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Solving Dynamic Traveling Salesman
Problems With Deep Reinforcement Learning
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Abstract— A traveling salesman problem (TSP) is a well-known
NP-complete problem. Traditional TSP presumes that the loca-
tions of customers and the traveling time among customers
are fixed and constant. In real-life cases, however, the traffic
conditions and customer requests may change over time. To find
the most economic route, the decisions can be made constantly
upon the time-point when the salesman completes his service
of each customer. This brings in a dynamic version of the
traveling salesman problem (DTSP), which takes into account the
information of real-time traffic and customer requests. DTSP can
be extended to a dynamic pickup and delivery problem (DPDP).
In this article, we ameliorate the attention model to make it
possible to perceive environmental changes. A deep reinforce-
ment learning algorithm is proposed to solve DTSP and DPDP
instances with a size of up to 40 customers in 100 locations.
Experiments show that our method can capture the dynamic
changes and produce a highly satisfactory solution within a very
short time. Compared with other baseline approaches, more than
5% improvements can be observed in many cases.

Index Terms— Attention model, deep reinforcement learning
(DRL), dynamic traveling salesman problem (DTSP), machine
learning, policy gradient.

I. INTRODUCTION

ATRAVELING salesman problem (TSP) is a famous prob-
lem in the area of computer science, operational research,

transportation, and automation. It targets finding the shortest
route visiting all the customers in different locations exactly
once. In the original TSP, the problem structure remains
unchanged, implying that the locations of customers and the
traveling time among customers are fixed. However, in most
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real-world scenarios, we have to deal with route planning in
dynamic environments, which make the problem much more
challenging.

In literature, there are some relevant studies on dynamic
traveling salesman problems (DTSPs), e.g., [1]–[4], among
which two typical types attract much research attention. The
first one is DTSP with changing customers [5], [6]. This
arises in some scenarios such as pick-up services: the requests
show up when the customers place orders and disappear if
they are canceled. The second one is DTSP with changing
traffic [7], [8]. The changing traffic would affect the expected
total traveling time of a route and sometimes distance due
to a forced detour. It is worth noting that there is a similar
problem called a time-dependent traveling salesman prob-
lem (TDTSP) [9]. In this problem, the traveling time from
customer i to j depends on the moment when the salesman
completes the visit of customer i . However, TDTSP is a single-
stage decision-making problem, i.e., a route is determined
before the start of the travel and the visiting sequence cannot
be altered.

In this article, we consider a sequential decision-making
problem of DTSP, where the salesman can decide his next
visited customer after the visit of the current one is com-
pleted. We also take into account both customer and traffic
changes. A customer may be dynamically added into or
deleted from the unvisited pool after the salesman serves a
customer. We assume that the salesman would not respond
to the customer changes and make decisions when he is
traveling on the way, although we can easily modify our
method to allow the decision making at any time. The traffic
condition of each edge (i, j) is varied from time to time
according to the time-dependent function gi j(t) in addition
to a stochastic variable φi j(t) on the edge. We further extend
DTSP to its variant called a dynamic pick-up and delivery
problem (DPDP), in which a customer request is separated into
a pair of pick-up and delivery requests. The pick-up request
should be made prior to the corresponding delivery request.
All the requests must be completed within a route.

To tackle dynamic routing problems, most of the existing
approaches are based on meta-heuristics, e.g., [3], [10], [11].
They mainly focus on the dynamic entrance of customers
where new customers may appear unpredictably. They first
divide the planning horizon into multiple periods. Then a
routing decision is made at the beginning of each period.
One representative framework for dynamic routing problems
is referred to as the ant colony optimization with immigrant
schemes [12], [13]. However, it cannot handle the issue of

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 16,2021 at 03:41:08 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0320-9355
https://orcid.org/0000-0002-5408-8752
https://orcid.org/0000-0002-6961-7813


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

dynamic traffic, and its time complexity is high due to its
need for a large number of iterations. In some real-time
planning scenarios such as those in controlled airspace [14],
the environment could change rapidly. Hence, we are keen
to find a real-time approach for tackling DTSPs. To this
end, we utilize a deep reinforcement learning (DRL) par-
adigm, which can solve a wide range of complex online
decision-making problems with uncertainty and dynamic-
ity within a much shorter time than meta-heuristics [15].
Although DRL is computationally expensive in training a
network model (known as learning offline), once the model
is well-trained, the decisions can be made quickly via
a forward pass through the network (known as planning
online).

