
Long Short-Term Memory
Networks With Python

Develop Sequence Prediction
Models With Deep Learning

Jason Brownlee

i

Disclaimer

The information contained within this eBook is strictly for educational purposes. If you wish to apply
ideas contained in this eBook, you are taking full responsibility for your actions.
The author has made every effort to ensure the accuracy of the information within this book was
correct at time of publication. The author does not assume and hereby disclaims any liability to any
party for any loss, damage, or disruption caused by errors or omissions, whether such errors or
omissions result from accident, negligence, or any other cause.
No part of this eBook may be reproduced or transmitted in any form or by any means, electronic or
mechanical, recording or by any information storage and retrieval system, without written permission
from the author.

Copyright

Long Short-Term Memory Networks With Python

© Copyright 2017 Jason Brownlee. All Rights Reserved.

Edition: v1.1

Contents

Copyright i

Contents ii

Preface iii

I Introductions iv

Welcome v
Who Is This Book For? . v
About Your Outcomes . vi
How to Read This Book . vi
About the Book Structure . vi
About Lessons . viii
About LSTM Models . ix
About Prediction Problems . ix
About Python Code Examples . x
About Further Reading . xi
About Getting Help . xii
Summary . xii

II Foundations 1

1 What are LSTMs 2
1.1 Sequence Prediction Problems . 3
1.2 Limitations of Multilayer Perceptrons . 7
1.3 Promise of Recurrent Neural Networks . 9
1.4 The Long Short-Term Memory Network . 10
1.5 Applications of LSTMs . 12
1.6 Limitations of LSTMs . 14
1.7 Further Reading . 15
1.8 Extensions . 17
1.9 Summary . 17

ii

CONTENTS iii

2 How to Train LSTMs 18
2.1 Backpropagation Training Algorithm . 19
2.2 Unrolling Recurrent Neural Networks . 19
2.3 Backpropagation Through Time . 22
2.4 Truncated Backpropagation Through Time . 23
2.5 Configurations for Truncated BPTT . 23
2.6 Keras Implementation of TBPTT . 24
2.7 Further Reading . 25
2.8 Extensions . 26
2.9 Summary . 26

3 How to Prepare Data for LSTMs 27
3.1 Prepare Numeric Data . 27
3.2 Prepare Categorical Data . 31
3.3 Prepare Sequences with Varied Lengths . 34
3.4 Sequence Prediction as Supervised Learning . 36
3.5 Further Reading . 39
3.6 Extensions . 40
3.7 Summary . 41

4 How to Develop LSTMs in Keras 42
4.1 Define the Model . 43
4.2 Compile the Model . 44
4.3 Fit the Model . 45
4.4 Evaluate the Model . 47
4.5 Make Predictions on the Model . 47
4.6 LSTM State Management . 48
4.7 Examples of Preparing Data . 49
4.8 Further Reading . 52
4.9 Extensions . 53
4.10 Summary . 53

5 Models for Sequence Prediction 54
5.1 Sequence Prediction . 54
5.2 Models for Sequence Prediction . 55
5.3 Mapping Applications to Models . 60
5.4 Cardinality from Time Steps (not Features!) . 61
5.5 Two Common Misunderstandings . 62
5.6 Further Reading . 62
5.7 Extensions . 62
5.8 Summary . 63

III Models 64

6 How to Develop Vanilla LSTMs 65
6.1 The Vanilla LSTM . 66

CONTENTS iv

6.2 Echo Sequence Prediction Problem . 67
6.3 Define and Compile the Model . 71
6.4 Fit the Model . 72
6.5 Evaluate the Model . 73
6.6 Make Predictions With the Model . 74
6.7 Complete Example . 74
6.8 Further Reading . 75
6.9 Extensions . 76
6.10 Summary . 76

7 How to Develop Stacked LSTMs 77
7.1 The Stacked LSTM . 78
7.2 Damped Sine Wave Prediction Problem . 81
7.3 Define and Compile the Model . 86
7.4 Fit the Model . 87
7.5 Evaluate the Model . 88
7.6 Make Predictions with the Model . 88
7.7 Complete Example . 89
7.8 Further Reading . 90
7.9 Extensions . 91
7.10 Summary . 91

8 How to Develop CNN LSTMs 93
8.1 The CNN LSTM . 94
8.2 Moving Square Video Prediction Problem . 97
8.3 Define and Compile the Model . 101
8.4 Fit the Model . 102
8.5 Evaluate the Model . 103
8.6 Make Predictions With the Model . 103
8.7 Complete Example . 104
8.8 Further Reading . 105
8.9 Extensions . 106
8.10 Summary . 106

9 How to Develop Encoder-Decoder LSTMs 108
9.1 Lesson Overview . 108
9.2 The Encoder-Decoder LSTM . 109
9.3 Addition Prediction Problem . 112
9.4 Define and Compile the Model . 120
9.5 Fit the Model . 122
9.6 Evaluate the Model . 123
9.7 Make Predictions with the Model . 123
9.8 Complete Example . 124
9.9 Further Reading . 126
9.10 Extensions . 127
9.11 Summary . 127

CONTENTS v

10 How to Develop Bidirectional LSTMs 129
10.1 The Bidirectional LSTM . 129
10.2 Cumulative Sum Prediction Problem . 132
10.3 Define and Compile the Model . 135
10.4 Fit the Model . 136
10.5 Evaluate the Model . 136
10.6 Make Predictions with the Model . 137
10.7 Complete Example . 137
10.8 Further Reading . 139
10.9 Extensions . 139
10.10Summary . 140

11 How to Develop Generative LSTMs 141
11.1 The Generative LSTM . 142
11.2 Shape Generation Problem . 144
11.3 Define and Compile the Model . 150
11.4 Fit the Model . 151
11.5 Make Predictions with the Model . 151
11.6 Evaluate the Model . 153
11.7 Complete Example . 158
11.8 Further Reading . 160
11.9 Extensions . 161
11.10Summary . 161

IV Advanced 162

12 How to Diagnose and Tune LSTMs 163
12.1 Evaluating LSTM Models Robustly . 163
12.2 Diagnosing Underfitting and Overfitting . 165
12.3 Tune Problem Framing . 176
12.4 Tune Model Structure . 178
12.5 Tune Learning Behavior . 181
12.6 Further Reading . 186
12.7 Extensions . 187
12.8 Summary . 188

13 How to Make Predictions with LSTMs 189
13.1 Finalize a LSTM Model . 189
13.2 Save LSTM Models to File . 191
13.3 Make Predictions on New Data . 195
13.4 Further Reading . 197
13.5 Extensions . 197
13.6 Summary . 197

CONTENTS vi

14 How to Update LSTM Models 198
14.1 What About New Data? . 198
14.2 What Is LSTM Model Updating? . 199
14.3 5-Step Process to Update LSTM Models . 199
14.4 Extensions . 203
14.5 Summary . 203

V Appendix 204

A Getting Help 205
A.1 Official Keras Destinations . 205
A.2 Where to Get Help with Keras . 205
A.3 How to Ask Questions . 206
A.4 Contact the Author . 206

B How to Setup a Workstation for Deep Learning 207
B.1 Overview . 207
B.2 Download Anaconda . 207
B.3 Install Anaconda . 209
B.4 Start and Update Anaconda . 211
B.5 Install Deep Learning Libraries . 214
B.6 Further Reading . 215
B.7 Summary . 215

C How to Use Deep Learning in the Cloud 216
C.1 Project Overview . 216
C.2 Setup Your AWS Account . 217
C.3 Launch Your Server Instance . 218
C.4 Login, Configure and Run . 222
C.5 Build and Run Models on AWS . 223
C.6 Close Your EC2 Instance . 224
C.7 Tips and Tricks for Using Keras on AWS . 226
C.8 Further Reading . 226
C.9 Summary . 226

VI Conclusions 227

How Far You Have Come 228

Preface

This book was born out of one thought:

If I had to get a machine learning practitioner proficient with LSTMs in two weeks (e.g. capable
of applying LSTMs to their own sequence prediction projects), what would I teach?

I had been researching and applying LSTMs for some time and wanted to write something on
the topic, but struggled for months on how exactly to present it. The above question crystallized
it for me and this whole book came together.

The above motivating question for this book is clarifying. It means that the lessons that I
teach are focused only on the topics that you need to know in order to understand (1) what
LSTMs are, (2) why we need LSTMs and (3) how to develop LSTM models in Python with
Keras. It means that it is my job to give you the critical path.

� From: practitioner interested in LSTMs.

� To: practitioner that can confidently apply LSTMs to sequence prediction problems.

I want you to get proficient with LSTMs as quickly as you can. I want you using LSTMs on
your project. This also means not covering some topics, even topics covered by “everyone else”,
like:

� Theory: The math of LSTMs is interesting even beautiful. It can deepen your under-
standing of what is going in within the LSTM fit and prediction processes. But it is
not required in order to develop LSTM models and use them to make predictions and
deliver value. A theoretical understanding of LSTMs is a nice-to-have next step. Not a
prerequisite or first step to using LSTMs on your project.

� Research: There is a lot of interesting things going on in the field of LSTM and RNN
research right now. Lots of interesting and fun ideas to talk about. But the coalface of
research is noisy and it is not clear what techniques will actually survive and prove useful
and what will be forgotten and never applied on real problems. This too is a nice-to have
subsequent step and diving into the research can be something to consider after you know
how to apply LSTMs to real problems.

The 14 lessons in this book are the fastest way that I know to get you proficient with LSTMs.

Jason Brownlee
2017

vii

Part I

Introductions

viii

Welcome

Welcome to Long Short-Term Memory Networks With Python. Long Short-Term Memory
(LSTM) recurrent neural networks are one of the most interesting types of deep learning at the
moment. They have been used to demonstrate world-class results in complex problem domains
such as language translation, automatic image captioning, and text generation.

LSTMs are very different to other deep learning techniques, such as Multilayer Perceptrons
(MLPs) and Convolutional Neural Networks (CNNs), in that they are designed specifically for
sequence prediction problems. I designed this book for you to rapidly discover what LSTMs
are, how they work, and how you can bring this important technology to your own sequence
prediction problems.

Who Is This Book For?

Before we get started, let’s make sure you are in the right place. This book is for developers
that know some applied machine learning and need to get good at LSTMs fast.

Maybe you want or need to start using LSTMs on your research project or on a project at
work. This guide was written to help you do that quickly and efficiently by compressing years
worth of knowledge and experience into a laser-focused course of 14 lessons. The lessons in this
book assume a few things about you, such as:

� You know your way around basic Python.

� You know your way around basic NumPy.

� You know your way around basic scikit-learn.

For some bonus points, perhaps some of the below points apply to you. Don’t panic if they
don’t.

� You may know how to work through a predictive modeling problem.

� You may know a little bit of deep learning.

� You may know a little bit of Keras.

This guide was written in the top-down and results-first machine learning style that you’re
used to from MachineLearningMastery.com.

ix

x

About Your Outcomes

This book will teach you how to get results as a machine learning practitioner interested in
using LSTMs on your project. After reading and working through this book, you will know:

1. What LSTMs are.

2. Why LSTMs are important.

3. How LSTMs work.

4. How to develop a suite of LSTM architectures.

5. How to get the most out of your LSTM models.

This book will NOT teach you how to be a research scientist and all the theory behind
why LSTMs work. For that, I would recommend good research papers and textbooks. See the
Further Reading section at the end of the first lesson for a good starting point.

How to Read This Book

This book was written to be read linearly from start to finish. That being said, if you know the
basics and need help with a specific model type, then you can flip straight to that model and
get started.

This book was designed for you to read on your workstation, on the screen, not on an eReader.
My hope is that you have the book open right next to your editor and run the examples as you
read about them.

This book is not intended to be read passively or be placed in a folder as a reference text. It
is a playbook, a workbook, and a guidebook intended for you to learn by doing and then apply
your new understanding to your own deep learning projects. To get the most out of the book, I
would recommend playing with the examples in each lesson. Extend them, break them, then fix
them. Try some of the extensions presented at the end of each lesson and let me know how you
do.

About the Book Structure

This book was designed to be a 14-day crash course into LSTMs for machine learning practitioners.
There are a lot of things you could learn about LSTMs, from theory to applications to Keras API.
My goal is to take you straight to getting results with LSTMs in Keras with 14 laser-focused
lessons.

I designed the lessons to focus on the LSTM models and their implementation in Keras.
They give you the tools to both rapidly understand each model and apply them to your own
sequence prediction problems. Each of the 14 lessons are designed to take you about one hour
to read through and complete, excluding the extensions and further reading.

You can choose to work through the lessons one per day, one per week, or at your own pace.
I think momentum is critically important, and this book was intended to be read and used, not
to sit idle. I would recommend picking a schedule and sticking to it. The lessons are divided
into three parts:

xi

� Part 1: Foundations. The lessons in this section are designed to give you an under-
standing of how LSTMs work, how to prepare data, and the life-cycle of LSTM models in
the Keras library.

� Part 2: Models. The lessons in this section are designed to teach you about the different
types of LSTM architectures and how to implement them in Keras.

� Part 3: Advanced. The lessons in this section are designed to teach you how to get the
most from your LSTM models.

Part 1
Foundations

Part 2
Models

Part 3
Advanced

I know about
LSTMs!

I can get results
with LSTMs!

I can get the most
out of LSTMs!

I know some
applied ML...

I can use LSTMs
in my project...

Figure 1: Overview of the 3-part book structure.

You can see that these parts provide a theme for the lessons with focus on the different
types of LSTM models. Below is a breakdown of the 14 lessons organized by their part:

Part 1: Foundations

� Lesson 1: What are LSTMs.

� Lesson 2: How to Train LSTMs.

� Lesson 3: How to Prepare Data for LSTMs.

� Lesson 4: How to Develop LSTMs in Keras.

� Lesson 5: Models for Sequence Prediction.

Part 2: Models

� Lesson 6: How to Develop Vanilla LSTMs.

� Lesson 7: How to Develop Stacked LSTMs.

� Lesson 8: How to Develop CNN LSTMs.

� Lesson 9: How to Develop Encoder-Decoder LSTMs.

� Lesson 10: How to Develop Bidirectional LSTMs.

� Lesson 11: How to Develop Generative LSTMs.

xii

Part 3: Advanced

� Lesson 12: How to Diagnose and Tune LSTMs.

� Lesson 13: How to Make Predictions with LSTMs.

� Lesson 14: How to Update LSTM Models.

You can see that each lesson has a targeted learning outcome. This acts as a filter to ensure
you are only focused on the things you need to know to get to a specific result and not get
bogged down in the math or near-infinite number of configuration parameters.

These lessons were not designed to teach you everything there is to know about each of the
LSTM models. They were designed to give you an understanding of how they work, how to use
them on your projects the fastest way I know how: to learn by doing.

About Lessons

The core of this book are the lessons on the different LSTM models. The Foundation lessons
build up to these lessons and the Advanced lessons complement the models once you know
how to implement them. Each of the lessons in the Models part of the book follow a carefully
designed structure, as follows:

� Model Architecture: Description of the model architecture, examples from seminal
papers where it was developed or applied, and a presentation on how to generally implement
it in Keras.

� Problem Description: Description of a test problem specifically designed to demonstrate
the capability of the model architecture.

� Define and Compile Model: Description and example of how to define and compile
the model architecture in Keras for the chosen problem.

� Fit Model: Description and example of how to fit the model in Keras on examples of
the chosen problem.

� Evaluate Model: Description and example of how to evaluate the fit model in Keras on
new examples of the chosen problem.

� Predict with Model: Description and example of how to make predictions with the fit
model in Keras on new examples of the chosen problem.

� Extensions: Carefully chosen list of project ideas to build upon the lesson, ordered by
increasing difficulty.

� Further Reading: Hand-picked list of research papers to deepen your understanding of
the model architecture and its application and links to API documentation for the classes
and functions highlighted in the example.

These sections were designed so that you understand the model architecture quickly, under-
stand how to implement it with Keras with a worked example, and provide you with ways of
deepening that understanding.

xiii

About LSTM Models

The LSTM network is the starting point. What you are really interested in is how to use the
LSTM to address sequence prediction problems. The way that the LSTM network is used
as layers in sophisticated network architectures. The way that you will get good at applying
LSTMs is by knowing about the different useful LSTM networks and how to use them.

The whole middle section of this book focuses on teaching you about the different LSTM
architectures. To give you an idea of what is coming, the list below summarizes each of the
LSTM architectures presented in this book. Some have standard names and for some, I’ve
assigned a standard name to help you differentiate them from other architectures.

� Vanilla LSTM. Memory cells of a single LSTM layer are used in a simple network
structure.

� Stacked LSTM. LSTM layers are stacked one on top of another into deep networks.

� CNN LSTM. A convolutional neural network is used to learn features in spatial input
like images and the LSTM can be used to support a sequence of images as input or
generate a sequence in response to an image.

� Encoder-Decoder LSTM. One LSTM network encodes input sequences and a separate
LSTM network decodes the encoding into an output sequence.

� Bidirectional LSTM. Input sequences are presented and learned both forward and
backward.

� Generative LSTM. LSTMs learn the structure relationship in input sequences so well
that they can generate new plausible sequences.

About Prediction Problems

The book uses small invented test problems to demonstrate each LSTM architecture instead of
experimental or real-world datasets. This decision was very intentional and the reason behind
this decision is as follows:

� Size. Demonstration problems must be small. I do not want you to have to download
tens of gigabytes of text or images before being able to explore a new LSTM architecture.
Small examples mean that we can get on with the example with modest time, memory
and CPU requirements.

� Complexity. Demonstration problems must be easy to understand. I do not want you to
get bogged down in the detail of a specific application example, especially if the application
is image data and you are only interested in time series or text problems.

� Tuning. Demonstration problems must be able to scale in difficulty. It is important that
the difficulty of the demonstration problems can be easily tuned, so that they provide a
starting point for your own experimentation.

xiv

� Focus. The prediction problems are not the focus of this book. The goal of the book is
to teach you how to use LSTMs, specific the different useful LSTM architectures. The
focus is not the application of LSTMs to one specifically application area. The problem
description sections of each lesson are already large enough.

� Adaptability. The examples must provide a template for your own projects. I want you
be able to review each LSTM architecture demonstration and clearly see how it works. So
much so, that I want you to be able to copy it into your own project, delete the functions
for the test problem and start experimenting immediately on your own sequence prediction
problems.

A total of 6 different sequence prediction problems were devised, one for each of the LSTM
architectures demonstrated. Below is a summary of the sequence prediction problems used in
the book. They are covered in much more detail later.

� Echo Sequence Prediction Problem. Given an input sequence of random integers,
remember and predict the random integer at a specific input location. This is a sequence
classification problem and is addressed with a many-to-one prediction model.

� Damped Sine Wave Prediction Problem. Given the input of multiple time steps of
a damped sine wave, predict the next few time steps of the sequence. This is a sequence
prediction problem or a multi-step time series forecasting problem and is addressed with a
many-to-one prediction model (not a many-to-many model as you might expect).

� Moving Square Video Prediction Problem. Given a video sequence of images
showing a square moving, predict the direction the square is moving. This is a sequence
classification problem and is addressed with a many-to-one prediction model.

� Addition Prediction Problem. Given a sequence of characters representing the sum
of multiple terms, predict the sequence of characters that represent the result of the
mathematical operation. This is a sequence-to-sequence classification problem and is
addressed with a many-to-many prediction model.

� Cumulative Sum Prediction Problem. Given an input sequence of random real values,
predict a classification of whether the index has reached a cumulative sum threshold. This
is a sequence-to-sequence classification problem or a time step classification problem and
is addressed with a many-to-many prediction model.

� Shape Generation Problem. Given a catalog of example 2D shapes of a specific
type, generate a new random shape that conforms to the general rules of the shape (e.g.
consistent length and width of a rectangle). This is a sequence generation problem and is
addressed with a one-to-one prediction model.

About Python Code Examples

The code examples were carefully designed to demonstrate the purpose of a given lesson. For
this reason, the examples are highly targeted.

xv

� LSTM architectures are demonstrated on experimental problems to keep the focus on the
model.

� Contrived demonstration problems can generally be scaled in terms of their complexity if
you wish to make the examples more challenging.

� Model configurations used were discovered through trial and error are skillful, but not
optimized. This leaves the door open for you to explore new and possibly better configu-
rations.

� Code examples are complete and standalone. The code for each lesson will run as-is with
no code from prior lessons or third parties required beyond the installation of the required
packages.

A complete working example is presented with each chapter for you to inspect and copy-
and-paste. All source code is also provided with the book and I would recommend running
the provided files whenever possible to avoid any copy-paste issues. The provided code was
developed in a text editor and intended to be run on the command line. No special IDE or
notebooks are required. If you are using a more advanced development environment and are
having trouble, try running the example from the command line instead.

Neural network algorithms like LSTMs are stochastic. This means that they will make
different predictions when the same model configuration is trained on the same training data.
On top of that, each experimental problem in this book is based around generating stochastic
input sequences. As a result, this means you will not get exactly the same sample output
presented in this book. This is by design. I want you to get used to the stochastic nature of the
neural network algorithms. If this bothers you, please note:

� You can re-run a given example a few times and your results should be close to the values
reported.

� You can make the output consistent by fixing the NumPy random number seed.

� You can develop a robust estimate of the skill of a model by fitting and evaluating it
multiple times and taking the average of the final skill score (highly recommended).

All code examples were tested with Python 2 and Python 3 with Keras 2. All code examples
will run on modest and modern computer hardware and were executed on a CPU. No GPUs are
required to run the presented examples, although a GPU would make the code run faster.

I am only human and there may be a bug in the sample code. If you discover a bug, please
let me know so I can fix it and update the book.

About Further Reading

Each lesson includes a list of further reading resources. This may include:

� Research papers.

� Books and book chapters.

xvi

� Webpages.

� API documentation.

Wherever possible, I try to list and link to the relevant API documentation for key objects
and functions used in each lesson so you can learn more about them. When it comes to research
papers, I try to list papers that are first to use a specific technique or first in a specific problem
domain. These are not required reading, but can give you more technical details, theory, and
configuration details if you’re looking for it. Wherever possible, I have tried to link to the
freely available version of the paper on http://ArXiv.org. You can search for and download
any of the papers listed on Google Scholar Search https://scholar.google.com/. Wherever
possible, I have tried to link to books on Amazon.

I don’t know everything, and if you discover a good resource related to a given lesson, please
let me know so I can update the book.

About Getting Help

You might need help along the way. Don’t worry, you are not alone.

� Help with LSTMs? If you need help with the technical aspects of LSTMs, see the
Further Reading sections at the end of each lesson.

� Help with Keras? If you need help with using the Keras library, see the list of resources
in Appendix A.

� Help with your workstation? If you need help setting up your environment, I would
recommend using Anaconda and following my tutorial in Appendix B.

� Help running large LSTM models? I recommend renting time on Amazon Web
Service (AWS) to run large models. If you need help getting started on AWS, see the
tutorial in Appendix C.

� Help in general? You can shoot me an email. My details are in Appendix A.

Summary

Are you ready? Let’s dive in!
Next up you will discover what LSTMs are and how they work.

http://ArXiv.org
https://scholar.google.com/

Part II

Foundations

1

Chapter 1

What are LSTMs

1.0.1 Lesson Goal

The goal of this lesson is for you to develop a sufficiently high-level understanding of LSTMs
so that you can explain what they are and how they work to a colleague or manager. After
completing this lesson, you will know:

� What sequence predictions are and how they are different to general predictive modeling
problems.

� The limitations of Multilayer Perceptrons for sequence prediction, the promise of Recurrent
Neural Networks for sequence prediction, and how LSTMs deliver on that promise.

� Impressive applications of LSTMs to challenging sequence prediction problems and a
caution about some of the limitations of LSTMs.

1.0.2 Lesson Overview

This lesson is divided into 6 parts; they are:

1. Sequence Prediction Problems.

2. Limitations of Multilayer Perceptrons.

3. Promise of Recurrent Neural Networks.

4. The Long Short-Term Memory Network.

5. Applications of LSTMs.

6. Limitations of LSTMs.

Let’s get started.

2

1.1. Sequence Prediction Problems 3

1.1 Sequence Prediction Problems

Sequence prediction is different to other types of supervised learning problems. The sequence
imposes an order on the observations that must be preserved when training models and making
predictions. Generally, prediction problems that involve sequence data are referred to as sequence
prediction problems, although there are a suite of problems that differ based on the input and
output sequences. In this section we will take a look at the 4 different types of sequence
prediction problems:

1. Sequence Prediction.

2. Sequence Classification.

3. Sequence Generation.

4. Sequence-to-Sequence Prediction.

But first, let’s make sure we are clear on the difference between a set and a sequence.

1.1.1 Sequence

Often we deal with sets in applied machine learning such as a train or test set of samples. Each
sample in the set can be thought of as an observation from the domain. In a set, the order of
the observations is not important.

A sequence is different. The sequence imposes an explicit order on the observations. The
order is important. It must be respected in the formulation of prediction problems that use the
sequence data as input or output for the model.

1.1.2 Sequence Prediction

Sequence prediction involves predicting the next value for a given input sequence. For example:

Input Sequence: 1, 2, 3, 4, 5

Output Sequence: 6

Listing 1.1: Example of a sequence prediction problem.

Sequence
Prediction

Model
[1, 2, 3, 4, 5] [6]

Figure 1.1: Depiction of a sequence prediction problem.

Sequence prediction may also generally be referred to as sequence learning. Technically, we
could refer to all of the following problems as a type of sequence prediction problem. This can
make things confusing for beginners.

1.1. Sequence Prediction Problems 4

Learning of sequential data continues to be a fundamental task and a challenge in
pattern recognition and machine learning. Applications involving sequential data
may require prediction of new events, generation of new sequences, or decision
making such as classification of sequences or sub-sequences.

— On Prediction Using Variable Order Markov Models, 2004.

Generally throughout this book we will use “sequence prediction” to refer to the general
class of prediction problems with sequence data. Nevertheless, in this section we will distinguish
sequence prediction from other forms of prediction with sequence data as defining it as the
prediction of the single next time step.

Sequence prediction attempts to predict elements of a sequence on the basis of the
preceding elements

— Sequence Learning: From Recognition and Prediction to Sequential Decision Making, 2001.

Some examples of sequence prediction problems include:

� Weather Forecasting. Given a sequence of observations about the weather over time,
predict the expected weather tomorrow.

� Stock Market Prediction. Given a sequence of movements of a security over time,
predict the next movement of the security.

� Product Recommendation. Given a sequence of past purchases for a customer, predict
the next purchase for a customer.

1.1.3 Sequence Classification

Sequence classification involves predicting a class label for a given input sequence. For example:

Input Sequence: 1, 2, 3, 4, 5

Output Sequence: "good"

Listing 1.2: Example of a sequence classification problem.

Sequence
Prediction

Model
[1, 2, 3, 4, 5] [“good”]

Figure 1.2: Depiction of a sequence classification problem.

The objective of sequence classification is to build a classification model using a
labeled dataset [...] so that the model can be used to predict the class label of an
unseen sequence.

1.1. Sequence Prediction Problems 5

— Discrete Sequence Classification, Data Classification: Algorithms and Applications, 2015.

The input sequence may be comprised of real values or discrete values. In the latter case,
such problems may be referred to as discrete sequence classification problems. Some examples
of sequence classification problems include:

� DNA Sequence Classification. Given a DNA sequence of A, C, G, and T values,
predict whether the sequence is for a coding or non-coding region.

� Anomaly Detection. Given a sequence of observations, predict whether the sequence is
anomalous or not.

� Sentiment Analysis. Given a sequence of text such as a review or a tweet, predict
whether the sentiment of the text is positive or negative.

1.1.4 Sequence Generation

Sequence generation involves generating a new output sequence that has the same general
characteristics as other sequences in the corpus. For example:

Input Sequence: [1, 3, 5], [7, 9, 11]

Output Sequence: [3, 5 ,7]

Listing 1.3: Example of a sequence generation problem.

Sequence
Prediction

Model

[[1, 3, 5],
[7, 9, 11]] [3, 5 ,7]

Figure 1.3: Depiction of a sequence generation problem.

[recurrent neural networks] can be trained for sequence generation by processing
real data sequences one step at a time and predicting what comes next. Assuming
the predictions are probabilistic, novel sequences can be generated from a trained
network by iteratively sampling from the network’s output distribution, then feeding
in the sample as input at the next step. In other words by making the network treat
its inventions as if they were real, much like a person dreaming

— Generating Sequences With Recurrent Neural Networks, 2013.

Some examples of sequence generation problems include:

� Text Generation. Given a corpus of text, such as the works of Shakespeare, generate
new sentences or paragraphs of text that read they could have been drawn from the corpus.

� Handwriting Prediction. Given a corpus of handwriting examples, generate handwrit-
ing for new phrases that has the properties of handwriting in the corpus.

1.1. Sequence Prediction Problems 6

� Music Generation. Given a corpus of examples of music, generate new musical pieces
that have the properties of the corpus.

Sequence generation may also refer to the generation of a sequence given a single observation
as input. An example is the automatic textual description of images.

� Image Caption Generation. Given an image as input, generate a sequence of words
that describe an image.

For example:

Input Sequence: [image pixels]

Output Sequence: ["man riding a bike"]

Listing 1.4: Example of a sequence generation problem.

Sequence
Prediction

Model
[image pixels] [“man riding a bike”]

Figure 1.4: Depiction of a sequence generation problem for captioning an image.

Being able to automatically describe the content of an image using properly formed
English sentences is a very challenging task, but it could have great impact [...]
Indeed, a description must capture not only the objects contained in an image, but
it also must express how these objects relate to each other as well as their attributes
and the activities they are involved in.

— Show and Tell: A Neural Image Caption Generator, 2015.

1.1.5 Sequence-to-Sequence Prediction

Sequence-to-sequence prediction involves predicting an output sequence given an input sequence.
For example:

Input Sequence: 1, 2, 3, 4, 5

Output Sequence: 6, 7, 8, 9, 10

Listing 1.5: Example of a sequence-to-sequence prediction problem.

Sequence
Prediction

Model
[1, 2, 3, 4, 5] [6, 7, 8, 9, 10]

Figure 1.5: Depiction of a sequence-to-sequence prediction problem.

1.2. Limitations of Multilayer Perceptrons 7

Despite their flexibility and power, [deep neural networks] can only be applied to
problems whose inputs and targets can be sensibly encoded with vectors of fixed
dimensionality. It is a significant limitation, since many important problems are best
expressed with sequences whose lengths are not known a-priori. For example, speech
recognition and machine translation are sequential problems. Likewise, question
answering can also be seen as mapping a sequence of words representing the question
to a sequence of words representing the answer.

— Sequence to Sequence Learning with Neural Networks, 2014.

Sequence-to-sequence prediction is a subtle but challenging extension of sequence prediction,
where, rather than predicting a single next value in the sequence, a new sequence is predicted
that may or may not have the same length or be of the same time as the input sequence. This
type of problem has recently seen a lot of study in the area of automatic text translation (e.g.
translating English to French) and may be referred to by the abbreviation seq2seq.

seq2seq learning, at its core, uses recurrent neural networks to map variable-length
input sequences to variable-length output sequences. While relatively new, the
seq2seq approach has achieved state-of-the-art results in [...] machine translation.

— Multi-task Sequence to Sequence Learning, 2016.

If the input and output sequences are a time series, then the problem may be referred to as
multi-step time series forecasting. Some examples of sequence-to-sequence problems include:

� Multi-Step Time Series Forecasting. Given a time series of observations, predict a
sequence of observations for a range of future time steps.

� Text Summarization. Given a document of text, predict a shorter sequence of text that
describes the salient parts of the source document.

� Program Execution. Given the textual description program or mathematical equation
predict the sequence of characters that describes the correct output.

1.2 Limitations of Multilayer Perceptrons

Classical neural networks called Multilayer Perceptrons, or MLPs for short, can be applied to
sequence prediction problems. MLPs approximate a mapping function from input variables to
output variables. This general capability is valuable for sequence prediction problems (notably
time series forecasting) for a number of reasons.

� Robust to Noise. Neural networks are robust to noise in input data and in the mapping
function and can even support learning and prediction in the presence of missing values.

� Nonlinear. Neural networks do not make strong assumptions about the mapping function
and readily learn linear and nonlinear relationships.

More specifically, MLPs can be configured to support an arbitrary defined but fixed number
of inputs and outputs in the mapping function. This means that:

1.2. Limitations of Multilayer Perceptrons 8

� Multivariate Inputs. An arbitrary number of input features can be specified, providing
direct support for multivariate prediction.

� Multi-Step Outputs. An arbitrary number of output values can be specified, providing
direct support for multi-step and even multivariate prediction.

This capability overcomes the limitations of using classical linear methods (think tools like
ARIMA for time series forecasting). For these capabilities alone, feedforward neural networks
are widely used for time series forecasting.

... one important contribution of neural networks - namely their elegant ability to
approximate arbitrary nonlinear functions. This property is of high value in time
series processing and promises more powerful applications, especially in the subfeld
of forecasting ...

— Neural Networks for Time Series Processing, 1996.

The application of MLPs to sequence prediction requires that the input sequence be divided
into smaller overlapping subsequences that are shown to the network in order to generate a
prediction. The time steps of the input sequence become input features to the network. The
subsequences are overlapping to simulate a window being slid along the sequence in order
to generate the required output. This can work well on some problems, but it has 5 critical
limitations.

� Stateless. MLPs learn a fixed function approximation. Any outputs that are conditional
on the context of the input sequence must be generalized and frozen into the network
weights.

� Unaware of Temporal Structure. Time steps are modeled as input features, meaning
that network has no explicit handling or understanding of the temporal structure or order
between observations.

� Messy Scaling. For problems that require modeling multiple parallel input sequences,
the number of input features increases as a factor of the size of the sliding window without
any explicit separation of time steps of series.

� Fixed Sized Inputs. The size of the sliding window is fixed and must be imposed on all
inputs to the network.

� Fixed Sized Outputs. The size of the output is also fixed and any outputs that do not
conform must be forced.

MLPs do offer great capability for sequence prediction but still suffer from this key limitation
of having to specify the scope of temporal dependence between observations explicitly upfront
in the design of the model.

Sequences pose a challenge for [deep neural networks] because they require that the
dimensionality of the inputs and outputs is known and fixed.

— Sequence to Sequence Learning with Neural Networks, 2014

MLPs are a good starting point for modeling sequence prediction problems, but we now
have better options.

1.3. Promise of Recurrent Neural Networks 9

1.3 Promise of Recurrent Neural Networks

The Long Short-Term Memory, or LSTM, network is a type of Recurrent Neural Network.
Recurrent Neural Networks, or RNNs for short, are a special type of neural network designed
for sequence problems. Given a standard feedforward MLP network, an RNN can be thought of
as the addition of loops to the architecture. For example, in a given layer, each neuron may
pass its signal latterly (sideways) in addition to forward to the next layer. The output of the
network may feedback as an input to the network with the next input vector. And so on.

The recurrent connections add state or memory to the network and allow it to learn and
harness the ordered nature of observations within input sequences.

... recurrent neural networks contain cycles that feed the network activations from a
previous time step as inputs to the network to influence predictions at the current
time step. These activations are stored in the internal states of the network which
can in principle hold long-term temporal contextual information. This mechanism
allows RNNs to exploit a dynamically changing contextual window over the input
sequence history

— Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic
Modeling, 2014

The addition of sequence is a new dimension to the function being approximated. Instead of
mapping inputs to outputs alone, the network is capable of learning a mapping function for the
inputs over time to an output. The internal memory can mean outputs are conditional on the
recent context in the input sequence, not what has just been presented as input to the network.
In a sense, this capability unlocks sequence prediction for neural networks.

Long Short-Term Memory (LSTM) is able to solve many time series tasks unsolvable
by feedforward networks using fixed size time windows.

— Applying LSTM to Time Series Predictable through Time-Window Approaches, 2001

In addition to the general benefits of using neural networks for sequence prediction, RNNs
can also learn and harness the temporal dependence from the data. That is, in the simplest case,
the network is shown one observation at a time from a sequence and can learn what observations
it has seen previously are relevant and how they are relevant to making a prediction.

Because of this ability to learn long term correlations in a sequence, LSTM networks
obviate the need for a pre-specified time window and are capable of accurately
modelling complex multivariate sequences.

— Long Short Term Memory Networks for Anomaly Detection in Time Series, 2015

The promise of recurrent neural networks is that the temporal dependence and contextual
information in the input data can be learned.

A recurrent network whose inputs are not fixed but rather constitute an input
sequence can be used to transform an input sequence into an output sequence while
taking into account contextual information in a flexible way.

1.4. The Long Short-Term Memory Network 10

— Learning Long-Term Dependencies with Gradient Descent is Difficult, 1994.

There are a number of RNNs, but it is the LSTM that delivers on the promise of RNNs for
sequence prediction. It is why there is so much buzz and application of LSTMs at the moment.

LSTMs have internal state, they are explicitly aware of the temporal structure in the inputs,
are able to model multiple parallel input series separately, and can step through varied length
input sequences to produce variable length output sequences, one observation at a time.

Next, let’s take a closer look at the LSTM network.

1.4 The Long Short-Term Memory Network

The LSTM network is different to a classical MLP. Like an MLP, the network is comprised of
layers of neurons. Input data is propagated through the network in order to make a prediction.

Like RNNs, the LSTMs have recurrent connections so that the state from previous activations
of the neuron from the previous time step is used as context for formulating an output. But
unlike other RNNs, the LSTM has a unique formulation that allows it to avoid the problems
that prevent the training and scaling of other RNNs. This, and the impressive results that can
be achieved, are the reason for the popularity of the technique.

The key technical historical challenge faced with RNNs is how to train them effectively.
Experiments show how difficult this was where the weight update procedure resulted in weight
changes that quickly became so small as to have no effect (vanishing gradients) or so large as
to result in very large changes or even overflow (exploding gradients). LSTMs overcome this
challenge by design.

Unfortunately, the range of contextual information that standard RNNs can access
is in practice quite limited. The problem is that the influence of a given input
on the hidden layer, and therefore on the network output, either decays or blows
up exponentially as it cycles around the network’s recurrent connections. This
shortcoming ... referred to in the literature as the vanishing gradient problem ...
Long Short-Term Memory (LSTM) is an RNN architecture specifically designed to
address the vanishing gradient problem.

— A Novel Connectionist System for Unconstrained Handwriting Recognition, 2009

The computational unit of the LSTM network is called the memory cell, memory block, or
just cell for short. The term neuron as the computational unit is so ingrained when describing
MLPs that it too is often used to refer to the LSTM memory cell. LSTM cells are comprised of
weights and gates.

The Long Short Term Memory architecture was motivated by an analysis of error
flow in existing RNNs which found that long time lags were inaccessible to existing
architectures, because backpropagated error either blows up or decays exponentially.

An LSTM layer consists of a set of recurrently connected blocks, known as memory
blocks. These blocks can be thought of as a differentiable version of the memory
chips in a digital computer. Each one contains one or more recurrently connected
memory cells and three multiplicative units - the input, output and forget gates -
that provide continuous analogues of write, read and reset operations for the cells.
... The net can only interact with the cells via the gates.

1.4. The Long Short-Term Memory Network 11

— Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network
Architectures, 2005.

1.4.1 LSTM Weights

A memory cell has weight parameters for the input, output, as well as an internal state that is
built up through exposure to input time steps.

� Input Weights. Used to weight input for the current time step.

� Output Weights. Used to weight the output from the last time step.

� Internal State. Internal state used in the calculation of the output for this time step.

1.4.2 LSTM Gates

The key to the memory cell are the gates. These too are weighted functions that further govern
the information flow in the cell. There are three gates:

� Forget Gate: Decides what information to discard from the cell.

� Input Gate: Decides which values from the input to update the memory state.

� Output Gate: Decides what to output based on input and the memory of the cell.

The forget gate and input gate are used in the updating of the internal state. The output
gate is a final limiter on what the cell actually outputs. It is these gates and the consistent data
flow called the constant error carrousel or CEC that keep each cell stable (neither exploding or
vanishing).

Each memory cell’s internal architecture guarantees constant error flow within its
constant error carrousel CEC... This represents the basis for bridging very long
time lags. Two gate units learn to open and close access to error flow within each
memory cell’s CEC. The multiplicative input gate affords protection of the CEC
from perturbation by irrelevant inputs. Likewise, the multiplicative output gate
protects other units from perturbation by currently irrelevant memory contents.

— Long Short-Term Memory, 1997.

Unlike a traditional MLP neuron, it is hard to draw an LSTM memory unit cleanly. There
are lines, weights, and gates all over the place. Take a look at some of the resources at the end
of the chapter if you think pictures or equation-based description of LSTM internals would help
further. We can summarize the 3 key benefits of LSTMs as:

� Overcomes the technical problems of training an RNN, namely vanishing and exploding
gradients.

� Possesses memory to overcome the issues of long-term temporal dependency with input
sequences.

1.5. Applications of LSTMs 12

� Process input sequences and output sequences time step by time step, allowing variable
length inputs and outputs.

Next, let’s take a look at some examples where LSTMs have address some challenging
problems.

1.5 Applications of LSTMs

We are interested in LSTMs for the elegant solutions they can provide to challenging sequence
prediction problems. This section provides 3 examples to give you a snapshot of the results that
LSTMs are capable of achieving.

1.5.1 Automatic Image Caption Generation

Automatic image captioning is the task where, given an image, the system must generate a
caption that describes the contents of the image. In 2014, there were an explosion of deep
learning algorithms achieving very impressive results on this problem, leveraging the work from
top models for object classification and object detection in photographs.

Once you can detect objects in photographs and generate labels for those objects, you can
see that the next step is to turn those labels into a coherent sentence description. The systems
involve the use of very large convolutional neural networks for the object detection in the
photographs and then an LSTM to turn the labels into a coherent sentence.

Figure 1.6: Example of LSTM generated captions, taken from Show and Tell: A Neural Image
Caption Generator, 2014.

1.5. Applications of LSTMs 13

1.5.2 Automatic Translation of Text

Automatic text translation is the task where you are given sentences of text in one language
and must translate them into text in another language. For example, sentences of English as
input and sentences of French as output. The model must learn the translation of words, the
context where translation is modified, and support input and output sequences that may vary
in length both generally and with regard to each other.

Figure 1.7: Example of English text translated to French comparing predicted to expected
translations, taken from Sequence to Sequence Learning with Neural Networks, 2014.

