{

print ("\nIteration: $count\tItem: $element");
$count++;

}
print ("\n");

Output:

11.6 Reading user input into arrays
If you want to read multiple inputs from the user and store in an array, you
can use prompt inside a loop. This will give an opportunity to the user to give
inputs as many times as the loop runs. Here is a script that does exactly this:
#Reading user input into an array
#Create a blank array
@arr = ();
#Run for loop 5 times
for ($i = 0 ; $i < 5 ; $i++)
{

print ("\nEnter element at index $i: ");
#Read input, chomp it
chomp ($num = (<>));

#Store it in the array
$arr[$i] = $num;

}
#Display the array
for ($i = 0 ; $i < 5 ; $i++)
{

print ("\nIndex: $i\t\@arr[$i] = $arr[$i]");
}
print ("\n");

Output:

11.7 Array Manipulation
We have seen that individual elements of an array can be accessed with its
index. With this, we can retrieve the element as well as update it. Let us recap
how we can do this:
Retrieve a value:

$<variable> = $<array variable>[<index];
Example:
$x = $arr[4];

Set an element:

$<array variable>[<index] = <value>;
Example:
$arr[2] = 50.67;

The last index of the array is 1 less than its size. Say there is an array of 3
elements. Consider the following declaration:

@x = (2, 7, 4);
The array x has 3 elements, the first index is 0 and the last index is 2. Say,
you try to set an index which is greater than its last index such as index 7.
This will still be valid. The size of the array will become 7 and the value you
tried to set will be present at index 6 and from index 3 to index 5, the array
will have NULL value. Here is a script that shows this:
#Array index out of bounds
#Declare an array of 5 elements
@arr = (5, 8, 1, -2, 3);
#Print array size
print("\nArray size: ", scalar @arr, "\n");
#Display the array
for ($i = 0 ; $i < scalar @arr ; $i++)
{

print ("\nIndex: $i\t\@arr[$i] = $arr[$i]");
}
#Add new value at index 9
$arr[9] = 7;
#Print array size
print("\n\nNew size: ", scalar @arr , "\n");
#Display the array
for ($i = 0 ; $i < scalar @arr ; $i++)
{

print ("\nIndex: $i\t\@arr[$i] = $arr[$i]");
}
print ("\n");

Output:

As seen, when the array is first declared with 5 elements, index runs from 0
to 5. A new element is inserted at index 9, size now becomes 10 and there is
NULL data at index 5 to index 8.
This is not a good way to add new elements to an existing array although it
works and may be well suited in certain rare situations. A better way to add
new elements to an array is to use the push function. General Syntax:

push (@<existing array variable>, <new element/list/another
array>);

Example:
push (@arr, 6);

The push function will append the specified element/list to the existing array
thereby increasing its size by 1 in case only one element is added and in case
a list is added, the new size will be previous size + size of the new list.
If you want to remove the last element, you can use the pop function. General
Syntax:

pop (@<existing array variable>);
Example:
pop (@xyz);

The pop function will delete the element present at the last index and reduce
the size of the array by 1.

Let us write a Perl script to demonstrate the usage of push and pop functions:
#Push Pop Demo
#Declare an array
@laptop = ("Lenovo", "HP", "Dell", "Asus");
#Print array size
print("\nArray size: ", scalar @laptop, "\n");
#Display the array
for ($i = 0 ; $i < scalar @laptop ; $i++)
{

print ("\nIndex: $i\t\@laptop[$i] = $laptop[$i]");
}
#Push MSI to the array
push (@laptop, "MSI");
#Display the array again
#Print array size
print("\n\nAfter pushing MSI\nArray Size: ", scalar @laptop, "\n");
#Display the array
for ($i = 0 ; $i < scalar @laptop ; $i++)
{

print ("\nIndex: $i\t\@laptop[$i] = $laptop[$i]");
}
#POP 2 items
pop (@laptop);
pop (@laptop);
#Display the array again
#Print array size
print("\n\nAfter Popping 2 items\nArray Size: ", scalar @laptop, "\n");
#Display the array
for ($i = 0 ; $i < scalar @laptop ; $i++)
{

print ("\nIndex: $i\t\@laptop[$i] = $laptop[$i]");
}
#Create another array
@brands = ("Acer", "Gigabyte");
#Push @brands to @laptop
push (@laptop, @brands);
print("\n\nAfter pushing another array with values - @brands\nArray Size: ", scalar @laptop, "\n");
#Display the array
for ($i = 0 ; $i < scalar @laptop ; $i++)
{

print ("\nIndex: $i\t\@laptop[$i] = $laptop[$i]");
}
print ("\n");

Output:

Merging two arrays can be done with push function as well as using the
following syntax:

@<merged array> = (@<array 1>, @<array 2>, … @<array
n>);

Example:
@x = (@a, @b, @c, @d);

11.8 Sorting Arrays
There is a function called sort which can be used to sort arrays with strings as
well as numbers. General Syntax:

@<sorted array> = sort (@<array variable>);
Example:
@sorted_arr = sort (@arr);

This function will sort the array and return the new sorted array. There must
be an array variable on the left hand side to receive the sorted array as shown

above. In case an array has only numbers, the function will sort the numbers
in ascending order. In case an array has a collection of strings, this function
will sort according to the ASCII equivalent of the first character of each
string. Strings starting with upper case letters will be sorted first and placed
in the first half of the sorted array and strings starting with lower case first
characters will be sorted and placed in the latter half of the sorted array. This
is because, in the ASCII table, the upper case alphabet series starts at 65
(upper case ‘A’) and the lower case alphabet series (lower case ‘a’) starts at
97. In case there are numbers and strings with mixed cases, the numbers will
be sorted and placed in the first part of the array, followed by sorted strings
with upper case first characters and then the sorted strings with lower case
first characters. Here is a Perl script that shows how the sort function works
in different situations:
#Sorting Demo
#Declare a few arrays
@city = ("Tokyo", "Lexington", "Nairobi", "Auckland", "Delhi");
@numbers = (5, 1, 9.6, -6.8, 12, 99, -4.23, 0, -8, 2);
@random_array = ("Singapore", 8, 2, -9.7, "zebra", 22, "adam", -40, "Dillon", "Zanzibar", 989);
#Print both arrays
print ("\n\@city array:\n\n@city");
print ("\n\n\@number array:\n\n@numbers");
print ("\n\n\@random_array:\n\n@@random_array");
#Sort both arrays using sort function
@new_city = sort (@city);
@new_numbers = sort (@numbers);
@new_random_array = sort (@random_array);
print ("\n\nArrays after sorting:\n");
print ("\n\@new_city array:\n\n@new_city");
print ("\n\n\@new_number array:\n\n@new_numbers");
print ("\n\n\@new_random_array:\n\n@new_random_array\n");