Recently, with the rapid development of machine learn-
ing, some ingenious and inspiring DRL approaches are
proposed to deal with TSPs and other combinatorial opti-
mization problems. Most of these approaches are based on an
encoder–decoder framework [16]. While an encoder converts
all the inputs to some learned vectors, a decoder transforms
the learned vectors to the outputs. Seq2seq [17], as one of
the most widely used encoder–decoder frameworks, treats the
inputs (e.g., the customer locations in TSP) and outputs (e.g.,
the best route of TSP) as two sequences. A recurrent neural
network (RNN) is used in both encoder and decoder. Since the
output of a routing problem depends on the customer positions
in the input, Vinyals et al. [18] proposed a pointer network
framework. It uses a content-based attention mechanism as a
pointer to choose an element of the input sequence for output.
Both Seq2seq and pointer network approaches utilize RNNs,
which may, unfortunately, cause gradient vanishing/explosion
problems in some instances with long sequences. The stud-
ies [19], [20] proposed attention models to alleviate such issue.
Purely using attention mechanisms suffices to produce very
promising results compared with meta-heuristic approaches.
In recent years, graph neural networks (GNNs) [21], which
treat the input as a graph structure, are applied to solve TSP
in sparse graphs. Various variants of GNNs are then proposed
to solve TSPs and other combinatorial optimization problems,
such as a graph attention network [22] and graph convolutional
network [23].

To train a DRL model for maximizing the expected
long-term reward (being equivalent to minimizing the expected
total traveling distance in DTSP), some typical methods, e.g.,
policy gradient [24] and Q-learning [25], [26] are introduced.
Policy gradient is a policy-based approach, where the optimal
policy is directly learned from an agent interacting with
the environment. Q-learning is a value-based approach that
can infer the optimal policy from the learned value function
based on Bellman’s optimality equation. In addition, deep
deterministic policy gradient [27], actor-critic [28], and policy
gradient with baselines [20] are also widely used within DRL
frameworks.

Next, we briefly introduce the literature related to online
routing problems with DRL approaches. Yu et al. [29]
proposed a DRL mechanism with an unsupervised auxiliary
network to solve an online vehicle routing problem. Mao
and Shen [30] studied an adaptive routing problem in the

stochastic and time-dependent networks. An online Q-learning
algorithm and an offline fit Q-iteration algorithm are investi-
gated. Hu et al. [31] study a multiple TSP. They devised a
shared GNN and distributed policy networks to learn a com-
mon policy representation to produce near-optimal solutions
to the problem. The work [32] presents a DRL approach for
the capacitated arc routing problem. A graph convolutional
network and two encoder–decoder models are integrated into
the approach. There also exist several studies incorporating
the heuristic search within the DRL framework. For example,
in Lu et al. [33], a DRL approach is proposed to select a
sequence of operators to improve the initial solution for vehicle
routing problems.

Our work can be summarized as follows. It proposes a
DRL approach with two encoder–decoder models M1 and
M2 by some modifications of the existing models [18], [19].
Specifically, 1) the static attribute and dynamic one of a state
are separated; 2) both M1 and M2 take traffic patterns into con-
sideration; 3) the encoder–decoder architecture of M2 is very
different from the existing literature; and 4) the pretraining
and fine-tuning of M2 are needed. With these modifications,
the proposed approach is able to perceive dynamic environ-
mental changes that are not well-considered in existing work.
Experimental results show that it can better deal with dynamic
routing problems than existing approaches. It can produce
promising solutions in a significantly short time for practical
cases under the study. As a result, the proposed framework
can be easily adopted in real-time planning applications [15],
[34].

The remainder of this article is organized as follows.
In Section II, we provide a formal definition of DTSP and
DPDP. In Section III, we introduce a DRL approach with
two deep neural network (NN) models for solving the prob-
lem. To evaluate and compare our approach with several
baseline algorithms, Section IV presents the computational
results on benchmark data. Section V gives some closing
remarks.

II. PROBLEM DEFINITION

DTSP is defined on a complete bidirected graph G =
(V , E), where V is a node set with size n and E is an
edge set. V consists of a depot 0 and a set of potential
customers. We consider the asymmetric distance in DTSP.
Thus, E includes edges in either direction. The customers to
be visited are put into a customer pool C with size c, where
C is a subset of V .