1.5.3 Automatic Handwriting Generation

This is a task where, given a corpus of handwriting examples, new handwriting for a given word
or phrase is generated. The handwriting is provided as a sequence of coordinates used by a pen
when the handwriting samples were created. From this corpus, the relationship between the pen
movement and the letters is learned and new examples can be generated. What is fascinating is
that different styles can be learned and then mimicked. I would love to see this work combined
with some forensic handwriting analysis expertise.

1.6. Limitations of LSTMs 14

Figure 1.8: Example of LSTM generated captions, taken from Generating Sequences With
Recurrent Neural Networks, 2014.

1.6 Limitations of LSTMs

LSTMs are very impressive. The design of the network overcomes the technical challenges of
RNNs to deliver on the promise of sequence prediction with neural networks. The applications
of LSTMs achieve impressive results on a range of complex sequence prediction problems. But
LSTMs may not be ideal for all sequence prediction problems.

For example, in time series forecasting, often the information relevant for making a forecast
is within a small window of past observations. Often an MLP with a window or a linear model
may be a less complex and more suitable model.

Time series benchmark problems found in the literature ... are often conceptually
simpler than many tasks already solved by LSTM. They often do not require RNNs
at all, because all relevant information about the next event is conveyed by a few
recent events contained within a small time window.

— Applying LSTM to Time Series Predictable through Time-Window Approaches, 2001

1.7. Further Reading 15

An important limitation of LSTMs is the memory. Or more accurately, how memory can be
abused. It is possible to force an LSTM model to remember a single observation over a very
long number of input time steps. This is a poor use of LSTMs and requiring an LSTM model
to remember multiple observations will fail.

This can be seen when applying LSTMs to time series forecasting where the problem is
formulated as an autoregression that requires the output to be a function of multiple distant
time steps in the input sequence. An LSTM may be forced to perform on this problem, but will
generally be less efficient than a carefully designed autoregression model or reframing of the
problem.

Assuming that any dynamic model needs all inputs from t-tau ..., we note that the
[autoregression]-RNN has to store all inputs from t-tau to t and overwrite them at
the adequate time. This requires the implementation of a circular buffer, a structure
quite difficult for an RNN to simulate.

— Applying LSTM to Time Series Predictable through Time-Window Approaches, 2001

The caution is that LSTMs are not a silver bullet and to carefully consider the framing of
your problem. Think of the internal state of LSTMs as a handy internal variable to capture and
provide context for making predictions. If your problem looks like a traditional autoregression
type problem with the most relevant lag observations within a small window, then perhaps
develop a baseline of performance with an MLP and sliding window before considering an
LSTM.

A time window based MLP outperformed the LSTM pure-[autoregression] approach
on certain time series prediction benchmarks solvable by looking at a few recent
inputs only. Thus LSTM’s special strength, namely, to learn to remember single
events for very long, unknown time periods, was not necessary

— Applying LSTM to Time Series Predictable through Time-Window Approaches, 2001

1.7 Further Reading

Below are a few must read papers on LSTMs if you are looking to dive deeper into the technical
details of the algorithm.

1.7.1 Sequence Prediction Problems

� Sequence on Wikipedia.
https://en.wikipedia.org/wiki/Sequence

� On Prediction Using Variable Order Markov Models, 2004.

� Sequence Learning: From Recognition and Prediction to Sequential Decision Making, 2001.

� Chapter 14, Discrete Sequence Classification, Data Classification: Algorithms and Appli-
cations, 2015.
http://amzn.to/2tkM723

https://en.wikipedia.org/wiki/Sequence
http://amzn.to/2tkM723

1.7. Further Reading 16

� Generating Sequences With Recurrent Neural Networks, 2013.
https://arxiv.org/abs/1308.0850

� Show and Tell: A Neural Image Caption Generator, 2015.
https://arxiv.org/abs/1411.4555

� Multi-task Sequence to Sequence Learning, 2016.
https://arxiv.org/abs/1511.06114

� Sequence to Sequence Learning with Neural Networks, 2014.
https://arxiv.org/abs/1409.3215

� Recursive and direct multi-step forecasting: the best of both worlds, 2012.

1.7.2 MLPs for Sequence Prediction

� Neural Networks for Time Series Processing, 1996.

� Sequence to Sequence Learning with Neural Networks, 2014.
https://arxiv.org/abs/1409.3215

1.7.3 Promise of RNNs

� Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic
Modeling, 2014.

� Applying LSTM to Time Series Predictable through Time-Window Approaches, 2001.

� Long Short Term Memory Networks for Anomaly Detection in Time Series, 2015.

� Learning Long-Term Dependencies with Gradient Descent is Difficult, 1994.

� On the difficulty of training Recurrent Neural Networks, 2013.
https://arxiv.org/abs/1211.5063

1.7.4 LSTMs

� Long Short-Term Memory, 1997.

� Learning to forget: Continual prediction with LSTM, 2000.

� A Novel Connectionist System for Unconstrained Handwriting Recognition, 2009.

� Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network
Architectures, 2005.

https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1511.06114
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1211.5063

1.8. Extensions 17

1.7.5 LSTM Applications

� Show and Tell: A Neural Image Caption Generator, 2014.
https://arxiv.org/abs/1411.4555

� Sequence to Sequence Learning with Neural Networks, 2014.
https://arxiv.org/abs/1409.3215

� Generating Sequences With Recurrent Neural Networks, 2014.
https://arxiv.org/abs/1308.0850

1.8 Extensions

Are you looking to deepen your understanding of LSTMs? This section lists some challenging
extensions that you may wish to consider.

� Write a one-paragraph description of LSTMs for a novice practitioner.

� List 10 examples of sequence prediction problems that you can think of off the top of your
head.

� Research and draw (or re-draw) a picture of an LSTM memory cell with all connection,
weights, and gates.

� Research and list 10 more examples of interesting applications of LSTMs and clearly
describe the sequence prediction problem, including inputs and outputs.

� Research and implement the equations for making a prediction with a single LSTM
memory cell in a spreadsheet or in Python.

Post your extensions online and share the link with me, I’d love to see what you come up
with!

1.9 Summary

In this lesson, you discovered the Long Short-Term Memory recurrent neural network for
sequence prediction. Specifically, you learned:

� What sequence predictions are and how they are different to general predictive modeling
problems.

� The limitations of Multilayer Perceptrons for sequence prediction, the promise of Recurrent
neural networks for sequence prediction, and how LSTMs deliver on that promise.

� Impressive applications of LSTMs to challenging sequence prediction problems and a
caution about some of the limitations of LSTMs.

Next, you will discover how LSTMs are trained using the Backpropagation Through Time
training algorithm.

https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1308.0850

Chapter 2

How to Train LSTMs

2.0.1 Lesson Goal

The goal of this lesson is for you to understand the Backpropagation Through Time algorithm
used to train LSTMs. After completing this lesson, you will know:

� What Backpropagation Through Time is and how it relates to the Backpropagation
training algorithm used by Multilayer Perceptron networks.

� The motivations that lead to the need for Truncated Backpropagation Through Time, the
most widely used variant in deep learning for training LSTMs.

� A notation for thinking about how to configure Truncated Backpropagation Through
Time and the canonical configurations used in research and by deep learning libraries.

2.0.2 Lesson Overview

This lesson is divided into 6 parts; they are:

1. Backpropagation Training Algorithm.

2. Unrolling Recurrent Neural Networks.

3. Backpropagation Through Time.

4. Truncated Backpropagation Through Time.

5. Configurations for Truncated BPTT.

6. Keras Implementation of TBPTT.

Let’s get started.

18

2.1. Backpropagation Training Algorithm 19

2.1 Backpropagation Training Algorithm

Backpropagation refers to two things:

� The mathematical method used to calculate derivatives and an application of the derivative
chain rule.

� The training algorithm for updating network weights to minimize error.

It is this latter understanding of backpropagation that we are using in this lesson. The goal
of the backpropagation training algorithm is to modify the weights of a neural network in order
to minimize the error of the network outputs compared to some expected output in response
to corresponding inputs. It is a supervised learning algorithm that allows the network to be
corrected with regard to the specific errors made. The general algorithm is as follows:

1. Present a training input pattern and propagate it through the network to get an output.

2. Compare the predicted outputs to the expected outputs and calculate the error.

3. Calculate the derivatives of the error with respect to the network weights.

4. Adjust the weights to minimize the error.

5. Repeat.

2.2 Unrolling Recurrent Neural Networks

A simple conception of recurrent neural networks is as a type of neural network that takes
inputs from previous time steps. We can demonstrate this with a diagram.

RNN

X

y

Figure 2.1: Example of a simple recurrent neural network.

2.2. Unrolling Recurrent Neural Networks 20

RNNs are fit and make predictions over many time steps. As the number of time steps
increases, the simple diagram with a recurrent connection begins to lose all meaning. We can
simplify the model by unfolding or unrolling the RNN graph over the input sequence.

A useful way to visualise RNNs is to consider the update graph formed by ‘unfolding’
the network along the input sequence.

— Supervised Sequence Labelling with Recurrent Neural Networks, 2008.

2.2.1 Unfolding the Forward Pass

Consider the case where we have multiple time steps of input (X(t), X(t+1), ...), multiple
time steps of intern state (u(t), u(t+1), ...), and multiple time steps of outputs (y(t),
y(t+1), ...). We can unfold the network schematic into a graph without any cycles, as follows.

RNN

X(t)

y(t)

RNN

X(t+1)

y(t+1)

u(t) u(t+1)

Figure 2.2: Example of an unfolded recurrent neural network.

We can see that the cycle is removed and that the output (y(t)) and internal state (u(t))
from the previous time step are passed on to the network as inputs for processing the next time
step. Key in this conceptualization is that the network (RNN) does not change between the
unfolded time steps. Specifically, the same weights are used for each time step and it is only
the outputs and the internal states that differ. In this way, it is as though the whole network
(topology and weights) are copied for each time step in the input sequence.

We can push this conceptualization one step further where each copy of the network may be
thought of as an additional layer of the same feedforward neural network. The deeper layers
take as input the output of the prior layer as well as a new input time step. The layers are in
fact all copies of the same set of weights and the internal state is updated from layer to layer,
which may be a stretch of this oft-used analogy.

2.2. Unrolling Recurrent Neural Networks 21

RNN

X(t) X(t+1)

y(t+1)

RNN

Figure 2.3: Example of an unfolded recurrent neural network with layers.

RNNs, once unfolded in time, can be seen as very deep feedforward networks in
which all the layers share the same weights.

— Deep learning, Nature, 2015.

This is a useful conceptual tool and visualization to help in understanding what is going on
in the network during the forward pass. It may or may not also be the way that the network is
implemented by the deep learning library.

2.2.2 Unfolding the Backward Pass

The idea of network unfolding plays a bigger part in the way recurrent neural networks are
implemented for the backward pass.

As is standard with [backpropagation through time] , the network is unfolded over
time, so that connections arriving at layers are viewed as coming from the previous
timestep.

— Framewise phoneme classification with bidirectional LSTM and other neural network
architectures, 2005.

Importantly, the backpropagation of error for a given time step depends on the activation of
the network at the prior time step. In this way, the backward pass requires the conceptualization
of unfolding the network. Error is propagated back to the first input time step of the sequence
so that the error gradient can be calculated and the weights of the network can be updated.

Like standard backpropagation, [backpropagation through time] consists of a repeated
application of the chain rule. The subtlety is that, for recurrent networks, the loss
function depends on the activation of the hidden layer not only through its influence
on the output layer, but also through its influence on the hidden layer at the next
timestep.

— Supervised Sequence Labelling with Recurrent Neural Networks, 2008.

2.3. Backpropagation Through Time 22

Unfolding the recurrent network graph also introduces additional concerns. Each time step
requires a new copy of the network which in turn takes more memory, especially for large
networks with thousands or millions of weights. The memory requirements of training large
recurrent networks can quickly balloon as the number of time steps climbs into the hundreds.

... it is required to unroll the RNNs by the length of the input sequence. By
unrolling an RNN N times, every activations of the neurons inside the network
are replicated N times, which consumes a huge amount of memory especially when
the sequence is very long. This hinders a small footprint implementation of online
learning or adaptation. Also, this “full unrolling” makes a parallel training with
multiple sequences inefficient on shared memory models such as graphics processing
units (GPUs)

— Online Sequence Training of Recurrent Neural Networks with Connectionist Temporal
Classification, 2015.

2.3 Backpropagation Through Time

Backpropagation Through Time, or BPTT, is the application of the Backpropagation training
algorithm to Recurrent Neural Networks. In the simplest case, a recurrent neural network is
shown one input each time step and predicts one output.

Conceptually, BPTT works by unrolling all input time steps. Each time step has one input
time step, one copy of the network, and one output. Errors are then calculated and accumulated
for each time step. The network is rolled back up and the weights are updated. We can
summarize the algorithm as follows:

1. Present a sequence of time steps of input and output pairs to the network.

2. Unroll the network then calculate and accumulate errors across each time step.

3. Roll-up the network and update weights.

4. Repeat.

BPTT can be computationally expensive as the number of time steps increases. If input
sequences are comprised of thousands of time steps, then this will be the number of derivatives
required for a single weight update. This can cause weights to vanish or explode (go to zero or
overflow) and make slow learning and model skill noisy.

One of the main problems of BPTT is the high cost of a single parameter update,
which makes it impossible to use a large number of iterations.

— Training Recurrent Neural Networks, 2013

One way to minimize the exploding and vanishing gradient issue is to limit how many time
steps before an update to the weights is performed.

2.4. Truncated Backpropagation Through Time 23

2.4 Truncated Backpropagation Through Time

Truncated Backpropagation Through Time, or TBPTT, is a modified version of the BPTT
training algorithm for recurrent neural networks where the sequence is processed one time step
at a time and periodically an update is performed back for a fixed number of time steps.

Truncated BPTT ... processes the sequence one time step at a time, and every k1

time steps, it runs BPTT for k2 time steps, so a parameter update can be cheap
if k2 is small. Consequently, its hidden states have been exposed to many time
steps and so may contain useful information about the far past, which would be
opportunistically exploited.

— Training Recurrent Neural Networks, 2013

We can summarize the algorithm as follows:

1. Present a sequence of k1 time steps of input and output pairs to the network.

2. Unroll the network, then calculate and accumulate errors across k2 time steps.

3. Roll-up the network and update weights.

4. Repeat

The TBPTT algorithm requires the consideration of two parameters:

� k1: The number of forward-pass time steps between updates. Generally, this influences
how slow or fast training will be, given how often weight updates are performed.

� k2: The number of time steps to which to apply BPTT. Generally, it should be large
enough to capture the temporal structure in the problem for the network to learn. Too
large a value results in vanishing gradients.

A simple implementation of Truncated BPTT would set k1 to be the sequence length and
tune k2 for both speed of training and model skill.

2.5 Configurations for Truncated BPTT

We can take things one step further and define a notation to help better understand BPTT. In
their treatment of BPTT titled An Efficient Gradient-Based Algorithm for On-Line Training of
Recurrent Network Trajectories Williams and Peng devise a notation to capture the spectrum
of truncated and untruncated configurations, e.g. BPTT(h) and BPTT(h; 1).

We can adapt this notation and use Sutskever’s k1 and k2 parameters (above). Using this
notation, we can define some standard or common approaches: Note: here n refers to the total
number of time steps in the input sequence:

� TBPTT(n,n): Updates are performed at the end of the sequence across all time steps in
the sequence (e.g. classical BPTT).

2.6. Keras Implementation of TBPTT 24

� TBPTT(1,n): time steps are processed one at a time followed by an update that covers all
time steps seen so far (e.g. classical TBPTT by Williams and Peng).

� TBPTT(k1,1): The network likely does not have enough temporal context to learn, relying
heavily on internal state and inputs.

� TBPTT(k1,k2), where k1<k2<n: Multiple updates are performed per sequence which can
accelerate training.

� TBPTT(k1,k2), where k1=k2: A common configuration where a fixed number of time steps
is used for both forward and backward-pass time steps (e.g. 10s to 100s).

We can see that all configurations are a variation on TBPTT(n,n) that essentially attempt to
approximate the same effect with perhaps faster training and more stable results. Canonical
TBPTT reported in papers may be considered TBPTT(k1,k2), where k1=k2=k and k<=n, and
where the chosen parameter is small (tens to hundreds of time steps). Here, k is a single
parameter that you must specify. It is often claimed that the sequence length of input time
steps should be limited to 200-400.

2.6 Keras Implementation of TBPTT

The Keras deep learning library provides an implementation of TBPTT for training recurrent
neural networks. The implementation is more restricted than the general version listed above.
Specifically, the k1 and k2 values are equal to each other and fixed.

� TBPTT(k1, k2), where k1=k2=k.

This is realized by the fixed-sized three-dimensional input required to train recurrent neural
networks like the LSTM. The LSTM expects input data to have the dimensions: samples, time
steps, and features. It is the second dimension of this input format, the time steps, that defines
the number of time steps used for forward and backward passes on your sequence prediction
problem.

Therefore, careful choice must be given to the number of time steps specified when preparing
your input data for sequence prediction problems in Keras. The choice of time steps will influence
both:

� The internal state accumulated during the forward pass.

� The gradient estimate used to update weights on the backward pass.

Note that by default, the internal state of the network is reset after each batch, but more
explicit control over when the internal state is reset can be achieved by using a so-called stateful
LSTM and calling the reset operation manually. More on this later.

The Keras implementation of the algorithm is essentially un-truncated, requiring that any
truncation is performed to the input sequences directly prior to training the model. We can
think of this as manually truncated BPTT. Sutskever calls this a naive method.

2.7. Further Reading 25

... a naive method that splits the 1,000-long sequence into 50 sequences (say) each
of length 20 and treats each sequence of length 20 as a separate training case. This
is a sensible approach that can work well in practice, but it is blind to temporal
dependencies that span more than 20 time steps.

— Training Recurrent Neural Networks, 2013

This means as part of framing your problem you must split long sequences into subsequences
that are both long enough to capture relevant context for making predictions, but short enough
to efficiently train the network.

2.7 Further Reading

This section provides some resources for further reading.

2.7.1 Books

� Neural Smithing, 1999.
http://amzn.to/2u9yjJh

� Deep Learning, 2016.
http://amzn.to/2sx7oFo

� Supervised Sequence Labelling with Recurrent Neural Networks, 2008.
http://amzn.to/2upsSJ9

2.7.2 Research Papers

� Online Sequence Training of Recurrent Neural Networks with Connectionist Temporal
Classification, 2015.
https://arxiv.org/abs/1511.06841

� Framewise phoneme classification with bidirectional LSTM and other neural network
architectures, 2005.

� Deep learning, Nature, 2015.

� Training Recurrent Neural Networks, 2013.

� Learning Representations By Backpropagating Errors, 1986.

� Backpropagation Through Time: What It Does And How To Do It, 1990.

� An Efficient Gradient-Based Algorithm for On-Line Training of Recurrent Network Tra-
jectories, 1990.

� Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational
Complexity, 1995.

http://amzn.to/2u9yjJh
http://amzn.to/2sx7oFo
http://amzn.to/2upsSJ9
https://arxiv.org/abs/1511.06841

2.8. Extensions 26

2.8 Extensions

Do you want to go deeper into the BPTT algorithm? This section lists some challenging
extensions to this lesson.

� Write a one paragraph summary of the BPTT algorithm for a novice practitioner.

� Catalog the BPTT implementation used in top deep learning libraries using the above
notation.

� Research and describe the BPTT parameters used in recent or notable LSTM research
papers using the above notation.

� Design an experiment to tune the parameters of BPTT for a sequence prediction problem.

� Research and implement the BPTT algorithm for a single memory cell in a spreadsheet or
in Python.

Post your extensions online and share the link with me. I’d love to see what you come up
with!

2.9 Summary

In this lesson, you discovered the Backpropagation Through Time algorithm used to train
LSTMs on sequence prediction problems. Specifically, you learned:

� What Backpropagation Through Time is and how it relates to the Backpropagation
training algorithm used by Multilayer Perceptron networks.

� The motivations that lead to the need for Truncated Backpropagation Through Time, the
most widely used variant in deep learning for training LSTMs.

� A notation for thinking about how to configure Truncated Backpropagation Through
Time and the canonical configurations used in research and by deep learning libraries.

Next, you will discover how to prepare your sequence data for working with LSTMs.

Chapter 3

How to Prepare Data for LSTMs

3.0.1 Lesson Goal

The goal of this lesson is to teach you how to prepare sequence prediction data for use with
LSTM models. After completing this lesson, you will know:

� How to scale numeric data and how to transform categorical data.

� How to pad and truncate input sequences with varied lengths.

� How to transform input sequences into a supervised learning problem.

3.0.2 Lesson Overview

This lesson is divided into 4 parts; they are:

1. Prepare Numeric Data.

2. Prepare Categorical Data.

3. Prepare Sequences with Varied Lengths.

4. Sequence Prediction as Supervised Learning.

Let’s get started.

3.1 Prepare Numeric Data

The data for your sequence prediction problem probably needs to be scaled when training a
neural network, such as a Long Short-Term Memory recurrent neural network. When a network
is fit on unscaled data that has a range of values (e.g. quantities in the 10s to 100s) it is possible
for large inputs to slow down the learning and convergence of your network, and in some cases
prevent the network from effectively learning your problem.

There are two types of scaling of your series that you may want to consider: normalization
and standardization. These can both be achieved using the scikit-learn machine learning library
in Python.

27

3.1. Prepare Numeric Data 28

3.1.1 Normalize Series Data

Normalization is a rescaling of the data from the original range so that all values are within the
range of 0 and 1. Normalization requires that you know or are able to accurately estimate the
minimum and maximum observable values. You may be able to estimate these values from your
available data. If your series is trending up or down, estimating these expected values may be
difficult and normalization may not be the best method to use on your problem.

If a value to be scaled is outside the bounds of the minimum and maximum values, the
resulting value will not be in the range of 0 and 1. You could check for these observations prior
to making predictions and either remove them from the dataset or limit them to the pre-defined
maximum or minimum values. You can normalize your dataset using the scikit-learn object
MinMaxScaler. Good practice usage with the MinMaxScaler and other scaling techniques is as
follows:

� Fit the scaler using available training data. For normalization, this means the
training data will be used to estimate the minimum and maximum observable values. This
is done by calling the fit() function.

� Apply the scale to training data. This means you can use the normalized data to
train your model. This is done by calling the transform() function.

� Apply the scale to data going forward. This means you can prepare new data in the
future on which you want to make predictions.

If needed, the transform can be inverted. This is useful for converting predictions back into
their original scale for reporting or plotting. This can be done by calling the inverse transform()

function. Below is an example of normalizing a contrived sequence of 10 quantities. The scaler
object requires data to be provided as a matrix of rows and columns. The loaded time series
data is loaded as a Pandas Series.

from pandas import Series

from sklearn.preprocessing import MinMaxScaler

define contrived series

data = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]

series = Series(data)

print(series)

prepare data for normalization

values = series.values

values = values.reshape((len(values), 1))

train the normalization

scaler = MinMaxScaler(feature_range=(0, 1))

scaler = scaler.fit(values)

print('Min: %f, Max: %f' % (scaler.data_min_, scaler.data_max_))

normalize the dataset and print

normalized = scaler.transform(values)

print(normalized)

inverse transform and print

inversed = scaler.inverse_transform(normalized)

print(inversed)

Listing 3.1: Example of normalizing a sequence.

3.1. Prepare Numeric Data 29

Running the example prints the sequence, prints the min and max values estimated from
the sequence, prints the same normalized sequence, then prints the values back in their original
scale using the inverse transform. We can also see that the minimum and maximum values of
the dataset are 10.0 and 100.0 respectively.

0 10.0

1 20.0

2 30.0

3 40.0

4 50.0

5 60.0

6 70.0

7 80.0

8 90.0

9 100.0

Min: 10.000000, Max: 100.000000

[[0.]

[0.11111111]

[0.22222222]

[0.33333333]

[0.44444444]

[0.55555556]

[0.66666667]

[0.77777778]

[0.88888889]

[1.]]

[[10.]

[20.]

[30.]

[40.]

[50.]

[60.]

[70.]

[80.]

[90.]

[100.]]

Listing 3.2: Example output from normalizing a sequence.

3.1.2 Standardize Series Data

Standardizing a dataset involves rescaling the distribution of values so that the mean of observed
values is 0 and the standard deviation is 1. This can be thought of as subtracting the mean
value or centering the data.

Like normalization, standardization can be useful, and even required in some machine
learning algorithms when your data has input values with differing scales. Standardization
assumes that your observations fit a Gaussian distribution (bell curve) with a well behaved
mean and standard deviation. You can still standardize your time series data if this expectation
is not met, but you may not get reliable results.

3.1. Prepare Numeric Data 30

Standardization requires that you know or are able to accurately estimate the mean and
standard deviation of observable values. You may be able to estimate these values from your
training data. The mean and standard deviation estimates of a dataset can be more robust
to new data than the minimum and maximum. You can standardize your dataset using the
scikit-learn object StandardScaler.

from pandas import Series

from sklearn.preprocessing import StandardScaler

from math import sqrt

define contrived series

data = [1.0, 5.5, 9.0, 2.6, 8.8, 3.0, 4.1, 7.9, 6.3]

series = Series(data)

print(series)

prepare data for normalization

values = series.values

values = values.reshape((len(values), 1))

train the normalization

scaler = StandardScaler()

scaler = scaler.fit(values)

print('Mean: %f, StandardDeviation: %f' % (scaler.mean_, sqrt(scaler.var_)))

normalize the dataset and print

standardized = scaler.transform(values)

print(standardized)

inverse transform and print

inversed = scaler.inverse_transform(standardized)

print(inversed)

Listing 3.3: Example of standardizing a sequence.

Running the example prints the sequence, prints the mean and standard deviation estimated
from the sequence, prints the standardized values, then prints the values back in their original
scale. We can see that the estimated mean and standard deviation were about 5.3 and 2.7
respectively.

0 1.0

1 5.5

2 9.0

3 2.6

4 8.8

5 3.0

6 4.1

7 7.9

8 6.3

Mean: 5.355556, StandardDeviation: 2.712568

[[-1.60569456]

[0.05325007]

[1.34354035]

[-1.01584758]

[1.26980948]

[-0.86838584]

[-0.46286604]

[0.93802055]

[0.34817357]]

3.2. Prepare Categorical Data 31

[[1.]

[5.5]

[9.]

[2.6]

[8.8]

[3.]

[4.1]

[7.9]

[6.3]]

Listing 3.4: Example output from standardizing a sequence.

3.1.3 Practical Considerations When Scaling

There are some practical considerations when scaling sequence data.

� Estimate Coefficients. You can estimate coefficients (min and max values for normaliza-
tion or mean and standard deviation for standardization) from the training data. Inspect
these first-cut estimates and use domain knowledge or domain experts to help improve
these estimates so that they will be usefully correct on all data in the future.

� Save Coefficients. You will need to scale new data in the future in exactly the same
way as the data used to train your model. Save the coefficients used to file and load them
later when you need to scale new data when making predictions.

� Data Analysis. Use data analysis to help you better understand your data. For example,
a simple histogram can help you quickly get a feeling for the distribution of quantities to
see if standardization would make sense.

� Scale Each Series. If your problem has multiple series, treat each as a separate variable
and in turn scale them separately. Here, scale refers a choice of scaling procedure such as
normalization or standardization.

� Scale At The Right Time. It is important to apply any scaling transforms at the right
time. For example, if you have a series of quantities that is non-stationary, it may be
appropriate to scale after first making your data stationary. It would not be appropriate
to scale the series after it has been transformed into a supervised learning problem as each
column would be handled differently, which would be incorrect.

� Scale if in Doubt. You probably do need to rescale your input and output variables. If
in doubt, at least normalize your data.

3.2 Prepare Categorical Data

Categorical data are variables that contain label values rather than numeric values. The number
of possible values is often limited to a fixed set. Categorical variables are often called nominal.
Some examples include:

� A pet variable with the values: dog and cat.

3.2. Prepare Categorical Data 32

� A color variable with the values: red, green, and blue.

� A place variable with the values: first, second, and third.

Each value represents a different category. Words in text may be considered categorical
data, where each word is considered a different category. Additionally, each letter in text data
may be considered a category. Sequence prediction problems with text input or output may be
considered categorical data.

Some categories may have a natural relationship to each other, such as a natural ordering.
The place variable above does have a natural ordering of values. This type of categorical
variable is called an ordinal variable. Categorical data must be converted to numbers when
working with LSTMs.

3.2.1 How to Convert Categorical Data to Numerical Data

This involves two steps:

1. Integer Encoding.

2. One Hot Encoding.

Integer Encoding

As a first step, each unique category value is assigned an integer value. For example, red is
1, green is 2, and blue is 3. This is called label encoding or an integer encoding and is easily
reversible. For some variables, this may be enough.

The integer values have a natural ordered relationship between each other and machine
learning algorithms may be able to understand and harness this relationship. For example,
ordinal variables like the place example above would be a good example where a label encoding
would be sufficient.

One Hot Encoding

For categorical variables where no such ordinal relationship exists, the integer encoding is not
enough. In fact, using this encoding and allowing the model to assume a natural ordering
between categories may result in poor performance or unexpected results (predictions halfway
between categories).

In this case, a one hot encoding can be applied to the integer representation. This is where
the integer encoded variable is removed and a new binary variable is added for each unique
integer value. In the color variable example, there are 3 categories and therefore 3 binary
variables are needed. A 1 value is placed in the binary variable for the color and 0 values for
the other colors. For example:

red, green, blue

1, 0, 0

0, 1, 0

0, 0, 1

Listing 3.5: Example of one hot encoded color.

3.2. Prepare Categorical Data 33

3.2.2 One Hot Encode with scikit-learn

In this example, we will assume the case where you have an output sequence of the following 3
labels: cold, warm, hot. An example sequence of 10 time steps may be:

cold, cold, warm, cold, hot, hot, warm, cold, warm, hot

Listing 3.6: Example of categorical temperature sequence.

This would first require an integer encoding, such as 1, 2, 3. This would be followed by a
one hot encoding of integers to a binary vector with 3 values, such as [1, 0, 0]. The sequence
provides at least one example of every possible value in the sequence. Therefore we can use
automatic methods to define the mapping of labels to integers and integers to binary vectors.

In this example, we will use the encoders from the scikit-learn library. Specifically, the
LabelEncoder of creating an integer encoding of labels and the OneHotEncoder for creating a
one hot encoding of integer encoded values. The complete example is listed below.

from numpy import array

from numpy import argmax

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import OneHotEncoder

define example

data = ['cold', 'cold', 'warm', 'cold', 'hot', 'hot', 'warm', 'cold', 'warm', 'hot']

values = array(data)

print(values)

integer encode

label_encoder = LabelEncoder()

integer_encoded = label_encoder.fit_transform(values)

print(integer_encoded)

binary encode

onehot_encoder = OneHotEncoder(sparse=False)

integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)

onehot_encoded = onehot_encoder.fit_transform(integer_encoded)

print(onehot_encoded)

invert first example

inverted = label_encoder.inverse_transform([argmax(onehot_encoded[0, :])])

print(inverted)

Listing 3.7: Example of one hot encoding a sequence.

Running the example first prints the sequence of labels. This is followed by the integer
encoding of the labels, and finally the one hot encoding. The training data contained the set of
all possible examples so we could rely on the integer and one hot encoding transforms to create
a complete mapping of labels to encodings.

By default, the OneHotEncoder class will return a more efficient sparse encoding. This may
not be suitable for some applications, such as use with the Keras deep learning library. In this
case, we disabled the sparse return type by setting the sparse=False argument. If we receive
a prediction in this 3-value one hot encoding, we can easily invert the transform back to the
original label.

First, we can use the argmax() NumPy function to locate the index of the column with the
largest value. This can then be fed to the LabelEncoder to calculate an inverse transform back
to a text label. This is demonstrated at the end of the example with the inverse transform of
the first one hot encoded example back to the label value cold. Again, note that input was
formatted for readability.

3.3. Prepare Sequences with Varied Lengths 34

['cold' 'cold' 'warm' 'cold' 'hot' 'hot' 'warm' 'cold' 'warm' 'hot']

[0 0 2 0 1 1 2 0 2 1]

[[1. 0. 0.]

[1. 0. 0.]

[0. 0. 1.]

[1. 0. 0.]

[0. 1. 0.]

[0. 1. 0.]

[0. 0. 1.]

[1. 0. 0.]

[0. 0. 1.]

[0. 1. 0.]]

['cold']

Listing 3.8: Example output of one hot encoded color.

3.3 Prepare Sequences with Varied Lengths

Deep learning libraries assume a vectorized representation of your data. In the case of variable
length sequence prediction problems, this requires that your data be transformed such that each
sequence has the same length. This vectorization allows code to efficiently perform the matrix
operations in batch for your chosen deep learning algorithms.

3.3.1 Sequence Padding

The pad sequences() function in the Keras deep learning library can be used to pad variable
length sequences. The default padding value is 0.0, which is suitable for most applications,
although this can be changed by specifying the preferred value via the value argument. For
example: The padding to be applied to the beginning or the end of the sequence, called pre- or
post-sequence padding, can be specified by the padding argument, as follows.

Pre-Sequence Padding

Pre-sequence padding is the default (padding=‘pre’) The example below demonstrates pre-
padding 3-input sequences with 0 values.

from keras.preprocessing.sequence import pad_sequences

define sequences

sequences = [

[1, 2, 3, 4],

[1, 2, 3],

[1]

]

pad sequence

padded = pad_sequences(sequences)

print(padded)

Listing 3.9: Example of pre-sequence padding.

3.3. Prepare Sequences with Varied Lengths 35

Running the example prints the 3 sequences pre-pended with zero values.

[[1 2 3 4]

[0 1 2 3]

[0 0 0 1]

Listing 3.10: Example output of pre-sequence padding.

Post-Sequence Padding

Padding can also be applied to the end of the sequences, which may be more appropriate
for some problem domains. Post-sequence padding can be specified by setting the padding

argument to post.

from keras.preprocessing.sequence import pad_sequences

define sequences

sequences = [

[1, 2, 3, 4],

[1, 2, 3],

[1]

]

pad sequence

padded = pad_sequences(sequences, padding='post')

print(padded)

Listing 3.11: Example of post-sequence padding.

Running the example prints the same sequences with zero-values appended.

[[1 2 3 4]

[1 2 3 0]

[1 0 0 0]]

Listing 3.12: Example output of post-sequence padding.

3.3.2 Sequence Truncation

The length of sequences can also be trimmed to a desired length. The desired length for
sequences can be specified as a number of time steps with the maxlen argument. There are two
ways that sequences can be truncated: by removing time steps either from the beginning or the
end of sequences.

Pre-Sequence Truncation

The default truncation method is to remove time steps from the beginning of sequences. This is
called pre-sequence truncation. The example below truncates sequences to a desired length of 2.

from keras.preprocessing.sequence import pad_sequences

define sequences

sequences = [

[1, 2, 3, 4],

[1, 2, 3],

[1]

]

3.4. Sequence Prediction as Supervised Learning 36

truncate sequence

truncated= pad_sequences(sequences, maxlen=2)

print(truncated)

Listing 3.13: Example of pre-sequence truncating.

Running the example removes the first two time steps from the first sequence, the first time
step from the second sequence, and pads the final sequence.

[[3 4]

[2 3]

[0 1]]

Listing 3.14: Example output of pre-sequence truncating.

Post-Sequence Truncation

Sequences can also be trimmed by removing time steps from the end of the sequences. This
approach may be more desirable for some problem domains. Post-sequence truncation can be
configured by changing the truncating argument from the default pre to post as follows:

from keras.preprocessing.sequence import pad_sequences

define sequences

sequences = [

[1, 2, 3, 4],

[1, 2, 3],

[1]

]

truncate sequence

truncated= pad_sequences(sequences, maxlen=2, truncating='post')

print(truncated)

Listing 3.15: Example of post-sequence truncating.

Running the example removes the last two time steps from the first sequence, the last time
step from the second sequence, and again pads the final sequence.

[[1 2]

[1 2]

[0 1]]

Listing 3.16: Example output of post-sequence truncating.

There is no rule of thumb as to when to pad and when to truncate input sequences with
varied lengths. For example, it may make sense to truncate very long text in a sentiment
analysis for efficiency, or it may make sense to pad short text and let the model learn to ignore
or explicitly mask zero input values to ensure no data is lost. I recommend testing a suite of
different representations for your sequence prediction problem and double down on those that
result in the best model skill.

3.4 Sequence Prediction as Supervised Learning

Sequence prediction problems must be re-framed as supervised learning problems. That is, data
must be transformed from a sequence to pairs of input and output pairs.

3.4. Sequence Prediction as Supervised Learning 37

3.4.1 Sequence vs Supervised Learning

Before we get started, let’s take a moment to better understand the form of raw input sequence
and supervised learning data. Consider a sequence of numbers that are ordered by a time index.
This can be thought of as a list or column of ordered values. For example:

0

1

2

3

4

5

6

7

8

9

Listing 3.17: Example of a sequence.

A supervised learning problem is comprised of input patterns (X) and output patterns (y),
such that an algorithm can learn how to predict the output patterns from the input patterns.
For example:

X, y

1, 2

2, 3

3, 4

4, 5

5, 6

6, 7

7, 8

8, 9

Listing 3.18: Example of input output pairs of a supervised learning problem.

This would represent a 1-lag transform of the sequence, such that the current time step must
be predicted given one prior time step of the sequence.

3.4.2 Pandas shift() Function

A key function to help transform time series data into a supervised learning problem is the
Pandas shift() function. Given a DataFrame, the shift() function can be used to create
copies of columns that are pushed forward (rows of NaN values added to the front) or pulled
back (rows of NaN values added to the end).

This is the behavior required to create columns of lag observations as well as columns of
forecast observations for a time series dataset in a supervised learning format. Let’s look at
some examples of the shift() function in action. We can define a mock time series dataset as
a sequence of 10 numbers, in this case a single column in a DataFrame as follows:

from pandas import DataFrame

define the sequence

df = DataFrame()

df['t'] = [x for x in range(10)]

print(df)

3.4. Sequence Prediction as Supervised Learning 38

Listing 3.19: Example of creating a series and printing it.

Running the example prints the time series data with the row indices for each observation.

t

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

Listing 3.20: Example output of the created series.

We can shift all the observations down by one time step by inserting one new row at the top.
Because the new row has no data, we can use NaN to represent no data. The shift function can
do this for us and we can insert this shifted column next to our original series.

from pandas import DataFrame

define the sequence

df = DataFrame()

df['t'] = [x for x in range(10)]

shift forward

df['t-1'] = df['t'].shift(1)

print(df)

Listing 3.21: Example of shifting the series forward.

Running the example gives us two columns in the dataset. The first with the original
observations and a new shifted column. We can see that shifting the series forward one time
step gives us a primitive supervised learning problem, although with X and y in the wrong order.
Ignore the column of row labels. The first row would have to be discarded because of the NaN

value. The second row shows the input value of 0.0 in the second column (input or X) and the
value of 1 in the first column (output or y).

t t-1

0 0 NaN

1 1 0.0

2 2 1.0

3 3 2.0

4 4 3.0

5 5 4.0

6 6 5.0

7 7 6.0

8 8 7.0

9 9 8.0

Listing 3.22: Example output of shifting the series forward.

We can see that if we can repeat this process with shifts of 2, 3, and more, we could create
long input sequences (X) that can be used to forecast an output value (y).

3.5. Further Reading 39

The shift operator can also accept a negative integer value. This has the effect of pulling the
observations up by inserting new rows at the end. Below is an example:

from pandas import DataFrame

define the sequence

df = DataFrame()

df['t'] = [x for x in range(10)]

shift backward

df['t+1'] = df['t'].shift(-1)

print(df)

Listing 3.23: Example of shifting the series backward.

Running the example shows a new column with a NaN value as the last value. We can see
that the forecast column can be taken as an input (X) and the second as an output value (y).
That is the input value of 0 can be used to forecast the output value of 1.

t t+1

0 0 1.0

1 1 2.0

2 2 3.0

3 3 4.0

4 4 5.0

5 5 6.0

6 6 7.0

7 7 8.0

8 8 9.0

9 9 NaN

Listing 3.24: Example output of shifting the series backward.

Technically, in time series forecasting terminology the current time (t) and future times
(t+1, t+n) are forecast times and past observations (t-1, t-n) are used to make forecasts. We
can see how positive and negative shifts can be used to create a new DataFrame from a time
series with sequences of input and output patterns for a supervised learning problem.

This permits not only classical X -> y prediction, but also X -> Y where both input and
output can be sequences. Further, the shift function also works on so-called multivariate time
series problems. That is where instead of having one set of observations for a time series, we
have multiple (e.g. temperature and pressure). All variates in the time series can be shifted
forward or backward to create multivariate input and output sequences.

3.5 Further Reading

This section provides some resources for further reading.

3.5.1 Numeric Scaling APIs

� MinMaxScaler API in scikit-learn.
https://goo.gl/H3qHJU

� StandardScaler API in scikit-learn.
https://goo.gl/cA4vQi

https://goo.gl/H3qHJU
https://goo.gl/cA4vQi

3.6. Extensions 40

� Should I normalize/standardize/rescale the data? Neural Nets FAQ.
ftp://ftp.sas.com/pub/neural/FAQ2.html#A_std

3.5.2 Categorical Encoding APIs

� LabelEncoder API in scikit-learn.
https://goo.gl/Y2bn3T

� OneHotEncoder API in scikit-learn.
https://goo.gl/ynDMHN

� NumPy argmax() API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

3.5.3 Varied Length Sequence APIs

� pad sequences() API in Keras.
https://keras.io/preprocessing/sequence/

3.5.4 Supervised Learning APIs

� shift() function API in Pandas.
https://goo.gl/N3M3nG

3.6 Extensions

Do you want to go deeper into data preparation for LSTMs? This section lists some challenging
extensions to this lesson.

� In a paragraph, summarize when to normalize numeric data, when to standardize, and
what to do when you’re in doubt.

� Develop a function to automatically one hot encode ASCII text as categorical data, and
another function to decode the encoded format.

� List 3 examples of sequence prediction problems that may benefit from padding input
sequences and 3 that may benefit from truncating input sequences.

� Given a univariate time series forecasting problem with hourly observations over several
years, and given an understanding of truncated BPTT in the previous lesson, describe 3
ways that the sequence may be transformed into a supervised learning problem.

� Develop a Python function to automatically transform a series into a supervised learning
problem where the number of input and output time steps can be specified as arguments.