Output:

12. Hashes
Hashes are data structures which store data using key-value pairs. Hash
variables begin with percentage sign (%). We can use the analogy of arrays
to understand the concept of hashes. An array is a collection of elements
where each element is present at an index that runs from 0 to size – 1. In case
of a hash, a key can be looked at as a meaningful index and value could be
looked at as an element at that meaningful index. Here is a general syntax of
declaring hashes:

%<hash variable> = (<key 1>, <value 1>, <key 2>, <value 2>,
… <key n>, value n>);

Example:
%person = (‘First Name’, ‘Rebecca’, ‘Last Name’, ‘Perry’, ‘Age’,

33, ‘Country’, ‘UK’);
There is a better syntax of creating hashes using => character sequence for
each key-value pair:

%<hash variable> = (<key 1> => <value 1>, … <key n> => value
n>);

Example:
%employee = (‘emp_id’ => 12345, ‘emp_name’ => ‘Edward’,

‘emp_city’ => ‘NY’);
Let us take a look at the %person hash which stores personal information.
Here are the keys and their corresponding values:

%person
key value

‘First Name’ ‘Rebecca’
‘Last Name’ ‘Perry’

‘Age’ 33
‘Country’ ‘UK’

Here is how this hash will look inside memory:

12.1 Accessing and Manipulating Hashes
Individual elements can be accessed using the following syntax:

$<variable> = $<hash variable>{<key>};
Example:
$name = $person{‘First Name’};

Value for a particular key can be set using the following syntax:
$<hash variable>{<key>} = <value>;
Example:
$person{‘Age’} = 34;

When we are setting a value for a particular key, if that key already exists, its
value will be updated to the new one that we set and if that key does not
exist, a new key-value pair will be created.
Note: While creating a hash variable, we use the percentage (%) sign for the
variable name and while accessing key-value pairs, we use dollar ($) sign for
the same variable name.
Let us write a Perl script and demonstrate whatever we have learnt in this
chapter so far. We will create a hash called %person with personal
information and display each key-value pair. We will then modify this hash
by updating an existing key-value pair and also create a new pair.
#Hash Demo
#Create a hash
%person = ('First Name' => 'Rebecca', 'Last Name' =>' Perry', 'Age' => 33, 'Country' => 'UK');
#Display all key-value pairs
print ("\n%person Hash\n\nFirst Name: $person{'First Name'}");
print ("\nLast Name: $person{'Last Name'}");
print ("\nAge: $person{'Age'}");
print ("\nCountry: $person{'Country'}\n");
#Update Age
$person{'Age'} = 31;
#Add New key-value pair City - Manchester

$person{'City'} = "Manchester";
#Display Age and City
print ("\nAfter making changes to %person\n");
print ("\nAge: $person{'Age'}");
print ("\nCity: $person{'City'}\n");

Output:

Hashes can be created on-the-fly by dynamically assigning values to keys
without previously declaring the hash variable. This is a very crude method
and should be used only when you absolutely have to. Here is a small script
which shows how hashes can be created on-the-fly:
#Creating Hashes On-The-Fly
#Do not declare a hash element explicitly
#Create a key-value pair
$student{'student_id'} = 12345;
#Create another key-value pair
$student{'student_name'} = "Kyla";
#Create another hash variable on the fly
$home_appliance{'make'} = "LG";
#Create another key-value pair for the new hash
$home_applicance{'type'} = "4K LED TV";
#Display Everything
print ("\n%student Hash\n");
print ("\nstudent_id: $student{'student_id'}");
print ("\nstudent_name: $student{'student_name'}\n");
print ("\n\n%home_appliance Hash\n");
print ("\nmake: $home_appliance{'make'}");
print ("\ntype: $home_applicance{'type'} \n\n");

Output:

12.1.1 Check if a Key Exists
Earlier on in this chapter, we saw that if you try to set value for an existing
key, the old value will be replaced by new one and if you try to set value for a
key that does not exist, a new key will be created. If you want to check if a
key exists, you can use the exists function. This function will return true if
the specified key exists and false if it does not. Here is the general syntax:

if (exists ($<hash variable>{<key>}))
{
#Statements to be executed if the specified key exists
}
Example:
if (exists ($car{‘displacement’}))
{
print (“The key displacement exists for the hash %car”);
}

12.1.2 Delete Hash Elements
A hash element can be deleted using the delete function. General syntax:

delete $<hash variable>{<key>};
Example:
delete $aircraft{‘max_altitude’};

Let us write a Perl script to understand how exists and delete functions work:

#Hash - Check if key exists and Delete Demo
#Create a hash
%smartphone = ('make' => 'Google', 'model' => 'Pixel 4', 'chipset' => 'Snapdragon 855', 'sd_slot' =>
'No');
#Display Everything
print ("\nHash - %smartphone\n");
print ("\nmake: $smartphone{'make'}");
print ("\nmodel: $smartphone{'model'}");
print ("\nchipset: $smartphone{'chipset'}");
print ("\nsd_slot: $smartphone{'sd_slot'}\n");
#Check if key chipset exists, if so, update it to 'Qualcomm Snapdragon 855'
if (exists ($smartphone{'chipset'}))
{

print ("\nKey 'chipset' exists. Value - $smartphone{'chipset'} . Updating new value... ...");
$smartphone{'chipset'} = "Qualcomm Snapdragon 855";
print ("\nNew value after updating 'chipset' key - $smartphone{'chipset'}\n");