The salesman starts his trip from depot 0 at the beginning of
time (t = 0). He has to serve each customer in pool C exactly
once and then goes back to the depot. The traveling time
from node i to node j depends on a time-dependent function
gi j(t), where t is the time visiting node i . We assume that the
salesman does not wait at a node. This is valid when the First-
In–First-Out constraint [35] is respected, i.e., it guarantees that
if a vehicle leaves a node i for a node j at a given time, any
identical vehicle leaving node i for node j at a later time will
arrive later at node j .

Let xi j be a binary decision variable which is equal to 1 if
the salesman travels from node i to node j , and 0 otherwise.
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Let si be the time that the salesman visits node i . The objective
is to minimize the total traveling time for completing all the
customer visits, that is

min
�

i∈{0}∪C

�
j∈{0}∪C

gi j(si )xi j . (1)

The constraint set is�
j∈{0}∪C

x ji = 1 ∀i ∈ C (2)

�
j∈{0}∪C

xi j = 1 ∀i ∈ C (3)

s0 = 0 (4)

si + gi j(si )xi j = si +
�
s j − si

�
xi j

∀i ∈ {0} ∪ C, j ∈ C (5)

xi j ∈ {0, 1}. (6)

Constraints (2) and (3) ensure that there is only one incom-
ing and outgoing node for customer i . Constraint (4) is the
starting time of the salesman at the depot. Constraints (5)
indicate that the visiting time of customer j depends on the
visiting time of its predecessor i . This set of constraints also
guarantees that the visiting time at each node is increasing
along the path (given that gi j(t) > 0). Consequently, there
exists no subtour in the solution.

The model expressed by (1)–(6) is essentially a TDTSP
formulation. It is nonlinear due to the time-dependent func-
tion gi j(t). Some work tries to linearize the formulation
by imposing additional assumptions [36], [37]. Different
from them, our work studies the most generalized version.
Note that the domain of gi j(t) is continuous. For ease
of data collection, we discretize the time horizon into a
set T of timesteps. In this manner, we have the travel-
ing time from node i to node j around timestep t ∈ T
as the input values, denoted as di j t . Here, we call [di j t]
the traffic pattern of graph G. Then we can approximate
gi j(t) by operating on di j t (see Section IV-A for more
details).

TDTSP presumes that all the traffic conditions are known
in advance. In practice, to handle a dynamic environment,
we introduce a stochastic variable φi j(t) in addition to gi j(t)
to address the uncertainty issue of real-time traffic. Then the
actual traveling time from node i to node j at time t , denoted
as fi j (t), is fi j(t) = gi j(t)+ φi j(t).

To address another uncertainty issue, i.e., the change of
customer requests in a dynamic environment, we involve a
random operation �k after a salesman completes the service
of the kth customer, denoted as

�k =

⎧⎪⎨
⎪⎩

1, insert an unvisited customer i into set C

0, do nothing

−1, delete a customer i from set C .

DTSP is an online optimization problem. Solving it in an
efficient way is very difficult. Consider the problem with the
scale n = 40 of a location invariant graph G. If c = 20,
the number of possible instances is as large as C20

40 . When the
two kinds of aforementioned dynamic issues are considered,
the problem becomes even more challenging.

We next describe a variant of DTSP called DPDP. In this
problem, the customer set C is composed of two sets: a pick-up
request set C+ and a delivery request set C−. For ease of
description, we assume that the i th (1 ≤ i ≤ c/2) customer
request is in C+, while the (i + c/2)th (1 ≤ i ≤ c/2)
customer request is the corresponding delivery requests in
C−. For each pick-up request i , qi specifies the number of
goods to be transported. For the corresponding delivery request
i + c/2, we set qi+c/2 = −qi . A salesman (or vehicle) has
a capacity Q. We need to discover a route to serve all the
customers, ensuring that pick-up requests are visited before
their corresponding delivery requests, while the capacity limit
is not violated.

Similar to DTSP, the change of traffic and customer requests
is also considered in DPDP. In particular, the setting of a
random operation �k after the kth visit is as follows:

�k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, insert an unvisited pick-up request i into set

C+ and the associated delivery request

i + c/2 into set C−

0, do nothing

−1, delete a pick-up request i from set C+ and

the associated delivery request i + c/2 from

set C−.