Post your extensions online and share the link with me; I’d love to see what you come up
with!

ftp://ftp.sas.com/pub/neural/FAQ2.html#A_std
https://goo.gl/Y2bn3T
https://goo.gl/ynDMHN
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
https://keras.io/preprocessing/sequence/
https://goo.gl/N3M3nG

3.7. Summary 41

3.7 Summary

In this lesson, you discovered how to prepare sequence data for working with LSTM recurrent
neural networks. Specifically, you learned:

� How to scale numeric data and how to transform categorical data.

� How to pad and truncate input sequences with varied lengths.

� How to transform input sequences into a supervised learning problem.

Next, you will discover the life-cycle of an LSTM model in the Keras library.

Chapter 4

How to Develop LSTMs in Keras

4.0.1 Lesson Goal

The goal of this lesson is to understand how to define, fit, and evaluate LSTM models using the
Keras deep learning library in Python. After completing this lesson, you will know:

� How to define an LSTM model, including how to reshape your data for the required 3D
input.

� How to fit and evaluate your LSTM model and use it to make predictions on new data.

� How to take fine-grained control over the internal state in the model and when it is reset.

4.0.2 Lesson Overview

This lesson is divided into 7 parts; they are:

1. Define the Model.

2. Compile the Model.

3. Fit the Model.

4. Evaluate the Model.

5. Make Predictions with the Model.

6. LSTM State Management.

7. Examples of Preparing Data.

Let’s get started.

Note: The Keras code examples in this chapter are demonstrations to familiarize you with the
API, they do not execute.

42

4.1. Define the Model 43

4.1 Define the Model

The first step is to define your network. Neural networks are defined in Keras as a sequence of
layers. The container for these layers is the Sequential class. The first step is to create an
instance of the Sequential class. Then you can create your layers and add them in the order
that they should be connected. The LSTM recurrent layer comprised of memory units is called
LSTM(). A fully connected layer that often follows LSTM layers and is used for outputting a
prediction is called Dense().

For example, we can define an LSTM hidden layer with 2 memory cells followed by a Dense

output layer with 1 neuron as follows:

model = Sequential()

model.add(LSTM(2))

model.add(Dense(1))

Listing 4.1: Example of defining an LSTM model.

But we can also do this in one step by creating an array of layers and passing it to the
constructor of the Sequential class.

layers = [LSTM(2), Dense(1)]

model = Sequential(layers)

Listing 4.2: A second example of defining an LSTM model.

The first hidden layer in the network must define the number of inputs to expect, e.g. the
shape of the input layer. Input must be three-dimensional, comprised of samples, time steps,
and features in that order.

� Samples. These are the rows in your data. One sample may be one sequence.

� Time steps. These are the past observations for a feature, such as lag variables.

� Features. These are columns in your data.

Assuming your data is loaded as a NumPy array, you can convert a 1D or 2D dataset to
a 3D dataset using the reshape() function in NumPy. You can call the reshape() function
on your NumPy array and pass it a tuple of the dimensions to which to transform your data.
Imagine we had 2 columns of input data (X) in a NumPy array. We could treat the two columns
as two time steps and reshape it as follows:

data = data.reshape((data.shape[0], data.shape[1], 1))

Listing 4.3: Example of reshaping a NumPy array with 1 feature.

If you would like columns in your 2D data to become features with one time step, you can
reshape it as follows:

data = data.reshape((data.shape[0], 1, data.shape[1]))

Listing 4.4: Example of reshaping a NumPy array with 1 time step.

You can specify the input shape argument that expects a tuple containing the number of
time steps and the number of features. For example, if we had two time steps and one feature
for a univariate sequence with two lag observations per row, it would be specified as follows:

4.2. Compile the Model 44

model = Sequential()

model.add(LSTM(5, input_shape=(2,1)))

model.add(Dense(1))

Listing 4.5: Example defining the input shape for an LSTM model.

The number of samples does not have to be specified. The model assumes one or more
samples, leaving you to define only the number of time steps and features. The final section of
this lesson provides additional examples of preparing input data for LSTM models.

Think of a Sequential model as a pipeline with your raw data fed in at one end and
predictions that come out at the other. This is a helpful container in Keras as concerns that were
traditionally associated with a layer can also be split out and added as separate layers, clearly
showing their role in the transform of data from input to prediction. For example, activation
functions that transform a summed signal from each neuron in a layer can be extracted and
added to the Sequential as a layer-like object called Activation.

model = Sequential()

model.add(LSTM(5, input_shape=(2,1)))

model.add(Dense(1))

model.add(Activation('sigmoid'))

Listing 4.6: Example of an LSTM model with sigmoid activation on the output layer.

The choice of activation function is most important for the output layer as it will define the
format that predictions will take. For example, below are some common predictive modeling
problem types and the structure and standard activation function that you can use in the output
layer:

� Regression: Linear activation function, or linear, and the number of neurons matching
the number of outputs. This is the default activation function used for neurons in the
Dense layer.

� Binary Classification (2 class): Logistic activation function, or sigmoid, and one
neuron the output layer.

� Multiclass Classification (> 2 class): Softmax activation function, or softmax, and
one output neuron per class value, assuming a one hot encoded output pattern.

4.2 Compile the Model

Once we have defined our network, we must compile it. Compilation is an efficiency step. It
transforms the simple sequence of layers that we defined into a highly efficient series of matrix
transforms in a format intended to be executed on your GPU or CPU, depending on how Keras
is configured. Think of compilation as a precompute step for your network. It is always required
after defining a model.

Compilation requires a number of parameters to be specified, specifically tailored to training
your network. Specifically, the optimization algorithm to use to train the network and the loss
function used to evaluate the network that is minimized by the optimization algorithm.

For example, below is a case of compiling a defined model and specifying the stochastic
gradient descent (sgd) optimization algorithm and the mean squared error (mse) loss function,
intended for a regression type problem.

4.3. Fit the Model 45

model.compile(optimizer='sgd', loss='mse')

Listing 4.7: Example of compiling an LSTM model.

Alternately, the optimizer can be created and configured before being provided as an argument
to the compilation step.

algorithm = SGD(lr=0.1, momentum=0.3)

model.compile(optimizer=algorithm, loss='mse')

Listing 4.8: Example of compiling an LSTM model with a SGD optimization algorithm.

The type of predictive modeling problem imposes constraints on the type of loss function
that can be used. For example, below are some standard loss functions for different predictive
model types:

� Regression: Mean Squared Error or mean squared error, mse for short.

� Binary Classification (2 class): Logarithmic Loss, also called cross entropy or
binary crossentropy.

� Multiclass Classification (> 2 class): Multiclass Logarithmic Loss or
categorical crossentropy.

The most common optimization algorithm is classical stochastic gradient descent, but Keras
also supports a suite of other extensions of this classic optimization algorithm that work well
with little or no configuration. Perhaps the most commonly used optimization algorithms
because of their generally better performance are:

� Stochastic Gradient Descent, or sgd.

� Adam, or adam.

� RMSprop, or rmsprop.

Finally, you can also specify metrics to collect while fitting your model in addition to the
loss function. Generally, the most useful additional metric to collect is accuracy for classification
problems (e.g. ‘accuracy’ or ‘acc’ for short). The metrics to collect are specified by name in
an array of metric or loss function names. For example:

model.compile(optimizer='sgd', loss='mean_squared_error', metrics=['accuracy'])

Listing 4.9: Example of compiling an LSTM model with a metric.

4.3 Fit the Model

Once the network is compiled, it can be fit, which means adapting the weights on a training
dataset. Fitting the network requires the training data to be specified, both a matrix of
input patterns, X, and an array of matching output patterns, y. The network is trained using
the Backpropagation Through Time algorithm and optimized according to the optimization
algorithm and loss function specified when compiling the model.

4.3. Fit the Model 46

The backpropagation algorithm requires that the network be trained for a specified number
of epochs or exposures to all sequences in the training dataset. Each epoch can be partitioned
into groups of input-output pattern pairs called batches. This defines the number of patterns
that the network is exposed to before the weights are updated within an epoch. It is also an
efficiency optimization, ensuring that not too many input patterns are loaded into memory at a
time.

� Epoch: One pass through all samples in the training dataset and updating the network
weights. LSTMs may be trained for tens, hundreds, or thousands of epochs.

� Batch: A pass through a subset of samples in the training dataset after which the network
weights are updated. One epoch is comprised of one or more batches.

Below are some common configurations for the batch size:

� batch size=1: Weights are updated after each sample and the procedure is called stochas-
tic gradient descent.

� batch size=32: Weights are updated after a specified number of samples and the procedure
is called mini-batch gradient descent. Common values are 32, 64, and 128, tailored to
the desired efficiency and rate of model updates. If the batch size is not a factor of the
number of samples in one epoch, then an additional batch size of the left over samples is
run at the end of the epoch.

� batch size=n: Where n is the number of samples in the training dataset. Weights are
updated at the end of each epoch and the procedure is called batch gradient descent.

Mini-batch gradient descent with a batch size of 32 is a common configuration for LSTMs.
An example of fitting a network is as follows:

model.fit(X, y, batch_size=32, epochs=100)

Listing 4.10: Example of fitting an LSTM model.

Once fit, a history object is returned that provides a summary of the performance of the
model during training. This includes both the loss and any additional metrics specified when
compiling the model, recorded each epoch. These metrics can be recorded, plotted, and analyzed
to gain insight into whether the network is overfitting or underfitting the training data.

Training can take a long time, from seconds to hours to days depending on the size of
the network and the size of the training data. By default, a progress bar is displayed on the
command line for each epoch. This may create too much noise for you, or may cause problems
for your environment, such as if you are in an interactive notebook or IDE. You can reduce the
amount of information displayed to just the loss each epoch by setting the verbose argument
to 2. You can turn off all output by setting verbose to 0. For example:

history = model.fit(X, y, batch_size=10, epochs=100, verbose=0)

Listing 4.11: Example of fitting an LSTM model and retrieving history without verbose output.

4.4. Evaluate the Model 47

4.4 Evaluate the Model

Once the network is trained, it can be evaluated. The network can be evaluated on the training
data, but this will not provide a useful indication of the performance of the network as a
predictive model, as it has seen all of this data before. We can evaluate the performance of
the network on a separate dataset, unseen during testing. This will provide an estimate of the
performance of the network at making predictions for unseen data in the future.

The model evaluates the loss across all of the test patterns, as well as any other metrics
specified when the model was compiled, like classification accuracy. A list of evaluation metrics
is returned. For example, for a model compiled with the accuracy metric, we could evaluate it
on a new dataset as follows:

loss, accuracy = model.evaluate(X, y)

Listing 4.12: Example of evaluating an LSTM model.

As with fitting the network, verbose output is provided to give an idea of the progress of
evaluating the model. We can turn this off by setting the verbose argument to 0.

loss, accuracy = model.evaluate(X, y, verbose=0)

Listing 4.13: Example of evaluating an LSTM model without verbose output.

4.5 Make Predictions on the Model

Once we are satisfied with the performance of our fit model, we can use it to make predictions
on new data. This is as easy as calling the predict() function on the model with an array of
new input patterns. For example:

predictions = model.predict(X)

Listing 4.14: Example of making a prediction with a fit LSTM model.

The predictions will be returned in the format provided by the output layer of the network.
In the case of a regression problem, these predictions may be in the format of the problem
directly, provided by a linear activation function.

For a binary classification problem, the predictions may be an array of probabilities for the
first class that can be converted to a 1 or 0 by rounding. For a multiclass classification problem,
the results may be in the form of an array of probabilities (assuming a one hot encoded output
variable) that may need to be converted to a single class output prediction using the argmax()

NumPy function. Alternately, for classification problems, we can use the predict classes()

function that will automatically convert uncrisp predictions to crisp integer class values.

predictions = model.predict_classes(X)

Listing 4.15: Example of predicting classes with a fit LSTM model.

As with fitting and evaluating the network, verbose output is provided to give an idea of
the progress of the model making predictions. We can turn this off by setting the verbose

argument to 0.

4.6. LSTM State Management 48

predictions = model.predict(X, verbose=0)

Listing 4.16: Example of making a prediction without verbose output.

Making predictions with fit LSTM models is covered in more detail in Chapter 13.

4.6 LSTM State Management

Each LSTM memory unit maintains internal state that is accumulated. This internal state may
require careful management for your sequence prediction problem both during the training of
the network and when making predictions. By default, the internal state of all LSTM memory
units in the network is reset after each batch, e.g. when the network weights are updated. This
means that the configuration of the batch size imposes a tension between three things:

� The efficiency of learning, or how many samples are processed before an update.

� The speed of learning, or how often weights are updated.

� The influence of internal state, or how often internal state is reset.

Keras provides flexibility to decouple the resetting of internal state from updates to network
weights by defining an LSTM layer as stateful. This can be done by setting the stateful

argument on the LSTM layer to True. When stateful LSTM layers are used, you must also
define the batch size as part of the input shape in the definition of the network by setting the
batch input shape argument and the batch size must be a factor of the number of samples in
the training dataset. The batch input shape argument requires a 3-dimensional tuple defined
as batch size, time steps, and features.

For example, we can define a stateful LSTM to be trained on a training dataset with 100
samples, a batch size of 10, and 5 time steps for 1 feature, as follows.

model.add(LSTM(2, stateful=True, batch_input_shape=(10, 5, 1)))

Listing 4.17: Example of defining a stateful LSTM layer.

A stateful LSTM will not reset the internal state at the end of each batch. Instead, you
have fine grained control over when to reset the internal state by calling the reset states()

function. For example, we may want to reset the internal state at the end of each single epoch
which we could do as follows:

for i in range(1000):

model.fit(X, y, epochs=1, batch_input_shape=(10, 5, 1))

model.reset_states()

Listing 4.18: Example of manually iterating training epochs for a stateful LSTM.

The same batch size used in the definition of the stateful LSTM must also be used when
making predictions.

predictions = model.predict(X, batch_size=10)

Listing 4.19: Example making predictions with a stateful LSTM.

4.7. Examples of Preparing Data 49

The internal state in LSTM layers is also accumulated when evaluating a network and when
making predictions. Therefore, if you are using a stateful LSTM, you must reset state after
evaluating the network on a validation dataset or after making predictions.

By default, the samples within an epoch are shuffled. This is a good practice when working
with Multilayer Perceptron neural networks. If you are trying to preserve state across samples,
then the order of samples in the training dataset may be important and must be preserved. This
can be done by setting the shuffle argument in the fit() function to False. For example:

for i in range(1000):

model.fit(X, y, epochs=1, shuffle=False, batch_input_shape=(10, 5, 1))

model.reset_states()

Listing 4.20: Example disabling sample shuffling when fitting a stateful LSTM.

To make this more concrete, below are a 3 common examples for managing state:

� A prediction is made at the end of each sequence and sequences are independent. State
should be reset after each sequence by setting the batch size to 1.

� A long sequence was split into multiple subsequences (many samples each with many time
steps). State should be reset after the network has been exposed to the entire sequence by
making the LSTM stateful, turning off the shuffling of subsequences, and resetting the
state after each epoch.

� A very long sequence was split into multiple subsequences (many samples each with many
time steps). Training efficiency is more important than the influence of long-term internal
state and a batch size of 128 samples was used, after which network weights are updated
and state reset.

I would encourage you to brainstorm many different framings of your sequence prediction
problem and network configurations, test and select those models that appear most promising
with regard to prediction error.

4.7 Examples of Preparing Data

It can be difficult to understand how to prepare your sequence data for input to an LSTM
model. Often there is confusion around how to define the input layer for the LSTM model.
There is also confusion about how to convert your sequence data that may be a 1D or 2D matrix
of numbers to the required 3D format of the LSTM input layer. In this section you will work
through two examples of reshaping sequence data and defining the input layer to LSTM models.

4.7.1 Example of LSTM With Single Input Sample

Consider the case where you have one sequence of multiple time steps and one feature. For
example, this could be a sequence of 10 values:

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Listing 4.21: Example of a sequence.

We can define this sequence of numbers as a NumPy array.

4.7. Examples of Preparing Data 50

from numpy import array

data = array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

Listing 4.22: Example of defining a sequence as a NumPy array.

We can then use the reshape() function on the NumPy array to reshape this one-dimensional
array into a three-dimensional array with 1 sample, 10 time steps and 1 feature at each time
step. The reshape() function when called on an array takes one argument which is a tuple
defining the new shape of the array. We cannot pass in any tuple of numbers, the reshape must
evenly reorganize the data in the array.

data = data.reshape((1, 10, 1))

Listing 4.23: Example of reshaping a sequence.

Once reshaped, we can print the new shape of the array.

print(data.shape)

Listing 4.24: Example of printing the new shape of the sequence.

Putting all of this together, the complete example is listed below.

from numpy import array

data = array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

data = data.reshape((1, 10, 1))

print(data.shape)

Listing 4.25: Example of reshaping one sample.

Running the example prints the new 3D shape of the single sample.

(1, 10, 1)

Listing 4.26: Example output from reshaping one sample.

This data is now ready to be used as input (X) to the LSTM with an input shape of (10,
1).

model = Sequential()

model.add(LSTM(32, input_shape=(10, 1)))

...

Listing 4.27: Example of defining the input layer for an LSTM model.

4.7.2 Example of LSTM With Multiple Input Features

Consider the case where you have multiple parallel series as input for your model. For example,
this could be two parallel series of 10 values:

series 1: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

series 2: 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1

Listing 4.28: Example of parallel sequences.

We can define these data as a matrix of 2 columns with 10 rows:

4.7. Examples of Preparing Data 51

from numpy import array

data = array([

[0.1, 1.0],

[0.2, 0.9],

[0.3, 0.8],

[0.4, 0.7],

[0.5, 0.6],

[0.6, 0.5],

[0.7, 0.4],

[0.8, 0.3],

[0.9, 0.2],

[1.0, 0.1]])

Listing 4.29: Example of defining parallel sequences as a NumPy array.

This data can be framed as 1 sample with 10 time steps and 2 features. It can be reshaped
as a 3D array as follows:

data = data.reshape(1, 10, 2)

Listing 4.30: Example of reshaping a sequence.

Putting all of this together, the complete example is listed below.

from numpy import array

data = array([

[0.1, 1.0],

[0.2, 0.9],

[0.3, 0.8],

[0.4, 0.7],

[0.5, 0.6],

[0.6, 0.5],

[0.7, 0.4],

[0.8, 0.3],

[0.9, 0.2],

[1.0, 0.1]])

data = data.reshape(1, 10, 2)

print(data.shape)

Listing 4.31: Example of reshaping parallel series.

Running the example prints the new 3D shape of the single sample.

(1, 10, 2)

Listing 4.32: Example output from reshaping parallel series.

This data is now ready to be used as input (X) to the LSTM with an input shape of (10,
2).

model = Sequential()

model.add(LSTM(32, input_shape=(10, 2)))

...

Listing 4.33: Example of defining the input layer for an LSTM model.

4.8. Further Reading 52

4.7.3 Tips for LSTM Input

This section lists some final tips to help you when preparing your input data for LSTMs.

� The LSTM input layer must be 3D.

� The meaning of the 3 input dimensions are: samples, time steps and features.

� The LSTM input layer is defined by the input shape argument on the first hidden layer.

� The input shape argument takes a tuple of two values that define the number of time
steps and features.

� The number of samples is assumed to be 1 or more.

� The reshape() function on NumPy arrays can be used to reshape your 1D or 2D data to
be 3D.

� The reshape() function takes a tuple as an argument that defines the new shape.

4.8 Further Reading

This section provides some resources for further reading.

4.8.1 Keras APIs

� Keras API for Sequential Models.
https://keras.io/models/sequential/

� Keras API for LSTM Layers.
https://keras.io/layers/recurrent/#lstm

� Keras API for optimization algorithms.
https://keras.io/optimizers/

� Keras API for loss functions.
https://keras.io/losses/

4.8.2 Other APIs

� NumPy reshape() API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

� NumPy argmax() API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

https://keras.io/models/sequential/
https://keras.io/layers/recurrent/#lstm
https://keras.io/optimizers/
https://keras.io/losses/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html

4.9. Extensions 53

4.9 Extensions

Do you want to dive deeper into the life-cycle of LSTMs in Keras? This section lists some
challenging extensions to this lesson.

� List 5 sequence prediction problems and highlight how the data breaks down into samples,
time steps, and features.

� List 5 sequence prediction problems and specify the activation functions used in the output
layer for each.

� Research Keras metrics and loss functions and list 5 metrics that can be used for a
regression sequence prediction problem and 5 for a classification sequence prediction
problem.

� Research the Keras history object and write example code to create a line plot with
Matplotlib of the metrics captured from fitting an LSTM model.

� List 5 sequence prediction problems and how you would define and fit a network to best
manage the internal state for each.

Post your extensions online and share the link with me. I’d love to see what you come up
with!

4.10 Summary

In this lesson, you discovered the 5-step lifecycle of an LSTM recurrent neural network using
the Keras library. Specifically, you learned:

� How to define an LSTM model, including how to reshape your data for the required 3D
input.

� How to fit and evaluate your LSTM model and use it to make predictions on new data.

� How to take fine-grained control over the internal state in the model and when it is reset.

In the next lesson, you will discover the 4 main types of sequence prediction models and
how to implement them in Keras.

Chapter 5

Models for Sequence Prediction

5.0.1 Lesson Goal

The goal of this lesson is for you to know about the 4 sequence prediction models and how to
realize them in Keras. After completing this lesson, you will know:

� The 4 models for sequence prediction and how they may be implemented in Keras.

� Examples of how to map the 4 sequence prediction models onto common and interesting
sequence prediction problems.

� The traps that beginners fall into in applying the sequence prediction models and how to
avoid them.

5.0.2 Lesson Overview

This lesson is divided into 5 parts; they are:

1. Sequence Prediction.

2. Models for Sequence Prediction.

3. Mapping Applications to Models.

4. Cardinality from Time Steps.

5. Two Common Misunderstandings.

Let’s get started.

5.1 Sequence Prediction

LSTMs work by learning a function (f(...)) that maps input sequence values (X) onto output
sequence values (y).

y(t) = f(X(t))

Listing 5.1: Example of the general LSTM model.

54

5.2. Models for Sequence Prediction 55

The learned mapping function is static and may be thought of as a program that takes
input variables and uses internal variables. Internal variables are represented by an internal
state maintained by the network and built up or accumulated over each value in the input
sequence. The static mapping function may be defined with a different number of inputs or
outputs. Understanding this important detail is the focus of this lesson.

5.2 Models for Sequence Prediction

In this section, will review the 4 primary models for sequence prediction. We will use the
following terminology:

� X: The input sequence value; may be delimited by a time step, e.g. X(1).

� u: The hidden state value; may be delimited by a time step, e.g. u(1).

� y: The output sequence value; may be delimited by a time step, e.g. y(1).

Each model will be explained using this terminology, using pictures, and using example code
in Keras. Focus on learning how different types of sequence prediction problems map to different
model types. Don’t get too caught up on the specifics of the Keras examples, as whole chapters
are dedicated to explaining the more complex model types.

5.2.1 One-to-One Model

A one-to-one model (f(...)) produces one output (y(t)) value for each input value (X(t)).

u

X

y

Figure 5.1: One-to-One Sequence Prediction Model.

For example:

y(1) = f(X(1))

y(2) = f(X(2))

y(3) = f(X(3))

...

Listing 5.2: Example of a one-to-one sequence prediction model.

5.2. Models for Sequence Prediction 56

The internal state for the first time step is zero; from that point onward, the internal state
is accumulated over the prior time steps.

0

X(1)

y(1)

u(1)

X(2)

y(2)

u(2)

X(3)

y(3)

Figure 5.2: One-to-One Sequence Prediction Model Over Time.

This model is appropriate for sequence prediction problems where we wish to predict one
time step, given one time step as input. For example:

� Predicting the next real value in a time series.

� Predicting the next word in a sentence.

This is a poor use of the LSTM as it is not capable of learning across input or output time
steps. This model does put all of the pressure on the internal state or memory. The results
of this model can be contrasted to a model that does have input or output sequences to see if
learning across time steps adds skill to predictions. We can implement this in Keras by defining
a network that expects one time step as input and predicts one time step in the output layer.

model = Sequential()

model.add(LSTM(..., input_shape=(1, ...)))

model.add(Dense(1))

Listing 5.3: Example of defining a one-to-one sequence prediction model in Keras.

A one-to-one LSTM model is developed for a sequence generation problem in Chapter 11 on
page 141.

5.2.2 One-to-Many Model

A one-to-many model (f(...)) produces multiple output values (y(t), y(t+1), ...) for one
input value (X(t)). For example:

y(1),y(2) = f(X(1))

Listing 5.4: Example of a one-to-many sequence prediction model.

5.2. Models for Sequence Prediction 57

It may help to think of time being counted separately for inputs and outputs.

0

X(1)

y(1)

u(1)

y(2)

u(2)

y(3)

Figure 5.3: One-to-Many Sequence Prediction Model.

Internal state is accumulated as each value in the output sequence is produced. This model
is appropriate for sequence prediction problems where we wish to produce a sequence output for
each input time step. For example:

� Predicting a sequence of words from a single image.

� Forecasting a series of observations from a single event.

A good example of this model is in generating textual captions for images. In Keras, this
requires a Convolutional Neural Network to extract features from the image followed by an
LSTM to output the sequence of words one at a time. The output layer predicts one observation
per output time step and is wrapped in a TimeDistributed wrapper layer in order to use the
same output layer multiple times for the required number of output time steps.

model = Sequential()

model.add(Conv2D(...))

...

model.add(LSTM(...))

model.add(TimeDistributed(Dense(1)))

Listing 5.5: Example of defining a one-to-many sequence prediction model in Keras.

The sequence classification example in Chapter 8 on page 93 could be adapted to a one-to-
many model. For example, for describing the up, down, left and right movement of the line
from a final image.

5.2.3 Many-to-One Model

A many-to-one model (f(...)) produces one output (y(t)) value after receiving multiple input
values (X(t), X(t+1), ...). For example:

5.2. Models for Sequence Prediction 58

y(1) = f(X(1), X(2))

Listing 5.6: Example of a many-to-one sequence prediction model.

Again, it helps to think of time being counted separately in the input sequences and the
output sequences.

0

X(1)

u(1) u(2)

y(1)

X(2) X(3)

Figure 5.4: Many-to-One Sequence Prediction Model.

Internal state is accumulated with each input value before a final output value is produced.
This model is appropriate for sequence prediction problems where multiple input time steps are
required in order to make a one step prediction. For example:

� Forecasting the next real value in a time series given a sequence of input observations.

� Predicting the classification label for an input sequence of words, such as sentiment
analysis.

This model can be implemented in Keras much like the one-to-one model, except the number
of input time steps can be varied to suit the needs of the problem.

model = Sequential()

model.add(LSTM(..., input_shape=(steps, ...)))

model.add(Dense(1))

Listing 5.7: Example of defining a many-to-one sequence prediction model in Keras.

Often, when practitioners implement a one-to-one model, they actually intend to implement
a many-to-one model, such as in the case of time series forecasting. A many-to-one model is
developed for sequence classification in Chapter 6 on page 65, for predicting a single vector
output in Chapter 7 on page 77 and for sequence classification in Chapter 8 on page 93.

5.2.4 Many-to-Many Model

A many-to-many model (f(...)) produces multiple outputs (y(t), y(t+1), ...) after receiving
multiple input values (X(t), X(t+1), ...). For example:

5.2. Models for Sequence Prediction 59

y(1),y(2) = f(X(1), X(2))

Listing 5.8: Example of a many-to-many sequence prediction model.

0

X(1)

u(1) u(2)

y(2)

X(2)

y(1)

Figure 5.5: Many-to-Many Sequence Prediction Model.

As with the many-to-one case, state is accumulated until the first output is created, but
in this case multiple time steps are output. Importantly, the number of input time steps do
not have to match the number of output time steps. This model is appropriate for sequence
predictions where multiple input time steps are required in order to predict a sequence of output
time steps. These are often called sequence-to-sequence, or seq2seq, type problems and are
perhaps the most studied with LSTMs in recent time. For example:

� Summarize a document of words into a shorter sequence of words.

� Classify a sequence of audio data into a sequence of words.

In a sense, this model combines the capabilities of the many-to-one and one-to-many models.
If the number of input and output time steps are equal, then the LSTM layer must be configured
to return a value for each input time step rather than a single value at the end of the input
sequence (e.g. return sequences=True) and the same Dense layer can be used to produce one
output time step for each of the input time steps via the TimeDistributed layer wrapper

model = Sequential()

model.add(LSTM(..., input_shape=(steps, ...), return_sequences=True))

model.add(TimeDistributed(Dense(1)))

Listing 5.9: Example of defining a many-to-many sequence prediction model in Keras with equal
length input and output sequences.

If the number of input and output time steps vary, then an Encoder-Decoder architecture
can be used. The input time steps are mapped to a fixed sized internal representation of the
sequence, then this vector is used as input to producing each time step in the output sequence.

5.3. Mapping Applications to Models 60

model = Sequential()

model.add(LSTM(..., input_shape=(in_steps, ...)))

model.add(RepeatVector(out_steps))

model.add(LSTM(..., return_sequences=True))

model.add(TimeDistributed(Dense(1)))

Listing 5.10: Example of defining a many-to-many sequence prediction model in Keras with
varying length input and output sequences.

This may be the most sophisticated sequence prediction model with many variations and
optimizations to explore. A many-to-many model is developed in Chapter 9 on page 108 where
input and output sequences have a different number of time steps (e.g. sequence lengths). A
many-to-many model is also developed in Chapter 10 on page 129 where the input and output
sequences have the same number of time steps.

5.3 Mapping Applications to Models

I really want you to understand these models and how to frame your problem as one of the above
4 types. To that end, this section lists 10 different and varied sequence prediction problems and
notes which model may be used to address them. In each explanation, I give an example of a
model that can be used to address the problem, but other models can be used if the sequence
prediction problem is re-framed. Take these as best suggestions, not unbreakable rules.

5.3.1 Time Series

� Univariate Time Series Forecasting. This is where you have one series with multiple
input time steps and wish to predict one time step beyond the input sequence. This can
be implemented as a many-to-one model.

� Multivariate Time Series Forecasting. This is where you have multiple series with
multiple input time steps and wish to predict one time step beyond one or more of the
input sequences. This can be implemented as a many-to-one model. Each series is just
another input feature.

� Multi-step Time Series Forecasting: This is where you have one or multiple series
with multiple input time steps and wish to predict multiple time steps beyond one or
more of the input sequences. This can be implemented as a many-to-many model.

� Time Series Classification. This is where you have one or multiple series with multiple
input time steps as input and wish to output a classification label. This can be implemented
as a many-to-one model.

5.3.2 Natural Language Processing

� Image Captioning. This is where you have one image and wish to generate a textual
description. This can be implemented as a one-to-many model.

� Video Description. This is where you have a sequence of images in a video and wish to
generate a textual description. This can be implemented with a many-to-many model.

5.4. Cardinality from Time Steps (not Features!) 61

� Sentiment Analysis. This is where you have sequences of text as input and you wish to
generate a classification label. This can be implemented as a many-to-one model.

� Speech Recognition. This is where you have a sequence of audio data as input and
wish to generate a textual description of what was spoken. This can be implemented with
a many-to-many model.

� Text Translation. This is where you have a sequence of words in one language as input
and wish to generate a sequence of words in another language. This can be implemented
with a many-to-many model.

� Text Summarization. This is where you have a document of text as input and wish
to create a short textual summary of the document as output. This can be implemented
with a many-to-many model.

5.4 Cardinality from Time Steps (not Features!)

A common point of confusion is to conflate the above examples of sequence mapping models
with multiple input and output features. A sequence may be comprised of single values, one for
each time step.

Alternately, a sequence could just as easily represent a vector of multiple observations at the
time step (e.g. [X1, X2] to predict [y1, y2] at a given time step). Each item in the vector for
a time step may be thought of as its own separate time series. It does not affect the description
of the models above. For example, a model that takes as input one time step of temperature
(X1) and pressure (X2) and predicts one time step of temperature (y1) and pressure (y2) is a
one-to-one model, not a many-to-many model.

[u1(1),
u2(1)]

[X1(1),
X2(1)]

[y1(1),
y2(1)]

[u1(2),
u2(2)]

[X1(2),
X2(2)]

[y1(2),
y2(2)]

[u1(3),
u2(3)]

[X1(3),
X2(3)]

[y1(3),
y2(3)]

Figure 5.6: Multiple-Feature Sequence Prediction Model.

5.5. Two Common Misunderstandings 62

The model does take two values as input, has two separate internal states, and predicts two
values, but there is only a single sequence time step expressed for the input and predicted as
output. The cardinality of the sequence prediction models defined above refers to time steps,
not features.

5.5 Two Common Misunderstandings

The confusion of features vs time steps leads to two main misunderstandings when implementing
LSTMs by practitioners:

5.5.1 Time steps as Input Features

Lag observations at previous time steps are framed as input features to the model. This is
the classical fixed-window-based approach of inputting sequence prediction problems used by
Multilayer Perceptrons. Instead, the sequence should be presented to the model as multiple
input time steps (e.g. a many-to-one model). This confusion may lead you to think you have
implemented a many-to-one or many-to-many sequence prediction model when in fact you only
have a single vector input for one time step.

5.5.2 Time steps as Output Features

Predictions at multiple future time steps are framed as output features to the model. This
is the classical fixed-window approach of making multi-step predictions used by Multilayer
Perceptrons and other machine learning algorithms. Instead, the sequence predictions should
be generated one time step at a time by the model. This confusion may lead you to think you
have implemented a one-to-many or many-to-many sequence prediction model when in fact you
only have a single vector output for one time step (e.g. seq2vec not seq2seq).

Note: framing time steps as features in sequence prediction problems is a valid strategy, and
could lead to improved performance even when using recurrent neural networks (try it!). The
important point here is to understand the common pitfalls and not trick yourself when framing
your own prediction problems.

5.6 Further Reading

This section provides some resources for further reading.

5.6.1 Articles

� The Unreasonable Effectiveness of Recurrent Neural Networks, 2015.
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

5.7 Extensions

Are you looking to deepen your understanding of the sequence prediction models? This section
lists some challenging extensions that you may wish to consider.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

5.8. Summary 63

� Summarize each of the 4 models as a cheat sheet for yourself.

� List all the ways a multivariate time series could be framed and the different prediction
models that could be used.

� Pick one model and one application for that model and draw a diagram with example
input and output sequences.

� List 2 new examples of sequence prediction problems for each model.

� Find 5 recent papers on LSTMs on arXiv.org; list the title and which sequence prediction
model was discussed.

Post your extensions online and share the link with me. I’d love to see what you come up
with!

5.8 Summary

In this lesson, you discovered the 4 models for sequence prediction and how to realize them in
Keras. Specifically, you learned:

� The 4 models for sequence prediction and how they may be implemented in Keras.

� Examples of sequence prediction problems and which of the 4 models that they map onto.

� The traps that beginners fall into in applying the sequence prediction models and how to
avoid them.

In the next lesson, you will discover the Vanilla LSTM architecture that you can use for
most sequence prediction problems.

Part III

Models

64

Chapter 6

How to Develop Vanilla LSTMs

6.0.1 Lesson Goal

The goal of this lesson is to learn how to develop and evaluate vanilla LSTM models. After
completing this lesson, you will know:

� The architecture of the Vanilla LSTM for sequence prediction and its general capabilities.

� How to define and implement the echo sequence prediction problem.

� How to develop a Vanilla LSTM to learn and make accurate predictions on the echo
sequence prediction problem.

6.0.2 Lesson Overview

This lesson is divided into 7 parts; they are:

1. The Vanilla LSTM.

2. Echo Sequence Prediction Problem.

3. Define and Compile the Model.

4. Fit the Model.

5. Evaluate the Model.

6. Make Predictions With the Model.

7. Complete Example.

Let’s get started.

65

6.1. The Vanilla LSTM 66

6.1 The Vanilla LSTM

6.1.1 Architecture

A simple LSTM configuration is the Vanilla LSTM. It is named Vanilla in this book to
differentiate it from deeper LSTMs and the suite of more elaborate configurations. It is the
LSTM architecture defined in the original 1997 LSTM paper and the architecture that will give
good results on most small sequence prediction problems. The Vanilla LSTM is defined as:

1. Input layer.

2. Fully connected LSTM hidden layer.

3. Fully connected output layer.

LSTM

Dense

Input

Output

Figure 6.1: Vanilla LSTM Architecture.

6.1.2 Implementation

In Keras, a Vanilla LSTM is defined below, with ellipsis for the specific configuration of the
number of neurons in each layer.

model = Sequential()

model.add(LSTM(..., input_shape=(...)))

model.add(Dense(...))

Listing 6.1: Example of defining a Vanilla LSTM model.

This is the default or standard LSTM referenced in much work and discussion on LSTMs in
deep learning and a good starting point when getting started with LSTMs on your sequence
prediction problem. The Vanilla LSTM has the following 5 attractive properties, most of which
were demonstrated in the original paper:

6.2. Echo Sequence Prediction Problem 67

� Sequence classification conditional on multiple distributed input time steps.

� Memory of precise input observations over thousands of time steps.

� Sequence prediction as a function of prior time steps.

� Robust to the insertion of random time steps on the input sequence.

� Robust to the placement of signal data on the input sequence.

Next, we will define a simple sequence prediction problem that we can later use to demonstrate
the Vanilla LSTM.

6.2 Echo Sequence Prediction Problem

The echo sequence prediction problem is a contrived problem for demonstrating the memory
capability of the Vanilla LSTM. The task is that, given a sequence of random integers as input,
to output the value of a random integer at a specific time input step that is not specified to the
model.

For example, given the input sequence of random integers [5, 3, 2] and the chosen time
step was the second value, then the expected output is 3. Technically, this is a sequence
classification problem; it is formulated as a many-to-one prediction problem, where there are
multiple input time steps and one output time step at the end of the sequence.

5

3

3 2

Figure 6.2: Echo sequence prediction problem framed with a many-to-one prediction model.

This problem was carefully chosen to demonstrate the memory capability of the Vanilla
LSTM. Further, we will manually perform some of the elements of the model life-cycle such as
fitting and evaluating the model to get a deeper feeling for what is happening under the covers.
Next, we will develop code to generate examples of this problem. This involves the following
steps:

1. Generate Random Sequences.

6.2. Echo Sequence Prediction Problem 68

2. One Hot Encode Sequences.

3. Worked Example

4. Reshape Sequences.

6.2.1 Generate Random Sequences

We can generate random integers in Python using the randint() function that takes two
parameters indicating the range of integers from which to draw values. In this lesson, we will
define the problem as having integer values between 0 and 99 with 100 unique values.

randint(0, 99)

Listing 6.2: Generate random integers.

We can put this in a function called generate sequence() that will generate a sequence of
random integers of the desired length. This function is listed below.

generate a sequence of random numbers in [0, n_features)

def generate_sequence(length, n_features):

return [randint(0, n_features-1) for _ in range(length)]

Listing 6.3: Function to generate sequences of random integers.

6.2.2 One Hot Encode Sequences

Once we have generated sequences of random integers, we need to transform them into a format
that is suitable for training an LSTM network. One option would be to rescale the integer to
the range [0,1]. This would work and would require that the problem be phrased as regression.

We are interested in predicting the right number, not a number close to the expected value.
This means we would prefer to frame the problem as classification rather than regression, where
the expected output is a class and there are 100 possible class values. In this case, we can use a
one hot encoding of the integer values where each value is represented by a 100 element binary
vector that is all 0 values except the index of the integer, which is marked 1.

The function below called one hot encode() defines how to iterate over a sequence of integers
and create a binary vector representation for each and returns the result as a 2-dimensional
array.

one hot encode sequence

def one_hot_encode(sequence, n_features):

encoding = list()

for value in sequence:

vector = [0 for _ in range(n_features)]

vector[value] = 1

encoding.append(vector)

return array(encoding)

Listing 6.4: Function to one hot encode sequences of random integers.

We also need to decode the encoded values so that we can make use of the predictions; in
this case, to just review them. The one hot encoding can be inverted by using the argmax()

NumPy function that returns the index of the value in the vector with the largest value. The

6.2. Echo Sequence Prediction Problem 69

function below, named one hot decode(), will decode an encoded sequence and can be used to
later decode predictions from our network.

decode a one hot encoded string

def one_hot_decode(encoded_seq):

return [argmax(vector) for vector in encoded_seq]

Listing 6.5: Function to decode encoded sequences.

6.2.3 Worked Example

We can tie all of this together. Below is the complete code listing for generating a sequence of
25 random integers and encoding each integer as a binary vector.

from random import randint

from numpy import array

from numpy import argmax

generate a sequence of random numbers in [0, n_features)

def generate_sequence(length, n_features):

return [randint(0, n_features-1) for _ in range(length)]

one hot encode sequence

def one_hot_encode(sequence, n_features):

encoding = list()

for value in sequence:

vector = [0 for _ in range(n_features)]

vector[value] = 1

encoding.append(vector)

return array(encoding)

decode a one hot encoded string

def one_hot_decode(encoded_seq):

return [argmax(vector) for vector in encoded_seq]

generate random sequence

sequence = generate_sequence(25, 100)

print(sequence)

one hot encode

encoded = one_hot_encode(sequence, 100)

print(encoded)

one hot decode

decoded = one_hot_decode(encoded)

print(decoded)

Listing 6.6: Example of generating sequences and encoding them.

Running the example first prints the list of 25 random integers, followed by a truncated
view of the binary representations of all integers in the sequence, one vector per line, then the
decoded sequence again. You may get different results as different random integers are generated
each time the code is run.

[37, 99, 40, 98, 44, 27, 99, 18, 52, 97, 46, 39, 60, 13, 66, 29, 26, 4, 65, 85, 29, 88, 8,

23, 61]

[[0 0 0 ..., 0 0 0]

6.2. Echo Sequence Prediction Problem 70

[0 0 0 ..., 0 0 1]

[0 0 0 ..., 0 0 0]

...,

[0 0 0 ..., 0 0 0]

[0 0 0 ..., 0 0 0]

[0 0 0 ..., 0 0 0]]

[37, 99, 40, 98, 44, 27, 99, 18, 52, 97, 46, 39, 60, 13, 66, 29, 26, 4, 65, 85, 29, 88, 8,

23, 61]

Listing 6.7: Example output from generating sequences and encoding them.

