
GSOC’12: Extend and improve filter design
components

Sreeraj Rajendran

April 13, 2012

1 Introduction

Digital filter is one of the inevitable signal processing blocks in any DSP
system. GNU Radio provides a true free and open platform for designing
practical filters which can be used in real time. The proposal addresses ideas
for improving filter design components as suggested by Martin Braun (CEL,
KIT). Section 2 covers basic details about digital filter designs and the filters
currently available in GNU Radio. A small review of the feature additions
suggested by the mentor is included in section 3 for a better understanding.
Proposed improvements are detailed in section 4 of the document. A rough
project schedule is given in section 5. The proposal is concluded in section
6.

2 Digital filters and GNU Radio filters

Digital filters have a long design history from 1960s onwards. The major
filter design techniques include Butterworth filter design, Chebyschev ap-
proximation, Remez exchange algorithm, Parks-McClellan algorithm (based
on remez exchange algorithm) etc. Most of the algorithm classification is
based on the nature of the passband and stopband (equiripple, monotonic
etc). A brief explanation of some of these filter designs is covered in the
implementation section.

GNU Radio provides two ways for designing digital filters. First one by
making use of ’gr firdes’ which returns taps for windowed FIR filters. The

1



second method uses ’optfir’ module which calls ’gr remez’ function which
implements Parks-McClellan algorithm for finding optimum filter taps. The
filter taps thus obtained are given to the filter blocks (gr fft filter ccc etc)
which does basic convolution in time to complete the filter functionality.
The program ’gr filter design.py’ is a QT frontend which makes use of these
modules to design the filter.

3 Suggested feature improvements

A summary of the feature improvements suggested by the mentor are listed
below

• Estimation of number of taps with the Parks-McClellen algo-
rithm: The estimation of the order of the filter for given requirements
(passband, stopband, magnitude, allowable magnitude deviations etc)
is always crucial.

• Quality Assurance codes to test design algorithms: Test codes
need to be updated for all filter designs to make sure that the design
algorithms are robust.

• Design tools for IIR filters: Currently there are no design tools
available in gnuradio to support design of IIR filters, half band filters
etc.

• Pole-zero plots: Pole zero plots will be very useful in understanding
the rationality and stability of the final digital filter.

• Improved GUI look and feel and an interactive GUI: This is the
pre-final stage of project and this includes addition of filter responses
and other features to the graphical user interface once the filter design is
complete. Filter responses gives us an idea about how well the designed
filter performs.

• GRC integration for gr filter design.py: In the final stage the
designing tool should be integrated to GRC so that the filter taps and
other values can be imported to filter blocks directly.

2



4 Proposed work during GSOC’12 period

Proposed improvements for GNU Radio filters are listed below on priority
basis.

• QA test codes for gr remez design module: In GNU Radio Parks-
McClellan algorithm is implemented in ’gr remez.cc’ which is used for
optimum filter designs. This module lacks quality assurance tests. QA
tests are available for FIR design module (gr firdes) which do basic
coefficient checks and tap symmetry checks. The ’optfir’ module makes
use of ’gr remez’ to design different filters. QA tests will be added for
’gr remez’ and associated ’optfir’ module.

• Design tools for IIR filters: FIR filters over-perform IIR filters
when control of phase and instability due to numerical errors are con-
sidered. IIR filters usually requires fewer filter coefficients for the same
filtering action when compared to FIR filters and hence it is faster
and requires only less memory space. IIR filters are useful in designs
where linear phase response characteristics are not required (e.g signal
amplitude monitoring applications). Figure 1 gives a general design
procedure for IIR filter design. Sample code for IIR and FIR filters,
their pole zero plots and documentation can be found in the reposi-
tory (git://github.com/zeroXzero/dsp filter design.git). IIR filter de-
sign module along with QA tests will be added and improvements will
be made in gr filter design.py for designing IIR filters, displaying their
pole-zero plots etc.

• Improve GUI for filter response comparisons: Filter responses
can be plotted to analyze designed filters. A feature shall be added to
the current gr filter design.py tool to compare different filter responses
(e.g one using firdes module and one using optfir module). It is de-
sirable to add filter time responses like impulse and step response for
the designed filter taps. These two features will be added to the GUI
designing tool.

3



Un-
normalized

discrete
filter specs

Normalized
discrete

filter specs

Corres-
ponding
Analog

filter specs

Critical
Low pass

frequencies

Find low
pass filter

specifi-
cations

Design
(Cheby-
shev or
butter-
worth)

Convert
to analog

filter of ap-
propriate

type

Convert
to digital
filter by
applying
bilinear
transfor-
mation

Figure 1: General filter design procedure

5 Timeline

As per the GSOC schedule there are 18 weeks including midterm evalua-
tion, final evaluation, documentation and code clean-up period. This is just
a rough estimate which is very likely to change after discussions with the
mentor and the coding time may vary depending on the coding complexity.

• April 25 - May 4 – Initial discussions with the mentor

• May 5 - May 11 – Learning period- Parks-McClellan algorithm and
basic GNU Radio QA tests.

• May 12 - May 18 – Coding - QA tests for gr remez module.

• May 19 - May 25 – Coding - QA tests for gr remez module.

• May 26 - June 1 – Coding - QA tests for optfir module.

• June 2 - June 8 – Coding - IIR filter design module.

• June 9 - June 15 – Midterm evaluation submission includes QA tests
and initial IIR filter design code

4



• June 16 - June 22 – Coding - IIR filter design module.

• June 23 - June 29 – Coding - IIR filter design module.

• June 30 - July 6 – Coding - QA tests for IIR filter module.

• July 7 - July 13 – Coding - QA tests for IIR filter module.

• July 14 - July 20 – Integrate IIR filter design code to GUI (gr filter design.py).

• July 21 - July 27 – Add pole-zero plots for IIR filters to GUI.

• July 27 - Aug 3 – Add filter time responses to GUI.

• Aug 4 - Aug 10 – Improve gr filter design.py which will help to com-
pare different filter designs.

• Aug 11 - Aug 20 – Integration, code clean-up, adding documentation,
and final submission.

6 Conclusion

A general overview of the Filter design enhancement project is given in the
previous sections. A sample codeset for FIR and IIR filter designs are also
provided in the repository. The project is divided into proper subsections so
that the mentor and community can easily track the progress of the project.

References

[1] Theory and Application of Digital Signal Processing, Rabiner L R. 1975.

[2] GNU Radio Documentation http://gnuradio.org/doc/doxygen/modules.html

[3] Digital Signal Processing and its Applications (EE-603) lecture notes by
Prof.Vikram M. Gadre http://www.ee.iitb.ac.in/wiki/faculty/vmgadre

5