}
else
{

print ("\nThe key 'chipset' does not exist.\n");
}
#Add some more key-value pairs
$smartphone{'ram'} = "8 GB";
$smartphone{'storage'} = "128 GB";
#Check if key sd_slot exists, if so, delete the key value pair
if (exists ($smartphone{'sd_slot'}))
{

print ("\nKey 'sd_slot' exists. Deleting the key-value pair... ...");
delete ($smartphone{'sd_slot'});
print ("\nThe key 'sd_slot' has been deleted.\n");

}
else
{

print ("\nThe key 'sd_slot' does not exist.\n");
}
#Display everything again
print ("\nHash - %smartphone\n");
print ("\nmake: $smartphone{'make'}");
print ("\nmodel: $smartphone{'model'}");
print ("\nchipset: $smartphone{'chipset'}");
print ("\nram: $smartphone{'ram'}");
print ("\nstorage: $smartphone{'storage'}\n");

Output:

12.2 Fetch Keys and Values
Keys of a hash can be retrieved using the keys function. This function will
return an array of keys of the specified hash. Here is the general syntax:

@<variable> = keys <hash variable>;
Example:
@person_keys = keys %person;

All the values of a hash can be fetched using the values function which will
return an array of values of the specified hash. General syntax:

@<variable> = values <hash variable>;
Example:
@person_values = values %person;

Inside a hash, a key cannot exist without a value and a value cannot exist
without a key. Hence it is safe to say that the number of keys will be equal to
the number of values in a hash. Determining the array size of either keys or
values should give us the size of the hash. Here is a script that demonstrates
whatever we have learned in this section:
#Hash Keys Values
#Create a hash
%employee = ('employee_id' => 35675, 'First Name' => 'Ashton', 'Last Name' =>'Root', 'Age' => 27,
'Country' => 'New Zealand');
#Display all key-value pairs

print ("\n%employee Hash\n\nemployee_id: $employee{'employee_id'}");
print ("\nFirst Name: $employee{'First Name'}");
print ("\nLast Name: $employee{'Last Name'}");
print ("\nAge: $employee{'Age'}");
print ("\nCountry: $employee{'Country'}\n");
#Fetch all keys
@key_employee = keys %employee;
#Fetch all values
@value_employee = values %employee;
#Determine hash size by fetching size of key or value array
$hash_size = scalar @key_employee;
#Display hash size, keys and values
print ("\n%employee hash size: $hash_size\n");
print ("\nKeys: \n@key_employee\n");
print ("\nValues: \n@value_employee\n");

Output:

Hashes are very useful data structures that let you store data in key-value
pairs. This opens up many possibilities. How you use hashes is left up to you.
You can use them to store a record of one item where in many attributes such
as name, address, age, etc. of a person can form a hash or you can use them to
store one attribute of many items such as ages of different people.

13. Subroutines
A subroutine is a piece of reusable code. Subroutines are also known as
functions, routines, methods or subs. So far, we have used built in
subroutines such as print, chomp, sort, etc. These subroutines are defined by
someone else, we were just using them. In this section, we will learn to write
our own subroutines.
The topic of subroutines revolves around two major concepts – subroutine
definition and subroutine call.

13.1 Defining a Subroutine
Subroutine definition is the core part. This is where the actual work gets
done. This is the actual piece of reusable code that we talked about. A
subroutine can be defined with using the sub keyword. General syntax:

sub <subroutine name>
{

#Statements..
}
Example:
sub simpleSub
{

print (“\nThis is just a demo sub!”);
}

It is best to place all the user defined functions at the beginning of the script.

13.2 Calling a Subroutine
Merely defining a subroutine is not enough. It needs to be called so that the
statements inside the definition start executing one by one. To call a
subroutine, the following syntax is used:

<subroutine name> (<list of arguments separated by comma>);
Example:
myFunction();

Data can be passed to a subroutine as arguments. We will learn more about
passing values to a subroutine in the next section. Let us now write a simple
subroutine and call it:
#Simple Subroutine Demo
#We'll have a subroutine that does not accept any parameters and does not return any value.
#Subroutine Definition
#Note that the script execution does not begin here
sub FirstSubroutine
{

print ("\nWe are inside FirstSubroutine!\n");
}
#Execution of the script begins here
print ("\nScript execution has begun. Calling FirstSubroutine.\n");
#Call FirstSubroutine
FirstSubroutine();
print ("\nOutside FirstSubroutine. End of script.\n")

Output:

So far, we have learned that a Perl script starts executing from the first
statement till the last one. In the above script, the first effective statement
(leaving aside the comments) is sub FirstSubroutine but the Perl interpreter
does not seem to be interested in executing what follows. This is because,
subroutines can only execute once they are called and will not do so on their
own. Refer to the following screenshot of the above code where the execution
point has been marked:

13.3 Passing arguments
Data can be passed to a function as arguments (also known as parameters).
For example, when we use the print function, we pass a string as an
argument. That string is received by the print function and then displayed.
Arguments are passed to a subroutine during the time of subroutine call. You
can pass as many arguments as you want separated by commas. Here is the
general syntax:

<function name> (<argument 1>, <argument 2>, … <argument
n>);

Example:
showData (6, “Norway”, 7.9, -3.5, “Oslo”, 0);

Now, here is the important part. When you pass arguments to a function, they
are stored in a special array given by @_. This array will store the arguments
in the same order that they were passed. Individual elements of this array can
be accessed as $_[<index>]. You can access the arguments using @_ and
$_[<index>] only from inside a function. Here is a simple script that
demonstrates how to pass arguments and access them:
#Subroutine Demo - Passing Arguments
#We'll have a subroutine that accepts arguments but does not return any value
#Subroutine definition
sub ShowValues
{

#Retrieve argument array size
$number_of_arguments = scalar (@_);
#Print arguments using foreach loop
print ("\n\nDisplaying arguments using foreach loop.\n");
foreach $arg (@_)
{
print ("\n$arg");
}
#Print arguments using any other loop, for that you need argument array size
#Individual elements of the @_ can be accessed as $_[<index>]
print ("\n\nDisplaying arguments using while loop.\n\n");
$count = 0 ;
#Loop from 0 to 1 less than $number_of_arguments
while ($count < $number_of_arguments)