6.2.4 Reshape Sequences

The final step is to reshape the one hot encoded sequences into a format that can be used as
input to the LSTM. This involves reshaping the encoded sequence to have n time steps and k

features, where n is the number of integers in the generated sequence and k is the set of possible
integers at each time step (e.g. 100)

A sequence can then be reshaped into a three-dimensional matrix of samples, time steps,
and features, or for a single sequence of 25 integers [1, 25, 100]. As follows

X = encoded.reshape(1, 25, 100)

Listing 6.8: Example of reshaping an encoded sequence.

The output for the sequence is simply the encoded integer at a specific pre-defined location.
This location must remain consistent for all examples generated for one model, so that the
model can learn. For example, we can use the 2nd time step as the output of a sequence with
25 time steps by taking the encoded value directly from the encoded sequence

y = encoded[1, :]

Listing 6.9: Example accessing a value in the decoded sequence.

We can put this and the above generation and encoding steps together into a new function
called generate example() that generates a sequence, encodes it, and returns the input (X)
and output (y) components for training an LSTM.

generate one example for an lstm

def generate_example(length, n_features, out_index):

generate sequence

sequence = generate_sequence(length, n_features)

one hot encode

encoded = one_hot_encode(sequence, n_features)

reshape sequence to be 3D

X = encoded.reshape((1, length, n_features))

select output

y = encoded[out_index].reshape(1, n_features)

return X, y

Listing 6.10: Function to generate sequences, encode them and reshape them.

We can put all of this together and test the generation of one example ready for fitting or
evaluating an LSTM as follows:

6.3. Define and Compile the Model 71

from random import randint

from numpy import array

from numpy import argmax

generate a sequence of random numbers in [0, n_features)

def generate_sequence(length, n_features):

return [randint(0, n_features-1) for _ in range(length)]

one hot encode sequence

def one_hot_encode(sequence, n_features):

encoding = list()

for value in sequence:

vector = [0 for _ in range(n_features)]

vector[value] = 1

encoding.append(vector)

return array(encoding)

decode a one hot encoded string

def one_hot_decode(encoded_seq):

return [argmax(vector) for vector in encoded_seq]

generate one example for an lstm

def generate_example(length, n_features, out_index):

generate sequence

sequence = generate_sequence(length, n_features)

one hot encode

encoded = one_hot_encode(sequence, n_features)

reshape sequence to be 3D

X = encoded.reshape((1, length, n_features))

select output

y = encoded[out_index].reshape(1, n_features)

return X, y

X, y = generate_example(25, 100, 2)

print(X.shape)

print(y.shape)

Listing 6.11: Example of testing the function to generate encoded sequences and reshape them.

Running the code generates one encoded sequence and prints out the shape of the input and
output components of the sequence for the LSTM.

(1, 25, 100)

(1, 100)

Listing 6.12: Example output from generating encoded sequences and reshaping them.

Now that we know how to prepare and represent random sequences of integers, we can look
at using LSTMs to learn them.

6.3 Define and Compile the Model

We will start off by defining and compiling the model. To keep the model small and ensure it is
fit in a reasonable time, we will greatly simplify the problem by reducing the sequence length to

6.4. Fit the Model 72

5 integers and the number of features to 10 (e.g. 0-9). The model must specify the expected
dimensionality of the input data. In this case, in terms of time steps (5) and features (10). We
will use a single hidden layer LSTM with 25 memory units, chosen with a little trial and error.

The output layer is a fully connected layer (Dense) with 10 neurons for the 10 possible
integers that may be output. A softmax activation function is used on the output layer to allow
the network to learn and output the distribution over the possible output values.

The network will use the log loss function while training, suitable for multiclass classification
problems, and the efficient Adam optimization algorithm. The accuracy metric will be reported
each training epoch to give an idea of the skill of the model in addition to the loss.

define model

length = 5

n_features = 10

out_index = 2

model = Sequential()

model.add(LSTM(25, input_shape=(length, n_features)))

model.add(Dense(n_features, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])

print(model.summary())

Listing 6.13: Example of defining a Vanilla LSTM for the Echo Problem.

Running the example defines and compiles the model, then prints a summary of the model
structure. Printing a summary of the model structure is a good practice in general to confirm
the model was defined and compiled as you intended.

Layer (type) Output Shape Param #

===

lstm_1 (LSTM) (None, 25) 3600

dense_1 (Dense) (None, 10) 260

===

Total params: 3,860

Trainable params: 3,860

Non-trainable params: 0

Listing 6.14: Example output from the defined model.

6.4 Fit the Model

We can now fit the model on example sequences. The code we developed for the echo sequence
prediction problem generates random sequences. We could generate a large number of example
sequences and pass them to the model’s fit() function. The dataset would be loaded into
memory, training would be fast, and we could experiment with varied number of epochs vs
dataset size and number of batches.

A simpler approach is to manage the training process manually where one training sample is
generated and used to update the model and any internal state is cleared. The number of epochs
is the number of iterations of generating samples and essentially the batch size is 1 sample.
Below is an example of fitting the model for 10,000 epochs found with a little trial and error.

6.5. Evaluate the Model 73

fit model

for i in range(10000):

X, y = generate_example(length, n_features, out_index)

model.fit(X, y, epochs=1, verbose=2)

Listing 6.15: Example of fitting the defined LSTM model.

Fitting the model will report the log loss and accuracy for each pattern. Here, accuracy is
either 0 or 1 (0% or 100%) because we are making sequence classification prediction on one
sample and reporting the result.

...

Epoch 1/1

0s - loss: 0.1610 - acc: 1.0000

Epoch 1/1

0s - loss: 0.0288 - acc: 1.0000

Epoch 1/1

0s - loss: 0.0166 - acc: 1.0000

Epoch 1/1

0s - loss: 0.0013 - acc: 1.0000

Epoch 1/1

0s - loss: 0.0244 - acc: 1.0000

Listing 6.16: Example output from the fitting the defined model.

6.5 Evaluate the Model

Once the model is fit, we can estimate the skill of the model when classifying new random
sequences. We can do this by simply making predictions on 100 randomly generated sequences
and counting the number of correct predictions made.

As with fitting the model, we could generate a large number of examples, concatenate them
together, and use the evaluate() function to evaluate the model. In this case, we will make
the predictions manually and count up the number of correct outcomes. We can do this in a
loop that generates a sample, makes a prediction, and increments a counter if the prediction
was correct.

evaluate model

correct = 0

for i in range(100):

X, y = generate_example(length, n_features, out_index)

yhat = model.predict(X)

if one_hot_decode(yhat) == one_hot_decode(y):

correct += 1

print('Accuracy: %f' % ((correct/100)*100.0))

Listing 6.17: Example of evaluating the fit LSTM model.

Evaluating the model reports the estimated skill of the model as 100%.

Accuracy: 100.000000

Listing 6.18: Example output from evaluating the fit model.

6.6. Make Predictions With the Model 74

6.6 Make Predictions With the Model

Finally, we can use the fit model to make predictions on new randomly generated sequences. For
this problem, this is much the same as the case of evaluating the model. Because this is more of
a user-facing activity, we can decode the whole sequence, expected output, and prediction and
print them on the screen.

prediction on new data

X, y = generate_example(length, n_features, out_index)

yhat = model.predict(X)

print('Sequence: %s' % [one_hot_decode(x) for x in X])

print('Expected: %s' % one_hot_decode(y))

print('Predicted: %s' % one_hot_decode(yhat))

Listing 6.19: Example of making predictions with the fit LSTM model.

Running the example will print the decoded randomly generated sequence, expected outcome,
and (hopefully) a prediction that meets the expected value. Your specific results will vary.

Sequence: [[7, 0, 2, 6, 7]]

Expected: [2]

Predicted: [2]

Listing 6.20: Example output from making predictions the fit model.

Don’t panic if the model gets it wrong. LSTMs are stochastic and it is possible that a single
run of the model may converge on a solution that does not completely learn the problem. If
this happens to you, try running the example a few more times.

6.7 Complete Example

This section lists the complete working example for your reference.

from random import randint

from numpy import array

from numpy import argmax

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

generate a sequence of random numbers in [0, n_features)

def generate_sequence(length, n_features):

return [randint(0, n_features-1) for _ in range(length)]

one hot encode sequence

def one_hot_encode(sequence, n_features):

encoding = list()

for value in sequence:

vector = [0 for _ in range(n_features)]

vector[value] = 1

encoding.append(vector)

return array(encoding)

decode a one hot encoded string

def one_hot_decode(encoded_seq):

6.8. Further Reading 75

return [argmax(vector) for vector in encoded_seq]

generate one example for an lstm

def generate_example(length, n_features, out_index):

generate sequence

sequence = generate_sequence(length, n_features)

one hot encode

encoded = one_hot_encode(sequence, n_features)

reshape sequence to be 3D

X = encoded.reshape((1, length, n_features))

select output

y = encoded[out_index].reshape(1, n_features)

return X, y

define model

length = 5

n_features = 10

out_index = 2

model = Sequential()

model.add(LSTM(25, input_shape=(length, n_features)))

model.add(Dense(n_features, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])

print(model.summary())

fit model

for i in range(10000):

X, y = generate_example(length, n_features, out_index)

model.fit(X, y, epochs=1, verbose=2)

evaluate model

correct = 0

for i in range(100):

X, y = generate_example(length, n_features, out_index)

yhat = model.predict(X)

if one_hot_decode(yhat) == one_hot_decode(y):

correct += 1

print('Accuracy: %f' % ((correct/100)*100.0))

prediction on new data

X, y = generate_example(length, n_features, out_index)

yhat = model.predict(X)

print('Sequence: %s' % [one_hot_decode(x) for x in X])

print('Expected: %s' % one_hot_decode(y))

print('Predicted: %s' % one_hot_decode(yhat))

Listing 6.21: Example of the Vanilla LSTM applied to the Echo Problem.

6.8 Further Reading

This section provides some resources for further reading.

� Long Short-Term Memory, 1997.

� Learning to Forget: Continual Prediction with LSTM, 1999.

6.9. Extensions 76

6.9 Extensions

Do you want to dive deeper into the Vanilla LSTM? This section lists some challenging extensions
to this lesson.

� Update the example to use a longer sequence length and still achieve 100% accuracy.

� Update the example to use a larger number of features and still achieve 100% accuracy.

� Update the example to use the SGD optimization algorithm and tune the learning rate
and momentum.

� Update the example to prepare a large dataset of examples to fit the model and explore
different batch sizes.

� Vary the time step index of the sequence output and training epochs to see if there is a
relationship between the index and how hard the problem is to learn.

Post your extensions online and share the link with me. I’d love to see what you come up
with!

6.10 Summary

In this lesson, you discovered how to develop a Vanilla or standard LSTM. Specifically, you
learned:

� The architecture of the Vanilla LSTM for sequence prediction and its general capabilities.

� How to define and implement the echo sequence prediction problem.

� How to develop a Vanilla LSTM to learn and make accurate predictions on the echo
sequence prediction problem.

In the next lesson, you will discover how to develop and evaluate the Stacked LSTM model.

Chapter 7

How to Develop Stacked LSTMs

7.0.1 Lesson Goal

The goal of this lesson is to learn how to develop and evaluate stacked LSTM models. After
completing this lesson, you will know:

� The motivation for creating a multilayer LSTM and how to develop Stacked LSTM models
in Keras.

� The damped sine wave prediction problem and how to prepare examples for fitting LSTM
models.

� How to develop, fit, and evaluate a Stacked LSTM model for the damped sine wave
prediction problem.

7.0.2 Lesson Overview

This lesson is divided into 7 parts; they are:

1. The Stacked LSTM.

2. Damped Sine Wave Prediction Problem.

3. Define and Compile the Model.

4. Fit the Model.

5. Evaluate the Model.

6. Make Predictions With the Model.

7. Complete Example.

Let’s get started.

77

7.1. The Stacked LSTM 78

7.1 The Stacked LSTM

The Stacked LSTM is a model that has multiple hidden LSTM layers where each layer contains
multiple memory cells. We will refer to it as a Stacked LSTM here to differentiate it from the
unstacked LSTM (Vanilla LSTM) and a variety of other extensions to the basic LSTM model.

7.1.1 Why Increase Depth?

Stacking LSTM hidden layers makes the model deeper, more accurately earning the description
as a deep learning technique. It is the depth of neural networks that is generally attributed to
the success of the approach on a wide range of challenging prediction problems.

[the success of deep neural networks] is commonly attributed to the hierarchy that
is introduced due to the several layers. Each layer processes some part of the task
we wish to solve, and passes it on to the next. In this sense, the DNN can be seen
as a processing pipeline, in which each layer solves a part of the task before passing
it on to the next, until finally the last layer provides the output.

— Training and Analyzing Deep Recurrent Neural Networks, 2013

Additional hidden layers can be added to a Multilayer Perceptron neural network to make it
deeper. The additional hidden layers are understood to recombine the learned representation
from prior layers and create new representations at high levels of abstraction. For example,
from lines to shapes to objects.

A sufficiently large single hidden layer Multilayer Perceptron can be used to approximate
most functions. Increasing the depth of the network provides an alternate solution that requires
fewer neurons and trains faster. Ultimately, adding depth it is a type of representational
optimization.

Deep learning is built around a hypothesis that a deep, hierarchical model can be
exponentially more efficient at representing some functions than a shallow one.

— How to Construct Deep Recurrent Neural Networks, 2013

7.1.2 Architecture

The same benefits can be harnessed with LSTMs. Given that LSTMs operate on sequence data,
it means that the addition of layers adds levels of abstraction of input observations over time.
In effect, chunking observations over time or representing the problem at different time scales.

... building a deep RNN by stacking multiple recurrent hidden states on top of each
other. This approach potentially allows the hidden state at each level to operate at
different timescale

— How to Construct Deep Recurrent Neural Networks, 2013

Stacked LSTMs or Deep LSTMs were introduced by Graves, et al. in their application of
LSTMs to speech recognition, beating a benchmark on a challenging standard problem.

7.1. The Stacked LSTM 79

RNNs are inherently deep in time, since their hidden state is a function of all previous
hidden states. The question that inspired this paper was whether RNNs could also
benefit from depth in space; that is from stacking multiple recurrent hidden layers
on top of each other, just as feedforward layers are stacked in conventional deep
networks.

— Speech Recognition With Deep Recurrent Neural Networks, 2013

In the same work, they found that the depth of the network was more important than
the number of memory cells in a given layer to model skill. Stacked LSTMs are now a stable
technique for challenging sequence prediction problems. A Stacked LSTM architecture can be
defined as an LSTM model comprised of multiple LSTM layers. An LSTM layer above provides
a sequence output rather than a single value output to the LSTM layer below. Specifically, one
output per input time step, rather than one output time step for all input time steps.

LSTM

Dense

Input

Output

LSTM

Figure 7.1: Stacked LSTM Architecture.

7.1.3 Implementation

We can easily create Stacked LSTM models in Keras. Each LSTMs memory cell requires a
3D input. When an LSTM processes one input sequence of time steps, each memory cell will
output a single value for the whole sequence as a 2D array. We can demonstrate this below
with a model that has a single hidden LSTM layer that is also the output layer.

Example of one output for whole sequence

from keras.models import Sequential

from keras.layers import LSTM

from numpy import array

7.1. The Stacked LSTM 80

define model where LSTM is also output layer

model = Sequential()

model.add(LSTM(1, input_shape=(3,1)))

model.compile(optimizer='adam', loss='mse')

input time steps

data = array([0.1, 0.2, 0.3]).reshape((1,3,1))

make and show prediction

print(model.predict(data))

Listing 7.1: Example of a single layer LSTM.

The input sequence has 3 values. Running the example outputs a single value for the input
sequence as a 2D array.

[[0.00031043]]

Listing 7.2: Example output from a single layer LSTM model.

To stack LSTM layers, we need to change the configuration of the prior LSTM layer to output
a 3D array as input for the subsequent layer. We can do this by setting the return sequences

argument on the layer to True (defaults to False). This will return one output for each input time
step and provide a 3D array. Below is the same example as above with return sequences=True.

Example of one output for each input time step

from keras.models import Sequential

from keras.layers import LSTM

from numpy import array

define model where LSTM is also output layer

model = Sequential()

model.add(LSTM(1, return_sequences=True, input_shape=(3,1)))

model.compile(optimizer='adam', loss='mse')

input time steps

data = array([0.1, 0.2, 0.3]).reshape((1,3,1))

make and show prediction

print(model.predict(data))

Listing 7.3: Example of an layer LSTM that returns sequences.

Running the example outputs a single value for each time step in the input sequence.

[[[-0.02115841]

[-0.05322712]

[-0.08976141]]]

Listing 7.4: Example output from an LSTM model that returns sequences.

Below is an example of defining a two hidden layer Stacked LSTM:

model = Sequential()

model.add(LSTM(..., return_sequences=True, input_shape=(...)))

model.add(LSTM(...))

model.add(Dense(...))

Listing 7.5: Example of defining a Stacked LSTM with 2 hidden layers.

We can continue to add hidden LSTM layers as long as the prior LSTM layer provides a 3D
output as input for the subsequent layer; for example, below is a Stacked LSTM with 4 hidden
layers.

7.2. Damped Sine Wave Prediction Problem 81

model = Sequential()

model.add(LSTM(..., return_sequences=True, input_shape=(...)))

model.add(LSTM(..., return_sequences=True))

model.add(LSTM(..., return_sequences=True))

model.add(LSTM(...))

model.add(Dense(...))

Listing 7.6: Example of defining a Stacked LSTM with 4 hidden layers.

Next we will define a problem on which we can demonstrate the Stacked LSTM.

7.2 Damped Sine Wave Prediction Problem

This section describes and implements the damped sine wave prediction problem. This section
is divided into the following parts:

1. Sine Wave.

2. Damped Sine Wave.

3. Random Damped Sine Waves.

4. Sequences of Damped Sine Waves.

7.2.1 Sine Wave

A sine wave describes an oscillation over time that has a consistent amplitude (movement from
baseline) and frequency (time steps between minimum and maximum values). Without getting
bogged down in the equation of a sine wave, we can prepare code to create a sine wave as a
sequence and plot it.

from math import sin

from math import pi

from matplotlib import pyplot

create sequence

length = 100

freq = 5

sequence = [sin(2 * pi * freq * (i/length)) for i in range(length)]

plot sequence

pyplot.plot(sequence)

pyplot.show()

Listing 7.7: Example of generating and plotting a sine wave.

Running the example creates a plot of a sine wave.

7.2. Damped Sine Wave Prediction Problem 82

Figure 7.2: Line plot of a generated sine wave.

We can see that the sine wave sequence has the properties that it varies over time with
upward and downward movement. This is good local movement that a Vanilla LSTM can model.
An LSTM could memorize the sequence or it can use the last few time steps to predict the next
time step.

7.2.2 Damped Sine Wave

There is a type of sine wave that decreases with time. The decrease in amplitude provides an
additional longer term movement that may require an additional level of abstraction in the
LSTM to learn. Again, without going into the equation, we can implement this in Python as
follows. The implementation was careful to ensure all values are in the range between 0 and 1.

from math import sin

from math import pi

from math import exp

from matplotlib import pyplot

create sequence

length = 100

period = 10

decay = 0.05

sequence = [0.5 + 0.5 * sin(2 * pi * i / period) * exp(-decay * i) for i in range(length)]

plot sequence

7.2. Damped Sine Wave Prediction Problem 83

pyplot.plot(sequence)

pyplot.show()

Listing 7.8: Example of generating and plotting a damped sine wave.

Running the example shows the sine wave and the dampening effect over time. The period
parameter determines how many time steps before one whole cycle completes and the decay
parameter determines how quickly the series decreases toward zero.

Figure 7.3: Line plot of a generated damped sine wave.

We will use this as a sequence prediction problem to demonstrate Stacked LSTMs.

7.2.3 Random Damped Sine Waves

We can generate sequences of damped sine waves with different periods and decay values,
withhold the last few points of the series, and have the model predict them. First, we can define
a function to generate a damped sine wave called generate sequence().

generate damped sine wave in [0,1]

def generate_sequence(length, period, decay):

return [0.5 + 0.5 * sin(2 * pi * i / period) * exp(-decay * i) for i in range(length)]

Listing 7.9: Function for generating a parameterized damped sine wave.

7.2. Damped Sine Wave Prediction Problem 84

7.2.4 Sequences of Damped Sine Waves

Next, we need a function to generate sequences with a randomly selected period and decay. We
will select a uniformly random period between 10 and 20 using the randint() function and a
uniformly random decay between. 0.01 and 0.1 using the uniform() function.

p = randint(10, 20)

d = uniform(0.01, 0.1)

Listing 7.10: Example of generating random parameters for the damped sign wave.

We will split out the last n time steps of each sequence and use that as the output sequence
to be predicted. We will make this configurable along with the number of sequences to generate
and the length of the sequences. The function below named generate examples() implements
this and returns an array of input and output examples ready for training or evaluating an
LSTM.

generate input and output pairs of damped sine waves

def generate_examples(length, n_patterns, output):

X, y = list(), list()

for _ in range(n_patterns):

p = randint(10, 20)

d = uniform(0.01, 0.1)

sequence = generate_sequence(length + output, p, d)

X.append(sequence[:-output])

y.append(sequence[-output:])

X = array(X).reshape(n_patterns, length, 1)

y = array(y).reshape(n_patterns, output)

return X, y

Listing 7.11: Example of a function for generating random examples of damped sign wave
sequences.

We can test this function by generating a few examples and plotting the sequences.

from math import sin

from math import pi

from math import exp

from random import random

from random import randint

from random import uniform

from numpy import array

from matplotlib import pyplot

generate damped sine wave in [0,1]

def generate_sequence(length, period, decay):

return [0.5 + 0.5 * sin(2 * pi * i / period) * exp(-decay * i) for i in range(length)]

generate input and output pairs of damped sine waves

def generate_examples(length, n_patterns, output):

X, y = list(), list()

for _ in range(n_patterns):

p = randint(10, 20)

d = uniform(0.01, 0.1)

sequence = generate_sequence(length + output, p, d)

X.append(sequence[:-output])

y.append(sequence[-output:])

7.2. Damped Sine Wave Prediction Problem 85

X = array(X).reshape(n_patterns, length, 1)

y = array(y).reshape(n_patterns, output)

return X, y

test problem generation

X, y = generate_examples(20, 5, 5)

for i in range(len(X)):

pyplot.plot([x for x in X[i, :, 0]] + [x for x in y[i]], '-o')

pyplot.show()

Listing 7.12: Example of generating and plotting a multiple random damped sine wave sequences.

Running the example creates 5 damped sine wave sequences each with 20 time steps. An
additional 5 time steps are generated at the end of the sequence that will be held back as test
data. We will scale this to 50 time steps for the actual problem.

Figure 7.4: Line plot of multiple randomly generated damped sine waves, with dots showing
sequence values.

This is a regression type sequence prediction problem. It may also be considered a time
series forecasting regression problem. In time series forecasting, it is good practice to make the
series stationary, that is remove any systematic trends and seasonality from the series before
modeling the problem. This is recommended when working with LSTMs. We are intentionally

7.3. Define and Compile the Model 86

not making the series stationary in this lesson to demonstrate the capability of the Stacked
LSTM.

Technically this is a many-to-one sequence prediction problem. This may be confusing
because we clearly intend to predict a sequence of output time steps. The reason that this is a
many-to-one prediction problem is because the model will not predict the output time steps
piecewise; the whole prediction will be produced at once.

From a model perspective, a sequence of n time steps is fed in, then at the end of the
sequence a single prediction is made; it just so happens that the prediction is a vector of n

features that we will interpret as time steps. We could adapt the model to be many-to-many
with architectural changes to the proposed LSTM. Consider exploring this as an extension.

0.2

0.5

0.3 0.4

0.6

Figure 7.5: Damped sign wave prediction problem framed with a many-to-one prediction model.

Next we can develop a Stacked LSTM model for this problem.

7.3 Define and Compile the Model

We will define a Stacked LSTM with two hidden LSTM layers. Each LSTM layer will have 20
memory cells. The input dimension will be 1 feature with 20 time steps. The output dimension
of the model will be a vector of 5 values that we will interpret to be 5 time steps. The output
layer will use the linear activation function, which is the default used when no function is
specified.

The Mean Absolute Error (mae) loss function will be optimized and the Adam implementation
of the gradient descent optimization algorithm will be used. The code for the model definition
is listed below.

configure problem

length = 50

7.4. Fit the Model 87

output = 5

define model

model = Sequential()

model.add(LSTM(20, return_sequences=True, input_shape=(length, 1)))

model.add(LSTM(20))

model.add(Dense(output))

model.compile(loss='mae', optimizer='adam')

print(model.summary())

Listing 7.13: Define a Stacked LSTM model for the damped sine wave problem.

This model configuration, specifically the use of 2 layers and the use of 20 cells per layer,
was chosen after a little trial and error. The model configuration is competent, but by no means
tuned for this problem. Running just this portion defines and compiles the model, then prints a
summary of the model structure. In the structure, we can confirm the shape of the inputs and
outputs of the model and the use of two hidden LSTM layers.

Layer (type) Output Shape Param #

===

lstm_1 (LSTM) (None, 50, 20) 1760

lstm_2 (LSTM) (None, 20) 3280

dense_1 (Dense) (None, 5) 105

===

Total params: 5,145

Trainable params: 5,145

Non-trainable params: 0

Listing 7.14: Example output defining a Stacked LSTM model.

7.4 Fit the Model

We can now fit the model on a dataset of randomly generated examples of damped sine waves.
The model is expected to generalize a solution to predicting the last few time steps of a damped
sine wave time series. We could generate a small number of examples and fit the model on those
random examples over many epochs. The downside is that model will see the same random
examples many times and may try to memorize them.

Alternately, we could generate a large number of random examples and fit the model on one
epoch of this dataset. It would require more memory, but may offer faster training and a more
generalized solution. This is the approach we will use.

We will generate 10,000 random damped sine wave examples to fit the model and fit the
model using one epoch of this dataset. This is like fitting the model for 10,000 epochs. Ideally,
we would reset the internal state of the model after each sample by setting the batch size to 1.
In this case, we will trade-off purity for training speed and set the batch size to 10. This will
mean that the model weights will be updated and the LSTM memory cell internal state will be
reset after each 10 samples.

7.5. Evaluate the Model 88

fit model

X, y = generate_examples(length, 10000, output)

model.fit(X, y, batch_size=10, epochs=1)

Listing 7.15: Example of fitting the defined Stacked LSTM model.

Training may take a few minutes, and for this reason the progress bar will be shown as the
model is fit. If this causes an issue in your notebook or development environment, you can turn
it off by setting verbose=0 in the call to the fit() function.

10000/10000 [==============================] - 169s - loss: 0.0481

Listing 7.16: Example output from fitting the Stacked LSTM model.

7.5 Evaluate the Model

Once the model is fit, we can evaluate it. Here, we generate a new set of 1,000 random sequences
and report the Mean Absolute Error (MAE).

evaluate model

X, y = generate_examples(length, 1000, output)

loss = model.evaluate(X, y, verbose=0)

print('MAE: %f' % loss)

Listing 7.17: Example of evaluating the fit Stacked LSTM model.

Evaluating the model reports the skill at around 0.02 MAE. The specific skill score may vary
when you run it because of the stochastic nature of neural networks.

MAE: 0.021665

Listing 7.18: Example output from evaluating the Stacked LSTM model.

This is good for comparing models and model configurations by their skill, but it is hard to
get an idea of what is going on.

7.6 Make Predictions with the Model

We can get a better idea of how skillful the model is by generating a standalone prediction
and plotting it against the expected output sequence. We can call the generate examples()

function and generate one example then make a prediction using the fit model. The prediction
and expected sequence are then plotted for comparison.

prediction on new data

X, y = generate_examples(length, 1, output)

yhat = model.predict(X, verbose=0)

pyplot.plot(y[0], label='y')

pyplot.plot(yhat[0], label='yhat')

pyplot.legend()

pyplot.show()

Listing 7.19: Example of making predictions with the fit Stacked LSTM model and plotting the
results.

7.7. Complete Example 89

Generating the plot shows, at least for this run and on this specific example, the prediction
appears to be a reasonable fit for the expected sequence.

Figure 7.6: Line plot of expected values vs predicted values.

7.7 Complete Example

The complete code example is listed below for your reference.

from math import sin

from math import pi

from math import exp

from random import random

from random import randint

from random import uniform

from numpy import array

from matplotlib import pyplot

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

generate damped sine wave in [0,1]

def generate_sequence(length, period, decay):

return [0.5 + 0.5 * sin(2 * pi * i / period) * exp(-decay * i) for i in range(length)]

7.8. Further Reading 90

generate input and output pairs of damped sine waves

def generate_examples(length, n_patterns, output):

X, y = list(), list()

for _ in range(n_patterns):

p = randint(10, 20)

d = uniform(0.01, 0.1)

sequence = generate_sequence(length + output, p, d)

X.append(sequence[:-output])

y.append(sequence[-output:])

X = array(X).reshape(n_patterns, length, 1)

y = array(y).reshape(n_patterns, output)

return X, y

configure problem

length = 50

output = 5

define model

model = Sequential()

model.add(LSTM(20, return_sequences=True, input_shape=(length, 1)))

model.add(LSTM(20))

model.add(Dense(output))

model.compile(loss='mae', optimizer='adam')

print(model.summary())

fit model

X, y = generate_examples(length, 10000, output)

history = model.fit(X, y, batch_size=10, epochs=1)

evaluate model

X, y = generate_examples(length, 1000, output)

loss = model.evaluate(X, y, verbose=0)

print('MAE: %f' % loss)

prediction on new data

X, y = generate_examples(length, 1, output)

yhat = model.predict(X, verbose=0)

pyplot.plot(y[0], label='y')

pyplot.plot(yhat[0], label='yhat')

pyplot.legend()

pyplot.show()

Listing 7.20: Complete working example of the Stacked LSTM model on the damped sign wave
problem.

7.8 Further Reading

This section provides some resources for further reading.

7.9. Extensions 91

7.8.1 Research Papers

� How to Construct Deep Recurrent Neural Networks, 2013.
https://arxiv.org/abs/1312.6026

� Training and Analyzing Deep Recurrent Neural Networks, 2013.

� Speech Recognition With Deep Recurrent Neural Networks, 2013.
https://arxiv.org/abs/1303.5778

� Generating Sequences With Recurrent Neural Networks, 2014.
https://arxiv.org/abs/1308.0850

7.8.2 Articles

� Sine Wave on Wikipedia.
https://en.wikipedia.org/wiki/Sine_wave

� Damped Sine Wave on Wikipedia.
https://en.wikipedia.org/wiki/Damped_sine_wave

7.9 Extensions

Do you want to dive deeper into the Stacked LSTM? This section lists some challenging
extensions to this lesson.

� List 5 examples that you believe might be a good fit for Stacked LSTMs.

� Tune the number of memory cells, batch size, and number of training samples to further
lower the model error (e.g. try 50K samples and a batch size of 1).

� Develop a Vanilla LSTM for the problem and compare the performance of the model.

� Design and execute an experiment to tease out the required increase in training and/or
memory cells with the increased length of the damped sine wave sequences.

� Design a new contrived sequence prediction problem tailored for Stacked LSTM and design
a Stacked LSTM model to address it skillfully.

Post your extensions online and share the link with me; I’d love to see what you come up
with!

7.10 Summary

In this lesson, you discovered how to develop a Stacked LSTM. Specifically, you learned:

� The motivation for creating a multilayer LSTM and how to develop Stacked LSTM models
in Keras.

https://arxiv.org/abs/1312.6026
https://arxiv.org/abs/1303.5778
https://arxiv.org/abs/1308.0850
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Damped_sine_wave

7.10. Summary 92

� The damped sine wave prediction problem and how to prepare examples for fitting LSTM
models.

� How to develop, fit, and evaluate a Stacked LSTM model for the damped sine wave
prediction problem.

In the next lesson, you will discover how to develop and evaluate the CNN LSTM model.

Chapter 8

How to Develop CNN LSTMs

8.0.1 Lesson Goal

The goal of this lesson is to learn how to develop LSTM models that use a Convolutional Neural
Network on the front end. After completing this lesson, you will know:

� About the origin of the CNN LSTM architecture and the types of problems to which it is
suited.

� How to implement the CNN LSTM architecture in Keras.

� How to develop a CNN LSTM for a Moving Square Video Prediction Problem.

8.0.2 Lesson Overview

This lesson is divided into 7 parts; they are:

1. The CNN LSTM.

2. Moving Square Video Prediction Problem.

3. Define and Compile the Model.

4. Fit the Model.

5. Evaluate the Model.

6. Make Predictions With the Model.

7. Complete Example.

Let’s get started.

93

8.1. The CNN LSTM 94

8.1 The CNN LSTM

8.1.1 Architecture

The CNN LSTM architecture involves using Convolutional Neural Network (CNN) layers
for feature extraction on input data combined with LSTMs to support sequence prediction.
CNN LSTMs were developed for visual time series prediction problems and the application of
generating textual descriptions from sequences of images (e.g. videos). Specifically, the problems
of:

� Activity Recognition: generating a textual description of an activity demonstrated in
a sequence of images.

� Image Description: generating a textual description of a single image.

� Video Description: generating a textual description of a sequence of images.

[CNN LSTMs are] a class of models that is both spatially and temporally deep,
and has the flexibility to be applied to a variety of vision tasks involving sequential
inputs and outputs

— Long-term Recurrent Convolutional Networks for Visual Recognition and Description, 2015.

This architecture was originally referred to as a Long-term Recurrent Convolutional Network
or LRCN model, although we will use the more generic name CNN LSTM to refer to LSTMs
that use a CNN as a front end in this lesson. This architecture is used for the task of generating
textual descriptions of images. Key is the use of a CNN that is pre-trained on a challenging
image classification task that is re-purposed as a feature extractor for the caption generating
problem.

... it is natural to use a CNN as an image “encoder”, by first pre-training it for an
image classification task and using the last hidden layer as an input to the RNN
decoder that generates sentences

— Show and Tell: A Neural Image Caption Generator, 2015.

This architecture has also been used on speech recognition and natural language processing
problems where CNNs are used as feature extractors for the LSTMs on audio and textual input
data. This architecture is appropriate for problems that:

� Have spatial structure in their input such as the 2D structure or pixels in an image or the
1D structure of words in a sentence, paragraph, or document.

� Have a temporal structure in their input such as the order of images in a video or words
in text, or require the generation of output with temporal structure such as words in a
textual description.

8.1. The CNN LSTM 95

CNN
Model

Dense

Input

Output

LSTM
Model

Figure 8.1: CNN LSTM Architecture.

8.1.2 Implementation

We can define a CNN LSTM model to be trained jointly in Keras. A CNN LSTM can be
defined by adding CNN layers on the front end followed by LSTM layers with a Dense layer on
the output.

It is helpful to think of this architecture as defining two sub-models: the CNN Model for
feature extraction and the LSTM Model for interpreting the features across time steps. Let’s
take a look at both of these sub models in the context of a sequence of 2D inputs which we will
assume are images.

CNN Model

As a refresher, we can define a 2D convolutional network as comprised of Conv2D and MaxPooling2D

layers ordered into a stack of the required depth. The Conv2D will interpret snapshots of the
image (e.g. small squares) and the polling layers will consolidate or abstract the interpretation.

For example, the snippet below expects to read in 10x10 pixel images with 1 channel (e.g.
black and white). The Conv2D will read the image in 2x2 snapshots and output one new 10x10
interpretation of the image. The MaxPooling2D will pool the interpretation into 2x2 blocks
reducing the output to a 5x5 consolidation. The Flatten layer will take the single 5x5 map
and transform it into a 25-element vector ready for some other layer to deal with, such as a
Dense for outputting a prediction.

cnn = Sequential()

cnn.add(Conv2D(1, (2,2), activation='relu', padding='same', input_shape=(10,10,1)))

cnn.add(MaxPooling2D(pool_size=(2, 2)))

cnn.add(Flatten())

8.1. The CNN LSTM 96

Listing 8.1: Example of the CNN part of the CNN LSTM model.

This makes sense for image classification and other computer vision tasks.

LSTM Model

The CNN model above is only capable of handling a single image, transforming it from input
pixels into an internal matrix or vector representation. We need to repeat this operation across
multiple images and allow the LSTM to build up internal state and update weights using BPTT
across a sequence of the internal vector representations of input images.

The CNN could be fixed in the case of using an existing pre-trained model like VGG for
feature extraction from images. The CNN may not be trained, and we may wish to train it
by backpropagating error from the LSTM across multiple input images to the CNN model. In
both of these cases, conceptually there is a single CNN model and a sequence of LSTM models,
one for each time step. We want to apply the CNN model to each input image and pass on the
output of each input image to the LSTM as a single time step.

We can achieve this by wrapping the entire CNN input model (one layer or more) in a
TimeDistributed layer. This layer achieves the desired outcome of applying the same layer or
layers multiple times. In this case, applying it multiple times to multiple input time steps and
in turn providing a sequence of image interpretations or image features to the LSTM model to
work on.

model.add(TimeDistributed(...))

model.add(LSTM(...))

model.add(Dense(...))

Listing 8.2: Example of the LSTM part of the CNN LSTM model.

We now have the two elements of the model; let’s put them together.

CNN LSTM Model

We can define a CNN LSTM model in Keras by first defining the CNN layer or layers, wrapping
them in a TimeDistributed layer and then defining the LSTM and output layers. We have
two ways to define the model that are equivalent and only differ as a matter of taste. You can
define the CNN model first, then add it to the LSTM model by wrapping the entire sequence of
CNN layers in a TimeDistributed layer, as follows:

define CNN model

cnn = Sequential()

cnn.add(Conv2D(...))

cnn.add(MaxPooling2D(...))

cnn.add(Flatten())

define LSTM model

model = Sequential()

model.add(TimeDistributed(cnn, ...))

model.add(LSTM(..))

model.add(Dense(...))

Listing 8.3: Example of an CNN LSTM model in two parts.

8.2. Moving Square Video Prediction Problem 97

An alternate, and perhaps easier to read, approach is to wrap each layer in the CNN model
in a TimeDistributed layer when adding it to the main model.

model = Sequential()

define CNN model

model.add(TimeDistributed(Conv2D(...))

model.add(TimeDistributed(MaxPooling2D(...)))

model.add(TimeDistributed(Flatten()))

define LSTM model

model.add(LSTM(...))

model.add(Dense(...))

Listing 8.4: Example of an CNN LSTM model in one part.

The benefit of this second approach is that all of the layers appear in the model summary
and as such is preferred for now. You can choose the method that you prefer.

8.2 Moving Square Video Prediction Problem

The moving square video prediction problem is contrived to demonstrate the CNN LSTM. The
problem involves the generation of a sequence of frames. In each image a line is drawn from left
to right or right to left. Each frame shows the extension of the line by one pixel. The task is for
the model to classify whether the line moved left or right in the sequence of frames. Technically,
the problem is a sequence classification problem framed with a many-to-one prediction model.

frame
1

left

frame
2

frame
3

Figure 8.2: Moving square video prediction problem framed with a many-to-one prediction
model.

This test problem can be broken down into the following steps:

1. Image Initialization.

2. Adding Steps.

3. Instance Generator.

8.2. Moving Square Video Prediction Problem 98

8.2.1 Image Initialization

We can start off by defining a 2D NumPy array filled with zero values. We will make the images
symmetrical, and in this case, 10 pixels by 10 pixels.

from numpy import zeros

frame = zeros((10,10))

Listing 8.5: Example of creating an empty square image.

Next, we can select the row for the first step of the line. We will use the randint() function
to select a uniformly random integer between 0 and 9.

from random import randint

step = randint(0, 10-1)

Listing 8.6: Example of selecting a step.

We can now select whether we are drawing the line left or right across the image. We will
use the random() function to decide. If right, we will start at the left, or column 0, and if left
we will start on the right, or column 9.

from random import random

right = 1 if random() < 0.5 else 0

col = 0 if right else size-1

Listing 8.7: Example of deciding to move left or right.

We can now mark the start of the line.

frame[step, col] = 1

Listing 8.8: Example of marking the start of the line.

8.2.2 Adding Steps

Now we need a process to add steps to the line. The next step must be a function of the previous
step. We will constrain it to be in the next column along (left or right) and be in the same row,
the row above or the row below. We will further constrain the movement by the bounds of the
image, e.g. no movements below row zero or above row 9.

We can use the same randint() function above to pick the next step and impose our
movement constraints on the upper and lower values. The step value chosen last time is stored
in the last step variable.

lower = max(0, last_step-1)

upper = min(10-1, last_step+1)

step = randint(lower, upper)

Listing 8.9: Example of selecting the next step.

Next, we can make a copy of the last image and mark the new position for the next column
along.

column = i if right else size-1-i

frame = last_frame.copy()

frame[step, column] = 1

Listing 8.10: Example of marking the step as a new frame.

8.2. Moving Square Video Prediction Problem 99

This process can be repeated until the first or last column is reached, depending on the
chosen direction.

8.2.3 Instance Generator

We can capture all of the above behavior in two small functions. The build frames() function
takes an argument to define the size of the images and returns a sequence of images and whether
the line moves right (1) or left (0). This function calls another function next frame() to create
each subsequent frame after the first frame as the line moves across the image.

To make the problem concrete, we can plot one sequence. We will generate a small sequence
with each image 5x5 pixels and with 5 frames and plot the frames side by side.

from numpy import zeros

from random import randint

from random import random

from matplotlib import pyplot

generate the next frame in the sequence

def next_frame(last_step, last_frame, column):

define the scope of the next step

lower = max(0, last_step-1)

upper = min(last_frame.shape[0]-1, last_step+1)

choose the row index for the next step

step = randint(lower, upper)

copy the prior frame

frame = last_frame.copy()

add the new step

frame[step, column] = 1

return frame, step

generate a sequence of frames of a dot moving across an image

def build_frames(size):

frames = list()

create the first frame

frame = zeros((size,size))

step = randint(0, size-1)

decide if we are heading left or right

right = 1 if random() < 0.5 else 0

col = 0 if right else size-1

frame[step, col] = 1

frames.append(frame)

create all remaining frames

for i in range(1, size):

col = i if right else size-1-i

frame, step = next_frame(step, frame, col)

frames.append(frame)

return frames, right

generate sequence of frames

size = 5

frames, right = build_frames(size)

plot all frames

pyplot.figure()

for i in range(size):

8.2. Moving Square Video Prediction Problem 100

create a gray scale subplot for each frame

pyplot.subplot(1, size, i+1)

pyplot.imshow(frames[i], cmap='Greys')

turn of the scale to make it clearer

ax = pyplot.gca()

ax.get_xaxis().set_visible(False)

ax.get_yaxis().set_visible(False)

show the plot

pyplot.show()

Listing 8.11: Example of generating a sequence of frames.