To exclude the uncertainty issue, a time-dependent
PDP (TDPDP) formulation is given as follows. The objective
function (1) and constraint (2)–(6) are kept. In addition, denote
li as the vehicle’s load after visiting customer i . The following
constraints are needed:

si ≤ s j ∀i ∈ C+, j ∈ C−, j = i + c/2 (7)

l0 = 0 (8)

li + q j xi j = li +
�
l j − li

�
xi j ∀i ∈ {0} ∪ C, j ∈ C (9)

0 ≤ li ≤ Q ∀i ∈ C. (10)

Constraints (7) indicate that the pick-up time of a request
must be prior to the associated delivery time. Constraints (8)
and (9) present the dependence of the vehicle load in the route.
Constraints (10) give the range of the vehicle load. Similar to
the relation between DTSP and TDTSP, DPDP is an online
optimization version of TDPDP.

III. SOLUTION METHOD

In order to solve DTSPs in a real-time manner, we propose
a DRL approach adapted from the attention model [20].
The approach mainly includes a model building part and
a model training method. In what follows, we first present
the proposed DRL approach. We then detail how we design
two encoder–decoder architectures to cope with changing
traffic and customer requests. For easy descriptions, Table I
summarizes the notations to be used in our solution method.

A. DRL Approach

Deep NNs have a strong capability in feature extraction,
while reinforcement learning approaches are good at learning
profitable actions. DRL combines the merits of both. In this
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TABLE I

SUMMARY OF NOTATIONS

Fig. 1. Illustration of DRL framework.

article, the proposed DRL framework treats DTSPs as a
Markov decision process. It consists of four components,
i.e., state, agent, action, and reward, as shown in Fig. 1.

The state is formed by the fusion of static and dynamic
attributes. The static attributes include customer information
(e.g., their identities and coordinates), traffic patterns and the
transported quantity of each request. The dynamic attributes
contain the current customer pool, visited status of customers
and current traffic conditions. The agent observes the state
information, and decides which action to take. We propose two
alternative encoder–decoder models for the agent. An encoder–
decoder model, parameterized by θ , is to train a stochastic
policy pθ(π |s), which denotes the probability of choosing tour
π given a state s. According to the probability chain rule,
pθ(π |s) can be computed as

pθ (π |s) =
c	

k=1

pθ (πk |s, π1, . . . , πk−1).

The first model (M1) is similar to the one in [20]. It has
one encoder and c decoders sharing the same network. The
encoder is fed with the static information of initial c customers
and then generates an embedding to represent the graph
context. The decoders sequentially output each πk based on
the context embedding, current traffic information, and visited
status of customers. M1 mainly targets sensing dynamic traffic,
although it can be extended to handle dynamic customer
requests.

The second model (M2) has cM encoders and cM decoders,
where cM is the maximum number of customers in the
dynamic customer pool. All these encoders (resp., decoders)
share an identical network. In each step, M2 re-encodes the
state information and outputs the next customer to visit.
Because entering or exiting customers can be captured by the
encoder, the experiments show that M2 performs better than
M1 on dynamic request scenarios. However, M2 is difficult to
train due to its deep architecture. Therefore, several training
tricks have to been adopted. In summary, the comparison of
M1 and M2 is presented in Table II.

Once an agent has decided on the next customer to visit,
the state dynamics are updated and the corresponding reward
can be collected. Since the objective is to minimize the total
traveling time, the immediate reward is set to the opposite of
the traveling time of the traversed edge.

We utilize a standard policy gradient with rollout baseline
algorithm [20] for model training, as realized in Algorithm 1.
It involves two network models for a particular agent: θ
represents the current model and θ∗ represents the best model
found so far. These two models have the same structure. A one-
sided pair t-test is employed to compare the performance
of these two models on a batch of (e.g., 10 000) randomly
generated test instances. If θ is significantly better than θ∗,
then θ∗ is updated. Otherwise, if θ∗ is not updated for M
epochs, θ is rolled back to θ∗. In the algorithm, model θ∗ is
served as a baseline, which can assist to reduce the variance
of results for different instances.