{
print ("\Argument Number: ", $count + 1, "\tArgument Value: $_[$count]\n");
#Increment count
$count ++;
}

}
#Execution of the script begins here
#Call ShowValue, pass some numbers as arguments
ShowValues(5, -7, 2, 0.784, -3.23, 15);

Output:

13.4 Returning a value
A function can return a value back to the calling statement. For example, you
can have a function to calculate the average of 5 numbers, pass 5 arguments
to it, the function does its job and returns the average to the statement which
made the call. Inside the function definition, the return statement is used to
return a value. It is possible to return scalars, arrays and hashes. General
syntax:

return <variable>;
Example:

return $average;
At the time of calling this function, there should be a variable to receive the
returned value. Without it, the statement will be syntactically correct but the
returned value will get lost and you may run into logical issues with the
script. General syntax:

<variable> = <function name> (<argument 1>, … <argument
n>);

Example:
$avg = findAvg (5, 8, 1, 9, 3);

Here is a Perl script that shows the concept of returning a value:
#Subroutine Demo - Passing Arguments and Returning a value
#We'll have a subroutine that accepts arguments, calculates sum and returns it
#Subroutine definition
sub FindSum
{

#Initialize a variable to store sum
$sum = 0;
#Iterate through the array of arguments @_
foreach $arg (@_)
{
$sum = $sum + $arg;
}
#Return sum
return $sum;

}
#Execution begins here
#Use a variable to receive returned value
$s = FindSum(3, 1, 88.5, 34, -7, 4.67);
print ("\nThe sum is: $s\n");

Output:

Let us now write a script where we will have multiple functions in a single

file. We will use a mix of functions that return values, functions that do not
return values and also demonstrate one function calling another:
#Demo on having multiple functions
#Function to calculate sum of two numbers and return it
sub getSum
{

#Add first and second argument, return sum
$sum = $_[0] + $_[1] ;
return $sum;

}
#Function to calculate difference and print it
sub showDiff
{

#Subtract from first argument, the second one, display difference
$diff = $_[0] - $_[1] ;
print ("\nDifference: $diff\n");

}
#Function to calculate product of two numbers and return it
sub getProd
{

#This function is slightly different.
#We know that multiplication is successive addition.
#Instead of multiplying and returning the product, we will call getSum successively
$prod = 0;
$neg_flag_1 = 0;
$neg_flag_2 = 0;
$arg_1 = $_[0];
$arg_2 = $_[1];
if (($arg_1 < 0) ||($arg_2 < 0))
{
if ($arg_1 < 0)
{
$neg_flag_1 = 1;
$arg_1 = $arg_1 * -1;
}
if ($arg_2 < 0)
{
$neg_flag_2 = 1;
$arg_2 = $arg_2 * -1;

}
}
for ($i = 1 ; $i <= $arg_2 ; $i++)
{
$prod = getSum($prod, $arg_1);
}
if (($neg_flag_1) || ($neg_flag_2))
{
if (($neg_flag_1 == 1) && ($neg_flag_2 == 1))
{
$prod = $prod * 1;
}
else
{
$prod = $prod * -1;
}
}
return $prod;

}
#Divide two numbers and show quotient
sub divide
{

$q = $_[0] / $_[1];
print ("\nQuotient: $q\n");

}
#Execution begins here
#Define arbitrary variables
$a = 20;
$b = 51;
print ("\n\$a = $a \t\$b = $b\n");
#Call functions one by one
$s = getSum($a, $b);
print ("\nSum: $sum\n");
showDiff($a, $b);
$p = getProd($a, $b);
print ("\nProduct: $p\n");
divide($a, $b);

Output:

14. Strings
A string is a sequence of characters. We have dealt strings all throughout this
book. In this section, we will revise what we have already know and learn
more about strings.

14.1 String Basics
A string can be created by enclosing a sequence of characters within single
quotes or double quotes but not in a mixed fashion. Meaning, a string cannot
start with a single quote and end with double quotes or vice-versa. General
Syntax:

$<var> = '<sequence of characters>';
#OR

$<var> = "<sequence of characters>";
Example:
$name = "Jason";
#OR
$city = 'Glasgow';

There are several restricted special characters that you cannot directly use
such as $, @, etc. If you want to use such characters in your string, you have
to make use of the escape character backslash (\) and the escape character
sequence will become \<restricted character>. Example: \$, \@, etc.
Note: Escape sequence will only work for strings enclosed within double
quotes.
The length of a string can be determined using the length() function. Syntax:

$<variable> = length (<string>);
Example:
$l = length ($country);

This function counts the number of characters inside a string and returns it. A
variable must be used to receive the returned value.

14.2 String Concatenation and Repetition

Two or more strings can be joined together using the concatenation operators
given by – dot (.). General Syntax:

$<var> = $<string 1> . $<string 2>;
Example:
$name = $first_name . “ ” . $last_name;

A string can be repeated multiple number of times using the repetition
operator given by x. General syntax:

$<var> = <string> x <number of times the string should repeat>;
Example:
$str = “Wow” x 3;

Let us write a program to demonstrate these concepts:
#String Demo
#Declare a few strings
$str1 = "This is a string declared using double quotes \" \n";
$str2 = 'This is a string declared using single quotes \' ';
print ("\n$str1\n$str2\n");
$str3 = "This is just a string.";
$str4 = "This is another string.";
$str5 = "Why do we have so many strings?";
print ("\n$str3\n$str3\n$str4\n");
#Concatenate using + and .
$str6 = $str3 . " " . $str4 . " " . $str5;
print ("\n$str6\n");
$len = length ($str6);
print ("\nLength of the previous string: $len\n");
$str7 = "Hello World!!! " x 5;
print ("\n$str7\n");

Output:

14.3 Search within a string
A string can be searched within another string using the functions – index()
and rindex(). The index() function returns the first occurrence of the string
while rindex() function gives the last occurrence of the string. General
syntax:

$<var> = index (<source string>, <string to be searched>);
$<var> = rindex (<source string>, <string to be searched>);
Example:
$a = index (“This is just a string”, “is”);
$b = rindex ($address, “street”);

Here is a Perl script that shows string search in action:
#String Search Demo
print ("\nEnter a string: ");
#Use prompt to receive the input in the variable $str1
#Use chomp at the time of taking input.
chomp ($str1 = <STDIN>);
#Ask the user to enter age
print ("\nEnter another string: ");
#Use prompt to receive the input in the variable $str2
#Use chomp at the time of taking input.
chomp ($str2 = (<STDIN>));
#Search for the first occurance of $str2 in $str1 using index()
$p = index ($str1, $str2);
#Search for the last occurance of $str2 in $str1 using rindex()
$q = rindex ($str1, $str2);
if (($p == -1) || ($q == -1))

{
print ("\n$str2 is not found in $str1.\n");

}
else
{

print ("\n$str2 has been found. \n\nFirst occurance: $p, Last occurrence: $q.\n ");
}

Output:

15. File Handling
The concepts we have learned so far involve dealing with hardcoded data or
interacting with the user via console. In this section, we will see how to
exchange data with local files. File I/O is a huge topic that if covered in full
would have occupied 50% of this book. Keeping this mind, I have covered
the basics and important concepts. Also, there are a few pointers in this
chapter using which you can learn more things about files. We will only deal
with plain text files.
VERY IMPORTANT NOTE: When dealing with files, you should have the
correct permissions to the directory where your files will be present. It is best
to have administrator rights. Without the right permissions, your file
operations will fail.

15.1 Basics of File I/O
When dealing with files in Perl, the most important concept is – file handle.
A file handle is like a pointer to a file which can be used to programmatically
access the file in question. A scalar variable of any allowed name can be used
as a file handle.

15.1.1 Open Files
Opening a file in programmatic terms means that there is some element in the
program which is correctly pointing to a file and has internally opened the
file. Opening a file does not automatically mean reading it. This is very
important. To open a file, we can use the open function. There are many
ways to use this function but we will follow the following syntax for
simplicity:

open ([<file handle>], [mode], [file name]);
Example:
open ($file_handle, “<”, “my_file.txt”);

There are many things that can go wrong while working with files and hence
it is recommended that exceptions that can arise during runtime be handled.
Exception handling is a vast and advanced topic again and hence it is not
covered in this book. For us, all we have to know is – in case something goes
wrong while working with a file, what do we do? The answer to that question

is – use die function. We will use the following syntax as a template for
opening files throughout this chapter:

open ([<file handle>], [mode], [file name]) or die “<Error
Message”>;

Example:
open ($file_handle, “<”, “my_file.txt”) or die "Could not open

file”;

15.1.2 File Modes
There are different file modes for different purposes such as reading, writing,
appending, etc. Here is a list of all the file modes that are available:

Mode Description

“<“ Opens file for reading only.

“>” Creates a new file for writing. If the file already exists, its contents will be
cleared after opening.

“>>” Creates a file for appending. If it does not exist, a new file will be created.

“+<“ Works only with existing files. Can be used for both reading and writing.

“+>” If the file does not exist, a new one will be created, its contents will be cleared.
Can be used for reading and writing.

“+>>” If the file does not exist, a new one will be created. Can be used for reading and
appending.

15.1.3 Close Files
Once a file is opened and operations are performed (like read, write, etc.
which will be covered in the sections to follow), it must be closed. The close
function is used in the following way:

close ([file handle]);
Example:
close ($fh);

You can alternatively use this function alongside the die function as follows:
close ([file handle]) or die "Could not close file”;

Example:
close ($fh) or die or die "Could not close file”;

15.1.4 Create a simple file
If we open a file with writing mode and close it, an empty file will be created.
Here is a script that does this:
#File Create Demo
#Note: You will need write permissions to the directory where the file is to be created.
#Perl supports absolute and relative paths
#If only file name is specified, it will be created in the CWD

#Set the file name
$file_name = "file_1.txt";
#Open file
open($file_handle, '>', $file_name) or die "Could not open file '$file_name' $!";
print ("\n$file_name has been created.\n");
#Close file
close($file_handle);

Output:

You can cross-check with the dir command on Windows and ls command on
Linux/MAC:

As seen, the file is created and its size is 0 bytes. That is because, there is
nothing in it.

15.1.5 Writing to a file

Once a file is opened, it can be written to using the print function. So far, we
have used the print function to print data on the console. What used to
happen there is, the print function by default used to send the output to
STDOUT. When writing to a file, we have to specify the file handle that we
used at the time of opening the file. With this, the output will now be directed
to the file instead of the console. Here is the general syntax:

open ([<file handle>], [mode], [file name]) or die “<Error
Message”>;

print ([<file handle>] <text/data>);
Example:
open ($file_handle, “>”, “my_file.txt”) or die "Could not open

file”;
print ($file_handle “Hello World!!!”);
close ($file_handle);

Here is a Perl script that opens a file, writes some strings to it and closes it:
#File Write Demo
#Note: You will need write permissions to the directory where the file is to be created.
#Perl supports absolute and relative paths
#If only file name is specified, it will be created in the CWD

#Set the file name
$file_name = "file_2.txt";
#Open file
open($file_handle, '>', $file_name) or die "Could not open file '$file_name' $!";
print ("\n$file_name has been created.\n");
#Write to the file by directing print function's output to the $file_handle
print ($file_handle "This is a write test!");
print ($file_handle "\nThis is another line written to $file_name programmatically.\n");
print ("\nContent has been written to the file. Open in a text editor.\n");
#Close file
close($file_handle);

Output:

The program tells us that the file has been created and data has been written
to. Here is what the file looks like when opened in a text editor:

Let us now write a Perl script to take input from the user via prompt and
write it to a file:
#User input/Write file combined
#Note: You will need write permissions to the directory where the file is to be created.
#Perl supports absolute and relative paths
#If only file name is specified, it will be created in the CWD
#Set the file name
$file_name = "user_data.txt";
#Open file
open($file_handle, '>', $file_name) or die "Could not open file '$file_name' $!";
print ("\n$file_name has been created.\n");
#Loop for 3 times, ask the user to enter name, age and country of 3 people
for ($i = 1 ; $i <= 3 ; $i++)
{

#Ask the user to enter name
print ("\n$i. Enter name: ");
#Use prompt to receive the input in the variable $name
#Use chomp at the time of taking input.
chomp ($name = <STDIN>);

#Ask the user to enter age
print ("\n$i. Enter age: ");
#Use prompt to receive the input in the variable $age
#Use chomp at the time of taking input.
chomp ($age = (<STDIN>));
#Ask the user to enter country
print ("\n$i. Enter country: ");
#Use prompt to receive the input in the variable $country
#Use chomp at the time of taking input.
chomp ($country = (<STDIN>));
#Write to the file by directing print function's output to the $file_handle
print ($file_handle "Name: $name");
print ($file_handle "\nAge: $age");
print ($file_handle "\nCountry: $country\n\n");

}
#Close file
close($file_handle);
print ("\nThe entered data has been successfully written to $file_name\n");

Output:

Here is what user_data.txt file looks like:

15.1.6 Reading from a file
In order to read text from a file, we need to use the diamond operator (<>)
over the file handle once the file is opened. The empty diamond operator
reads input from the STDIN, which is keyboard while the diamond operator
used over the file handle will read from the file. If you try to print <[file
handle]> using the print function, all the contents of the file will be printed.
Here is a script that reads from user_data.txt created by a program in the
previous section:
#Read file demo
#Note: You will need read permissions to the directory from where the file is to be read.
#Perl supports absolute and relative paths
#If only file name is specified, it will be created in the CWD
#Set the file name
$file_name = "user_data.txt";
#Open file
open($file_handle, '<', $file_name) or die "Could not open file '$file_name' $!";
print ("\n$file_name has been opened for reading.\n");
print ("\nFile content:\n\n");
print (<$file_handle>);
#Close file
close($file_handle);

Output:

If you want to read the file line by line, you can use a loop to iterate over the
file handle using the diamond operator. For example:

while (<$file_handle>)
{
#Do something…
}

During each iteration, the loop will fetch the next line. The current line will
be given by the special variable $_. Here is a script that reads user_data.txt
line by line:
#Read file demo
#Note: You will need read permissions to the directory from where the file is to be read.
#Perl supports absolute and relative paths
#If only file name is specified, it will be created in the CWD
#Set the file name
$file_name = "user_data.txt";
#Open file
open($file_handle, '<', $file_name) or die "Could not open file '$file_name' $!";
print ("\n$file_name has been opened for reading.\n");
print ("\nFile content line by line:\n\n");
#Loop until <$file_handle> has data
$line_number = 1;
while (<$file_handle>)
{

print ($line_number, ". ", $_);
$line_number++;

}
#Close file

close($file_handle);

Output:

15.1.7 Search text inside a file
Let us write a Perl script to search text inside a file. To accomplish this, we
will open a file, ask the user to enter a string to be searched inside the file.
We will then read this file line by line and check if the entered substring is
present in any of the lines. We will again use user_data.txt file as our source
file.
#Read file, search for text
#Note: You will need read permissions to the directory from where the file is to be read.
#Perl supports absolute and relative paths
#If only file name is specified, it will be created in the CWD
#Set the file name
$file_name = "user_data.txt";
#Open file
open($file_handle, '<', $file_name) or die "Could not open file '$file_name' $!";
print ("\n$file_name has been opened for reading.\n");
#Ask the user to enter string to be searched
print ("\nEnter a string: ");
#Use prompt to receive the input in the variable $str
#Use chomp at the time of taking input.
chomp ($str = <STDIN>);
#Loop until <$file_handle> has data
$line_number = 1;
$found = -1;
while (<$file_handle>)
{

#Search for the first occurance of $str in $_ using index()

$p = index ($_, $str);
#Search for the last occurance of $str in $_ using rindex()
$q = rindex ($_, $str);
if (($p == -1) || ($q == -1))
{
#Do nothing here
}
else
{
print ("\nLine: $line_number, $str has been found. \n\nFirst occurance: $p, Last

occurance: $q.\n ");
$found = 1;
}
$line_number++;

}
if ($found == -1)
{

print ("\nThe entered string was not found.\n");
}
#Close file
close($file_handle);

Output:

16. Programming Examples
Let us put the concepts we have learned so far to the test and write some Perl
scripts.

16.1 Prime or Composite
#Check if a number is prime or composite
print ("\nEnter a number: ");
#Use prompt to receive the input in the variable $num
#Use chomp at the time of taking input.
chomp ($num = (<>));
$prime_flag = 0;
for ($i = 2; $i < $num ; $i++)
{

if ($num%$i == 0)
{
$prime_flag = 1;
last;
}

}
if (!($prime_flag))
{

print ("\n$num is prime.\n");
}
else
{

print ("\n$num is composite.\n");
}

Output:

16.2 Fibonacci Series
Let us write a Perl script to generate Fibonacci Series where in the next term
is given by current term plus previous term. It starts with the first two terms 0
and 1. The next terms are 1, 2, 3, 5, 8 and so on. Here is the script:
#Fibonacci series
print ("\nEnter the number of terms to be generated: ");
#Use prompt to receive the input in the variable $num
#Use chomp at the time of taking input.
chomp ($num = (<>));
$prev = 0;
$current = 1;
print ("\nFibonacci Series: \n\n");
#Generate Fibo series
print ($prev, " ", $current, " ");
for ($i = 0 ; $i < $num - 1 ; $i++)
{

$next = $prev + $current ;
print ($next, " ");
$prev = $current;
$current = $next;

}
print ("\n");

Output:

16.3 Sum of digits of a number
Let us write a Perl script to accept a number as an input from the user and
calculate the sum of all the digits of the number. To do so, we will have to
retrieve the digit at one’s place and discard it progressively by dividing the
number by 10 and taking only the integer part using the int function.
#Sum of all the digits of a number
print ("\nEnter a number: ");
#Use prompt to receive the input in the variable $number
#Use chomp at the time of taking input.
chomp ($number = (<>));
$sum = 0;
while ($number > 0)
{

#Add one's place digit to $sum
$sum = $sum + ($number % 10) ;
#Discard one's place digit. int function will return only the integer part
$number = int ($number / 10) ;

}
print ("\nSum of digits: $sum\n");

Output:

16.4 Reverse a number
Here is a Perl script that accepts a number from the user and reverses it:

#Sum of all the digits of a number
print ("\nEnter a number: ");
#Use prompt to receive the input in the variable $number
#Use chomp at the time of taking input.
chomp ($number = (<>));
$rev = 0;
while ($number > 0)
{

#Multiply 10 to $rev to take the reverse to the next place
#Add one's digit to rev
$rev = ($rev * 10) + ($number % 10) ;
#Discard one's digit. Use int function
$number = int ($number / 10) ;

}
print ("\nReverse: $rev\n");

Output:

16.5 Menu driven program
Let us write a menu driven Perl script to add, subtract, multiply and divide
two numbers. We will write functions for each of these operations.
#Menu driven program
#Function to find sum
sub getSum
{

$sum = $_[0] + $_[1];
return $sum;

}
#Function to find difference
sub getDiff
{

$diff = $_[0] - $_[1];
return $diff;

}

#Function to find product
sub getProd
{

$prod = $_[0] * $_[1];
return $prod;

}
#Function to find quotient
sub getQuotient
{

$q = ($_[0]/$_[1]);
return $q;

}
#Execution begins here
while (1)
{

print ("\n1. Addition\n2. Subtraction\n3. Multiplication\n4. Division\n5. Quit");
print ("\n\nEnter your choice: ");
#Use prompt to receive the input in the variable $choice
#Use chomp at the time of taking input.
chomp ($choice = (<>));
if ($choice == 5)
{
last;
}
print ("\nEnter x: ");
#Use prompt to receive the input in the variable $x
#Use chomp at the time of taking input.
chomp ($x = (<>));
print ("\nEnter y: ");
#Use prompt to receive the input in the variable $y
#Use chomp at the time of taking input.
chomp ($y = (<>));
if ($choice == 1)
{
$s = getSum ($x, $y);
print ("\nSum = $s\n");
}
elsif ($choice == 2)
{

$d = getDiff ($x, $y);
print ("\nDiff = $d\n");
}
elsif ($choice == 3)
{
$p = getProd ($x, $y);
print ("\nProd = $p\n");
}
elsif ($choice == 4)
{
$q = getQuotient ($x, $y);
print ("\nQuotient = $q\n");
}

}

Output:

16.6 Lowest Common Multiple
Let us write a program to determine the LCM of two numbers:
#LCM
print ("\nEnter a number: ");
#Use prompt to receive the input in the variable $x
#Use chomp at the time of taking input.
chomp ($x = (<>));
print ("\nEnter another number: ");
#Use prompt to receive the input in the variable $y
#Use chomp at the time of taking input.
chomp ($y = (<>));
if ($x > $y)
{

$lcm = $x;
}
else
{

$lcm = $y;
}
#Run while loop infinitely, break when LCM if found
while(1)
{

if(($lcm % $x == 0) && ($lcm % $y == 0))
{
 print ("\nLCM: $lcm\n");
 last;
}
$lcm = $lcm + 1;

}

Output:

16.7 Search for an element in an array

There are various algorithms to search for elements in an array. We will
implement the simplest one called as linear search. In this algorithm, the
search begins at index 0 and goes up to (size – 1). If the element is found, we
come out of the loop. Only the first occurrence of the element will be
reported.
#Implement linear search
#Create a blank array
@arr = ();
#Create a flag
$flag_found = 0;
$i = 0;
#Run for loop 5 times
for ($i = 0 ; $i < 5 ; $i++)
{

print ("\nEnter element at index $i: ");
#Read input, chomp it
chomp ($num = (<>));
#Store it in the array
$arr[$i] = $num;

}
#Display the array
for ($i = 0 ; $i < 5 ; $i++)
{

print ("\nIndex: $i\t\@arr[$i] = $arr[$i]");
}
print ("\n\nEnter the element to be searched: ");
chomp ($x = (<>));
#Begin search
for ($i = 0 ; $i < 5 ; $i++)
{

if (($x == $arr[$i]))
{
$flag_found = 1;
last;
}

}
if ($flag_found)
{

print ("\nThe element $x has been found at $i.\n");
}
else
{

print ("\nThe element $x is not present in the array.\n");
}

Output:

16.8 Greatest element in an array
In order to find the greatest element in an array, we start at index 0, assume
that the first element is the greatest. If we find a greater element than our
greatest, we make that element greatest during the course of loop iterations.
#Greatest in an array
#Create a blank array
@arr = ();
#Run for loop 5 times
for ($i = 0 ; $i < 5 ; $i++)
{

print ("\nEnter element at index $i: ");
#Read input, chomp it
chomp ($num = (<>));
#Store it in the array
$arr[$i] = $num;

}
#Display the array
for ($i = 0 ; $i < 5 ; $i++)
{

print ("\nIndex: $i\t\@arr[$i] = $arr[$i]");
}

#Assume first number is the greatest
$greatest = $arr[0];
#Find greatest
for ($i = 0 ; $i < 5 ; $i++)
{

#If current element is greater than greatest, make it greatest
if ($arr[$i] > $greatest)
{
$greatest = $arr[$i];
}

}
print ("\n\nGreatest element: $greatest\n");

Output:

16.9 Bubble Sort
Bubble sort is an array sorting algorithm where an element is compared to the
next one. If the current element is greater than the next one, the elements are
swapped. During each iteration, the greatest element reaches the end of the
array.
#Bubble Sort
#Create a blank array
@arr = ();
$size = 5;