Running the example generates a random sequence and plots the frames side by side. You
can see that the line wiggles around from left to right across the image, one pixel per time step.

Figure 8.3: Example of a sequence of frames of a line moving across the image.

8.2.4 Prepare Input for Model

Finally, we will prepare a function to generate multiple sequences with the correct shape ready
for fitting and evaluating an LSTM model. A function named generate examples() is defined
below that takes the size of the images to generate and the number of sequences to generate as
arguments.

Each sequence is generated and stored. Importantly, the input sequences for the model must
be resized to be suitable for a 2D CNN. Normally this would be:

[width, height, channels]

Listing 8.12: Example expected input for the 2D CNN model.

In our case, it would be [size, size, 1] for the symmetrical black and white images. This
is not sufficient as we also have multiple images, then multiple sequences of images. Therefore,
the input to the model must be reshaped as:

[samples, timesteps, width, height, channels]

Listing 8.13: Example of the expected input shape for the model.

Or, in our function:

[n_patterns, size, size, size, 1]

Listing 8.14: Example of the expected input shape using terms from the problem definition.

8.3. Define and Compile the Model 101

This new function for generating random videos is listed below.

generate multiple sequences of frames and reshape for network input

def generate_examples(size, n_patterns):

X, y = list(), list()

for _ in range(n_patterns):

frames, right = build_frames(size)

X.append(frames)

y.append(right)

resize as [samples, timesteps, width, height, channels]

X = array(X).reshape(n_patterns, size, size, size, 1)

y = array(y).reshape(n_patterns, 1)

return X, y

Listing 8.15: Example of generating and reshaping a sequence of frames for the model.

Next we can define and compile the model.

8.3 Define and Compile the Model

We can define a CNN LSTM to fit the model. The size of the generated images controls how
challenging the problem will be. We will make the problems modestly challenging by configuring
the images to be 50x50 pixels, or a total of 2,500 binary values.

configure problem

size = 50

Listing 8.16: Example of configuring the problem.

We will define the model wrapping each layer in the CNN model with a separate TimeDistributed
layer. This is to ensure that the model summary provides a clear idea of how the network hangs
together. We will define a Conv2D as an input layer with 2 filters and a 2x2 kernel to pass across
the input images. The use of 2 filters was found with some experimentation and it is convention
to use small kernel sizes. The Conv2D will output 2 49x49 pixel impressions of the input.

Convolutional layers are often immediately followed by a pooling layer. Here we use a
MaxPooling2D pooling layer with a pool size of 2x2, which will in effect halve the size of each
filter output from the previous layer, in turn outputting 2 24x24 maps.

The pooling layer is followed by a Flatten layer to transform the [24,24,2] 3D output
from the MaxPooling2D layer into a one-dimensional 1,152 element vector. The CNN model
is a feature extraction model. The hope is that the vector output of the Flatten layer is a
compressed and/or more salient representation of the image than the raw pixel values.

Next, we can define the LSTM elements of the model. We will use a single LSTM layer with 50
memory cells, configured after a little trial and error. The use of a TimeDistributed wrapper
around the whole CNN model means that the LSTM will see 50 time steps, with each time step
presenting a 1,152 element vector as input.

This is a binary classification problem, so we will use a Dense output with a single
neuron and the sigmoid activation function. The model is compiled to minimize log loss
(binary crossentropy) with the Adam implementation of gradient descent and the binary
classification accuracy will be reported. The complete code listing is provided below.

define the model

model = Sequential()

8.4. Fit the Model 102

model.add(TimeDistributed(Conv2D(2, (2,2), activation='relu'),

input_shape=(None,size,size,1)))

model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2))))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(50))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])

print(model.summary())

Listing 8.17: Example of defining and compiling the CNN LSTM model.

Running this example prints a summary of the compiled model. We can confirm the expected
shape of each layer output.

Layer (type) Output Shape Param #

===

time_distributed_1 (TimeDist (None, None, 49, 49, 2) 10

time_distributed_2 (TimeDist (None, None, 24, 24, 2) 0

time_distributed_3 (TimeDist (None, None, 1152) 0

lstm_1 (LSTM) (None, 50) 240600

dense_1 (Dense) (None, 1) 51

===

Total params: 240,661

Trainable params: 240,661

Non-trainable params: 0

Listing 8.18: Example output from defining the CNN LSTM model.

8.4 Fit the Model

We are now ready to fit the model on randomly generated examples of the problem. The
generate examples() function defined above will prepare a specified number of random se-
quences that we can keep in memory and use to fit the model efficiently. The number of randomly
generated examples is a proxy for the number of training epochs as we would prefer the model
to be trained on unique problem instances rather than the same set of random instances again
and again.

Here we will train the model on a single epoch of 5,000 randomly generated sequences.
Ideally, the internal state of the LSTM would be reset at the end of each sequence. We could
achieve this by setting the batch size to 1. We will trade off the fidelity of the model for
computational efficiency and set the batch size to 32.

fit model

X, y = generate_examples(size, 5000)

model.fit(X, y, batch_size=32, epochs=1)

Listing 8.19: Example of fitting the compiled the CNN LSTM model.

8.5. Evaluate the Model 103

Running the example will show a progress bar when executed on the command line indicating
the loss and accuracy at the end of each batch. If you are running the example in an IDE or
notebook, you can turn off the progress bar by setting verbose=0.

5000/5000 [==============================] - 37s - loss: 0.1507 - acc: 0.9208

Listing 8.20: Example output from fitting the CNN LSTM model.

You could experiment with different numbers of samples, epochs, and batch sizes. Can you
develop a skillful model with less overall training?

8.5 Evaluate the Model

Now that the model is fit, we can estimate the skill of the model on new random sequences.
Here, we can generate 100 new random sequences and evaluate the accuracy of the model.

evaluate model

X, y = generate_examples(size, 100)

loss, acc = model.evaluate(X, y, verbose=0)

print('loss: %f, acc: %f' % (loss, acc*100))

Listing 8.21: Example of evaluating the fit the CNN LSTM model.

Running the example prints both the loss and accuracy of the fit model. Here, we can see
the model achieves 100% accuracy. Your results may vary and if you do not see 100% accuracy,
try running the example a few times.

loss: 0.001120, acc: 100.000000

Listing 8.22: Example output from evaluating the CNN LSTM model.

8.6 Make Predictions With the Model

For completeness, we can use the developed model to make predictions on new sequences. Here
we generate a new single random sequence and predict whether the line is moving left or right.

prediction on new data

X, y = generate_examples(size, 1)

yhat = model.predict_classes(X, verbose=0)

expected = "Right" if y[0]==1 else "Left"

predicted = "Right" if yhat[0]==1 else "Left"

print('Expected: %s, Predicted: %s' % (expected, predicted))

Listing 8.23: Example of making predictions with the fit the CNN LSTM model.

Running the example prints the decoded expected and predicted values.

Expected: Right, Predicted: Right

Listing 8.24: Example output from making predictions with the fit CNN LSTM model.

8.7. Complete Example 104

8.7 Complete Example

For completeness, the full code listing is provided below for your reference.

from random import random

from random import randint

from numpy import array

from numpy import zeros

from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import LSTM

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import TimeDistributed

generate the next frame in the sequence

def next_frame(last_step, last_frame, column):

define the scope of the next step

lower = max(0, last_step-1)

upper = min(last_frame.shape[0]-1, last_step+1)

choose the row index for the next step

step = randint(lower, upper)

copy the prior frame

frame = last_frame.copy()

add the new step

frame[step, column] = 1

return frame, step

generate a sequence of frames of a dot moving across an image

def build_frames(size):

frames = list()

create the first frame

frame = zeros((size,size))

step = randint(0, size-1)

decide if we are heading left or right

right = 1 if random() < 0.5 else 0

col = 0 if right else size-1

frame[step, col] = 1

frames.append(frame)

create all remaining frames

for i in range(1, size):

col = i if right else size-1-i

frame, step = next_frame(step, frame, col)

frames.append(frame)

return frames, right

generate multiple sequences of frames and reshape for network input

def generate_examples(size, n_patterns):

X, y = list(), list()

for _ in range(n_patterns):

frames, right = build_frames(size)

X.append(frames)

y.append(right)

resize as [samples, timesteps, width, height, channels]

X = array(X).reshape(n_patterns, size, size, size, 1)

8.8. Further Reading 105

y = array(y).reshape(n_patterns, 1)

return X, y

configure problem

size = 50

define the model

model = Sequential()

model.add(TimeDistributed(Conv2D(2, (2,2), activation='relu'),

input_shape=(None,size,size,1)))

model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2))))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(50))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])

print(model.summary())

fit model

X, y = generate_examples(size, 5000)

model.fit(X, y, batch_size=32, epochs=1)

evaluate model

X, y = generate_examples(size, 100)

loss, acc = model.evaluate(X, y, verbose=0)

print('loss: %f, acc: %f' % (loss, acc*100))

prediction on new data

X, y = generate_examples(size, 1)

yhat = model.predict_classes(X, verbose=0)

expected = "Right" if y[0]==1 else "Left"

predicted = "Right" if yhat[0]==1 else "Left"

print('Expected: %s, Predicted: %s' % (expected, predicted))

Listing 8.25: Complete examples of the CNN LSTM model on the Moving Square prediction
problem.

8.8 Further Reading

This section provides some resources for further reading.

8.8.1 Papers on CNN LSTM

� Long-term Recurrent Convolutional Networks for Visual Recognition and Description,
2015.
https://arxiv.org/abs/1411.4389

� Show and Tell: A Neural Image Caption Generator, 2015.
https://arxiv.org/abs/1411.4555

� Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks, 2015.

� Character-Aware Neural Language Models, 2015.
https://arxiv.org/abs/1508.06615

https://arxiv.org/abs/1411.4389
https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1508.06615

8.9. Extensions 106

� Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting,
2015.
https://arxiv.org/abs/1506.04214

8.8.2 Keras API

� Conv2D Keras API.
https://keras.io/layers/convolutional/#conv2d

� MaxPooling2D Keras API.
https://keras.io/layers/pooling/#maxpooling2d

� Flatten Keras API.
https://keras.io/layers/core/#flatten

� TimeDistributed Keras API.
https://keras.io/layers/wrappers/#timedistributed

8.9 Extensions

Do you want to dive deeper into the CNN LSTM? This section lists some challenging extensions
to this lesson.

� List 5 computer vision and 5 natural language processing problems where the CNN LSTM
model could be applied.

� Tune the number of CNN layers and number of filters and memory cells in layers to see if
you can devise a simpler model that is as skillful.

� Update the problem to support traces that move up-down as well as left-right, then tune
the model on the new problem.

� Update the problem so that the model only observes a subset of all frames in the sequence
and tune the model accordingly.

� Design and execute an experiment that contrasts the CNN LSTM vs the Vanilla LSTM
on the contrived problem.

Post your extensions online and share the link with me. I’d love to see what you come up
with!

8.10 Summary

In this lesson, you discovered how to develop a CNN LSTM model. Specifically, you learned:

� About the origin of the CNN LSTM architecture and the types of problems to which it is
suited.

� How to implement the CNN LSTM architecture in Keras.

https://arxiv.org/abs/1506.04214
https://keras.io/layers/convolutional/#conv2d
https://keras.io/layers/pooling/#maxpooling2d
https://keras.io/layers/core/#flatten
https://keras.io/layers/wrappers/#timedistributed

8.10. Summary 107

� How to develop a CNN LSTM for a Moving Square Video Prediction Problem.

In the next lesson, you will discover how to develop and evaluate the Encoder-Decoder
LSTM model.

Chapter 9

How to Develop Encoder-Decoder
LSTMs

9.0.1 Lesson Goal

The goal of this lesson is to learn how to develop encoder-decoder LSTM models. After
completing this lesson, you will know:

� The Encoder-Decoder LSTM architecture and how to implement it in Keras.

� The addition sequence-to-sequence prediction problem.

� How to develop an Encoder-Decoder LSTM for the addition sequence-to-sequence predic-
tion problem.

9.1 Lesson Overview

This lesson is divided into 7 parts; they are:

1. The Encoder-Decoder LSTM.

2. Addition Prediction Problem.

3. Define and Compile the Model.

4. Fit the Model.

5. Evaluate the Model.

6. Make Predictions With the Model.

7. Complete Example.

Let’s get started.

108

9.2. The Encoder-Decoder LSTM 109

9.2 The Encoder-Decoder LSTM

9.2.1 Sequence-to-Sequence Prediction Problems

Sequence prediction often involves forecasting the next value in a real valued sequence or
outputting a class label for an input sequence. This is often framed as a sequence of one input
time step to one output time step (e.g. one-to-one) or multiple input time steps to one output
time step (many-to-one) type sequence prediction problem.

There is a more challenging type of sequence prediction problem that takes a sequence as
input and requires a sequence prediction as output. These are called sequence-to-sequence
prediction problems, or seq2seq for short. One modeling concern that makes these problems
challenging is that the length of the input and output sequences may vary. Given that there are
multiple input time steps and multiple output time steps, this form of problem is referred to as
many-to-many type sequence prediction problem.

9.2.2 Architecture

One approach to seq2seq prediction problems that has proven very effective is called the Encoder-
Decoder LSTM. This architecture is comprised of two models: one for reading the input sequence
and encoding it into a fixed-length vector, and a second for decoding the fixed-length vector
and outputting the predicted sequence. The use of the models in concert gives the architecture
its name of Encoder-Decoder LSTM designed specifically for seq2seq problems.

... RNN Encoder-Decoder, consists of two recurrent neural networks (RNN) that
act as an encoder and a decoder pair. The encoder maps a variable-length source
sequence to a fixed-length vector, and the decoder maps the vector representation
back to a variable-length target sequence.

— Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation, 2014.

The Encoder-Decoder LSTM was developed for natural language processing problems where
it demonstrated state-of-the-art performance, specifically in the area of text translation called
statistical machine translation. The innovation of this architecture is the use of a fixed-sized
internal representation in the heart of the model that input sequences are read to and output
sequences are read from. For this reason, the method may be referred to as sequence embedding.

In one of the first applications of the architecture to English-to-French translation, the
internal representation of the encoded English phrases was visualized. The plots revealed a
qualitatively meaningful learned structure of the phrases harnessed for the translation task.

The proposed RNN Encoder-Decoder naturally generates a continuous-space rep-
resentation of a phrase. [...] From the visualization, it is clear that the RNN
Encoder-Decoder captures both semantic and syntactic structures of the phrases

— Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation, 2014.

On the task of translation, the model was found to be more effective when the input sequence
was reversed. Further, the model was shown to be effective even on very long input sequences.

9.2. The Encoder-Decoder LSTM 110

We were able to do well on long sentences because we reversed the order of words in
the source sentence but not the target sentences in the training and test set. By
doing so, we introduced many short term dependencies that made the optimization
problem much simpler. ... The simple trick of reversing the words in the source
sentence is one of the key technical contributions of this work

— Sequence to Sequence Learning with Neural Networks, 2014.

This approach has also been used with image inputs where a Convolutional Neural Network
is used as a feature extractor on input images, which is then read by a decoder LSTM.

... we propose to follow this elegant recipe, replacing the encoder RNN by a deep
convolution neural network (CNN). [...] it is natural to use a CNN as an image
“encoder”, by first pre-training it for an image classification task and using the last
hidden layer as an input to the RNN decoder that generates sentences

— Show and Tell: A Neural Image Caption Generator, 2014.

Encoder
Model

Dense

Input

Output

Decoder
Model

Figure 9.1: Encoder-decoder LSTM Architecture.

9.2.3 Applications

The list below highlights some interesting applications of the Encoder-Decoder LSTM architec-
ture.

� Machine Translation, e.g. English to French translation of phrases.

9.2. The Encoder-Decoder LSTM 111

� Learning to Execute, e.g. calculate the outcome of small programs.

� Image Captioning, e.g. generating a text description for images.

� Conversational Modeling, e.g. generating answers to textual questions.

� Movement Classification, e.g. generating a sequence of commands from a sequence of
gestures.

9.2.4 Implementation

The Encoder-Decoder LSTM can be implemented directly in Keras. We can think of the model
as being comprised of two key parts: the encoder and the decoder. First, the input sequence is
shown to the network one encoded character at a time. We need an encoding level to learn the
relationship between the steps in the input sequence and develop an internal representation of
these relationships.

One or more LSTM layers can be used to implement the encoder model. The output of this
model is a fixed-size vector that represents the internal representation of the input sequence.
The number of memory cells in this layer defines the length of this fixed-sized vector.

model = Sequential()

model.add(LSTM(..., input_shape=(...)))

Listing 9.1: Example of a Vanilla LSTM model.

The decoder must transform the learned internal representation of the input sequence into
the correct output sequence. One or more LSTM layers can also be used to implement the
decoder model. This model reads from the fixed sized output from the encoder model. As with
the Vanilla LSTM, a Dense layer is used as the output for the network. The same weights can
be used to output each time step in the output sequence by wrapping the Dense layer in a
TimeDistributed wrapper.

model.add(LSTM(..., return_sequences=True))

model.add(TimeDistributed(Dense(...)))

Listing 9.2: Example of a LSTM model with TimeDistributed wrapped Dense layer.

There’s a problem though. We must connect the encoder to the decoder, and they do not fit.
That is, the encoder will produce a 2-dimensional matrix of outputs, where the length is defined
by the number of memory cells in the layer. The decoder is an LSTM layer that expects a 3D
input of [samples, time steps, features] in order to produce a decoded sequence of some different
length defined by the problem.

If you try to force these pieces together, you get an error indicating that the output of the
decoder is 2D and 3D input to the decoder is required. We can solve this using a RepeatVector

layer. This layer simply repeats the provided 2D input multiple times to create a 3D output.
The RepeatVector layer can be used like an adapter to fit the encoder and decoder parts of

the network together. We can configure the RepeatVector to repeat the fixed length vector
one time for each time step in the output sequence.

model.add(RepeatVector(...))

Listing 9.3: Example of a RepeatVector layer.

9.3. Addition Prediction Problem 112

Putting this together, we have:

model = Sequential()

model.add(LSTM(..., input_shape=(...)))

model.add(RepeatVector(...))

model.add(LSTM(..., return_sequences=True))

model.add(TimeDistributed(Dense(...)))

Listing 9.4: Example of an Encoder-Decoder model.

To summarize, the RepeatVector is used as an adapter to fit the fixed-sized 2D output of the
encoder to the differing length and 3D input expected by the decoder. The TimeDistributed

wrapper allows the same output layer to be reused for each element in the output sequence.

9.3 Addition Prediction Problem

The addition problem is a sequence-to-sequence, or seq2seq, prediction problem. It was used
by Wojciech Zaremba and Ilya Sutskever in their 2014 paper exploring the capabilities of the
Encoder-Decoder LSTM titled “Learning to Execute” where the architecture was demonstrated
learning to calculate the output of small programs.

The problem is defined as calculating the sum output of two input numbers. This is
challenging as each digit and mathematical symbol is provided as a character and the expected
output is also expected as characters. For example, the input 10+6 with the output 16 would
be represented by the sequences:

Input: ['1', '0', '+', '6']

Output: ['1', '6']

Listing 9.5: Example of input and output sequences for the addition problem.

The model must learn not only the integer nature of the characters, but also the nature
of the mathematical operation to perform. Notice how sequence is now important, and that
randomly shuffling the input will create a nonsense sequence that could not be related to the
output sequence. Also notice how the number of digits could vary in both the input and output
sequences. Technically this makes the addition prediction problem a sequence-to-sequence
problem that requires a many-to-many model to address.

9.3. Addition Prediction Problem 113

‘1’

‘6’

‘0’

‘1’

‘+’ ‘6’

Figure 9.2: Addition prediction problem framed with a many-to-many prediction model.

We can keep things simple with addition of two numbers, but we can see how this may be
scaled to a variable number of terms and mathematical operations that could be given as input
for the model to learn and generalize. This problem can be implemented in Python. We will
divide this into the following steps:

1. Generate Sum Pairs.

2. Integers to Padded Strings.

3. Integer Encoded Sequences.

4. One Hot Encoded Sequences.

5. Sequence Generation Pipeline.

6. Decode Sequences.

9.3.1 Generate Sum Pairs

The first step is to generate sequences of random integers and their sum. We can put this in a
function named random sum pairs(), as follows.

from random import seed

from random import randint

generate lists of random integers and their sum

def random_sum_pairs(n_examples, n_numbers, largest):

X, y = list(), list()

for i in range(n_examples):

in_pattern = [randint(1,largest) for _ in range(n_numbers)]

out_pattern = sum(in_pattern)

X.append(in_pattern)

y.append(out_pattern)

return X, y

9.3. Addition Prediction Problem 114

seed(1)

n_samples = 1

n_numbers = 2

largest = 10

generate pairs

X, y = random_sum_pairs(n_samples, n_numbers, largest)

print(X, y)

Listing 9.6: Example of generating random a sequence pair.

Running just this function prints a single example of adding two random integers between 1
and 10.

[[3, 10]] [13]

Listing 9.7: Example of output of generating a random sequence pair.

9.3.2 Integers to Padded Strings

The next step is to convert the integers to strings. The input string will have the format ‘10+10’
and the output string will have the format ‘20’. Key to this function is the padding of numbers
to ensure that each input and output sequence has the same number of characters. A padding
character should be different from the data so the model can learn to ignore them. In this
case, we use the space character for padding(‘ ’) and pad the string on the left, keeping the
information on the far right.

There are other ways to pad, such as padding each term individually. Try it and see if it
results in better performance. Padding requires we know how long the longest sequence may be.
We can calculate this easily by taking the log10() of the largest integer we can generate and the
ceiling of that number to get an idea of how many chars are needed for each number. We add 1
to the largest number to ensure we expect 3 chars instead of 2 chars for the case of a round
largest number, like 200 and take the ceiling of the result (e.g. ceil(log10(largest+1))). We
then need to add the right number of plus symbols (e.g. n numbers - 1).

max_length = int(n_numbers * ceil(log10(largest+1)) + n_numbers - 1)

Listing 9.8: Example of calculating the maximum length of input sequences.

We can make this concrete with a worked example where the total number of terms
(n numbers) is 3 and the largest value (largest) is 10.

max_length = n_numbers * ceil(log10(largest+1)) + n_numbers - 1

max_length = 3 * ceil(log10(10+1)) + 3 - 1

max_length = 3 * ceil(1.0413926851582251) + 3 - 1

max_length = 3 * 2 + 3 - 1

max_length = 6 + 3 - 1

max_length = 8

Listing 9.9: Worked example of maximum input sequence length.

Intuitively, we would expect 2 spaces for each term (e.g. [‘1’,‘0’]) multiplied by 3 terms,
or a maximum length of input sequences of 6 spaces with two more spaces for the addition
symbols (e.g. [‘1’,‘0’,‘+’,‘1’,‘0’,‘+’,‘1’,‘0’]) making the largest possible sequence 8
characters in length. This is what we see in the worked example.

A similar process is repeated on the output sequence, without the plus symbols, of course.

9.3. Addition Prediction Problem 115

max_length = int(ceil(log10(n_numbers * (largest+1))))

Listing 9.10: Example of calculating the length of output sequences.

Again, we can make this concrete by calculating the expected maximum output sequence
length for the above example with the total number of terms (n numbers) is 3 and the largest
value (largest) is 10.

max_length = ceil(log10(n_numbers * (largest+1)))

max_length = ceil(log10(3 * (10+1)))

max_length = ceil(log10(33))

max_length = ceil(1.5185139398778875)

max_length = 2

Listing 9.11: Worked example of maximum output sequence length.

Again, intuitively, we would expect the largest possible addition to be 10+10+10 or the
value of 30. This would require a maximum length of 2, and this is what we see in the worked
example. The example below adds the to string() function and demonstrates its usage with a
single input/output pair.

from random import seed

from random import randint

from math import ceil

from math import log10

generate lists of random integers and their sum

def random_sum_pairs(n_examples, n_numbers, largest):

X, y = list(), list()

for i in range(n_examples):

in_pattern = [randint(1,largest) for _ in range(n_numbers)]

out_pattern = sum(in_pattern)

X.append(in_pattern)

y.append(out_pattern)

return X, y

convert data to strings

def to_string(X, y, n_numbers, largest):

max_length = int(n_numbers * ceil(log10(largest+1)) + n_numbers - 1)

Xstr = list()

for pattern in X:

strp = '+'.join([str(n) for n in pattern])

strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp

Xstr.append(strp)

max_length = int(ceil(log10(n_numbers * (largest+1))))

ystr = list()

for pattern in y:

strp = str(pattern)

strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp

ystr.append(strp)

return Xstr, ystr

seed(1)

n_samples = 1

n_numbers = 2

largest = 10

9.3. Addition Prediction Problem 116

generate pairs

X, y = random_sum_pairs(n_samples, n_numbers, largest)

print(X, y)

convert to strings

X, y = to_string(X, y, n_numbers, largest)

print(X, y)

Listing 9.12: Example of converting a sequence pair to padded characters.

Running this example first prints the integer sequence and the padded string representation
of the same sequence.

[[3, 10]] [13]

[' 3+10'] ['13']

Listing 9.13: Example of output of converting a sequence pair to padded characters.

9.3.3 Integer Encoded Sequences

Next, we need to encode each character in the string as an integer value. We have to work with
numbers in neural networks after all, not characters. Integer encoding transforms the problem
into a classification problem where the output sequence may be considered class outputs with
11 possible values each. This just so happens to be integers with some ordinal relationship (the
first 10 class values). To perform this encoding, we must define the full alphabet of symbols
that may appear in the string encoding, as follows:

alphabet = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', ' ']

Listing 9.14: Example of defining a character alphabet.

Integer encoding then becomes a simple process of building a lookup table of character-to-
integer offset and converting each char of each string, one by one. The example below provides
the integer encode() function for integer encoding and demonstrates how to use it.

from random import seed

from random import randint

from math import ceil

from math import log10

generate lists of random integers and their sum

def random_sum_pairs(n_examples, n_numbers, largest):

X, y = list(), list()

for i in range(n_examples):

in_pattern = [randint(1,largest) for _ in range(n_numbers)]

out_pattern = sum(in_pattern)

X.append(in_pattern)

y.append(out_pattern)

return X, y

convert data to strings

def to_string(X, y, n_numbers, largest):

max_length = int(n_numbers * ceil(log10(largest+1)) + n_numbers - 1)

Xstr = list()

for pattern in X:

strp = '+'.join([str(n) for n in pattern])

9.3. Addition Prediction Problem 117

strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp

Xstr.append(strp)

max_length = int(ceil(log10(n_numbers * (largest+1))))

ystr = list()

for pattern in y:

strp = str(pattern)

strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp

ystr.append(strp)

return Xstr, ystr

integer encode strings

def integer_encode(X, y, alphabet):

char_to_int = dict((c, i) for i, c in enumerate(alphabet))

Xenc = list()

for pattern in X:

integer_encoded = [char_to_int[char] for char in pattern]

Xenc.append(integer_encoded)

yenc = list()

for pattern in y:

integer_encoded = [char_to_int[char] for char in pattern]

yenc.append(integer_encoded)

return Xenc, yenc

seed(1)

n_samples = 1

n_numbers = 2

largest = 10

generate pairs

X, y = random_sum_pairs(n_samples, n_numbers, largest)

print(X, y)

convert to strings

X, y = to_string(X, y, n_numbers, largest)

print(X, y)

integer encode

alphabet = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', ' ']

X, y = integer_encode(X, y, alphabet)

print(X, y)

Listing 9.15: Example of integer encoding padded sequences.

Running the example prints the integer encoded version of each string encoded pattern. We
can see that the space character (‘ ’) was encoded with 11 and the three character (‘3’) was
encoded as 3, and so on.

[[3, 10]] [13]

[' 3+10'] ['13']

[[11, 3, 10, 1, 0]] [[1, 3]]

Listing 9.16: Example output from integer encoding input and output sequences.

9.3.4 One Hot Encoded Sequences

The next step is to binary encode the integer encoding sequences. This involves converting each
integer to a binary vector with the same length as the alphabet and marking the specific integer
with a 1. For example, a 0 integer represents the ‘0’ character and would be encoded as a

9.3. Addition Prediction Problem 118

binary vector with a 1 in the 0th position of an 11 element vector: [1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0]. The example below defines the one hot encode() function for binary encoding
and demonstrates how to use it.

from random import seed

from random import randint

from math import ceil

from math import log10

generate lists of random integers and their sum

def random_sum_pairs(n_examples, n_numbers, largest):

X, y = list(), list()

for i in range(n_examples):

in_pattern = [randint(1,largest) for _ in range(n_numbers)]

out_pattern = sum(in_pattern)

X.append(in_pattern)

y.append(out_pattern)

return X, y

convert data to strings

def to_string(X, y, n_numbers, largest):

max_length = int(n_numbers * ceil(log10(largest+1)) + n_numbers - 1)

Xstr = list()

for pattern in X:

strp = '+'.join([str(n) for n in pattern])

strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp

Xstr.append(strp)

max_length = int(ceil(log10(n_numbers * (largest+1))))

ystr = list()

for pattern in y:

strp = str(pattern)

strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp

ystr.append(strp)

return Xstr, ystr

integer encode strings

def integer_encode(X, y, alphabet):

char_to_int = dict((c, i) for i, c in enumerate(alphabet))

Xenc = list()

for pattern in X:

integer_encoded = [char_to_int[char] for char in pattern]

Xenc.append(integer_encoded)

yenc = list()

for pattern in y:

integer_encoded = [char_to_int[char] for char in pattern]

yenc.append(integer_encoded)

return Xenc, yenc

one hot encode

def one_hot_encode(X, y, max_int):

Xenc = list()

for seq in X:

pattern = list()

for index in seq:

vector = [0 for _ in range(max_int)]

vector[index] = 1

9.3. Addition Prediction Problem 119

pattern.append(vector)

Xenc.append(pattern)

yenc = list()

for seq in y:

pattern = list()

for index in seq:

vector = [0 for _ in range(max_int)]

vector[index] = 1

pattern.append(vector)

yenc.append(pattern)

return Xenc, yenc

seed(1)

n_samples = 1

n_numbers = 2

largest = 10

generate pairs

X, y = random_sum_pairs(n_samples, n_numbers, largest)

print(X, y)

convert to strings

X, y = to_string(X, y, n_numbers, largest)

print(X, y)

integer encode

alphabet = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', ' ']

X, y = integer_encode(X, y, alphabet)

print(X, y)

one hot encode

X, y = one_hot_encode(X, y, len(alphabet))

print(X, y)

Listing 9.17: Example of one hot encoding an integer encoded sequences.

Running the example prints the binary encoded sequence for each integer encoding. I’ve
added some new lines to make the input and output binary encodings clearer. You can see that a
single sum pattern becomes a sequence of 5 binary encoded vectors, each with 11 elements. The
output, or sum, becomes a sequence of 2 binary encoded vectors, again each with 11 elements.

[[3, 10]] [13]

[' 3+10'] ['13']

[[11, 3, 10, 1, 0]] [[1, 3]]

[[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]]

[[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]]]

Listing 9.18: Example output from one hot encoding an integer encoded sequences.

9.3.5 Sequence Generation Pipeline

We can tie all of these steps together into a function called generate data(), listed below.
Given a designed number of samples, number of terms, the largest value of each term, and the
alphabet of possible characters, the function will generate a set of input and output sequences.

9.4. Define and Compile the Model 120

generate an encoded dataset

def generate_data(n_samples, n_numbers, largest, alphabet):

generate pairs

X, y = random_sum_pairs(n_samples, n_numbers, largest)

convert to strings

X, y = to_string(X, y, n_numbers, largest)

integer encode

X, y = integer_encode(X, y, alphabet)

one hot encode

X, y = one_hot_encode(X, y, len(alphabet))

return as NumPy arrays

X, y = array(X), array(y)

return X, y

Listing 9.19: Function for generating a sequence, encoding and reshaping it for an LSTM model.

9.3.6 Decode Sequences

Finally, we need to invert the encoding to convert the output vectors back into numbers so
we can compare expected output integers to predicted integers. The invert() function below
performs this operation. Key is first converting the binary encoding back into an integer using
the argmax() function, then converting the integer back into a character using a reverse mapping
of the integers to chars from the alphabet.

invert encoding

def invert(seq, alphabet):

int_to_char = dict((i, c) for i, c in enumerate(alphabet))

strings = list()

for pattern in seq:

string = int_to_char[argmax(pattern)]

strings.append(string)

return ''.join(strings)

Listing 9.20: Function for deciding an encoded input or output sequence.

We now have everything we need to prepare data for this example.

9.4 Define and Compile the Model

The first step is to define the specifications of the sequence prediction problem. We must
specify 3 parameters as input to the generate data() function (above) for generating samples
of input-output sequences:

� n terms: The number of terms in the equation, (e.g. 2 for 10+10).

� largest: The largest numerical value for each term (e.g. 10 for values between 1-10).

� alphabet: The symbols used to encode the input and output sequences (e.g. 0-9, + and ‘

’)

9.4. Define and Compile the Model 121

We will use a configuration of the problem that has a modest complexity. Each instance will
be comprised of 3 terms with the maximum value of 10 per term. The alphabet remains fixed
regardless of configuration with the values 0-9, ‘+’, and ‘ ’.

number of math terms

n_terms = 3

largest value for any single input digit

largest = 10

scope of possible symbols for each input or output time step

alphabet = [str(x) for x in range(10)] + ['+', ' ']

Listing 9.21: Example of configuring the problem instance.

The network needs three configuration values defined by the specification of the addition
problem:

� n chars: The size of the alphabet for a single time step (e.g. 12 for 0-9, ‘+’ and ‘ ’).

� n in seq length: The number of time steps of encoded input sequences (e.g. 8 for
‘10+10+10’).

� n out seq length: The number of time steps of an encoded output sequence (e.g. 2 for
‘30’)

The n chars variable is used to define the number of features in the input layer and the
number of features in the output layer for each input and output time step. The n in seq length

variable is used to define the number of time steps for the input layer of the network. The
n out seq length variable is used to define the number of times to repeat the encoded input in
the RepeatVector that in turn defines the length of the sequence fed to the decoder for creating
the output sequence. The definition of n in seq length and n out seq length uses the same
code from the to string() function used to map the integer sequence to strings.

size of alphabet: (12 for 0-9, + and ' ')

n_chars = len(alphabet)

length of encoded input sequence (8 for '10+10+10)

n_in_seq_length = int(n_terms * ceil(log10(largest+1)) + n_terms - 1)

length of encoded output sequence (2 for '30')

n_out_seq_length = int(ceil(log10(n_terms * (largest+1))))

Listing 9.22: Example of defining network configuration based on the problem instance.

We are now ready to define the Encoder-Decoder LSTM. We will use a single LSTM layer for
the encoder and another single layer for the decoder. The encoder is defined with 75 memory
cells and the decoder with 50 memory cells. The number of memory cells was found with a little
trial and error. The asymmetry in layer sizes in the encoder and decoder seems like a natural
organization given that input sequences are relatively longer than output sequences.

The output layer uses the categorical log loss for the 12 possible classes that may be predicted.
The efficient Adam implementation of gradient descent is used and accuracy will be calculated
during training and model evaluation.

define LSTM

model = Sequential()

model.add(LSTM(75, input_shape=(n_in_seq_length, n_chars)))

model.add(RepeatVector(n_out_seq_length))

9.5. Fit the Model 122

model.add(LSTM(50, return_sequences=True))

model.add(TimeDistributed(Dense(n_chars, activation='softmax')))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

print(model.summary())

Listing 9.23: Example of defining and compiling the Encoder-Decoder LSTM.

Running the example prints a summary of the network structure. We can see that the
Encoder will output a fixed size vector with the length of 75 for a given input sequence. This
sequence is repeated 2 times to provide a sequence of 2 time steps of 75 features to the decoder.
The decoder outputs two time steps of 50 features to the Dense output layer that processes
these one at a time via the TimeDistributed wrapper to output one encoded character at a
time.

Layer (type) Output Shape Param #

===

lstm_1 (LSTM) (None, 75) 26400

repeat_vector_1 (RepeatVecto (None, 2, 75) 0

lstm_2 (LSTM) (None, 2, 50) 25200

time_distributed_1 (TimeDist (None, 2, 12) 612

===

Total params: 52,212

Trainable params: 52,212

Non-trainable params: 0

Listing 9.24: Example output from defining and compiling the Encoder-Decoder LSTM.

9.5 Fit the Model

The model is fit on a single epoch of 75,000 randomly generated instances of input-output pairs.
The number of sequences is a proxy for the number of training epochs. The total of 75,000
and a batch size of 32 were found with a little trial and error and are by no means an optimal
configuration.

fit LSTM

X, y = generate_data(75000, n_terms, largest, alphabet)

model.fit(X, y, epochs=1, batch_size=32)

Listing 9.25: Example of fitting the defined Encoder-Decoder LSTM.

Fitting the model provides a progress bar that shows the loss and accuracy of the model at
the end of each batch. The model does not take long to fit on the CPU. If the progress bar
interferes with your development environment, you can turn it off by setting verbose=0 in the
call to the fit() function.

75000/75000 [==============================] - 37s - loss: 0.6982 - acc: 0.7943

Listing 9.26: Example output from fitting the defined Encoder-Decoder LSTM.

9.6. Evaluate the Model 123

9.6 Evaluate the Model

We can evaluate the model by generating predictions on 100 different randomly generated
input-output pairs. The result will give an estimate of the model skill on randomly generated
examples in general.

evaluate LSTM

X, y = generate_data(100, n_terms, largest, alphabet)

loss, acc = model.evaluate(X, y, verbose=0)

print('Loss: %f, Accuracy: %f' % (loss, acc*100))

Listing 9.27: Example of evaluating the fit Encoder-Decoder LSTM.

Running the example prints both the log loss and accuracy of the model. Your specific
values may differ because of the stochastic nature of neural networks, but the model accuracy
should be in the high 90s.

Loss: 0.128379, Accuracy: 100.000000

Listing 9.28: Example output from evaluating the fit Encoder-Decoder LSTM.

9.7 Make Predictions with the Model

We can make predictions using the fit model. We will demonstrate making one prediction at
a time and provide a summary of the decoded input, expected output, and predicted output.
Printing the decoded output gives us a more concrete connection to the problem and model
performance. Here, we generate 10 new random input-output sequence pairs, make a prediction
using the fit model for each, decode all the sequences involved, and print them to the screen.

predict

for _ in range(10):

generate an input-output pair

X, y = generate_data(1, n_terms, largest, alphabet)

make prediction

yhat = model.predict(X, verbose=0)

decode input, expected and predicted

in_seq = invert(X[0], alphabet)

out_seq = invert(y[0], alphabet)

predicted = invert(yhat[0], alphabet)

print('%s = %s (expect %s)' % (in_seq, predicted, out_seq))

Listing 9.29: Example of making predictions with the fit Encoder-Decoder LSTM.

Running the example shows that the model gets most of the sequences correct. The specific
sequences you generate and the skill of the model on just ten examples will vary. Try running
the prediction piece a few times to get a good feel for the model behavior.

9+10+9 = 27 (expect 28)

9+6+9 = 24 (expect 24)

8+9+10 = 27 (expect 27)

9+9+10 = 28 (expect 28)

2+4+5 = 11 (expect 11)

2+9+7 = 18 (expect 18)

7+3+2 = 12 (expect 12)

9.8. Complete Example 124

4+1+4 = 9 (expect 9)

8+6+7 = 21 (expect 21)

5+2+7 = 14 (expect 14)

Listing 9.30: Example output from making predictions with the fit Encoder-Decoder LSTM.

9.8 Complete Example

For completeness, the full code listing is provided below for your reference.

from random import seed

from random import randint

from numpy import array

from math import ceil

from math import log10

from math import sqrt

from numpy import argmax

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import TimeDistributed

from keras.layers import RepeatVector

generate lists of random integers and their sum

def random_sum_pairs(n_examples, n_numbers, largest):

X, y = list(), list()

for i in range(n_examples):

in_pattern = [randint(1,largest) for _ in range(n_numbers)]

out_pattern = sum(in_pattern)

X.append(in_pattern)

y.append(out_pattern)

return X, y

convert data to strings

def to_string(X, y, n_numbers, largest):

max_length = int(n_numbers * ceil(log10(largest+1)) + n_numbers - 1)

Xstr = list()

for pattern in X:

strp = '+'.join([str(n) for n in pattern])

strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp

Xstr.append(strp)

max_length = int(ceil(log10(n_numbers * (largest+1))))

ystr = list()

for pattern in y:

strp = str(pattern)

strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp

ystr.append(strp)

return Xstr, ystr

integer encode strings

def integer_encode(X, y, alphabet):

char_to_int = dict((c, i) for i, c in enumerate(alphabet))

Xenc = list()

for pattern in X:

9.8. Complete Example 125

integer_encoded = [char_to_int[char] for char in pattern]

Xenc.append(integer_encoded)

yenc = list()

for pattern in y:

integer_encoded = [char_to_int[char] for char in pattern]

yenc.append(integer_encoded)

return Xenc, yenc

one hot encode

def one_hot_encode(X, y, max_int):

Xenc = list()

for seq in X:

pattern = list()

for index in seq:

vector = [0 for _ in range(max_int)]

vector[index] = 1

pattern.append(vector)

Xenc.append(pattern)

yenc = list()

for seq in y:

pattern = list()

for index in seq:

vector = [0 for _ in range(max_int)]

vector[index] = 1

pattern.append(vector)

yenc.append(pattern)

return Xenc, yenc

generate an encoded dataset

def generate_data(n_samples, n_numbers, largest, alphabet):

generate pairs

X, y = random_sum_pairs(n_samples, n_numbers, largest)

convert to strings

X, y = to_string(X, y, n_numbers, largest)

integer encode

X, y = integer_encode(X, y, alphabet)

one hot encode

X, y = one_hot_encode(X, y, len(alphabet))

return as numpy arrays

X, y = array(X), array(y)

return X, y

invert encoding

def invert(seq, alphabet):

int_to_char = dict((i, c) for i, c in enumerate(alphabet))

strings = list()

for pattern in seq:

string = int_to_char[argmax(pattern)]

strings.append(string)

return ''.join(strings)

configure problem

number of math terms

n_terms = 3

largest value for any single input digit

9.9. Further Reading 126

largest = 10

scope of possible symbols for each input or output time step

alphabet = [str(x) for x in range(10)] + ['+', ' ']

size of alphabet: (12 for 0-9, + and ' ')

n_chars = len(alphabet)

length of encoded input sequence (8 for '10+10+10)

n_in_seq_length = int(n_terms * ceil(log10(largest+1)) + n_terms - 1)

length of encoded output sequence (2 for '30')

n_out_seq_length = int(ceil(log10(n_terms * (largest+1))))

define LSTM

model = Sequential()

model.add(LSTM(75, input_shape=(n_in_seq_length, n_chars)))

model.add(RepeatVector(n_out_seq_length))

model.add(LSTM(50, return_sequences=True))

model.add(TimeDistributed(Dense(n_chars, activation='softmax')))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

print(model.summary())

fit LSTM

X, y = generate_data(75000, n_terms, largest, alphabet)

model.fit(X, y, epochs=1, batch_size=32)

evaluate LSTM

X, y = generate_data(100, n_terms, largest, alphabet)

loss, acc = model.evaluate(X, y, verbose=0)

print('Loss: %f, Accuracy: %f' % (loss, acc*100))

predict

for _ in range(10):

generate an input-output pair

X, y = generate_data(1, n_terms, largest, alphabet)

make prediction

yhat = model.predict(X, verbose=0)

decode input, expected and predicted

in_seq = invert(X[0], alphabet)

out_seq = invert(y[0], alphabet)

predicted = invert(yhat[0], alphabet)

print('%s = %s (expect %s)' % (in_seq, predicted, out_seq))

Listing 9.31: Complete examples of the Encoder-Decoder LSTM model on the Addition
Prediction prediction problem.