B. Model 1 (M1)

The architecture of M1 is shown in Fig. 2. We elaborate the
details of its encoder and decoder as follows.
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TABLE II

COMPARISON BETWEEN MODEL M1 AND M2

Algorithm 1 Proposed Policy Gradient With Rollout Baseline
Algorithm
Parameter: No. epochs E , No. samples per epoch S, roll-
back epoch M
Input: Objective function z
Output: Trained model θ∗

1: Initialize the model θ , θ∗ ← θ
2: ep← 0
3: for epoch = 1, …, E do
4: xi ← RandomInstance(), ∀i ∈ 1, . . . , S
5: πi ← θ(xi) ∀i ∈ 1, . . . , S
6: π∗i ← θ∗(xi) ∀i ∈ 1, . . . , S
7: ∇loss←
S

i=1(z(πi)− z(π∗i ))∇θ log pθ (πi)
8: θ ← Adam(θ,∇loss)
9: if OneSidedPairedTTest(zθ, z∗θ ) <0.05 then

10: θ∗ ← θ , ep←epoch
11: else
12: if epoch − ep > M then
13: θ ← θ∗
14: end if
15: end if
16: end for
17: return θ∗

Fig. 2. Proposed model M1.

1) Encoder: The encoder takes the identity of a node and
estimated traffic pattern (i.e., the traveling time between each
pair of nodes along the time horizon) as the input, and outputs
the embedding (or features) of each node as well as the

whole graph. Specifically, it first converts the identity of each
customer node i into ID embedding Xi and converts the
estimated traffic condition into traffic embedding Yi through
a fully connected NN. For DPDP, the transported quantity qi

is also embedded. Next, it concatenates Xi and Yi and pro-
duces the hidden embedding of each node, i.e., h(0)

0 , . . . , h(0)
c .

Finally, the encoder computes the aggregated embedding hi

by N attention layers, each of which contains a multihead
attention (MHA) sublayer and a node-wise fully connected
feed-forward (FF) sublayer with one hidden layer and ReLu
activation. The following formulations describe the proposed
encoder. The details of MHA sublayer, which are the same
as [20], are provided in Appendix A.

a) Formulations:

Xi = N (xi) ∀i ∈ {0} ∪ C

Yi = N (yi) ∀i ∈ {0} ∪ C

h(0)
i = N ([Xi , Yi ]) ∀i ∈ {0} ∪ C

ĥ( j)
i = B

�
h( j−1)

i +A
�

h( j−1)
0 , . . . , h( j−1)

c

��
∀i ∈ {0} ∪ C

h( j)
i = B

�
ĥ( j)

i + F
�

ĥ( j)
i

��
∀i ∈ {0} ∪ C

hi = h(N)
i ∀i ∈ {0} ∪ C

where N represents a fully connected NN layer, F represents
an FF sublayer with one hidden layer and ReLu is an activation
fuctiion, B represents a batch normalization sublayer, and A
represents an MHA sublayer.

2) Decoder: Like traditional RNNs [16], the proposed
decoder is reused in c steps. For each step, it outputs the
next visited customer. In particular, it takes the current traffic
conditions, visited status of customers, and the graph embed-
dings computed by the encoder as the input, and outputs the
probabilities of all customers to be selected as the next visited
customer.

Specifically, it first produces the embedding w(t) from the
current traffic information with respect to each node i (i.e.,
the traveling time from node i to other nodes at time t),
and the embedding v(t) from the node masks (i.e., whether
a node is visited or not). Then, five embeddings w(t), v(t), h,
h0, and the feature of last visited node hl are concatenated to
represent the context of the state at time t . Next, the atten-
tion mechanism (using one attention layer) is applied to the
context feature and other node features. Finally, it masks all
the visited nodes and calculates the probability of the next
unvisited node with a softmax layer. It is worth noting that
for DPDP, the following two cases further influence the mask
mechanism:
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1) If the transported quantity of a pick-up request exceeds
the remaining capacity of the vehicle, this request should
be masked.

2) If a pick-up request has not started yet, its associated
delivery request should also be masked.

After the next visited node is determined, the next timestep
t can be realized and the node mask is updated accordingly.
Thereafter, the next decoding step can be applied until all the
customers are successfully visited. The below formulations can
well show the decoder in this article.

a) Formulations:

w(t) = N
�
w

(t)
0 , . . . , w(t)

c

�

v(t) = N
�
v

(t)
0 , . . . , v(t)

c

�

g = 
w(t), v(t), h, h0, hl

�

h	0, . . . , h	c

� = F(A(g, h0, . . . , hc))�
p(t)

0 , . . . , p(t)
c

�
= softmax

�
h	0, . . . , h	c

�⊗
�
v

(t)
0 , . . . , v(t)

c

��

where “⊗” represents the element-wise multiplication.
3) Extension to Dynamic Requests: Once the model is

trained, we can do parameter sharing to cope with dynamic
requests in the model testing. When a new customer request,
say xk , arises, we first obtain its embedding hk using the
trained network. Then the attention mechanism in the decoder
can further take hk into consideration. When a customer
request is removed from the pool, we can simply change its
corresponding visited status to 0 (i.e., visited). In this case,
the mask mechanism can automatically filter out this request.
Because M1 does not learn how the customer changes from
the training data, it appears that M1 is not very competitive
in the dynamic customer request environment.

