Neural Style and MSG-Net
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
dataset init Aug 23, 2017
images url Aug 24, 2017
models Create download_model.py Jun 6, 2018
.editorconfig init Aug 23, 2017
.gitignore init Aug 23, 2017
LICENSE Create LICENSE Nov 3, 2017
README.md download model May 24, 2018
data.py rm torchvision Aug 31, 2017
main.py fix training May 24, 2018
net.py fix training May 24, 2018
option.py url Aug 24, 2017
utils.py fix training May 24, 2018

README.md

MXNet-Gluon-Style-Transfer

This repo has been included in official MXNet repo, which provides the implementations of MSG-Net and Neural Style Transfer. We also provide PyTorch and Torch implementations.

Tabe of content

Neural Style

A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

python main.py optim --content-image images/content/venice-boat.jpg --style-image images/styles/candy.jpg
  • --content-image: path to content image.
  • --style-image: path to style image.
  • --output-image: path for saving the output image.
  • --content-size: the content image size to test on.
  • --style-size: the style image size to test on.
  • --cuda: set it to 1 for running on GPU, 0 for CPU.

Real-time Style Transfer

Multi-style Generative Network for Real-time Transfer [arXiv] [project]
Hang Zhang, Kristin Dana
@article{zhang2017multistyle,
	title={Multi-style Generative Network for Real-time Transfer},
	author={Zhang, Hang and Dana, Kristin},
	journal={arXiv preprint arXiv:1703.06953},
	year={2017}
}

Stylize Images Using Pre-trained MSG-Net

  1. Download the pre-trained model
    python models/download_model.py
  2. Test the model
    python main.py eval --content-image images/content/venice-boat.jpg --style-image images/styles/candy.jpg --model models/21styles.params --content-size 1024
  • If you don't have a GPU, simply set --cuda=0. For a different style, set --style-image path/to/style. If you would to stylize your own photo, change the --content-image path/to/your/photo. More options:

    • --content-image: path to content image you want to stylize.
    • --style-image: path to style image (typically covered during the training).
    • --model: path to the pre-trained model to be used for stylizing the image.
    • --output-image: path for saving the output image.
    • --content-size: the content image size to test on.
    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Train Your Own MSG-Net Model

  1. Download the COCO dataset
    bash dataset/download_dataset.sh
  2. Train the model
    python main.py train --epochs 4
  • If you would like to customize styles, set --style-folder path/to/your/styles. More options:
    • --style-folder: path to the folder style images.
    • --vgg-model-dir: path to folder where the vgg model will be downloaded.
    • --save-model-dir: path to folder where trained model will be saved.
    • --cuda: set it to 1 for running on GPU, 0 for CPU.

The code is mainly modified from PyTorch-Style-Transfer.