#Run for loop 5 times
for ($i = 0 ; $i < $size ; $i++)
{

print ("\nEnter element at index $i: ");
#Read input, chomp it
chomp ($num = (<>));
#Store it in the array
$arr[$i] = $num;

}
#Display the array
print ("\n\nUnsorted array:\n");
for ($i = 0 ; $i < $size ; $i++)
{

print ("\nIndex: $i\t\@arr[$i] = $arr[$i]");
}
#Core of bubble sort algorith
for ($i = 0 ; $i < $size ; $i++)
{

for ($j = 0 ; $j < ($size - $i - 1) ; $j++)
{
if ($arr[$j] > $arr[$j+1])
{
$temp = $arr[$j];
$arr[$j] = $arr[$j+1];
$arr[$j+1] = $temp;
}
}

}
print ("\n\nSorted array:\n");
for ($i = 0 ; $i < $size ; $i++)
{

print ("\nIndex: $i\t\@arr[$i] = $arr[$i]");
}

Output:

16.10 File Copy
Let us write a Perl script to copy a file. This is not as difficult as it sounds.
All we have to do is, open a file. Read it line by line. As we are reading the
lines, write those lines to another file. Let us create a source file with
arbitrary data. This is what my source file looks like:

Here is the script:
#Copy file demo
#Note: You will need read/write permissions
#Perl supports absolute and relative paths
#If only file name is specified, it will be created in the CWD
#Set the file names
$file_name_src = "source.txt";
$file_name_dest = "destination.txt";
#Open files
open($file_handle_src, '<', $file_name_src) or die "Could not open file '$file_name_src' $!";
print ("\n$file_name_src has been opened for reading.\n");
open($file_handle_dest, '>', $file_name_dest) or die "Could not open file '$file_name_dest' $!";
print ("\n$file_name_dest has been opened for writing.\n");
print ("\nFile content line by line:\n\n");
#Loop until <$file_handle> has data
$line_number = 1;
while (<$file_handle_src>)
{

#Print content to the console
print ($line_number, ". ", $_);
#Print line to the file
print ($file_handle_dest $_);
$line_number++;

}
print ("\n\nContent from $file_name_src has been copied to $file_name_dest\n");
#Close files
close($file_handle_src);
close($file_handle_dest);

Output:

Here is what the destination file looks like:

17. Final Thoughts
This book was meant for beginners and hence I have covered the basics of
each chapter and tried to break down concepts as much as possible. Perl is
still very useful for a wide variety of things ranging from system
administration to web development. In my opinion, Perl is one of the easier
scripting languages out there. As a beginner you should get as much hands-on
experience as possible. I suggest you try out different programming examples
on your own. Change the conditions, challenge yourself and see yourself
getting better at programming!
If you have enjoyed this book and want to learn more, there are plenty of
resources on the internet. You should dig deeper into more advanced
concepts such as exception handling, object oriented programming, web
development, etc.
I hope you have learned something of value from this book.
Good Luck!

If you enjoyed this book as much as I’ve enjoyed writing it, you can
subscribe* to my email list for exclusive content and sneak peaks of my

future books.
Visit the link below:

http://eepurl.com/du_L4n
OR

Use the QR Code:

(*Must be 13 years or older to subscribe)

http://eepurl.com/du_L4n

	1. Introduction
	2. Scope of Perl
	How relevant is Perl in 2020 and beyond?
	What are the prerequisites of learning Perl?
	What will I learn from this book?

	3. Getting Started
	3.1 Installing Perl on Windows
	3.2 Installing Perl on Unix-like systems
	3.3 Perl Scripts/Programs
	3.4 Script Execution
	3.5 Hello World!!! Script Execution

	4. Basic Syntax
	4.1 Statements
	4.2 Comments
	4.3 Code Block
	4.4 Identifiers

	5. Writing your first Perl script
	5.1 print Function
	5.2 Syntax Errors

	6. Data Types and Variables
	6.1 Data Types
	6.1.1 Scalar
	6.1.2 Arrays
	6.1.3 Hashes

	6.2 Variables
	6.2.1 Declaring Scalar Variables
	6.2.2 Numeric Values
	6.2.3 String Values
	6.2.4 Display Scalar Variables

	7. User Interaction
	8. Operators
	8.1 Arithmetic Operators
	8.2 Assignment Operators
	8.3 Comparison Operators
	8.4 Logical Operators
	8.5 Bitwise Operators

	9. Decision Making
	9.1 if-else Statements
	9.2 unless Statement

	10. Loops
	10.1 while Loop
	10.2 do-while Loop
	10.3 until Loop
	10.4 for Loop
	10.5 Nested Loops
	10.6 Control Statements
	10.6.1 next Statement
	10.6.2 last Statement
	10.6.3 continue block
	10.6.4 redo Statement

	11. Arrays
	11.1 Array Creation
	11.2 Accessing Array Elements
	11.3 Range Operator
	11.4 Arrays and Loops
	11.5 foreach Loop
	11.6 Reading user input into arrays
	11.7 Array Manipulation
	11.8 Sorting Arrays

	12. Hashes
	12.1 Accessing and Manipulating Hashes
	12.1.1 Check if a Key Exists
	12.1.2 Delete Hash Elements

	12.2 Fetch Keys and Values

	13. Subroutines
	13.1 Defining a Subroutine
	13.2 Calling a Subroutine
	13.3 Passing arguments

	14. Strings
	14.1 String Basics
	14.2 String Concatenation and Repetition
	14.3 Search within a string

	15. File Handling
	15.1 Basics of File I/O
	15.1.1 Open Files
	15.1.2 File Modes
	15.1.3 Close Files
	15.1.4 Create a simple file
	15.1.5 Writing to a file
	15.1.6 Reading from a file
	15.1.7 Search text inside a file

	16. Programming Examples
	16.1 Prime or Composite
	16.2 Fibonacci Series
	16.3 Sum of digits of a number
	16.4 Reverse a number
	16.5 Menu driven program
	16.6 Lowest Common Multiple
	16.7 Search for an element in an array
	16.8 Greatest element in an array
	16.9 Bubble Sort
	16.10 File Copy

	17. Final Thoughts