C. Model 2 (M2)

The major drawback of M1 lies in its context embedding h
used in its decoder. Because h is obtained from its encoder,
it cannot foresee dynamic requests tackling in the decoder part.
We, therefore, propose M2, which re-encodes the states after
each visit to capture the change of customer requests.

Both encoder and decoder of M2 are reused in cM steps
alternatively. Fig. 3 illustrates the architecture of a pair of
them. Training M2 can be divided into two stages: pretrain-
ing and fine-tuning. Such an idea is inspired by a popular
framework BERT [38] in natural language processing. The
reason why we introduce the pretraining strategy is that it is
very difficult to train a model into the one that converges and
produces satisfactory solutions when both customer and traffic
changing information is input into the encoder.

1) Pretraining Stage: In this stage, two models Node2Vec
and Traffic2Vec are, respectively, trained using Algorithm 1.
Their targets are to obtain the embeddings of node information
and traffic information, respectively. By comparing the archi-
tectures of M2, Node2Vec, and Traffic2Vec, there are only
minor differences among their encoders, while the structures
of their decoders are the same. For a decoder, it takes the
context embeddings (the embeddings of graph h, depot h0 and
last visited node hl), and node embeddings hi as the input, and

Fig. 3. Proposed model M2.

output the probability pi of the next node to visit. Different
from M1, the embeddings of the current traffic and customer
visited status (w(t) and v(t)) are removed from the decoders,
as they are stacked in the encoder part.

For Node2Vec, we pretrain a model by using all the n nodes
instead of c nodes. This can be done by properly using a
mask mechanism: those nodes not shown in an instance are
masked. Doing so can help us obtain the embeddings of those
dynamic customer requests. For easy training, the traveling
time between each pair of nodes fi j is assumed to be inde-
pendent of the traffic condition and calculated as

fi j = Et∼T


fi j(t)
� ∽



t∈T di j t

|T | .

For Traffic2Vec, we pretrain a model by using c nodes as the
same in M1, inputting the traffic conditions at time t (w(t)

i ),
the visited status of node i at time t (v(t)

i ), and the traffic
pattern (yi ). After each decoder, we re-encode the state with
the updated traffic conditions.

Note that Traffic2Vec only considers the information about
traffic, while the information about nodes is ignored. Training
Traffic2Vec is difficult enough. Therefore, it is not wise to
input both node information and traffic conditions into the
network, as it would become too complicated to train it to
achieve the desired convergence. This is the reason why we
split our framework into two separate stages.

2) Fine-Tuning Stage: In this stage, the two pretrained
models Node2Vec and Traffic2Vec are fixed. They assist to
obtain the embeddings of the node and traffic in DTSPs. These
embeddings are then fused to produce the graph embedding h
with two fully connected NNs, as shown in Fig. 3. Except for
the pretrained Node2Vec and Traffic2Vec, the decoder and the
remaining part of the encoder in M2 are trained in this stage.

3) Coping With Dynamic Requests: An intriguing property
of the proposed model is that it can be induced from static
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environments, and applied to dynamic environments. The
reason is that static environments suffice to cover most aspects
of the dynamic environments using the state information (the
customer pool, traffic conditions, and visited status).

In the model testing, we have c customers in the pool
initially to feed into the encoder. For the unused cM − c
nodes in the encoder, we set their visited status vi to 1 (i.e.,
unvisited). After a customer is visited, it happens to delete
or insert a customer. For deletion, we only need to set the
corresponding visited status to 0 (i.e., visited). For insertion,
we exchange the embedding of the inserted node with the
embedding of an unused node. The traffic conditions are also
updated for the next encoder–decoder pair.

IV. EXPERIMENTS

Our DRL approaches are programed with Pytorch. They
are executed on a workstation with Intel(R) Xeon(R) CPU
E5-2680 v4 clocked at 2.40 GHz and a single GTX1080Ti
GPU.