9.9 Further Reading

This section provides some resources for further reading.

9.9.1 Papers on Encoder-Decoder LSTM

� Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation, 2014.
https://arxiv.org/abs/1406.1078

https://arxiv.org/abs/1406.1078

9.10. Extensions 127

� Sequence to Sequence Learning with Neural Networks, 2014.
https://arxiv.org/abs/1409.3215

� Show and Tell: A Neural Image Caption Generator, 2014.
https://arxiv.org/abs/1411.4555

� Learning to Execute, 2015.
http://arxiv.org/abs/1410.4615

� A Neural Conversational Model, 2015.
https://arxiv.org/abs/1506.05869

9.9.2 Keras API

� RepeatVector Keras API.
https://keras.io/layers/core/#repeatvector

� TimeDistributed Keras API.
https://keras.io/layers/wrappers/#timedistributed

9.10 Extensions

Do you want to dive deeper into Encoder-Decoder LSTMs? This section lists some challenging
extensions to this lesson.

� List 10 sequence-to-sequence prediction problems that may benefit from the Encoder-
Decoder LSTM architecture.

� Increase the number of terms or number of digits and tune the model to get 100% accuracy.

� Design a study to compare model size to problem complexity (terms and/or digits).

� Update the example to support a variable number of terms in a given instance and tune a
model to get 100% accuracy.

� Add support for other math operations like subtraction, division, and multiplication.

Post your extensions online and share the link with me; I’d love to see what you come up
with!

9.11 Summary

In this lesson, you discovered how to develop an Encoder-Decoder LSTM model. Specifically,
you learned:

� The Encoder-Decoder LSTM architecture and how to implement it in Keras.

� The addition sequence-to-sequence prediction problem.

https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1410.4615
https://arxiv.org/abs/1506.05869
https://keras.io/layers/core/#repeatvector
https://keras.io/layers/wrappers/#timedistributed

9.11. Summary 128

� How to develop an Encoder-Decoder LSTM for the addition seq2seq prediction problem.

In the next lesson, you will discover how to develop and evaluate the Bidirectional LSTM
model.

Chapter 10

How to Develop Bidirectional LSTMs

10.0.1 Lesson Goal

The goal of this lesson is to learn how to develop Bidirectional LSTM models. After completing
this lesson, you will know:

� The Bidirectional LSTM architecture and how to implement it in Keras.

� The cumulative sum prediction problem.

� How to develop a Bidirectional LSTM for the cumulative sum prediction problem.

10.0.2 Lesson Overview

This lesson is divided into 7 parts; they are:

1. The Bidirectional LSTM.

2. Cumulative Sum Prediction Problem.

3. Define and Compile the Model.

4. Fit the Model.

5. Evaluate the Model.

6. Make Predictions With the Model.

7. Complete Example.

Let’s get started.

10.1 The Bidirectional LSTM

10.1.1 Architecture

We have seen the benefit of reversing the order of input sequences for LSTMs discussed in the
introduction of Encoder-Decoder LSTMs.

129

10.1. The Bidirectional LSTM 130

We were surprised by the extent of the improvement obtained by reversing the words
in the source sentences.

— Sequence to Sequence Learning with Neural Networks, 2014.

Bidirectional LSTMs focus on the problem of getting the most out of the input sequence by
stepping through input time steps in both the forward and backward directions. In practice,
this architecture involves duplicating the first recurrent layer in the network so that there
are now two layers side-by-side, then providing the input sequence as-is as input to the first
layer and providing a reversed copy of the input sequence to the second. This approach was
developed some time ago as a general approach for improving the performance of Recurrent
Neural Networks (RNNs).

To overcome the limitations of a regular RNN ... we propose a bidirectional recurrent
neural network (BRNN) that can be trained using all available input information
in the past and future of a specific time frame. ... The idea is to split the state
neurons of a regular RNN in a part that is responsible for the positive time direction
(forward states) and a part for the negative time direction (backward states)

— Bidirectional Recurrent Neural Networks, 1997.

This approach has been used to great effect with LSTM Recurrent Neural Networks. Pro-
viding the entire sequence both forwards and backwards is based on the assumption that the
whole sequence is available. This is generally a requirement in practice when using vectorized
inputs. Nevertheless, it may raise a philosophical concern where ideally time steps are provided
in order and just-in-time. The use of providing an input sequence bi-directionally was justified
in the domain of speech recognition because there is evidence that in humans, the context of
the whole utterance is used to interpret what is being said rather than a linear interpretation.

... relying on knowledge of the future seems at first sight to violate causality. How
can we base our understanding of what we’ve heard on something that hasn’t been
said yet? However, human listeners do exactly that. Sounds, words, and even whole
sentences that at first mean nothing are found to make sense in the light of future
context. What we must remember is the distinction between tasks that are truly
online - requiring an output after every input - and those where outputs are only
needed at the end of some input segment.

— Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network
Architectures, 2005.

Although Bidirectional LSTMs were developed for speech recognition, the use of Bidirectional
input sequences is now a staple of sequence prediction with LSTMs as an approach for lifting
model performance.

10.1. The Bidirectional LSTM 131

Forward
LSTM

Dense

Input

Output

Backward
LSTM

Figure 10.1: Bidirectional LSTM Architecture.

10.1.2 Implementation

The LSTM layer in Keras allow you to specify the directionality of the input sequence. This can
be done by setting the go backwards argument to True (defaults to False).

model = Sequential()

model.add(LSTM(..., input_shape=(...), go_backwards=True))

...

Listing 10.1: Example of a Vanilla LSTM model with backward input sequences.

Bidirectional LSTMs are a small step on top of this capability. Specifically, Bidirectional
LSTMs are supported in Keras via the Bidirectional layer wrapper that essentially merges
the output from two parallel LSTMs, one with input processed forward and one with output
processed backwards. This wrapper takes a recurrent layer (e.g. the first hidden LSTM layer) as
an argument.

model = Sequential()

model.add(Bidirectional(LSTM(...), input_shape=(...)))

...

Listing 10.2: Example of a Bidirectional wrapped LSTM layer.

The Bidirectional wrapper layer also allows you to specify the merge mode; that is how
the forward and backward outputs should be combined before being passed on to the next layer.
The options are:

� ‘sum’: The outputs are added together.

� ‘mul’: The outputs are multiplied together.

10.2. Cumulative Sum Prediction Problem 132

� ‘concat’: The outputs are concatenated together (the default), providing double the
number of outputs to the next layer.

� ‘ave’: The average of the outputs is taken.

The default mode is to concatenate, and this is the method often used in studies of
bidirectional LSTMs. In general, it might be a good idea to test each of the merge modes on
your problem to see if you can improve upon the concatenate default option.

10.2 Cumulative Sum Prediction Problem

We will define a simple sequence classification problem to explore bidirectional LSTMs called
the cumulative sum prediction problem. This section is divided into the following parts:

1. Cumulative Sum.

2. Sequence Generation.

3. Generate Multiple Sequences.

10.2.1 Cumulative Sum

The problem is defined as a sequence of random values between 0 and 1. This sequence is taken
as input for the problem with each number provided once per time step. A binary label (0 or 1)
is associated with each input. The output values are all 0. Once the cumulative sum of the
input values in the sequence exceeds a threshold, then the output value flips from 0 to 1.

A threshold of one quarter (1
4
) the sequence length is used. For example, below is a sequence

of 10 input time steps (X):

0.63144003 0.29414551 0.91587952 0.95189228 0.32195638 0.60742236 0.83895793 0.18023048

0.84762691 0.29165514

Listing 10.3: Example input sequence of random real values.

The corresponding classification output (y) would be:

0 0 0 1 1 1 1 1 1 1

Listing 10.4: Example output sequence of cumulative sum values.

We will frame the problem to make the best use of the Bidirectional LSTM architecture.
The output sequence will be produced after the entire input sequence has been fed into the
model. Technically, this means this is a sequence-to-sequence prediction problem that requires
a many-to-many prediction model. It is also the case that the input and output sequences have
the same number of time steps (length).

10.2. Cumulative Sum Prediction Problem 133

0.1

1

0.2

1

0.3

0

Figure 10.2: Cumulative sum prediction problem framed with a many-to-many prediction model.

10.2.2 Sequence Generation

We can implement this in Python. The first step is to generate a sequence of random values.
We can use the random() function from the random module.

create a sequence of random numbers in [0,1]

X = array([random() for _ in range(10)])

Listing 10.5: Example creating an input sequence of random real values.

We can define the threshold as one-quarter the length of the input sequence.

calculate cut-off value to change class values

limit = 10/4.0

Listing 10.6: Example of calculating the cumulative sum threshold.

The cumulative sum of the input sequence can be calculated using the cumsum() NumPy
function. This function returns a sequence of cumulative sum values, e.g.:

pos1, pos1+pos2, pos1+pos2+pos3, ...

Listing 10.7: Example of calculating a cumulative sum output sequence.

We can then calculate the output sequence as to whether each cumulative sum value exceeded
the threshold.

determine the class outcome for each item in cumulative sequence

y = array([0 if x < limit else 1 for x in cumsum(X)])

Listing 10.8: Example of implementing the calculating of the cumulative sum threshold.

The function below, named get sequence(), draws all of this together, taking as input the
length of the sequence, and returns the X and y components of a new problem case.

create a sequence classification instance

def get_sequence(n_timesteps):

create a sequence of random numbers in [0,1]

X = array([random() for _ in range(n_timesteps)])

10.2. Cumulative Sum Prediction Problem 134

calculate cut-off value to change class values

limit = n_timesteps/4.0

determine the class outcome for each item in cumulative sequence

y = array([0 if x < limit else 1 for x in cumsum(X)])

return X, y

Listing 10.9: Function to create a random input and output sequence.

We can test this function with a new 10-step sequence as follows:

from random import random

from numpy import array

from numpy import cumsum

create a cumulative sum sequence

def get_sequence(n_timesteps):

create a sequence of random numbers in [0,1]

X = array([random() for _ in range(n_timesteps)])

calculate cut-off value to change class values

limit = n_timesteps/4.0

determine the class outcome for each item in cumulative sequence

y = array([0 if x < limit else 1 for x in cumsum(X)])

return X, y

X, y = get_sequence(10)

print(X)

print(y)

Listing 10.10: Example of generating a random input and output sequence.

Running the example first prints the generated input sequence followed by the matching
output sequence.

[0.22228819 0.26882207 0.069623 0.91477783 0.02095862 0.71322527

0.90159654 0.65000306 0.88845226 0.4037031]

[0 0 0 0 0 0 1 1 1 1]

Listing 10.11: Example output from generating a random input and output sequence.

10.2.3 Generate Multiple Sequences

We can define a function to create multiple sequences. The function below named get sequences()

takes the number of sequences to generate and the number of time steps per sequence as ar-
guments and calls get sequence() to generate the sequences. Once the specified number of
sequences have been generated, the list of input and output sequences are reshaped to be
three-dimensional and suitable for use with LSTMs.

create multiple samples of cumulative sum sequences

def get_sequences(n_sequences, n_timesteps):

seqX, seqY = list(), list()

create and store sequences

for _ in range(n_sequences):

X, y = get_sequence(n_timesteps)

seqX.append(X)

seqY.append(y)

reshape input and output for lstm

10.3. Define and Compile the Model 135

seqX = array(seqX).reshape(n_sequences, n_timesteps, 1)

seqY = array(seqY).reshape(n_sequences, n_timesteps, 1)

return seqX, seqY

Listing 10.12: Function to generate sequences and format them for LSTM models.

We are now ready to start developing a Bidirectional LSTM for this problem.

10.3 Define and Compile the Model

First, we can define the complexity of the problem. We will limit the number of input time
steps to a modest size; in this case, 10. This means the input shape will be 10 time steps with 1
feature.

define problem

n_timesteps = 10

Listing 10.13: Example of configuring the problem.

Next, we need to define the hidden LSTM layer wrapped in a Bidirectional layer. We will
use 50 memory cells in the LSTM hidden layer. The Bidirectional wrapper will double this,
creating a second layer parallel to the first, also with 50 memory cells.

model.add(Bidirectional(LSTM(50, return_sequences=True), input_shape=(n_timesteps, 1)))

Listing 10.14: Example of adding the Bidirectional input layer.

A vector of 50 output values from each of the forward and backward LSTM hidden layers will
be concatenated (the default merge method of the Bidirectional wrapper layer) to create a
100 element vector output. This is provided as input to a Dense layer that is wrapped in a
TimeDistributed layer. This has the effect of reusing the weights of the Dense layer in order
to create each output time step.

model.add(TimeDistributed(Dense(1, activation='sigmoid')))

Listing 10.15: Example of adding the TimeDistributed output layer.

The Bidirectional LSTM layers return sequences to the TimeDistributed wrapped Dense

layer. This has the effect of providing one concatenated 100 element vector to the Dense layer
as input for each output time step. If a TimeDistributed wrapper was not used, a single 100
element vector would be provided to the Dense layer from which it would be required to output
10 time steps of classification. This would seem to be a more challenging problem for the model.

Putting this together, the model is defined below. The sigmoid activation is used in the
Dense output layer and the binary log loss is optimized as each output time step is a binary
classification of whether or not the cumulative sum threshold has been exceeded. The Adam
implementation of gradient descent is used to optimize the weights and the classification accuracy
is calculated during model training and evaluation.

define LSTM

model = Sequential()

model.add(Bidirectional(LSTM(50, return_sequences=True), input_shape=(n_timesteps, 1)))

model.add(TimeDistributed(Dense(1, activation='sigmoid')))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])

print(model.summary())

10.4. Fit the Model 136

Listing 10.16: Example of defining and compiling the Bidirectional LSTM model.

Running this code prints a summary of the compiled model. We can confirm that the Dense

layer has 100 weights (plus the bias), one for each item in the 100 element concatenated vector
provided from the Bidirectional wrapped LSTM hidden layer.

Layer (type) Output Shape Param #

===

bidirectional_1 (Bidirection (None, 10, 100) 20800

time_distributed_1 (TimeDist (None, 10, 1) 101

===

Total params: 20,901

Trainable params: 20,901

Non-trainable params: 0

Listing 10.17: Example output from defining and compiling the Bidirectional LSTM model.

10.4 Fit the Model

We can use the get sequences() function to generate a large number of random examples on
which to fit the model. We can simplify training by using the number of randomly generated
sequences as a proxy for epochs. This allows us to generate a large number of examples, in this
case 50,000, store them in memory, and fit them in one Keras epoch.

The batch size of 10 is used to balance learning speed and computational efficiency. Both
the number of samples and batch size were found with some trial and error. Experiment with
different values and see if you can train an accurate model with less computational effort.

train LSTM

X, y = get_sequences(50000, n_timesteps)

model.fit(X, y, epochs=1, batch_size=10)

Listing 10.18: Example of fitting a compiled the Bidirectional LSTM model.

Fitting the model does not take long. A progress bar is provided during training and the log
loss and model accuracy are updated each batch.

50000/50000 [==============================] - 97s - loss: 0.0508 - acc: 0.9817

Listing 10.19: Example output from fitting a compiled the Bidirectional LSTM model.

10.5 Evaluate the Model

We can evaluate the model by generating 100 new random sequences and calculating the accuracy
of the predictions made by the fit model.

evaluate LSTM

X, y = get_sequences(100, n_timesteps)

10.6. Make Predictions with the Model 137

loss, acc = model.evaluate(X, y, verbose=0)

print('Loss: %f, Accuracy: %f' % (loss, acc*100))

Listing 10.20: Example of evaluating a fit the Bidirectional LSTM model.

Running this example prints both the log loss and accuracy. We can see that the model
achieves 100% accuracy. The accuracy may vary when you run the example given the stochastic
nature of the algorithms. You should see model skill in the high 90s. Try running the example
a few times.

Loss: 0.016752, Accuracy: 100.000000

Listing 10.21: Example output from evaluating a fit the Bidirectional LSTM model.

10.6 Make Predictions with the Model

We can make predictions in a similar way as evaluating the model. In this case, we will generate
10 new random sequences, make predictions for each, and compare the predicted output sequence
to the expected output sequence.

make predictions

for _ in range(10):

X, y = get_sequences(1, n_timesteps)

yhat = model.predict_classes(X, verbose=0)

exp, pred = y.reshape(n_timesteps), yhat.reshape(n_timesteps)

print('y=%s, yhat=%s, correct=%s' % (exp, pred, array_equal(exp,pred)))

Listing 10.22: Example of making predictions with a fit the Bidirectional LSTM model.

Running the example prints both the expected (y) and predicted (yhat) output sequences
and whether or not the predicted sequence was correct. We can see that, at least in this case, 2
of the 10 sequences were predicted with an error at one time step.

Your specific results will vary, but you should see similar behavior on average. This is a
challenging problem, and even for a model that fits a large number of examples and shows good
accuracy, it can still make errors in predicting new sequences.

y=[0 0 0 0 0 0 1 1 1 1], yhat=[0 0 0 0 0 0 1 1 1 1], correct=True

y=[0 0 0 0 1 1 1 1 1 1], yhat=[0 0 0 0 1 1 1 1 1 1], correct=True

y=[0 0 0 1 1 1 1 1 1 1], yhat=[0 0 0 1 1 1 1 1 1 1], correct=True

y=[0 0 0 0 0 0 0 1 1 1], yhat=[0 0 0 0 0 0 0 0 1 1], correct=False

y=[0 0 0 0 0 1 1 1 1 1], yhat=[0 0 0 0 0 1 1 1 1 1], correct=True

y=[0 0 0 1 1 1 1 1 1 1], yhat=[0 0 0 1 1 1 1 1 1 1], correct=True

y=[0 0 0 0 0 1 1 1 1 1], yhat=[0 0 0 0 0 0 1 1 1 1], correct=False

y=[0 0 0 0 1 1 1 1 1 1], yhat=[0 0 0 0 1 1 1 1 1 1], correct=True

y=[0 0 0 0 0 0 0 0 1 1], yhat=[0 0 0 0 0 0 0 0 1 1], correct=True

y=[0 0 0 1 1 1 1 1 1 1], yhat=[0 0 0 1 1 1 1 1 1 1], correct=True

Listing 10.23: Example output from making predictions with a fit the Bidirectional LSTM
model.

10.7 Complete Example

The full example is listed below for completeness and your reference.

10.7. Complete Example 138

from random import random

from numpy import array

from numpy import cumsum

from numpy import array_equal

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

from keras.layers import TimeDistributed

from keras.layers import Bidirectional

create a cumulative sum sequence

def get_sequence(n_timesteps):

create a sequence of random numbers in [0,1]

X = array([random() for _ in range(n_timesteps)])

calculate cut-off value to change class values

limit = n_timesteps/4.0

determine the class outcome for each item in cumulative sequence

y = array([0 if x < limit else 1 for x in cumsum(X)])

return X, y

create multiple samples of cumulative sum sequences

def get_sequences(n_sequences, n_timesteps):

seqX, seqY = list(), list()

create and store sequences

for _ in range(n_sequences):

X, y = get_sequence(n_timesteps)

seqX.append(X)

seqY.append(y)

reshape input and output for lstm

seqX = array(seqX).reshape(n_sequences, n_timesteps, 1)

seqY = array(seqY).reshape(n_sequences, n_timesteps, 1)

return seqX, seqY

define problem

n_timesteps = 10

define LSTM

model = Sequential()

model.add(Bidirectional(LSTM(50, return_sequences=True), input_shape=(n_timesteps, 1)))

model.add(TimeDistributed(Dense(1, activation='sigmoid')))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])

print(model.summary())

train LSTM

X, y = get_sequences(50000, n_timesteps)

model.fit(X, y, epochs=1, batch_size=10)

evaluate LSTM

X, y = get_sequences(100, n_timesteps)

loss, acc = model.evaluate(X, y, verbose=0)

print('Loss: %f, Accuracy: %f' % (loss, acc*100))

make predictions

for _ in range(10):

X, y = get_sequences(1, n_timesteps)

10.8. Further Reading 139

yhat = model.predict_classes(X, verbose=0)

exp, pred = y.reshape(n_timesteps), yhat.reshape(n_timesteps)

print('y=%s, yhat=%s, correct=%s' % (exp, pred, array_equal(exp,pred)))

Listing 10.24: Complete example of the Bidirectional LSTM on the Cumulative Sum problem.

10.8 Further Reading

This section provides some resources for further reading.

10.8.1 Research Papers

� Bidirectional Recurrent Neural Networks, 1997.

� Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network
Architectures, 2005.

� Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition, 2005.

� Speech Recognition with Deep Recurrent Neural Networks, 2013.
https://arxiv.org/abs/1303.5778

10.8.2 APIs

� random() Python API.
https://docs.python.org/3/library/random.html

� cumsum() NumPy API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html

� Bidirectional Keras API.
https://keras.io/layers/wrappers/#bidirectional

10.9 Extensions

Do you want to dive deeper into Bidirectional LSTMs? This section lists some challenging
extensions to this lesson.

� List 5 examples of sequence prediction problems that may benefit from a Bidirectional
LSTM.

� Tune the number of memory cells, training examples, and batch size to develop a smaller
or faster trained model with 100% accuracy.

� Design and execute an experiment to compare model size to problem complexity (e.g.
sequence length).

� Design and execute an experiment to compare forward, backward, and bidirectional LSTM
input direction.

https://arxiv.org/abs/1303.5778
https://docs.python.org/3/library/random.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html
https://keras.io/layers/wrappers/#bidirectional

10.10. Summary 140

� Design and execute an experiment to compare the combination methods for the Bidirec-
tional LSTM wrapper layer.

Post your extensions online and share the link with me; I’d love to see what you come up
with!

10.10 Summary

In this lesson, you discovered how to develop a Bidirectional LSTM model. Specifically, you
learned:

� The Bidirectional LSTM architecture and how to implement it in Keras.

� The cumulative sum prediction problem.

� How to develop a Bidirectional LSTM for the cumulative sum prediction problem.

In the next lesson, you will discover how to develop and evaluate the Generative LSTM
model.

Chapter 11

How to Develop Generative LSTMs

11.0.1 Lesson Goal

The goal of this lesson is to learn how to develop LSTMs for use as generative models. After
completing this lesson, you will know:

� How LSTMs can be used as sequence generation models.

� How to frame shape drawing as a sequence generation problem.

� How to develop an LSTM to generate shapes.

11.0.2 Lesson Overview

This lesson is divided into 7 parts; they are:

1. The Generative LSTM.

2. Shape Generation Problem.

3. Define and Compile the Model.

4. Fit the Model.

5. Make Predictions With the Model.

6. Evaluate the Model.

7. Complete Example.

Let’s get started.

141

11.1. The Generative LSTM 142

11.1 The Generative LSTM

11.1.1 Generative Model

LSTMs can be used as a generative model. Given a large corpus of sequence data, such as text
documents, LSTM models can be designed to learn the general structural properties of the
corpus, and when given a seed input, can generate new sequences that are representative of the
original corpus.

The problem of developing a model to generalize a corpus of text is called language modeling
in the field of natural language processing. A language model may work at the word level
and learn the probabilistic relationships between words in a document in order to accurately
complete a sentence and generate entirely new sentences. At its most challenging, language
models work at the character level, learning from sequences of characters, and generating new
sequences one character at a time.

The goal of character-level language modeling is to predict the next character in a
sequence.

— Generating Text with Recurrent Neural Networks, 2011.

Although more challenging, the added flexibility of a character-level model allows new words
to be generated, punctuation added, and the generation of any other structures that may exist
in the text data.

... predicting one character at a time is more interesting from the perspective of
sequence generation, because it allows the network to invent novel words and strings.

— Generating Sequences With Recurrent Neural Networks, 2013.

Language modeling is by far the most studied application of Generative LSTMs, perhaps
because of the use of standard datasets where model performance can be quantified and
compared. This approach has been used to generate text on a suite of interesting language
modeling problems, such as:

� Generating Wikipedia articles (including markup).

� Generating snippets from great authors like Shakespeare.

� Generating technical manuscripts (including markup).

� Generating computer source code.

� Generating article headlines.

The quality of the results vary; for example, the markup or source code may require manual
intervention to render or compile. Nevertheless, the results are impressive. The approach has
also been applied to different domains where a large corpus of existing sequence information is
available and new sequences can be generated one step at a time, such as:

� Handwriting generation.

� Music generation.

� Speech generation.

11.1. The Generative LSTM 143

11.1.2 Architecture and Implementation

A Generative LSTM is not really architecture, it is more a change in perspective about what
an LSTM predictive model learns and how the model is used. We could conceivably use any
LSTM architecture as a generative model. In this case, we will use a simple Vanilla LSTM.

LSTM

Dense

Input

Output

Figure 11.1: Generative LSTM Architecture, in this case the Vanilla LSTM.

In the case of a character-level language model, the alphabet of all possible characters is
fixed. A one hot encoding is used both for learning input sequences and predicting output
sequences. A one-to-one model is used where one step is predicted for each input time step.
This means that input sequences may require specialized handling in order to be vectorized or
formatted for efficiently training a supervised model. For example, given the sequence:

"hello world"

Listing 11.1: Example of a character sequence.

A dataset would need to be constructed such as:

'h' => 'e'

'e' => 'l'

'l' => 'l'

...

Listing 11.2: Example of a character sequence as a one-to-one model.

This could be presented as-is as a dataset of one time step samples, which could be quite
limiting to the network (e.g. no BPTT). Alternately, it could be vectorized to a fixed-length
input sequence for a many-to-one time step model, such as:

['h', 'e', 'l'] => 'l'

['e', 'l', 'l'] => 'o'

['l', 'l', 'o'] => ' '

...

Listing 11.3: Example of a character sequence as a many-to-one model.

11.2. Shape Generation Problem 144

Or, a fixed-length output sequence for a one-to-many time step model:

'h' => ['e', 'l', 'l']

'e' => ['l', 'l', 'o']

'l' => ['l', 'o', ' ']

...

Listing 11.4: Example of a character sequence as a one-to-many model.

Or some variation on these approaches. Note that the same vectorized representation would
be required when making predictions, meaning that predicted characters would need to be
presented as input for subsequent samples. This could be quite clumsy in implementation. The
internal state of the network may need careful management, perhaps reset at choice locations in
the input sequence (e.g. end of paragraph, page, or chapter) rather than at the end of each
input sequence.

11.2 Shape Generation Problem

We can frame the problem of generating random shapes as a sequence generation problem. We
can take drawing a rectangle as a sequence of points in the clockwise direction with 4 points in
two-dimensional space:

� Bottom Left (BL): [0, 0]

� Bottom Right (BR): [1, 0]

� Top Right (TR): [1, 1]

� Top Left: [0, 1]

Each coordinate can be taken as one time step, with each of the x and y axes representing
separate features. Starting from 0,0, the task is to draw the remaining 4 points of the rectangle
with consistent widths and heights. We will frame this problem as a one-coordinate generation
problem, e.g. a one-to-one sequence prediction problem. Given a coordinate, predict the
next coordinate. Then given the coordinate predicted at the last time step, predict the next
coordinate, and so on.

[0,0] => [x1, y1]

[x1,y1] => [x2, y2]

[x2,y2] => [x3, y3]

Listing 11.5: Example of coordinate prediction as a one-to-one model.

11.2. Shape Generation Problem 145

0.0,
0.0

0.0,
0.5

0.0,
0.5

0.5,
0.5

0.5,
0.5

0.5,
0.0

Figure 11.2: Shape generation problem framed with a one-to-one prediction model.

We can train the model by generating random rectangles and having the model predict the
subsequent coordinates. Predicting the first coordinate from 0,0 will be impossible and predicting
the height from the width will also be impossible, but we believe that given repeated exposure
to whole rectangles that the model can learn how to draw new rectangles with consistent widths
and heights. Implementing this in Python involves three steps:

1. Generate Random Rectangles

2. Plot Rectangles

3. Rectangle to Sequence

11.2.1 Generate Random Rectangles

We can use the random() function to generate random numbers between 0 and 1. For a given
rectangle, we can use the random() function to define the width and height of the rectangle.

width, height = random(), random()

Listing 11.6: Example of generating a random width and height.

We can then use the width and height to define the 4 points of the rectangle, working in a
clockwise direction, starting at x=0,y=0.

[0.0, 0.0]

[width, 0.0]

[width, height]

[0.0, height]

Listing 11.7: Example of coordinate sequence for a random rectangle.

The function below, named random rectangle(), creates a random rectangle and returns
the two-dimensional points as a list.

11.2. Shape Generation Problem 146

from random import random

generate a rectangle with random width and height

def random_rectangle():

width, height = random(), random()

points = list()

bottom left

points.append([0.0, 0.0])

bottom right

points.append([width, 0.0])

top right

points.append([width, height])

top left

points.append([0.0, height])

return points

rect = random_rectangle()

print(rect)

Listing 11.8: Example of generating a random rectangle.

Running the example creates one random rectangle and prints out the coordinates. The
specific random rectangle you generate will differ.

[[0.0, 0.0],

[0.40655549320386086, 0.0],

[0.40655549320386086, 0.504001927231654],

[0.0, 0.504001927231654]]

Listing 11.9: Example output from generating a random rectangle.

11.2.2 Plot Rectangles

We chose two-dimensional shape generation primarily because we can visualize the results.
Therefore, we need a way of easily plotting a rectangle, either generated randomly or predicted
by a model later. We can use the Matplotlib library to draw a path of coordinates.

This involves defining a Path for the shape that involves both a list of coordinates and the
Path movements. The list of coordinates would be the list of coordinates we generated randomly
with the addition of the first coordinate to the end of the list to close the polygon. The path
is a series of movements, such as MOVETO to start the sequence, LINETO to connect points, and
CLOSEPOLY to close the polygon.

close the rectangle path

rect.append(rect[0])

define path

codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]

path = Path(rect, codes)

Listing 11.10: Example of turning a rectangle coordinates into a shape.

We can define a PathPatch from the path and draw it directly on a Matplotlib plot.

axis = pyplot.gca()

patch = PathPatch(path)

11.2. Shape Generation Problem 147

add shape to plot

axis.add_patch(patch)

Listing 11.11: Example of plotting a shape.

The function below named plot rectangle() takes a list of 4 rectangle points as input and
will plot the rectangle and show the plot. The axis bounds are adjusted to ensure the shape fits
nicely in the 0-1 bounds.

plot a rectangle

def plot_rectangle(rect):

close the rectangle path

rect.append(rect[0])

define path

codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]

path = Path(rect, codes)

axis = pyplot.gca()

patch = PathPatch(path)

add shape to plot

axis.add_patch(patch)

axis.set_xlim(-0.1,1.1)

axis.set_ylim(-0.1,1.1)

pyplot.show()

Listing 11.12: Function to plot a rectangle.

Below is an example demonstrating this function plotting a randomly generated rectangle.

from random import random

from matplotlib import pyplot

from matplotlib.patches import PathPatch

from matplotlib.path import Path

generate a rectangle with random width and height

def random_rectangle():

width, height = random(), random()

points = list()

bottom left

points.append([0.0, 0.0])

bottom right

points.append([width, 0.0])

top right

points.append([width, height])

top left

points.append([0.0, height])

return points

plot a rectangle

def plot_rectangle(rect):

close the rectangle path

rect.append(rect[0])

define path

codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]

path = Path(rect, codes)

axis = pyplot.gca()

patch = PathPatch(path)

add shape to plot

11.2. Shape Generation Problem 148

axis.add_patch(patch)

axis.set_xlim(-0.1,1.1)

axis.set_ylim(-0.1,1.1)

pyplot.show()

rect = random_rectangle()

plot_rectangle(rect)

Listing 11.13: Example of generating and plotting a rectangle.

Running the example generates a random rectangle and plots it to the screen. The specific
rectangle generated will vary each time the code is run.

Figure 11.3: Plot of a random rectangle.

11.2.3 Rectangle to Sequence

Finally, we need to convert the sequence of 2D coordinates from a randomly generated rectangle
into something we can use to train an LSTM model. Given a sequence of 4 points for a rectangle:

[BL, BR, TR, TL]

Listing 11.14: Example of a sequence of points in a rectangle.

We can create 3 samples with 1 time step and 1 feature as follows:

11.2. Shape Generation Problem 149

[BL] => [BR]

[BR] => [TR]

[TR] => [TL]

Listing 11.15: Example of a sequence of points for a one-to-one model.

The function below named get samples() will generate a new random rectangle and convert
it into a dataset of 3 samples.

generate input and output sequences for one random rectangle

def get_samples():

generate rectangle

rect = random_rectangle()

X, y = list(), list()

create input output pairs for each coordinate

for i in range(1, len(rect)):

X.append(rect[i-1])

y.append(rect[i])

convert input sequence shape to have 1 time step and 2 features

X, y = array(X), array(y)

X = X.reshape((X.shape[0], 1, 2))

return X, y

Listing 11.16: Function generate a random rectangle and returns a sequence of points.

The example below demonstrates this function.

from random import random

from numpy import array

generate a rectangle with random width and height

def random_rectangle():

width, height = random(), random()

points = list()

bottom left

points.append([0.0, 0.0])

bottom right

points.append([width, 0.0])

top right

points.append([width, height])

top left

points.append([0.0, height])

return points

generate input and output sequences for one random rectangle

def get_samples():

generate rectangle

rect = random_rectangle()

X, y = list(), list()

create input output pairs for each coordinate

for i in range(1, len(rect)):

X.append(rect[i-1])

y.append(rect[i])

convert input sequence shape to have 1 time step and 2 features

X, y = array(X), array(y)

X = X.reshape((X.shape[0], 1, 2))

return X, y

11.3. Define and Compile the Model 150

X, y = get_samples()

for i in range(X.shape[0]):

print(X[i][0], '=>', y[i])

Listing 11.17: Example of generating a rectangle and preparing it for LSTM models.

Running this example shows the input and output coordinates for each sample. The specific
coordinates will vary each time the example is run.

[0. 0.] => [0.07745734 0.]

[0.07745734 0.] => [0.07745734 0.86579881]

[0.07745734 0.86579881] => [0. 0.86579881]

Listing 11.18: Example output from generating a rectangle and preparing it for LSTM models.

11.3 Define and Compile the Model

We are now ready to define an LSTM model to address the shape prediction problem. The model
will expect 1 time step input each with 2 features for the x and y axis of a single coordinate.
We will use 10 memory cells in the LSTM hidden layer. A large capacity is not required for this
problem and 10 cells were found with a little trial and error.

model = Sequential()

model.add(LSTM(10, input_shape=(1, 2)))

Listing 11.19: Example of adding the input layer.

The output of the network is a single coordinate comprised of x and y values. We will use a
Dense layer with 2 neurons and a linear activation function.

model.add(Dense(2, activation='linear'))

Listing 11.20: Example of adding the output layer.

The model minimizes the mean absolute error (mae) loss function and the efficient Adam
optimization algorithm is used to fit the network weights. The full model definition is listed
below.

define model

model = Sequential()

model.add(LSTM(10, input_shape=(1, 2)))

model.add(Dense(2, activation='linear'))

model.compile(loss='mae', optimizer='adam')

print(model.summary())

Listing 11.21: Example of defining and compiling the Generative LSTM.

Running the example prints a summary of the model structure. We can see that indeed the
model is small.

Layer (type) Output Shape Param #

===

lstm_1 (LSTM) (None, 10) 520

11.4. Fit the Model 151

dense_1 (Dense) (None, 2) 22

===

Total params: 542

Trainable params: 542

Non-trainable params: 0

Listing 11.22: Example output from defining and compiling the Generative LSTM.

11.4 Fit the Model

The model can be fit by generating sequences one at a time and using them to update the model
weights. Each sequence is comprised of 3 samples at the end of which the model weights will
be updated and the internal state of each LSTM cell will be reset. This allows the model’s
memory to be focused on the specific input values of each different sequence. The number of
samples generated represents a proxy for the number of training epochs; here we will use 25,000
randomly generated sequences of rectangle points. This configuration was found after a little
trial and error. The order of the samples matters, therefore the shuffling of samples is turned
off.

fit model

for i in range(25000):

X, y = get_samples()

model.fit(X, y, epochs=1, verbose=2, shuffle=False)

Listing 11.23: Example of fitting a compiled Generative LSTM.

Fitting the model prints the loss at the end of each epoch.

...

Epoch 1/1

0s - loss: 0.0496

Epoch 1/1

0s - loss: 0.0757

Epoch 1/1

0s - loss: 0.0474

Epoch 1/1

0s - loss: 0.3612

Epoch 1/1

0s - loss: 0.0564

Listing 11.24: Example output from fitting a compiled Generative LSTM.

11.5 Make Predictions with the Model

Once the model is fit, we can use it to generate new rectangles. We can do this by defining
the starting point of the rectangle as [0,0], passing this as an input to get the next predicted
coordinate. This defines the width of the rectangle.

use [0,0] to seed the generation process

last = array([0.0,0.0]).reshape((1, 1, 2))

predict the next coordinate

11.5. Make Predictions with the Model 152

yhat = model.predict(last, verbose=0)

Listing 11.25: Example for predicting the rectangle width.

We can then use the predicted coordinate as an input to predict the next point. This will
define the height of the rectangle.

use this output as input for the next prediction

last = yhat.reshape((1, 1, 2))

predict the next coordinate

yhat = model.predict(last, verbose=0)

Listing 11.26: Example for predicting the rectangle height.

The process is then repeated one more time to generate the remaining coordinate that is
expected to remain consistent with the width and height already defined in the first three points.
The function below named generate rectangle() wraps up this functionality and generates a
new rectangle using a fit model, then returns the list of points.

use a fit LSTM model to generate a new rectangle from scratch

def generate_rectangle(model):

rect = list()

use [0,0] to seed the generation process

last = array([0.0,0.0]).reshape((1, 1, 2))

rect.append([[y for y in x] for x in last[0]][0])

generate the remaining 3 coordinates

for i in range(3):

predict the next coordinate

yhat = model.predict(last, verbose=0)

use this output as input for the next prediction

last = yhat.reshape((1, 1, 2))

store coordinate

rect.append([[y for y in x] for x in last[0]][0])

return rect

Listing 11.27: Function for generating a rectangle from scratch.

We can use this function to make a prediction, then use the previously defined function
plot rectangle() to plot the results.

generate new shapes from scratch

rect = generate_rectangle(model)

plot_rectangle(rect)

Listing 11.28: Example of generating a rectangle from scratch and plotting it.

Running this example generates one rectangle and plots it to the screen. We can see that
indeed the rectangle does a reasonable job of maintaining the consistent proportions of width
and height. The specific rectangle generated will vary each time the code is run.

11.6. Evaluate the Model 153

Figure 11.4: Plot of a rectangle generated by the Generative LSTM model.

11.6 Evaluate the Model

It is difficult to evaluate a generative model. In this case, we have a well defined expectation on
the generated shape (rectangular) that can be evaluated quantitatively and qualitatively. In
many problems, this may not be the case and you may have to rely on qualitative evaluation.

We can achieve a qualitative evaluation of rectangles via visualization. Below are a few
examples of rectangles generated after different amounts of training to show the qualitative
improvement in model skill as the number of training examples is increased.

11.6. Evaluate the Model 154

11.6.1 100 Training Examples

Figure 11.5: Plot of a rectangle generated by the Generative LSTM model after 100 examples.

11.6. Evaluate the Model 155

11.6.2 500 Training Examples

Figure 11.6: Plot of a rectangle generated by the Generative LSTM model after 500 examples.

11.6. Evaluate the Model 156

11.6.3 1,000 Training Examples

Figure 11.7: Plot of a rectangle generated by the Generative LSTM model after 1000 examples.

11.6. Evaluate the Model 157

11.6.4 5,000 Training Examples

Figure 11.8: Plot of a rectangle generated by the Generative LSTM model after 5000 examples.

11.7. Complete Example 158

11.6.5 10,000 Training Examples

Figure 11.9: Plot of a rectangle generated by the Generative LSTM model after 10000 examples.

11.7 Complete Example

The complete code listing is provided below for your reference.

from random import random

from numpy import array

from matplotlib import pyplot

from matplotlib.patches import PathPatch

from matplotlib.path import Path

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

generate a rectangle with random width and height

def random_rectangle():

width, height = random(), random()

points = list()

bottom left

points.append([0.0, 0.0])

bottom right

11.7. Complete Example 159

points.append([width, 0.0])

top right

points.append([width, height])

top left

points.append([0.0, height])

return points

plot a rectangle

def plot_rectangle(rect):

close the rectangle path

rect.append(rect[0])

define path

codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]

path = Path(rect, codes)

axis = pyplot.gca()

patch = PathPatch(path)

add shape to plot

axis.add_patch(patch)

axis.set_xlim(-0.1,1.1)

axis.set_ylim(-0.1,1.1)

pyplot.show()

generate input and output sequences for one random rectangle

def get_samples():

generate rectangle

rect = random_rectangle()

X, y = list(), list()

create input output pairs for each coordinate

for i in range(1, len(rect)):

X.append(rect[i-1])

y.append(rect[i])

convert input sequence shape to have 1 time step and 2 features

X, y = array(X), array(y)

X = X.reshape((X.shape[0], 1, 2))

return X, y

use a fit LSTM model to generate a new rectangle from scratch

def generate_rectangle(model):

rect = list()

use [0,0] to seed the generation process

last = array([0.0,0.0]).reshape((1, 1, 2))

rect.append([[y for y in x] for x in last[0]][0])

generate the remaining 3 coordinates

for i in range(3):

predict the next coordinate

yhat = model.predict(last, verbose=0)

use this output as input for the next prediction

last = yhat.reshape((1, 1, 2))

store coordinate

rect.append([[y for y in x] for x in last[0]][0])

return rect

define model

model = Sequential()

model.add(LSTM(10, input_shape=(1, 2)))

model.add(Dense(2, activation='linear'))

11.8. Further Reading 160

model.compile(loss='mae', optimizer='adam')

print(model.summary())

fit model

for i in range(25000):

X, y = get_samples()

model.fit(X, y, epochs=1, verbose=2, shuffle=False)

generate new shapes from scratch

rect = generate_rectangle(model)

plot_rectangle(rect)

Listing 11.29: Example of the Generative LSTM on the Rectangle Generation problem.

11.8 Further Reading

This section provides some resources for further reading.

11.8.1 Research Papers

� Generating Text with Recurrent Neural Networks, 2011.

� Generating Sequences With Recurrent Neural Networks, 2013.
https://arxiv.org/abs/1308.0850

� TTS Synthesis with Bidirectional LSTM based Recurrent Neural Networks, 2014.

� A First Look at Music Composition using LSTM Recurrent Neural Networks, 2002.

� Jazz Melody Generation from Recurrent Network Learning of Several Human Melodies,
2005.

11.8.2 Articles

� The Unreasonable Effectiveness of Recurrent Neural Networks, 2015.
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

11.8.3 APIs

� Python random API.
https://docs.python.org/3/library/random.html

� Matplotlib Path API.
https://matplotlib.org/api/path_api.html

� Matplotlib Patch API.
https://matplotlib.org/api/patches_api.html

https://arxiv.org/abs/1308.0850
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://docs.python.org/3/library/random.html
https://matplotlib.org/api/path_api.html
https://matplotlib.org/api/patches_api.html

11.9. Extensions 161

11.9 Extensions

Do you want to dive deeper into Generative LSTMs? This section lists some challenging
extensions to this lesson.

� List 5 other examples of problems, other than language modeling, where Generative
LSTMs could be used.

� Design and execute an experiment to compare model size (number of cells) to qualitative
model skill (plots).

� Update the example so that random rectangles are comprised of more points (e.g. points
on the mid-width and mid-height of the rectangle) then tune the LSTM to achieve good
skill.

� Develop a function to estimate rectangle error in terms of inconsistent width and height
and use as a loss function and metric when fitting the Generative LSTMs.

� Update the example to learn to generate a different shape, such as a circle, star, or cross.

Post your extensions online and share the link with me. I’d love to see what you come up
with!

11.10 Summary

In this lesson, you discovered how to develop a Generative LSTM model. Specifically, you
learned:

� How LSTMs can be used as sequence generation models.

� How to frame shape drawing as a sequence generation problem.

� How to develop an LSTM to generate shapes.

In the next lesson, you will discover how to get the most out of your LSTM models.

Part IV

Advanced

162

Chapter 12

How to Diagnose and Tune LSTMs

12.0.1 Lesson Goal

The goal of this lesson is to learn how to tune LSTM hyperparameters. After completing this
lesson, you will know:

� How to develop a robust evaluation of the skill of your LSTM models.

� How to use learning curves to diagnose the behavior of your LSTM models.

� How to tune the problem framing, structure, and learning behavior of your LSTM models.

12.0.2 Lesson Overview

This lesson is divided into 5 parts; they are:

1. Evaluating LSTM Models Robustly.

2. Diagnosing Underfitting and Overfitting.

3. Tune Problem Framing.

4. Tune Model Structure.

5. Tune Learning Behavior.

Let’s get started.

12.1 Evaluating LSTM Models Robustly

In this section, you will discover the procedure to use to develop a robust estimate of the skill
of your LSTM models on unseen data.

163

12.1. Evaluating LSTM Models Robustly 164

12.1.1 The Beginner’s Mistake

You fit the model to your training data and evaluate it on the test dataset, then report the skill.
Perhaps you use k-fold cross-validation to evaluate the model, then report the skill of the model.
This is a mistake made by beginners.

It looks like you’re doing the right thing, but there is a key issue you have not accounted for:
deep learning models are stochastic. Artificial neural networks like LSTMs use randomness while
being fit on a dataset, such as random initial weights and random shuffling of data during each
training epoch during stochastic gradient descent. This means that each time the same model
is fit on the same data, it may give different predictions and in turn have different overall skill.

12.1.2 Estimating Model Skill

We don’t have all possible data; if we did, we would not need to make predictions. We have a
limited sample of data, and from it we need to discover the best model we can.

We do that by splitting the data into two parts, fitting a model or specific model configuration
on the first part of the data and using the fit model to make predictions on the rest, then
evaluating the skill of those predictions. This is called a train-test split and we use the skill as
an estimate for how well we think the model will perform in practice when it makes predictions
on new data. For example, here’s some pseudocode for evaluating a model using a train-test
split:

train, test = random_split(data)

model = fit(train.X, train.y)

predictions = model.predict(test.X)

skill = compare(test.y, predictions)

Listing 12.1: Pseudocode for evaluating model skill.

A train-test split is a good approach to use if you have a lot of data or a very slow model to
train, but the resulting skill score for the model will be noisy because of the randomness in the
data (variance of the model). This means that the same model fit on different data will give
different model skill scores. If we have the resources, we would use k-fold cross-validation. But
this is generally not possible given the use of large dataset in deep learning and the slow speed
of training the model.

12.1.3 Estimating a Stochastic Model’s Skill

Stochastic models, like deep neural networks, add an additional source of randomness. This
additional randomness gives the model more flexibility when learning, but can make the model
less stable (e.g. different results when the same model is trained on the same data). This is
different from model variance that gives different results when the same model is trained on
different data.

To get a robust estimate of the skill of a stochastic model, we must take this additional
source of variance into account; we must control for it. A robust approach is to repeat the
experiment of evaluating a stochastic model multiple times. For example:

scores = list()

for i in repeats:

train, test = random_split(data)

12.2. Diagnosing Underfitting and Overfitting 165

model = fit(train.X, train.y)

predictions = model.predict(test.X)

skill = compare(test.y, predictions)

scores.append(skill)

final_skill = mean(scores)

Listing 12.2: Pseudocode for evaluating stochastic model skill.

This is my recommended procedure for estimating the skill of a deep learning model.

12.1.4 How Unstable Are Neural Networks?

It depends on your problem, on the network, and on its configuration. I would recommend
performing a sensitivity analysis to find out. Evaluate the same model on the same data many
times (30, 100, or thousands) and only vary the seed for the random number generator. Then
review the mean and standard deviation of the skill scores produced. The standard deviation
(average distance of scores from the mean score) will give you an idea of just how unstable your
model is.

12.1.5 How Many Repeats?

I would recommend at least 30, perhaps 100, even thousands, limited only by your time and
computer resources, and diminishing returns (e.g. standard error on the mean skill). More
rigorously, I would recommend an experiment that looked at the impact on estimated model
skill versus the number of repeats and the calculation of the standard error (how much the
mean estimated performance differs from the true underlying population mean).

12.1.6 After Evaluating Modes

Evaluating your models is a means to an end. It helps you choose which model to use and
which hyperparameters to use to configure it. Once you have chosen a model, you must finalize
it. This involves fitting the model on all available data and saving it for later use in making
predictions on new data where we don’t know the actual outcome. We cover the process of
model finalization in more detail in a later chapter.

12.2 Diagnosing Underfitting and Overfitting

In this section, you will discover how to use plots of the learning curves of LSTM models during
training to diagnose overfitting and underfitting.

12.2.1 Training History in Keras

You can learn a lot about the behavior of your model by reviewing its performance over time.
LSTM models are trained by calling the fit() function. This function returns a variable called
history that contains a trace of the loss and any other metrics specified during the compilation
of the model. These scores are recorded at the end of each epoch.

12.2. Diagnosing Underfitting and Overfitting 166

...

history = model.fit(...)

Listing 12.3: Example of assigning history after fitting an LSTM model.

For example, if your model was compiled to optimize the log loss (binary crossentropy)
and measure accuracy each epoch, then the log loss and accuracy will be calculated and recorded
in the history trace for each training epoch. Each score is accessed by a key in the history object
returned from calling fit(). By default, the loss optimized when fitting the model is called
loss and accuracy is called acc.

...

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

history = model.fit(X, Y, epochs=100)

print(history.history['loss'])

print(history.history['acc'])

Listing 12.4: Example of printing history after fitting an LSTM model.

Keras also allows you to specify a separate validation dataset while fitting your model
that can also be evaluated using the same loss and metrics. This can be done by setting the
validation split argument on fit() to use a portion of the training data as a validation
dataset (specifically a ration between 0.0 and 1.0).

...

history = model.fit(X, Y, epochs=100, validation_split=0.33)

Listing 12.5: Example history that validation loss calculated on a subset of the training data.

This can also be done by setting the validation data argument and passing a tuple of X
and y datasets.

...

history = model.fit(X, Y, epochs=100, validation_data=(valX, valY))

Listing 12.6: Example history that contains validation loss on a new dataset.

The metrics evaluated on the validation dataset are keyed using the same names, with a
val prefix.

...

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

history = model.fit(X, Y, epochs=100, validation_split=0.33)

print(history.history['loss'])

print(history.history['acc'])

print(history.history['val_loss'])

print(history.history['val_acc'])

Listing 12.7: Example of printing train and validation loss and accuracy.

12.2.2 Diagnostic Plots

The training history of your LSTM models can be used to diagnose the behavior of your model.
You can plot the performance of your model using the Matplotlib library. For example, you can
plot training loss vs test loss as follows:

12.2. Diagnosing Underfitting and Overfitting 167

from matplotlib import pyplot

...

history = model.fit(X, Y, epochs=100, validation_data=(valX, valY))

pyplot.plot(history.history['loss'])

pyplot.plot(history.history['val_loss'])

pyplot.title('model train vs validation loss')

pyplot.ylabel('loss')

pyplot.xlabel('epoch')

pyplot.legend(['train', 'validation'], loc='upper right')

pyplot.show()

Listing 12.8: Example of plotting train and validation loss and accuracy.

Creating and reviewing these plots can help to inform you about possible new configurations
to try in order to get better performance from your model. Next we will look at some examples.
We will consider model skill on the train and validation sets in terms of loss that is minimized.
You can use any metric that is meaningful on your problem.

12.2.3 Underfit

An underfit model is one that is demonstrated to perform well on the training dataset and poor
on the test dataset. This can be diagnosed from a plot where the training loss is lower than
the validation loss, and the validation loss has a trend that suggests further improvements are
possible. A small contrived example of an underfit LSTM model is provided below.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from matplotlib import pyplot

from numpy import array

return training data

def get_train():

seq = [[0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((len(X), 1, 1))

return X, y

return validation data

def get_val():

seq = [[0.5, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 0.9], [0.9, 1.0]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((len(X), 1, 1))

return X, y

define model

model = Sequential()

model.add(LSTM(10, input_shape=(1,1)))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mse', optimizer='adam')

fit model

12.2. Diagnosing Underfitting and Overfitting 168

X,y = get_train()

valX, valY = get_val()

history = model.fit(X, y, epochs=100, validation_data=(valX, valY), shuffle=False)

plot train and validation loss

pyplot.plot(history.history['loss'])

pyplot.plot(history.history['val_loss'])

pyplot.title('model train vs validation loss')

pyplot.ylabel('loss')

pyplot.xlabel('epoch')

pyplot.legend(['train', 'validation'], loc='upper right')

pyplot.show()

Listing 12.9: Example of an underfit LSTM plotting train and validation loss.

Running this example produces a plot of train and validation loss showing the characteristic
of an underfit model. In this case, performance may be improved by increasing the number of
training epochs.

Figure 12.1: Diagnostic line plot of underfit model with more training to do.

Alternately, a model may be underfit if performance on the training set is better than the
validation set and performance has leveled off. Below is an example of an underfit model with
insufficient memory cells.

from keras.models import Sequential

12.2. Diagnosing Underfitting and Overfitting 169

from keras.layers import Dense

from keras.layers import LSTM

from matplotlib import pyplot

from numpy import array

return training data

def get_train():

seq = [[0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((5, 1, 1))

return X, y

return validation data

def get_val():

seq = [[0.5, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 0.9], [0.9, 1.0]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((len(X), 1, 1))

return X, y

define model

model = Sequential()

model.add(LSTM(1, input_shape=(1,1)))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mae', optimizer='sgd')

fit model

X,y = get_train()

valX, valY = get_val()

history = model.fit(X, y, epochs=300, validation_data=(valX, valY), shuffle=False)

plot train and validation loss

pyplot.plot(history.history['loss'])

pyplot.plot(history.history['val_loss'])

pyplot.title('model train vs validation loss')

pyplot.ylabel('loss')

pyplot.xlabel('epoch')

pyplot.legend(['train', 'validation'], loc='upper right')

pyplot.show()

Listing 12.10: Example of an underfit LSTM plotting train and validation loss.

Running this example shows the characteristic of an underfit model that appears under-
provisioned. In this case, performance may be improved by increasing the capacity of the model,
such as the number of memory cells in a hidden layer or number of hidden layers.

12.2. Diagnosing Underfitting and Overfitting 170

Figure 12.2: Diagnostic line plot of underfit model where are larger model may be needed.

12.2.4 Good Fit

A good fit is a case where the performance of the model is good on both the train and validation
sets. This can be diagnosed from a plot where the train and validation loss decrease and stabilize
around the same point. The small example below demonstrates an LSTM model with a good fit.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from matplotlib import pyplot

from numpy import array

return training data

def get_train():

seq = [[0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((5, 1, 1))

return X, y

return validation data

def get_val():

seq = [[0.5, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 0.9], [0.9, 1.0]]

12.2. Diagnosing Underfitting and Overfitting 171

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((len(X), 1, 1))

return X, y

define model

model = Sequential()

model.add(LSTM(10, input_shape=(1,1)))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mse', optimizer='adam')

fit model

X,y = get_train()

valX, valY = get_val()

history = model.fit(X, y, epochs=800, validation_data=(valX, valY), shuffle=False)

plot train and validation loss

pyplot.plot(history.history['loss'])

pyplot.plot(history.history['val_loss'])

pyplot.title('model train vs validation loss')

pyplot.ylabel('loss')

pyplot.xlabel('epoch')

pyplot.legend(['train', 'validation'], loc='upper right')

pyplot.show()

Listing 12.11: Example of a good fit LSTM plotting train and validation loss.

Running the example creates a line plot showing the train and validation loss meeting.
Ideally, we would like to see model performance like this if possible, although this may not be
possible on challenging problems with a lot of data.

12.2. Diagnosing Underfitting and Overfitting 172

Figure 12.3: Diagnostic line plot of well fit model.

12.2.5 Overfit

An overfit model is one where performance on the train set is good and continues to improve,
whereas performance on the validation set improves to a point and then begins to degrade. This
can be diagnosed from a plot where the train loss slopes down and the validation loss slopes
down, hits an inflection point, and starts to slope up again. The example below demonstrates
an overfit LSTM model.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from matplotlib import pyplot

from numpy import array

return training data

def get_train():

seq = [[0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((5, 1, 1))

return X, y

return validation data

12.2. Diagnosing Underfitting and Overfitting 173

def get_val():

seq = [[0.5, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 0.9], [0.9, 1.0]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((len(X), 1, 1))

return X, y

define model

model = Sequential()

model.add(LSTM(10, input_shape=(1,1)))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mse', optimizer='adam')

fit model

X,y = get_train()

valX, valY = get_val()

history = model.fit(X, y, epochs=1200, validation_data=(valX, valY), shuffle=False)

plot train and validation loss

pyplot.plot(history.history['loss'][500:])

pyplot.plot(history.history['val_loss'][500:])

pyplot.title('model train vs validation loss')

pyplot.ylabel('loss')

pyplot.xlabel('epoch')

pyplot.legend(['train', 'validation'], loc='upper right')

pyplot.show()

Listing 12.12: Example of an overfit LSTM plotting train and validation loss.

Running this example creates a plot showing the characteristic inflection point in validation
loss of an overfit model. This may be a sign of too many training epochs. In this case, the
model training could be stopped at the inflection point. Alternately, the number of training
examples could be increased.

12.2. Diagnosing Underfitting and Overfitting 174

Figure 12.4: Diagnostic line plot of an overfit model.

12.2.6 Multiple Runs

LSTMs are stochastic, meaning that you will get a different diagnostic plot each run. It can be
useful to repeat the diagnostic run multiple times (e.g. 5, 10, or 30). The train and validation
traces from each run can then be plotted to give a more robust idea of the behavior of the model
over time. The example below runs the same experiment a number of times before plotting the
trace of train and validation loss for each run.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from matplotlib import pyplot

from numpy import array

from pandas import DataFrame

return training data

def get_train():

seq = [[0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((5, 1, 1))

return X, y

12.2. Diagnosing Underfitting and Overfitting 175

return validation data

def get_val():

seq = [[0.5, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 0.9], [0.9, 1.0]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((len(X), 1, 1))

return X, y

collect data across multiple repeats

train = DataFrame()

val = DataFrame()

for i in range(5):

define model

model = Sequential()

model.add(LSTM(10, input_shape=(1,1)))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mse', optimizer='adam')

X,y = get_train()

valX, valY = get_val()

fit model

history = model.fit(X, y, epochs=300, validation_data=(valX, valY), shuffle=False)

story history

train[str(i)] = history.history['loss']

val[str(i)] = history.history['val_loss']

plot train and validation loss across multiple runs

pyplot.plot(train, color='blue', label='train')

pyplot.plot(val, color='orange', label='validation')

pyplot.title('model train vs validation loss')

pyplot.ylabel('loss')

pyplot.xlabel('epoch')

pyplot.show()

Listing 12.13: Example of multiple diagnostic plots of train and validation loss.

In the resulting plot we can see that the general trend of underfitting holds across 5 runs
and is a stronger case for perhaps increasing the number of training epochs.

12.3. Tune Problem Framing 176

Figure 12.5: Diagnostic line plot of multiple model runs.

12.3 Tune Problem Framing

This section outlines areas of biggest leverage to consider when tuning the framing of your
sequence prediction problem.

12.3.1 Value Scaling

Evaluate the effect of different data value scaling schemes on the skill of your model. Remember
to update the activation function on the first hidden layer and/or the output layer to handle
the range of values provided as input or predicted as output. Some schemes to try include:

� Normalize values.

� Standardize values.

12.3.2 Value Encoding

Evaluate the effect of different value encodings on the skill of your model. Sequences of labels,
like characters or words, are often integer encoded and one hot encoded. Test the assumption

12.3. Tune Problem Framing 177

that this is the most skillful approach on your sequence prediction problem. Some encoding
schemes to try include:

� Real-value encoding.

� Integer encoding.

� One hot encoding.

12.3.3 Stationarity

When working with a sequence of real values, like a time series, consider making the series
stationary.

� Remove Trends: If the series contains variance in the mean (e.g. a trend), you can use
differencing.

� Remove Seasonality: If the series contains a periodic cycle (e.g. seasonality), you can
use seasonal adjustment.

� Remove Variance: If the series contains an increasing or decreasing variance, you can
use a log or Box-Cox transform.

12.3.4 Input Sequence Length

The choice of the input sequence length may be specific to your problem domain, although
sometimes it may be your choice as part of framing the problem for the LSTM. Evaluate the
effect of using different input sequence lengths on the skill of your model. Remember, the length
of the input sequence also impacts the Backpropagation through time used to estimate the error
gradient when updating the weights. It can have an effect on how quickly the model learns and
what is learned.

12.3.5 Sequence Model Type

There are 4 main sequence model types for a given sequence prediction problem:

� One-to-one.

� One-to-many.

� Many-to-one.

� Many-to-many.

Keras supports them all. Frame your problem using each of the sequence model types and
evaluate model skill to help you choose a framing for your problem.

12.4. Tune Model Structure 178

12.4 Tune Model Structure

This section outlines some areas of biggest leverage when tuning the structure of your LSTM
Model.

12.4.1 Architecture

As we have seen, there are many LSTM architectures to choose from. Some architectures lend
themselves to certain sequence prediction problems, although most are flexible enough that they
may be adapted to your sequence prediction problems. Test your assumptions of architecture
suitability. Evaluate the skill of each LSTM architecture listed in this book (and perhaps
beyond) on your sequence prediction problem.

12.4.2 Memory Cells

We cannot know the best number of memory cells for a given sequence prediction problem or
LSTM architecture. You must test a suite of different memory cells in your LSTM hidden layers
to see what works best.

� Try grid searching the number of memory cells by 100s, 10s, or finer.

� Try using numbers of cells quoted in research papers.

� Try randomly searching the number of cells between 1 and 1000.

I often see round numbers of memory cells used such as 100 or 1000. I expect these were
chosen on a whim. Below is a small example of grid searching the number of memory cells 1, 5
or 10 in the first hidden LSTM layer with a small number of repeats (5). You could use this
example as a template for your own experiments.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from matplotlib import pyplot

from pandas import DataFrame

from numpy import array

return training data

def get_train():

seq = [[0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((5, 1, 1))

return X, y

return validation data

def get_val():

seq = [[0.5, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 0.9], [0.9, 1.0]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((len(X), 1, 1))

return X, y

12.4. Tune Model Structure 179

fit an LSTM model

def fit_model(n_cells):

define model

model = Sequential()

model.add(LSTM(n_cells, input_shape=(1,1)))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mse', optimizer='adam')

fit model

X,y = get_train()

history = model.fit(X, y, epochs=500, shuffle=False, verbose=0)

evaluate model

valX, valY = get_val()

loss = model.evaluate(valX, valY, verbose=0)

return loss

define scope of search

params = [1, 5, 10]

n_repeats = 5

grid search parameter values

scores = DataFrame()

for value in params:

repeat each experiment multiple times

loss_values = list()

for i in range(n_repeats):

loss = fit_model(value)

loss_values.append(loss)

print('>%d/%d param=%f, loss=%f' % (i+1, n_repeats, value, loss))

store results for this parameter

scores[str(value)] = loss_values

summary statistics of results

print(scores.describe())

box and whisker plot of results

scores.boxplot()

pyplot.show()

Listing 12.14: Example of grid searching the number of memory cells.

Running the example prints the progress of the search each iteration. Summary statistics of
the results for each number of memory cells are then shown at the end.

>1/5 param=1.000000, loss=0.318098

>2/5 param=1.000000, loss=0.209199

>3/5 param=1.000000, loss=0.121033

>4/5 param=1.000000, loss=0.180944

>5/5 param=1.000000, loss=0.202586

>1/5 param=5.000000, loss=0.078900

>2/5 param=5.000000, loss=0.085735

>3/5 param=5.000000, loss=0.040546

>4/5 param=5.000000, loss=0.107958

>5/5 param=5.000000, loss=0.166691

>1/5 param=10.000000, loss=0.021442

>2/5 param=10.000000, loss=0.038652

>3/5 param=10.000000, loss=0.033825

>4/5 param=10.000000, loss=0.020847

>5/5 param=10.000000, loss=0.023117

12.4. Tune Model Structure 180

1 5 10

count 5.000000 5.000000 5.000000

mean 0.206372 0.095966 0.027577

std 0.071474 0.046404 0.008132

min 0.121033 0.040546 0.020847

25% 0.180944 0.078900 0.021442

50% 0.202586 0.085735 0.023117

75% 0.209199 0.107958 0.033825

max 0.318098 0.166691 0.038652

Listing 12.15: Example output of grid searching the number of memory cells.

A box and whisker plot of the final results is created to compare the distribution of model
skill for each of the different model configurations.

Figure 12.6: Box and whisker plots of the results of tuning the number of memory cells.

12.4.3 Hidden Layers

As with the number of memory cells, we cannot know the best number of LSTM hidden layers
for a given sequence prediction problem or LSTM architecture. Often deeper is better when you
have a lot of data.

� Try grid searching the number of layers and memory cells together.

12.5. Tune Learning Behavior 181

� Try using patterns of stacking LSTM layers quoted in research papers.

� Try randomly searching the number of layers and memory cells together.

There are patterns of creating deep convolutional neural networks (CNNs). I have not seen
any sophisticated patterns for LSTMs beyond the encoder-decoder pattern. I see this as a great
open question to explore. Can you devise patterns of stacked LSTMs that work well in general?

12.4.4 Weight Initialization

The Keras LSTM layer uses the glorot uniform weight initialization by default. This weight
initialization works well in general, but I have had great success using normal type weight
initialization with LSTMs. Evaluate the effect of different weight initialization schemes on your
model skill. Keras offers a great list of weight initialization schemes for you to try. At the very
least, compare the skill of these four methods:

� random uniform

� random normal

� glorot uniform

� glorot normal

12.4.5 Activation Functions

The activation function (technically the transfer function as it transfers the weighted activation
of the neuron) is often fixed by the framing and scale of the input or output layers. For example,
LSTMs use a sigmoid activation function for input and so inputs are often in the scale 0-1.
The classification or regression nature of the sequence prediction problem determines the type
of activation function to use in the output layer. Challenge the default of sigmoid activation
function in the LSTM layers. Try other methods, perhaps in tandem with rescaling input values.
For example try:

� sigmoid

� tanh

� relu

Further, challenge whether all LSTM layers in a stacked LSTM need to use the same
activation function. In practice, I rarely see a model do better than using sigmoid, but this
assumption should be confirmed.

12.5 Tune Learning Behavior

This section outlines some areas of biggest leverage when tuning the learning behavior of your
LSTM Model.

12.5. Tune Learning Behavior 182

12.5.1 Optimization Algorithm

A good default implementation of gradient descent is the Adam algorithm. This is because it
automatically uses a custom learning rate for each parameter (weight) in the model, combining
the best properties of the AdaGrad and RMSProp methods. Further, the implementation of
Adam in Keras uses the best practice initial values for each of the configuration parameters.

Nevertheless, challenge that Adam is the right gradient descent algorithm for your model.
Evaluate the performance of models with different gradient descent algorithms. Some ideas of
well performing modern algorithms include:

� Adam

� RMSprop

� Adagrad

12.5.2 Learning Rate

The learning rate controls how much to update the weights in response to the estimated gradient
at the end of each batch. This can have a large impact on the trade-off between how quickly or
how well the model learns the problem. Consider using the classical stochastic gradient descent
(SGD) optimizer and explore different learning rate and momentum values. More than just
searching values, you can evaluate regimes that vary the learning rate.

� Grid search learning rate values (e.g. 0.1, 0.001, 0.0001).

� Experiment with a learning rate that decays with the number of epochs (e.g. via callback).

� Experiment with updating a fit model with training runs with smaller and smaller learning
rates.

The learning rate is tightly coupled with the number of epochs (number of passes through
the training samples). Generally, the smaller the learning rate (e.g. 0.0001)), the more training
epochs will be required. This is a linear relationship so the reverse is true, where fewer epochs
are required for larger learning rates (e.g 0.1).

12.5.3 Batch Size

The batch size is the number of samples between updates to the model weights. A good default
batch size is 32 samples.

[batch size] is typically chosen between 1 and a few hundreds, e.g. [batch size] = 32
is a good default value, with values above 10 taking advantage of the speedup of
matrix-matrix products over matrix-vector products.

— Practical Recommendations For Gradient-based Training Of Deep Architectures, 2012.

The amount of data and framing of the sequence prediction problem may influence the choice
of batch size. Nevertheless, challenge your first best guess and try some alternate configurations

12.5. Tune Learning Behavior 183

� Batch size of 1 for stochastic gradient descent.

� Batch size of n, where n is the number of samples for batch gradient descent.

� Grid search batch sizes in powers of 2 from 2 to 256 and beyond.

Larger batch sizes often result in faster convergence of the model, but perhaps to a less
optimal final set of weights. A batch size of 1 (stochastic gradient descent) where updates are
made after each sample often results in a very noisy learning process. Below is a small example
of grid searching the batch sizes 1, 2 and 3 with a small number of repeats (5). You could use
this example as a template for your own experiments.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from matplotlib import pyplot

from pandas import DataFrame

from numpy import array

return training data

def get_train():

seq = [[0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((5, 1, 1))

return X, y

return validation data

def get_val():

seq = [[0.5, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 0.9], [0.9, 1.0]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((len(X), 1, 1))

return X, y

fit an LSTM model

def fit_model(n_batch):

define model

model = Sequential()

model.add(LSTM(10, input_shape=(1,1)))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mse', optimizer='adam')

fit model

X,y = get_train()

history = model.fit(X, y, epochs=500, shuffle=False, verbose=0, batch_size=n_batch)

evaluate model

valX, valY = get_val()

loss = model.evaluate(valX, valY, verbose=0)

return loss

define scope of search

params = [1, 2, 3]

n_repeats = 5

grid search parameter values

12.5. Tune Learning Behavior 184

scores = DataFrame()

for value in params:

repeat each experiment multiple times

loss_values = list()

for i in range(n_repeats):

loss = fit_model(value)

loss_values.append(loss)

print('>%d/%d param=%f, loss=%f' % (i+1, n_repeats, value, loss))

store results for this parameter

scores[str(value)] = loss_values

summary statistics of results

print(scores.describe())

box and whisker plot of results

scores.boxplot()

pyplot.show()

Listing 12.16: Example of grid searching the batch size.

Running the example prints the progress of the search each iteration. Summary statistics of
the results for each configuration are then shown at the end.

>1/5 param=1.000000, loss=0.000563

>2/5 param=1.000000, loss=0.001454

>3/5 param=1.000000, loss=0.000777

>4/5 param=1.000000, loss=0.000132

>5/5 param=1.000000, loss=0.001058

>1/5 param=2.000000, loss=0.002671

>2/5 param=2.000000, loss=0.000326

>3/5 param=2.000000, loss=0.002337

>4/5 param=2.000000, loss=0.000697

>5/5 param=2.000000, loss=0.000730

>1/5 param=3.000000, loss=0.001040

>2/5 param=3.000000, loss=0.002549

>3/5 param=3.000000, loss=0.002768

>4/5 param=3.000000, loss=0.017184

>5/5 param=3.000000, loss=0.004616

1 2 3

count 5.000000 5.000000 5.000000

mean 0.000797 0.001352 0.005631

std 0.000499 0.001070 0.006581

min 0.000132 0.000326 0.001040

25% 0.000563 0.000697 0.002549

50% 0.000777 0.000730 0.002768

75% 0.001058 0.002337 0.004616

max 0.001454 0.002671 0.017184

Listing 12.17: Example output of grid searching the batch size.

A box and whisker plot of the final results is created to compare the distribution of model
skill for each of the different configurations.

12.5. Tune Learning Behavior 185

Figure 12.7: Box and whisker plots of the results of tuning the batch size.

12.5.4 Regularization

LSTMs can quickly converge and even overfit on some sequence prediction problems. To counter
this, regularization methods can be used. Dropout randomly skips neurons during training,
forcing others in the layer to pick up the slack. It is simple and effective. Start with dropout.
Dropout rates between 0.0 (no dropout) and 1.0 (complete dropout) can be set on LSTM layers
with the two different arguments:

� dropout: dropout applied on input connections.

� recurrent dropout: dropout applied to recurrent connections.

For example:

model.add(LSTM(..., dropout=0.4))

Listing 12.18: Example of adding a layer with input connection dropout.

Some ideas to try include:

� Grid search different dropout percentages.

� Experiment with dropout in the input, hidden, and output layers.

12.6. Further Reading 186

LSTMs also supports other forms of regularization such as weight regularization that imposes
pressure to decrease the size of network weights. Again, these can be set on the LSTM layer with
the arguments:

� bias regularizer: regularization on the bias weights.

� kernel regularizer: regularization on the input weights.

� recurrent regularizer: regularization on the recurrent weights.

Rather than a percentage as in the case of Dropout, you can use a regularization class such
as L1, L2, or L1L2 regularization. I would recommend using L1L2 and use values between 0 and
1 that allow to also simulate the L1 and L2 approaches. For example, you could try:

� L1L2(0.0, 0.0), e.g. baseline or no regularization.

� L1L2(0.01, 0.0), e.g. L1.

� L1L2(0.0, 0.01), e.g. L2.

� L1L2(0.01, 0.01), e.g. L1L2 also called elastic net.

model.add(LSTM(..., kernel_regularizer=L1L2(0.01, 0.01)))

Listing 12.19: Example of adding a layer with input weight regularization.

In practice, I have found Dropout on the input connections and regularization on input
weights separately to result in better performing models.

12.5.5 Early Stopping

The number of training epochs can be very time consuming to tune. An alternative approach is
to configure a large number of training epochs. Then setup something to check the performance
of the model on train and validation datasets and stop training if it looks like the model is
starting to over learn. As such, early stopping is a type of regularization to curb overfitting.

You can experiment with early stopping in Keras with an EarlyStopping callback. It
requires that you specify a few configuration parameters, such as the metric to monitor (e.g.
val loss), the number of epochs over which no improvement in the monitored metric are
observed (e.g. 100). A list of callbacks is provided to the fit() function when training the
model. For example:

from keras.callbacks import EarlyStopping

es = EarlyStopping(monitor='val_loss', min_delta=100)

model.fit(..., callbacks=[es])

Listing 12.20: Example of using the EarlyStopping callback.

12.6 Further Reading

This section provides some resources for further reading.

12.7. Extensions 187

12.6.1 Books

� Empirical Methods for Artificial Intelligence, 1995.
http://amzn.to/2tjlD4B

12.6.2 Research Papers

� Practical recommendations for gradient-based training of deep architectures, 2012.
https://arxiv.org/abs/1206.5533

� Recurrent Neural Network Regularization, 2014.
https://arxiv.org/abs/1409.2329

12.6.3 APIs

� Sequential Model API in Keras.
https://keras.io/models/sequential/

� LSTM Layer API in Keras.
https://keras.io/layers/recurrent/#lstm

� Weight Initializers API in Keras.
https://keras.io/initializers/

� Optimized API in Keras.
https://keras.io/optimizers/

� Callbacks API in Keras.
https://keras.io/callbacks/

12.7 Extensions

Do you want to dive deeper into tuning LSTMs? This section lists some challenging extensions
to this lesson.

� Select one example from the Models part of the book and develop and summarize robust
estimate of the models skill.

� Select one example from the Models part of the book and develop diagnostic plots of the
model’s performance.

� Select one example from the Models part of the book and tune performance by focusing
on the problem framing (e.g. change the prediction model type used, scaling, encoding,
etc.). You have to get creative.

� Select one example from the Models part of the book and tune performance by focusing on
the model structure (e.g. number of layers, memory cells, etc). You may need to increase
the problem difficulty.

http://amzn.to/2tjlD4B
https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1409.2329
https://keras.io/models/sequential/
https://keras.io/layers/recurrent/#lstm
https://keras.io/initializers/
https://keras.io/optimizers/
https://keras.io/callbacks/

12.8. Summary 188

� Select one example from the Models part of the book and tune performance by focusing
on the model behavior (e.g. number of epochs, training examples, batches, etc.). You may
need to increase the problem difficulty.

12.8 Summary

In this lesson, you discovered how to tune LSTM Hyperparameters. Specifically, you learned:

� How to develop a robust evaluation of the skill of your LSTM models.

� How to use learning curves to diagnose the behavior of your LSTM models.

� How to tune the problem framing, structure, and learning behavior of your LSTM models.

In the next lesson, you will discover how to finalize an LSTM model and use it to make
predictions on new data.

Chapter 13

How to Make Predictions with LSTMs

13.0.1 Lesson Goal

The goal of this lesson is to learn how to finalize an LSTM model and use it to make predictions
on new data. After completing this lesson, you will know:

� How to develop a final LSTM Model for use in your project.

� How to save LSTM Models to file for later use.

� How to make predictions on new data with loaded LSTM Models.

13.0.2 Lesson Overview

This lesson is divided into 3 parts; they are:

1. What Is a Final LSTM Model?

2. Save LSTM Models to File.

3. Make Predictions on New Data.

Let’s get started.

13.1 Finalize a LSTM Model

In this section, you will discover how to finalize your LSTM model.

13.1.1 What Is a Final LSTM Model?

A final LSTM model is one that you use to make predictions on new data. That is, given new
examples of input data, you want to use the model to predict the expected output. This may
be a classification (assign a label) or a regression (a real value). The goal of your sequence
prediction project is to arrive at a final model that performs the best, where best is defined by:

� Data: the historical data that you have available.

189

13.1. Finalize a LSTM Model 190

� Time: the time you have to spend on the project.

� Procedure: the data preparation steps, algorithm or algorithms, and the chosen algorithm
configurations.

In your project, you gather the data, spend the time you have, and discover the data
preparation procedures, algorithm to use, and how to configure it. The final model is the
pinnacle of this process, the end you seek in order to start actually making predictions. There is
no such thing as a perfect model. There is only the best model that you were able to discover.

13.1.2 What is the Purpose of Using Train/Test Sets?

Creating a train and test split of your dataset is one method to quickly evaluate the performance
of an algorithm on your problem. The training dataset is used to prepare a model, to train
it. We pretend the test dataset is new data where the output values are withheld from the
algorithm. We gather predictions from the trained model on the inputs from the test dataset
and compare them to the withheld output values of the test set.

Comparing the predictions to the withheld outputs in the test dataset allows us to compute
a performance measure for the model on the test dataset. This is an estimate of the skill of
the algorithm trained on the problem when making predictions on unseen data. Using k-fold
cross-validation is a more robust and more computationally expensive way of calculating this
same estimate. We use the estimate of the skill of our LSTM model on a training dataset as a
proxy for estimating what the skill of the model will be in practice when making predictions on
new data.

This is quite a leap and requires that:

� The procedure that you use is sufficiently robust that the estimate of skill is close to what
we actually expect on unseen data.

� The choice of performance measure accurately captures what we are interested in measuring
in predictions on unseen data.

� The choice of data preparation is well understood and repeatable on new data, and
reversible if predictions need to be returned to their original scale or related to the original
input values.

� The choice of model architecture and configuration makes sense for its intended use and
operational environment (e.g. complexity).

A lot rides on the estimated skill of the whole procedure on the test set or the k-fold
cross-validation procedure.

13.1.3 How to Finalize an LSTM Model?

You finalize a model by applying the chosen LSTM architecture and configuration on all of your
data. There is no train and test split and no cross-validation folds. Put all of the data back
together into one large training dataset and fit your model. That’s it. With the finalized model,
you can:

13.2. Save LSTM Models to File 191

� Save the model for later or operational use.

� Load the model and make predictions on new data.

Why Not Keep the Best Trained Model?

It is possible that your LSTM model takes many days or weeks to prepare. In that case, you
may want to keep the model fit on the train dataset without fitting it on the combination of
train and test sets. This is a trade-off between the possible benefits of training the model on
the additional data and the time and computational cost for fitting a new model.

Won’t the Performance of the Final Model Be Different?

The whole idea of using a robust test harness was to estimate the skill of the final model. Ideally,
the difference in skill between the estimate and what is observed in the final model is minor
to the point of measurement error or that the skill is lifted as a function of the number of
training examples used to fit the model. You can test both of these assumptions by performing
a sensitivity analysis of model skill versus number of training examples.

Won’t the Final Model Be Different Each Time it Is Trained?

The estimate of skill that you used to choose the final model should be averaged over multiple
runs. That way, you know that on average the chosen model architecture and configuration is
skillful. You could try to control for the stochastic nature of the model by training multiple
final models and using an ensemble or average of their predictions in practice. Again, you can
design a sensitivity analysis to test whether this will result in a more stable set of predictions.

13.2 Save LSTM Models to File

Keras provides an API to allow you to save your model to file. There are two options:

1. Save model to a single file.

2. Save architecture and weights to separate files.

In both cases, the HDF5 file format is used that efficiently stores large arrays of numbers
on disk. You will need to confirm that you have the h5py Python library installed. It can be
installed as follows:

sudo pip install h5py

Listing 13.1: Install the required h5py Python library.

13.2.1 Save to Single File

You can save a fit Keras model to file using the save() function on the model. For example:

13.2. Save LSTM Models to File 192

define model

model = Sequential()

model.add(LSTM(...))

compile model

model.compile(...)

fit model

model.fit(...)

save model to single file

model.save('lstm_model.h5')

Listing 13.2: Example of saving a fit LSTM model to a single file.

This single file will contain the model architecture and weights. It also includes the
specification of the chosen loss and optimization algorithm so that you can resume training.
The model can be loaded again (from a different script in a different Python session) using the
load model() function.

from keras.models import load_model

load model from single file

model = load_model('lstm_model.h5')

make predictions

yhat = model.predict(X, verbose=0)

print(yhat)

Listing 13.3: Example of loading a saved LSTM model from a single file.

Below is a complete example of fitting an LSTM model, saving it to a single file and later
loading it again. Although the loading of the model is in the same script, this section may be
run from another script in another Python session. Running the example saves the model to
the file lstm model.h5.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from numpy import array

from keras.models import load_model

return training data

def get_train():

seq = [[0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((len(X), 1, 1))

return X, y

define model

model = Sequential()

model.add(LSTM(10, input_shape=(1,1)))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mse', optimizer='adam')

fit model

X,y = get_train()

model.fit(X, y, epochs=300, shuffle=False, verbose=0)

save model to single file

model.save('lstm_model.h5')

13.2. Save LSTM Models to File 193

snip...

later, perhaps run from another script

load model from single file

model = load_model('lstm_model.h5')

make predictions

yhat = model.predict(X, verbose=0)

print(yhat)

Listing 13.4: Example of saving a fit LSTM model to a single file and later loading it again.

13.2.2 Save to Separate Files

You can save the model architecture (e.g. layers and how they connect) and weights (arrays
of numbers) to separate files. I recommend this approach as it allows you to develop updated
model weights and replace one file while ensuring the model architecture is left unchanged.

Save Architecture

Keras provides two formats for preserving the model architecture: JSON and YAML formats.
The benefit of these formats is that they are human readable. The choice is really a matter of
taste or preference. The to json() or to yaml() functions on the fit model can be called to
save your model to the JSON or YAML formats respectively. They return a formatted string
that you can then save to disk using the standard Python files open() and write() functions
for saving an ASCII file.