A. Benchmark Dataset

To evaluate the performance of our approach, we propose
a benchmark dataset for DTSP, which is extracted from a
real-world dataset in Beijing provided by Jingdong Logistics.
We randomly select 1 depot and 99 customers from the dataset.
Fig. 4 shows their locations on the map, where the depot
is located at the bottom-right of the map. The mean of the
traveling time between a pair of nodes is 51.16 min. Using
these 100 nodes, we post requests to Baidu Map API every
two hours of a day to get the time-dependent traveling time
matrix (or traffic pattern) [di j t]100×100×12.

To generate synthetic real-time traffic information fi j (t)
on each edge (i, j), we adopt the cubic spline interpo-
lation (CSI) [39]. Specifically, we use 12 discrete points
(0, di, j,1), (2, di, j,2), . . . , (22, di, j,12) to obtain 11 cubic
functions Sk(t) = Sk,0 + Sk,1 t + Sk,2 t2 + Sk,3 t3, (k =
0, 1, . . . , 11, 2k ≤ t ≤ 2(k + 1)). These functions are com-
bined to obtain the estimated traveling time function gi j(t).
To simulate the uncertainty, we add a stochastic value φi j(t)
to represent unpredictable incidents. Denote φmax, φmin and σ
as three hyperparameters, and the real-time traffic function
fi j (t) is given as

fi j (t) = gi j(t)+max
�
LB, min

�
UB, φi j(t)

��
(11)

LB = φmin · gi j(t) (12)

UB = φmax · gi j(t) (13)

φi j(t) ∼ N
�
0, σ 2

�
. (14)

Finally, we generate the data of changing customer requests.
After the kth visit, we set �k to −1 with ρ− probability, 1
with ρ+ probability, and 0 with 1−ρ−−ρ+ probability. If �k

equals −1, we randomly delete a customer from the unvisited
customer pool C . If �k equals 1, we randomly add an unvisited
customer into C .

We also generate a DPDP dataset using the same way.
Additional parameters are set as follows. The vehicle capacity
Q is set to 20 or ∞ (unlimited). The quantity qi of each
pick-up customer i is a random integer between 1 and 9.

Fig. 4. Location map of the benchmark dataset.

TABLE III

COMPUTATIONAL TIME OF DIFFERENT APPROACHES

B. Baseline Algorithms and Models

To our best knowledge, there is no existing method that can
solve DTSPs directly. We propose four baseline algorithms
and compare them with our DRL approach.

1) Offline simulated annealing (SA): It consists of five
neighborhood operators: 2-opt, exchange, relocate, or-
opt, and 3-opt. These operators are widely used in
routing problems [40]. To evaluate the performance of
SA, we first ran it on a real-world TDTSP dataset in
Lyon [35]. The preliminary results indicate that the
solution produced by SA is at most 2% worse than the
optimal solution. In the following experiments, we only
apply SA in DTSP with changing traffic. More details
of SA are provided in Appendix B.

2) Greedy (GR): It is an online greedy algorithm, which
selects the nearest and unvisited node as the next node
to visit.

3) Online TSP Solver (Solver): It is an online TSP algo-
rithm adapted to DTSP. After each visit, the algorithm
finds the optimal subroute considering the current trav-
eling time matrix by using a TSP solver. Here, we apply
Concorde2 to find the optimal route for TSP instances.

4) Online Dynamic Programming (DP): It is an online
algorithm adapted from Held-Karp algorithm [41]. After
each visit, DP finds the optimal route based on the
time-dependent function gi j(t), but the real traveling
time is realized according to fi j (t). Note that DP is an
exact method for solving TDTSP or TDPDP. However,
because of the existence of uncertainty, DP appears to
be a heuristic approach. The time complexity of DP is
O(c22c) for a single decision. Therefore, it is impossible
to directly apply it to the scenarios with more than

2https://github.com/jvkersch/pyconcorde/
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TABLE IV

COMPUTATIONAL RESULTS WITH RESPECT TO DIFFERENT σ AND c ON THE FIRST DTSP SCENARIO

30 customers. Please refer to Appendix C for more
details of DP.

Note that SA is served as a single-stage decision-making
approach. Thus it is essentially solving TDTSP, but not
suitable to tackle the case of changing customer requests.
Although the other three algorithms are multistage decision-
making approaches and can be applied to DTSPs, GR and
Solver may be vulnerable in the environment with traffic
uncertainty issues, and DP would be too slow to produce a
solution in a timely manner.