...

convert model architecture to JSON format

architecture = model.to_json()

save architecture to JSON file

with open('architecture.json', 'wt') as json_file:

json_file.write(architecture)

Listing 13.5: Example of saving a fit LSTM model architecture to a file.

The model architecture can be loaded again (from a different script in a different Python
session) using the model from json() or model from yaml() functions. Once loaded, the
model from json() or model from yaml() functions can be used to create a Keras model from
the architecture.

from keras.models import model_from_json

load architecture from JSON File

json_file = open('architecture.json', 'rt')

architecture = json_file.read()

json_file.close()

create model from architecture

model = model_from_json(architecture)

Listing 13.6: Example of loading a saved LSTM model architecture from a file.

13.2. Save LSTM Models to File 194

Save Weights

Keras provides a function on a fit model to save model weights. The save weights() function
will save model weights to an HDF5 formatted file.

...

save weights to hdf5 file

model.save_weights('weights.h5')

Listing 13.7: Example of saving a fit LSTM model weights to a file.

The model weights can be loaded again (from a different script in a different Python session)
using the load weights() function on the model object. This means that you must already
have a model, either created anew or created from a loaded architecture.

model = ...

load weights from hdf5 file

model.load_weights('weights.h5')

Listing 13.8: Example of loading a saved LSTM model weights from a file.

Example

We can put this together into a single worked example. The demonstration below fits an LSTM
model on a small contrived dataset. The model architecture is saved in JSON format and the
model weights are stored in HDF5 format. You can easily change the example to save the
architecture in YAML format if you prefer. The model is then loaded from these files and used
to make a prediction.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from numpy import array

from keras.models import model_from_json

return training data

def get_train():

seq = [[0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]]

seq = array(seq)

X, y = seq[:, 0], seq[:, 1]

X = X.reshape((len(X), 1, 1))

return X, y

define model

model = Sequential()

model.add(LSTM(10, input_shape=(1,1)))

model.add(Dense(1, activation='linear'))

compile model

model.compile(loss='mse', optimizer='adam')

fit model

X,y = get_train()

model.fit(X, y, epochs=300, shuffle=False, verbose=0)

convert model architecture to JSON format

architecture = model.to_json()

save architecture to JSON file

13.3. Make Predictions on New Data 195

with open('architecture.json', 'wt') as json_file:

json_file.write(architecture)

save weights to hdf5 file

model.save_weights('weights.h5')

snip...

later, perhaps run from another script

load architecture from JSON File

json_file = open('architecture.json', 'rt')

architecture = json_file.read()

json_file.close()

create model from architecture

model = model_from_json(architecture)

load weights from hdf5 file

model.load_weights('weights.h5')

make predictions

yhat = model.predict(X, verbose=0)

print(yhat)

Listing 13.9: Example of saving a fit LSTM model to separate files and later loading it again.

Running this example saves the model architecture to the file architecture.json and the
weights to the file weights.h5. The model is then loaded from these same files. Although the
model loading is demonstrated in the same script, you could just as easily run that section from
another script in a different Python session.

13.3 Make Predictions on New Data

After you have finalized your model and saved it to file, you can load it and use it to make
predictions.

� On a sequence regression problem, this may be the prediction of the real value at the next
time step.

� On a sequence classification problem, this may be a class outcome for a given input
sequence.

Or it may be any other variation based on the specifics of your sequence prediction problem.
You would like an outcome from your model (yhat) given an input sequence (X) where the
true outcome for the sequence (y) is currently unknown. You may be interested in making
predictions in a production environment, as the backend to an interface, or manually. It really
depends on the goals of your project. Making predictions on new data involves two key steps:

1. Data Preparation.

2. Predicting Values.

13.3. Make Predictions on New Data 196

13.3.1 Data Preparation

Any data preparation performed on your training data prior to fitting your final model must
also be applied to any new data prior to making predictions. For example, if your training data
was normalized, then all new data for which you would like a prediction must also be normalized.
In turn, this means that the coefficients used to normalize the data (e.g. min and max values)
too must be saved as part of finalizing your model and later loaded when a prediction is needed.

This applies to other forms of data preparation such as log transforms, standardizing values,
and making a series stationary. The specific way that raw data is transformed into its vectorized
form must also be duplicated. This includes the padding or truncating of sequences and,
importantly, the reshaping of raw sequences into the 3D format of samples, time steps, and
features.

Depending on the framing of your problem, the number of samples when predicting may
refer to the number of input sequences for which you would like an output prediction. It may
be 1 for a single prediction. Think of all the data preparation performed in transforming raw
data to the data used to train the final model as a pipeline. This pipeline must also be applied
any time a prediction is to be made.

13.3.2 Predicting Values

Predicting is the easy part. We covered the basic API in Chapter 4, but we will review it again
in more detail. It involves taking the prepared input data (X) and calling one of the Keras
prediction methods on the loaded model. Remember that the input for making a prediction
(X) is only comprised of the input sequence data required to make a prediction, not all prior
training data. In the case of predicting the next value in one sequence, the input sequence
would be 1 sample with the fixed number of time steps and features used when you defined and
fit your model.

For example, a raw prediction in the shape and scale of the activation function of the output
layer can be made by calling the predict() function on the model:

X = ...

model = ...

yhat = model.predict(X)

Listing 13.10: Example of making a prediction with a fit LSTM model on new data.

The prediction of a class index can be made by calling the predict classes() function on
the model.

X = ...

model = ...

yhat = model.predict_classes(X)

Listing 13.11: Example of predicting classes with a fit LSTM model on new data.

The prediction of probabilities can be made by calling the predict proba() function on
the model.

X = ...

model = ...

yhat = model.predict_proba(X)

Listing 13.12: Example of predicting probabilities with a fit LSTM model on new data.

13.4. Further Reading 197

13.4 Further Reading

13.4.1 API

� How can I save a Keras model? in the Keras FAQ.
https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

� Save and Load Keras API.
https://keras.io/models/about-keras-models/

13.5 Extensions

Do you want to dive deeper into finalizing an LSTM model? This section lists some challenging
extensions to this lesson.

� List one or more prediction problems where you would like to develop an LSTM model
and save it for later use in making predictions.

� Update an example from the Models part of the book to save the model to a multiple
files, then load it again from another script and make predictions.

� Update an example from the Models part of the book with a classification output to
predict probabilities, and present the probabilities, perhaps graphically.

� Update an example from the Models part of the book with a classification output to use
the predict() function, then use the argmax() function to interpret the results as class
values.

� Select an example from the Models part of the book, update it save the model and data
preparation information to file (e.g. scaling or encoding information). Load the model
and data preparation information and use the model to make predictions on new data
that must be prepared prior to making a prediction.

13.6 Summary

In this lesson, you discovered how to make best use of new data in updating your finalized
LSTM models. Specifically, you learned:

� How to develop a final LSTM Model for use in your project.

� How to save LSTM Models to file for later use.

� How to make predictions on new data with loaded LSTM Models.

In the next lesson, you will discover how to update finalized LSTM models in order to make
the best use of new data.

https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model
https://keras.io/models/about-keras-models/

Chapter 14

How to Update LSTM Models

14.0.1 Lesson Goal

The goal of this lesson is to learn how to update LSTM models after new data becomes available.
After completing this lesson, you will know:

� The interest in monitoring, recovering skill, and lifting model skill with new data.

� The 5-step process to updating a finalized LSTM model with new data.

� The 4 key approaches to consider when developing an updated LSTM model with new
data.

14.0.2 Lesson Overview

This lesson is divided into 3 parts; they are:

1. What About New Data?

2. What Is LSTM Model Updating?

3. 5-Step Process to Update LSTM Models.

Let’s get started.

14.1 What About New Data?

Once you finalize your LSTM model, you can use it to make predictions. But that is not the
end of the story. After months or years, you will start to accumulate a corpus of new data. This
will raise some important questions. The first of which is:

14.1.1 Is the model still skillful?

It is important to have a handle on this question as part of the ongoing maintenance of your
model. Once you’re monitoring model skill, perhaps you notice that the skill of predictions is
decreasing over time.

198

14.2. What Is LSTM Model Updating? 199

14.1.2 Can we recover model skill?

The nature of the sequence prediction problem addressed by your LSTM model may change
over time. A model is only as good as the data used to train it. If the data used to train your
model was from one year ago, perhaps that new data collected to day would result in a different
and more skillful model. Perhaps your model predictions are just as skillful as when you first
developed the model.

14.1.3 Can we lift the model skill?

It may be possible to lift the skill of your model by making use of this new data.

14.2 What Is LSTM Model Updating?

Updating LSTM models refers to techniques used to make best use of new data to evaluate
and improve the skill of an existing and already finalized LSTM model. The goal is to evaluate
whether new or updated candidate models are more skillful than the existing finalized model.
This does not mean tuning the existing model on the old training dataset. It explicitly refers to
how to best incorporate new data into the updating of the existing model which may or may
not involve tuning model hyperparameters. Like all modeling, it is important to be systematic
when updating LSTM models.

14.3 5-Step Process to Update LSTM Models

Updating an existing LSTM model involves 5 key steps. They are:

1. Collect New Data.

2. Evaluate Existing Model.

3. Develop Updated Models.

4. Evaluate Updated Models.

5. Replace Model.

Let’s take a closer look at each in turn.

14.3.1 Collect New Data

Without new data, you cannot update your model. This means complete and high-quality input
sequences in the case of sequence regression or complete input sequences and their associated
class labels in the case of sequence classification.

If the sequence prediction problem has not changed, the data should have the same format
and be prepared in the same way as was done in the development of the original model. Ideally,
it would also be valuable to have access to the data used to train the existing model.

You may have months or years of data, perhaps more than you can handle. If this is the
case, consider reusing the methods you used to select data to train and evaluate the existing

14.3. 5-Step Process to Update LSTM Models 200

model. Consider selecting a subsample of sequences, perhaps the most recent, perhaps a portion
from each time interval. Having access to a lot of data (even too much) can be useful. We may
or may not decide to use some in the updating of the model (a slow process). But we could use
most or all of it to evaluate the existing and new candidate models (a fast process).

14.3.2 Evaluate Existing Model

It is critical to monitor the skill of the predictions of your model. As with evaluating candidate
models, evaluating the performance of a finalized model requires having access to both the
predictions and the true observations. Specifically, this means that:

1. Predictions: You must store some or all predictions made by the finalized model.

2. Observations: You must gather and store some or all of the true or actual observations.

Given model predictions and observations, you can evaluate the skill of the finalized model
on recent data and quantify it by an appropriate interval, such as hour, day, week, or month. It
is useful to have a picture of model skill over a long period of time, even back to the inception
of the model. This may require back-testing the model and regenerating any predictions that
were not stored.

Plotting model skill over time will help you answer the question as to whether model skill is
holding steady or degrading. This in turn informs you as to whether your project is that of
maintenance to recover model skill or development to improve model skill.

� Degrading Model Skill: Your goal is to recover model skill back to better than historical
levels by making use of new data.

� Stable Model Skill: Your goal is to lift model skill over the stable level by making use
of new data.

� Improving Model Skill: Great! Your goal may be to investigate what has changed in
the new data compared to the old data used to fit the original model.

14.3.3 Develop Updated Models

There are many ways to make use of new data. Below are 4 options for you to consider.

� Update model on new data. The existing model is loaded and trained on additional
epochs using only the new data.

� Update model on old and new data. The existing model is loaded and trained on
additional epochs using a mixture of the original data used to fit the model (old data and
new data).

� Develop a new model on new data. A new model is developed from scratch and fit
only on the new data.

� Develop a new model on new and old data. A new model is developed and fit on
the old and new data.

14.3. 5-Step Process to Update LSTM Models 201

The specific approach you choose may depend on your sequence prediction problem, your
specific implementation, or, ultimately, the skill of the candidate models. Updating a model is
as simple as loading the model and running additional training epochs. Internally, the model is
defined by a structure (how things hang together) and weights (arrays of numbers). Generally,
updating considers the work of finding a good network structure to have been addressed and
that we are primarily interested in a refinement process of the network weights. For example,
below is a snippet for how weight updating may look in Keras:

load model from file

model = ...

access new data

newX, newY = ...

fit model on new data

model.fit(newX, newY, ...)

Listing 14.1: Example of updating an existing LSTM model.

Tuning Updated Models

There are tuning options when updating a model that you may want to consider. For example:

� Learning rate: perhaps a small learning rate is required to make small adjustments to
the weights rather than large jumps.

� Epochs: perhaps a small number of iterations over the new sequences are required to
dial in the weights to the new data.

� Samples: perhaps only the most recent samples from the last day, week, month, or year
are required to dial in the model.

Consider grid searching over a list of these and other concerns with the focus on tuning the
weights to the new data, rather than wholesale replacing them with new and vastly different
weights.

Tuning New Models

If you decide to explore developing a new model from scratch, the whole suite of model selection
and hyperparameter tuning is open to you. This can be daunting, especially for the first update
project. Consider leaving the model structure fixed and focus on developing a new set of weights
by making use of the new data.

Perhaps focus efforts on which and how many data samples to use to fit the model. I would
recommend exploring a sensitivity analysis of model skill versus the scope of recent data used
for training (e.g. a model fit on last month’s data, one fit on the last 3 months, etc.).

14.3.4 Evaluating Candidate Models

The updated models are in fact new candidate models to replace the existing model. As such,
these models must be rigorously evaluated and compared to the existing model.

14.3. 5-Step Process to Update LSTM Models 202

Evaluation Data

This means making predictions on the same data used to evaluate the existing model and
interpreting the skill scores to see how the candidate models perform. The skill does not have
to be compared for all time; in fact, it probably should not. I would recommend focusing on
evaluating and comparing model skill on sequences from a recent interval, such as the last
month, 3 months, or 6 months, depending on the problem and data availability.

Robust Evaluation

The skill scores are relative. The existing model is the baseline and improving over the baseline
is the goal. This means that the results must be robust.

� Repeat the experiments over a large corpus of test data to control for the variance in the
stochastic data.

� Repeat experiments multiple times to control for the variance in the stochastic algorithms.

� Consider the use of statistical tests to inform you as to whether the difference between
two populations of results is significant and to what degree.

Deciding whether or not to replace an existing model with a new model must be a strongly
defended decision and the only defense you have is robust results.

Fair Baseline

The candidates must robustly outperform the existing model. The existing model is the baseline.
But, it is important to allow the existing model to provide a fair point of comparison. If you
have developed models that update the existing weights with n additional epochs on new data,
then consider including a candidate model that updates the existing model on old data for n

additional epochs. This and similar points of comparison will help you tease out whether any
change in model skill is due to the additional epochs or can be credited to the new data.

Present Results

The decision may not be yours alone, e.g. other stakeholders. Consider presenting results using
charts like box-and-whisker plots that allow you to visually compare the distribution of results,
including the mean, median, and other percentiles. Also consider presenting the results not
in terms of model skill (e.g. loss or accuracy), but the effect the change in skill has on users,
experience, costs, or other business concerns.

14.3.5 Replace Model

Once you have evaluated the candidate models, you may have a new model to replace the
existing model. Given sign-off from stakeholders, this should be a straightforward process. I
recommend storing model weights and model structure in separate configuration files. This
allows you to update model weights alone when updating models, which is a smaller and less
risky change.

It is important to monitor the skill of the new model and the old model in parallel for some
time going forward. This ongoing monitoring of the current and previous models is critical.

14.4. Extensions 203

� It allows you to defend the decision of updating the model if all is well.

� It gives you evidence as to whether the previous model should be switched back if all is
not well.

� It helps in reporting to stakeholders on the health and ongoing improvement of the system.

14.4 Extensions

Do you want to dive deeper into updating a fit LSTM model? This section lists some challenging
extensions to this lesson.

� List 5 sequence prediction problems that if were already modeled could be improved with
new data.

� List 5 considerations that a team and stakeholders may want to review before replacing
an existing model in production with a new model.

� Research the topic of concept drift and describe the implications for one sequence prediction
problem.

� Outline a strategy that you could use to continually monitor the skill of a deployed LSTM
model given a stream of new data for which it must make hourly predictions and for which
truth values are made available the next day.

� Select one example from the Models part of the book and go through the model updating
procedure process with new data that varies systematically from the data used to fit the
original model.

14.5 Summary

In this lesson, you discovered how to make best use of new data in updating your finalized
LSTM models. Specifically, you learned:

� The interest in monitoring, recovering skill, and lifting model skill with new data.

� The 5-step process to updating a finalized LSTM model with new data.

� The 4 key approaches to consider when developing an updated LSTM model with new
data.

This was the final lesson, well done!

Part V

Appendix

204

Appendix A

Getting Help

This is just the beginning of your journey with LSTMs for sequence prediction with Keras in
Python. As you start to work on projects and expand your existing knowledge of the techniques
you may need help. This appendix points out some of the best sources of help.

A.1 Official Keras Destinations

This section lists the official Keras sites that you may find helpful.

� Keras Official Blog.
https://blog.keras.io/

� Keras API Documentation.
https://keras.io/

� Keras Source Code Project.
https://github.com/fchollet/keras

A.2 Where to Get Help with Keras

This section lists the 9 best places I know where you can get help with Keras and LSTMs.

� Keras Users Google Group.
https://groups.google.com/forum/#!forum/keras-users

� Keras Slack Channel (you must request to join).
https://keras-slack-autojoin.herokuapp.com/

� Keras on Gitter.
https://gitter.im/Keras-io/Lobby#

� Keras tag on StackOverflow.
https://stackoverflow.com/questions/tagged/keras

� Keras tag on CrossValidated.
https://stats.stackexchange.com/questions/tagged/keras

205

https://blog.keras.io/
https://keras.io/
https://github.com/fchollet/keras
https://groups.google.com/forum/#!forum/keras-users
https://keras-slack-autojoin.herokuapp.com/
https://gitter.im/Keras-io/Lobby#
https://stackoverflow.com/questions/tagged/keras
https://stats.stackexchange.com/questions/tagged/keras

A.3. How to Ask Questions 206

� Keras tag on DataScience.
https://datascience.stackexchange.com/questions/tagged/keras

� Keras Topic on Quora.
https://www.quora.com/topic/Keras

� Keras Github Issues.
https://github.com/fchollet/keras/issues

� Keras on Twitter.
https://twitter.com/hashtag/keras

A.3 How to Ask Questions

Knowing where to get help is the first step, but you need to know how to get the most out of
these resources. Below are some tips that you can use:

� Boil your question down to the simplest form. E.g. not something broad like my model
does not work or how does x work.

� Search for answers before asking questions.

� Provide complete code and error messages.

� Boil your code down to the smallest possible working example that demonstrates the issue.

A.4 Contact the Author

You are not alone. If you ever have any questions about LSTMs or this book, please contact me
directly. I will do my best to help.

Jason Brownlee
Jason@MachineLearningMastery.com

https://datascience.stackexchange.com/questions/tagged/keras
https://www.quora.com/topic/Keras
https://github.com/fchollet/keras/issues
https://twitter.com/hashtag/keras

Appendix B

How to Setup a Workstation for Deep
Learning

It can be difficult to install a Python machine learning environment on some platforms. Python
itself must be installed first and then there are many packages to install, and it can be confusing
for beginners. In this tutorial, you will discover how to setup a Python machine learning
development environment using Anaconda.

After completing this tutorial, you will have a working Python environment to begin learning,
practicing, and developing machine learning and deep learning software. These instructions are
suitable for Windows, Mac OS X, and Linux platforms. I will demonstrate them on OS X, so
you may see some mac dialogs and file extensions.

B.1 Overview

In this tutorial, we will cover the following steps:

1. Download Anaconda

2. Install Anaconda

3. Start and Update Anaconda

4. Install Deep Learning Libraries

Note: The specific versions may differ as the software and libraries are updated frequently.

B.2 Download Anaconda

In this step, we will download the Anaconda Python package for your platform. Anaconda is a
free and easy-to-use environment for scientific Python.

� 1. Visit the Anaconda homepage.
https://www.continuum.io/

� 2. Click Anaconda from the menu and click Download to go to the download page.
https://www.continuum.io/downloads

207

https://www.continuum.io/
https://www.continuum.io/downloads

B.2. Download Anaconda 208

Figure B.1: Click Anaconda and Download.

� 3. Choose the download suitable for your platform (Windows, OSX, or Linux):

– Choose Python 3.6

– Choose the Graphical Installer

B.3. Install Anaconda 209

Figure B.2: Choose Anaconda Download for Your Platform.

This will download the Anaconda Python package to your workstation. I’m on OS X, so I
chose the OS X version. The file is about 426 MB. You should have a file with a name like:

Anaconda3-4.4.0-MacOSX-x86_64.pkg

Listing B.1: Example filename on Mac OS X.

B.3 Install Anaconda

In this step, we will install the Anaconda Python software on your system. This step assumes
you have sufficient administrative privileges to install software on your system.

� 1. Double click the downloaded file.

� 2. Follow the installation wizard.

B.3. Install Anaconda 210

Figure B.3: Anaconda Python Installation Wizard.

Installation is quick and painless. There should be no tricky questions or sticking points.

B.4. Start and Update Anaconda 211

Figure B.4: Anaconda Python Installation Wizard Writing Files.

The installation should take less than 10 minutes and take up a little more than 1 GB of
space on your hard drive.

B.4 Start and Update Anaconda

In this step, we will confirm that your Anaconda Python environment is up to date. Anaconda
comes with a suite of graphical tools called Anaconda Navigator. You can start Anaconda
Navigator by opening it from your application launcher.

B.4. Start and Update Anaconda 212

Figure B.5: Anaconda Navigator GUI.

You can use the Anaconda Navigator and graphical development environments later; for now,
I recommend starting with the Anaconda command line environment called conda. Conda is
fast, simple, it’s hard for error messages to hide, and you can quickly confirm your environment
is installed and working correctly.

� 1. Open a terminal (command line window).

� 2. Confirm conda is installed correctly, by typing:

conda -V

Listing B.2: Check the conda version.

You should see the following (or something similar):

conda 4.3.21

Listing B.3: Example conda version.

� 3. Confirm Python is installed correctly by typing:

python -V

Listing B.4: Check the Python version.

You should see the following (or something similar):

Python 3.6.1 :: Anaconda 4.4.0 (x86_64)

Listing B.5: Example Python version.

B.4. Start and Update Anaconda 213

If the commands do not work or have an error, please check the documentation for help for
your platform. See some of the resources in the Further Reading section.

� 4. Confirm your conda environment is up-to-date, type:

conda update conda

conda update anaconda

Listing B.6: Update conda and anaconda.

You may need to install some packages and confirm the updates.

� 5. Confirm your SciPy environment.

The script below will print the version number of the key SciPy libraries you require for
machine learning development, specifically: SciPy, NumPy, Matplotlib, Pandas, Statsmodels,
and Scikit-learn. You can type python and type the commands in directly. Alternatively, I
recommend opening a text editor and copy-pasting the script into your editor.

scipy

import scipy

print('scipy: %s' % scipy.__version__)

numpy

import numpy

print('numpy: %s' % numpy.__version__)

matplotlib

import matplotlib

print('matplotlib: %s' % matplotlib.__version__)

pandas

import pandas

print('pandas: %s' % pandas.__version__)

statsmodels

import statsmodels

print('statsmodels: %s' % statsmodels.__version__)

scikit-learn

import sklearn

print('sklearn: %s' % sklearn.__version__)

Listing B.7: Code to check that key Python libraries are installed.

Save the script as a file with the name: versions.py. On the command line, change your
directory to where you saved the script and type:

python versions.py

Listing B.8: Run the script from the command line.

You should see output like the following:

scipy: 0.19.0

numpy: 1.12.1

matplotlib: 2.0.2

pandas: 0.20.1

statsmodels: 0.8.0

sklearn: 0.18.1

Listing B.9: Sample output of versions script.

B.5. Install Deep Learning Libraries 214

B.5 Install Deep Learning Libraries

In this step, we will install Python libraries used for deep learning, specifically: Theano,
TensorFlow, and Keras. NOTE: I recommend using Keras for deep learning and Keras only
requires one of Theano or TensorFlow to be installed. You do not need both. There may be
problems installing TensorFlow on some Windows machines.

� 1. Install the Theano deep learning library by typing:

conda install theano

Listing B.10: Install Theano with conda.

� 2. Install the TensorFlow deep learning library by typing:

conda install -c conda-forge tensorflow

Listing B.11: Install TensorFlow with conda.

Alternatively, you may choose to install using pip and a specific version of TensorFlow for
your platform.

� 3. Install Keras by typing:

pip install keras

Listing B.12: Install Keras with pip.

� 4. Confirm your deep learning environment is installed and working correctly.

Create a script that prints the version numbers of each library, as we did before for the SciPy
environment.

theano

import theano

print('theano: %s' % theano.__version__)

tensorflow

import tensorflow

print('tensorflow: %s' % tensorflow.__version__)

keras

import keras

print('keras: %s' % keras.__version__)

Listing B.13: Code to check that key deep learning libraries are installed.

Save the script to a file deep versions.py. Run the script by typing:

python deep_versions.py

Listing B.14: Run script from the command line.

You should see output like:

theano: 0.9.0

tensorflow: 1.2.1

keras: 2.0.6

Listing B.15: Sample output of the deep learning versions script.

B.6. Further Reading 215

B.6 Further Reading

This section provides resources if you want to know more about Anaconda.

� Anaconda homepage.
https://www.continuum.io/

� Anaconda Navigator.
https://docs.continuum.io/anaconda/navigator.html

� The conda command line tool.
http://conda.pydata.org/docs/index.html

� Instructions for installing TensorFlow in Anaconda.
https://www.tensorflow.org/get_started/os_setup#anaconda_installation

B.7 Summary

Congratulations, you now have a working Python development environment for machine learning
and deep learning. You can now learn and practice machine learning and deep learning on your
workstation.

https://www.continuum.io/
https://docs.continuum.io/anaconda/navigator.html
http://conda.pydata.org/docs/index.html
https://www.tensorflow.org/get_started/os_setup#anaconda_installation

Appendix C

How to Use Deep Learning in the
Cloud

Large deep learning models require a lot of compute time to run. You can run them on your
CPU but it can take hours or days to get a result. If you have access to a GPU on your desktop,
you can drastically speed up the training time of your deep learning models. In this project you
will discover how you can get access to GPUs to speed up the training of your deep learning
models by using the Amazon Web Service (AWS) infrastructure. For less than a dollar per hour
and often a lot cheaper you can use this service from your workstation or laptop. After working
through this project you will know:

� How to create an account and log-in to Amazon Web Service.

� How to launch a server instance for deep learning.

� How to configure a server instance for faster deep learning on the GPU.

Let’s get started.

C.1 Project Overview

The process is quite simple because most of the work has already been done for us. Below is an
overview of the process.

� Setup Your AWS Account.

� Launch Your Server Instance.

� Login and Run Your Code.

� Close Your Server Instance.

Note, it costs money to use a virtual server instance on Amazon. The cost is low for
model development (e.g. less than one US dollar per hour), which is why this is so attractive,
but it is not free. The server instance runs Linux. It is desirable although not required that you
know how to navigate Linux or a Unix-like environment. We’re just running our Python scripts,
so no advanced skills are needed.

Note: The specific versions may differ as the software and libraries are updated frequently.

216

C.2. Setup Your AWS Account 217

C.2 Setup Your AWS Account

You need an account on Amazon Web Services1.

� 1. You can create account by the Amazon Web Services portal and click Sign in to the
Console. From there you can sign in using an existing Amazon account or create a new
account.

Figure C.1: AWS Sign-in Button

� 2. You will need to provide your details as well as a valid credit card that Amazon can
charge. The process is a lot quicker if you are already an Amazon customer and have your
credit card on file.

1https://aws.amazon.com

https://aws.amazon.com

C.3. Launch Your Server Instance 218

Figure C.2: AWS Sign-In Form

Once you have an account you can log into the Amazon Web Services console. You will see
a range of different services that you can access.

C.3 Launch Your Server Instance

Now that you have an AWS account, you want to launch an EC2 virtual server instance on
which you can run Keras. Launching an instance is as easy as selecting the image to load and
starting the virtual server. Thankfully there is already an image available that has almost
everything we need it is called the Deep Learning AMI Amazon Linux Version and was
created and is maintained by Amazon. Let’s launch it as an instance.

� 1. Login to your AWS console if you have not already.
https://console.aws.amazon.com/console/home

https://console.aws.amazon.com/console/home

C.3. Launch Your Server Instance 219

Figure C.3: AWS Console

� 2. Click on EC2 for launching a new virtual server.

� 3. Select US West Orgeon from the drop-down in the top right hand corner. This is
important otherwise you will not be able to find the image we plan to use.

� 4. Click the Launch Instance button.

� 5. Click Community AMIs. An AMI is an Amazon Machine Image. It is a frozen instance
of a server that you can select and instantiate on a new virtual server.

Figure C.4: Community AMIs

� 6. Enter ami-dfb13ebf in the Search community AMIs search box and press enter (this
is the current AMI id for v2.0 but the AMI may have been updated since, you check for a
more recent id2). You should be presented with a single result.

2https://aws.amazon.com/marketplace/pp/B01M0AXXQB

https://aws.amazon.com/marketplace/pp/B01M0AXXQB

C.3. Launch Your Server Instance 220

Figure C.5: Select a Specific AMI

� 7. Click Select to choose the AMI in the search result.

� 8. Now you need to select the hardware on which to run the image. Scroll down and select
the g2.2xlarge hardware. This includes a GPU that we can use to significantly increase
the training speed of our models.

Figure C.6: Select g2.2xlarge Hardware

� 9. Click Review and Launch to finalize the configuration of your server instance.

� 10. Click the Launch button.

� 11. Select Your Key Pair.

If you have a key pair because you have used EC2 before, select Choose an existing key pair
and choose your key pair from the list. Then check I acknowledge.... If you do not have a key
pair, select the option Create a new key pair and enter a Key pair name such as keras-keypair.
Click the Download Key Pair button.

C.3. Launch Your Server Instance 221

Figure C.7: Select Your Key Pair

� 12. Open a Terminal and change directory to where you downloaded your key pair.

� 13. If you have not already done so, restrict the access permissions on your key pair file.
This is required as part of the SSH access to your server. For example, open a terminal on
your workstation and type:

cd Downloads

chmod 600 keras-aws-keypair.pem

Listing C.1: Change Permissions of Your Key Pair File.

� 14. Click Launch Instances. If this is your first time using AWS, Amazon may have to
validate your request and this could take up to 2 hours (often just a few minutes).

� 15. Click View Instances to review the status of your instance.

C.4. Login, Configure and Run 222

Figure C.8: Review Your Running Instance

Your server is now running and ready for you to log in.

C.4 Login, Configure and Run

Now that you have launched your server instance, it is time to log in and start using it.

� 1. Click View Instances in your Amazon EC2 console if you have not done so already.

� 2. Copy the Public IP (down the bottom of the screen in Description) to your clipboard.
In this example my IP address is 54.186.97.77. Do not use this IP address, it will
not work as your server IP address will be different.

� 3. Open a Terminal and change directory to where you downloaded your key pair. Login
to your server using SSH, for example:

ssh -i keras-aws-keypair.pem ec2-user@54.186.97.77

Listing C.2: Log-in To Your AWS Instance.

� 4. If prompted, type yes and press enter.

C.5. Build and Run Models on AWS 223

You are now logged into your server.

Figure C.9: Log in Screen for Your AWS Server

We need to make two small changes before we can start using Keras. This will just take a
minute. You will have to do these changes each time you start the instance.

C.4.1 Update Keras

Update to a specific version of Keras known to work on this configuration, at the time of writing
the latest version of Keras is version 2.0.6. We can specify this version as part of the upgrade of
Keras via pip.

sudo pip install --upgrade keras==2.0.6

Listing C.3: Update Keras Using pip.

You can also confirm that Keras is installed and is working correctly by typing:

python -c "import keras; print(keras.__version__)"

Listing C.4: Script To Check Keras Configuration.

You should see:

Using TensorFlow backend.

I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library

libcublas.so.7.5 locally

I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library

libcudnn.so.5 locally

I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library

libcufft.so.7.5 locally

I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library

libcuda.so.1 locally

I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library

libcurand.so.7.5 locally

2.0.4

Listing C.5: Sample Output of Script to Check Keras Configuration.

You are now free to run your code.

C.5 Build and Run Models on AWS

This section offers some tips for running your code on AWS.

C.6. Close Your EC2 Instance 224

C.5.1 Copy Scripts and Data to AWS

You can get started quickly by copying your files to your running AWS instance. For example,
you can copy the examples provided with this book to your AWS instance using the scp

command as follows:

scp -i keras-aws-keypair.pem -r src ec2-user@54.186.97.77:~/

Listing C.6: Example for Copying Sample Code to AWS.

This will copy the entire src/ directory to your home directory on your AWS instance. You
can easily adapt this example to get your larger datasets from your workstation onto your AWS
instance. Note that Amazon may impose charges for moving very large amounts of data in and
out of your AWS instance. Refer to Amazon documentation for relevant charges.

C.5.2 Run Models on AWS

You can run your scripts on your AWS instance as per normal:

python filename.py

Listing C.7: Example of Running a Python script on AWS.

You are using AWS to create large neural network models that may take hours or days to
train. As such, it is a better idea to run your scripts as a background job. This allows you to
close your terminal and your workstation while your AWS instance continues to run your script.
You can easily run your script as a background process as follows:

nohup /path/to/script >/path/to/script.log 2>&1 < /dev/null &

Listing C.8: Run Script as a Background Process.

You can then check the status and results in your script.log file later.

C.6 Close Your EC2 Instance

When you are finished with your work you must close your instance. Remember you are charged
by the amount of time that you use the instance. It is cheap, but you do not want to leave an
instance on if you are not using it.

� 1. Log out of your instance at the terminal, for example you can type:

exit

Listing C.9: Log-out of Server Instance.

� 2. Log in to your AWS account with your web browser.

� 3. Click EC2.

� 4. Click Instances from the left-hand side menu.

C.6. Close Your EC2 Instance 225

Figure C.10: Review Your List of Running Instances

� 5. Select your running instance from the list (it may already be selected if you only have
one running instance).

Figure C.11: Select Your Running AWS Instance

� 6. Click the Actions button and select Instance State and choose Terminate. Confirm
that you want to terminate your running instance.

It may take a number of seconds for the instance to close and to be removed from your list
of instances.

C.7. Tips and Tricks for Using Keras on AWS 226

C.7 Tips and Tricks for Using Keras on AWS

Below are some tips and tricks for getting the most out of using Keras on AWS instances.

� Design a suite of experiments to run beforehand. Experiments can take a long
time to run and you are paying for the time you use. Make time to design a batch of
experiments to run on AWS. Put each in a separate file and call them in turn from another
script. This will allow you to answer multiple questions from one long run, perhaps
overnight.

� Always close your instance at the end of your experiments. You do not want to
be surprised with a very large AWS bill.

� Try spot instances for a cheaper but less reliable option. Amazon sell unused
time on their hardware at a much cheaper price, but at the cost of potentially having your
instance closed at any second. If you are learning or your experiments are not critical, this
might be an ideal option for you. You can access spot instances from the Spot Instance
option on the left hand side menu in your EC2 web console.

C.8 Further Reading

Below is a list of resources to learn more about AWS and developing deep learning models in
the cloud.

� An introduction to Amazon Elastic Compute Cloud (EC2) if you are new to all of this.
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

� An introduction to Amazon Machine Images (AMI).
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

� Deep Learning AMI Amazon Linux Version on the AMI Marketplace.
https://aws.amazon.com/marketplace/pp/B01M0AXXQB

C.9 Summary

In this lesson you discovered how you can develop and evaluate your large deep learning models
in Keras using GPUs on the Amazon Web Service. You learned:

� Amazon Web Services with their Elastic Compute Cloud offers an affordable way to run
large deep learning models on GPU hardware.

� How to setup and launch an EC2 server for deep learning experiments.

� How to update the Keras version on the server and confirm that the system is working
correctly.

� How to run Keras experiments on AWS instances in batch as background tasks.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/marketplace/pp/B01M0AXXQB

Part VI

Conclusions

227

How Far You Have Come

You made it. Well done. Take a moment and look back at how far you have come.

1. What LSTMs are and why they are the go-to deep learning technique for sequence
prediction.

2. How LSTMs are trained using the BPTT algorithm which also imposes a way of thinking
about your sequence prediction problem.

3. How to prepare data for sequence prediction including scaling, encoding values and
splitting, padding and truncating input sequences.

4. How the 5-step life-cycle for LSTM models works in Keras, including define, compile, fit,
evaluate, and predict.

5. How there are 4 main types of sequence prediction models and how to implement each in
Keras.

6. How the vanilla LSTM is comprised of an input layer, a hidden LSTM layer, and a Dense

output layer.

7. How hidden LSTM layers can be stacked but must expose the output of the entire sequence
from layer to layer.

8. How CNNs can be used as input layers for LSTMs when working with image data.

9. How the Encoder-Decoder architecture can be used when predicting variable length output
sequences.

10. How providing input sequences forward and backward in Bidirectional LSTMs can lift the
skill on some problems.

11. How LSTMs can learn the structured relationship of input data which in turn can be used
to generate new examples.

12. How to develop robust estimates of LSTM model skill and how to best start tuning model
hyperparameters to get the most out of your model.

13. How a final LSTM model can be saved to file and later loaded in order to make predictions
on new data.

14. How fit LSTM models can be updated when new data is made available.

228

229

Don’t make light of this. You have come a long way in a short amount of time. You
have developed the important and valuable skill of being able to implement and work through
sequence prediction problems using LSTMs in Python. You can now confidently bring LSTM
models to your own sequence prediction problems. The sky is the limit.

I want to take a moment and sincerely thank you for letting me help you start your deep
learning for time series forecasting journey. I hope you keep learning and have fun as you
continue to master machine learning.

Jason Brownlee
2017

	Copyright
	Contents
	Preface
	I Introductions
	Welcome
	Who Is This Book For?
	About Your Outcomes
	How to Read This Book
	About the Book Structure
	About Lessons
	About LSTM Models
	About Prediction Problems
	About Python Code Examples
	About Further Reading
	About Getting Help
	Summary

	II Foundations
	What are LSTMs
	Sequence Prediction Problems
	Limitations of Multilayer Perceptrons
	Promise of Recurrent Neural Networks
	The Long Short-Term Memory Network
	Applications of LSTMs
	Limitations of LSTMs
	Further Reading
	Extensions
	Summary

	How to Train LSTMs
	Backpropagation Training Algorithm
	Unrolling Recurrent Neural Networks
	Backpropagation Through Time
	Truncated Backpropagation Through Time
	Configurations for Truncated BPTT
	Keras Implementation of TBPTT
	Further Reading
	Extensions
	Summary

	How to Prepare Data for LSTMs
	Prepare Numeric Data
	Prepare Categorical Data
	Prepare Sequences with Varied Lengths
	Sequence Prediction as Supervised Learning
	Further Reading
	Extensions
	Summary

	How to Develop LSTMs in Keras
	Define the Model
	Compile the Model
	Fit the Model
	Evaluate the Model
	Make Predictions on the Model
	LSTM State Management
	Examples of Preparing Data
	Further Reading
	Extensions
	Summary

	Models for Sequence Prediction
	Sequence Prediction
	Models for Sequence Prediction
	Mapping Applications to Models
	Cardinality from Time Steps (not Features!)
	Two Common Misunderstandings
	Further Reading
	Extensions
	Summary

	III Models
	How to Develop Vanilla LSTMs
	The Vanilla LSTM
	Echo Sequence Prediction Problem
	Define and Compile the Model
	Fit the Model
	Evaluate the Model
	Make Predictions With the Model
	Complete Example
	Further Reading
	Extensions
	Summary

	How to Develop Stacked LSTMs
	The Stacked LSTM
	Damped Sine Wave Prediction Problem
	Define and Compile the Model
	Fit the Model
	Evaluate the Model
	Make Predictions with the Model
	Complete Example
	Further Reading
	Extensions
	Summary

	How to Develop CNN LSTMs
	The CNN LSTM
	Moving Square Video Prediction Problem
	Define and Compile the Model
	Fit the Model
	Evaluate the Model
	Make Predictions With the Model
	Complete Example
	Further Reading
	Extensions
	Summary

	How to Develop Encoder-Decoder LSTMs
	Lesson Overview
	The Encoder-Decoder LSTM
	Addition Prediction Problem
	Define and Compile the Model
	Fit the Model
	Evaluate the Model
	Make Predictions with the Model
	Complete Example
	Further Reading
	Extensions
	Summary

	How to Develop Bidirectional LSTMs
	The Bidirectional LSTM
	Cumulative Sum Prediction Problem
	Define and Compile the Model
	Fit the Model
	Evaluate the Model
	Make Predictions with the Model
	Complete Example
	Further Reading
	Extensions
	Summary

	How to Develop Generative LSTMs
	The Generative LSTM
	Shape Generation Problem
	Define and Compile the Model
	Fit the Model
	Make Predictions with the Model
	Evaluate the Model
	Complete Example
	Further Reading
	Extensions
	Summary

	IV Advanced
	How to Diagnose and Tune LSTMs
	Evaluating LSTM Models Robustly
	Diagnosing Underfitting and Overfitting
	Tune Problem Framing
	Tune Model Structure
	Tune Learning Behavior
	Further Reading
	Extensions
	Summary

	How to Make Predictions with LSTMs
	Finalize a LSTM Model
	Save LSTM Models to File
	Make Predictions on New Data
	Further Reading
	Extensions
	Summary

	How to Update LSTM Models
	What About New Data?
	What Is LSTM Model Updating?
	5-Step Process to Update LSTM Models
	Extensions
	Summary

	V Appendix
	Getting Help
	Official Keras Destinations
	Where to Get Help with Keras
	How to Ask Questions
	Contact the Author

	How to Setup a Workstation for Deep Learning
	Overview
	Download Anaconda
	Install Anaconda
	Start and Update Anaconda
	Install Deep Learning Libraries
	Further Reading
	Summary

	How to Use Deep Learning in the Cloud
	Project Overview
	Setup Your AWS Account
	Launch Your Server Instance
	Login, Configure and Run
	Build and Run Models on AWS
	Close Your EC2 Instance
	Tips and Tricks for Using Keras on AWS
	Further Reading
	Summary

	VI Conclusions
	How Far You Have Come