In addition, to prove the efficacy of the attention model and
the pretraining strategy, we modify them to derive two other
baseline learning models for comparison.

1) M1-FF: It is modified from model M1 by substituting
the attention layers with a fully connected FF layer.

2) M2-NP: Instead of pretraining two submodels Node2Vec
and Traffic2Vec, it trains the whole model M2 directly.

C. Computational Results

We apply Algorithm 1 to the model training of M1,
Node2Vec, Traffic2Vec, and M2, respectively. The related

parameters are set as follows: E = 1000, S = 1 00 000 and
M = 100. Then, we test our models on different scenarios.
For each scenario, there are 10 000 cases for the model
testing.

We consider the first scenario: DTSP with changing traffic
only. We first test the average computational time of different
approaches on the 100-node DTSP instances with c = 4, 9
and 19, respectively. Here, we set �k ≡ 0 in (7), and set
φmin = −0.9, φmax = 5, σ = 43.2 in (11)–(14). The results of
computational time are shown in Table III. As we can see, our
approaches (M1 and M2) can obtain a solution in a millisecond
level. DP is not able to handle the instance with c = 39 or
even larger.

The solution quality (i.e., the total traveling time on aver-
age) is provided in Table IV. The upper part of Table IV
corresponds to the instances used in Table III. The remaining
part corresponds to the instances with c = 19. This is because
c = 19 is a proper size to evaluate the performance of different
approaches. We also test different settings of φmin, φmax and
σ . In particular, a constant σ indicates that all the edges
follow the same distribution. Otherwise, different edges may
be associated with different distributions.
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TABLE V

AVERAGE RANK OF THE ALGORITHMS ON THE FIRST DTSP SCENARIO

From Table IV, we find that M1 and M2 outperform other
candidate algorithms in all the cases. The results clearly verify
the robustness of M1 and M2 in this scenario. The perfor-
mances of SA, Solver, and DP are good enough, while GR,
M1-FF, and M2-NP are not quite competitive against other
approaches. M1 produces very promising solutions (about
5.3% better than Solver and 5.7% better than DP on average).
M2 performs slightly (about 1.0%) worse than M1 since no
dynamic change of customers is considered in this scenario.
To statistically test whether the proposed models are signifi-
cantly better than other approaches, we conduct the Friedman
test [42]. In the test, we calculate the average rank of each
algorithm, as shown in Table V. The Friedman’s chi-square
value τ f = 579.60, which means that the performance of
the algorithm is significantly different from others. Therefore,
we next conduct the Nemenyi test [42]. The critical difference
value C D = 2.059, which means that if the rank difference
between two algorithms is larger than C D, the performance
of the two algorithms significantly differs. According to
the test, M1 is significantly better than all the competitors
except M2.

In order to intuitively illustrate why M1 can perceive the
dynamic traffic environment and avoid traffic congestions,
we may visualize two example solutions whose details are
presented in Appendix D.

Next, we test our method on the second scenario: DTSP
with both customer and traffic changes. We set different
σ , c0, ρ+ and ρ− for the instances with cM = 19 (the
maximum number of customers in the pool). In this set
of experiments, if the number of customers in the pool
exceeds cM , we would ignore the corresponding operation
(i.e., �k = 1).

The results are provided in Table VI. From this table,
we can find that the performance of M2 is close to that of
DP. The more dynamic insertion of customer requests (i.e.,
the cases with higher ρ+), the smaller difference between
them. Compared with M1, M2 is more robust to customer
changes, as it performs significantly better than M1 for
most of the cases. In some cases where no new customer
appears (ρ+ = 0), M1 performs better than M2. The reason
is that M1 does not recalculate the embedding after each
customer. On average, M2 can produce a solution that is 0.9%
better than DP and 1.4% better than GR. As a matter of
fact, M2 is an efficient model to solve DTSP with dynamic
customer requests. In this scenario, we also conduct the

TABLE VI

COMPUTATIONAL RESULTS WITH RESPECT TO DIFFERENT σ , c0
AND ρ ON THE SECOND DTSP SCENARIO

TABLE VII

AVERAGE RANK OF THE ALGORITHMS ON THE SECOND DTSP SCENARIO

Friedman–Nemenyi test. The results are shown in Table VII.
In the test, τ f = 36.61 and C D = 1.52. From the table,
we notice that M2 is significantly better than Solver, M1,
and GR, since their rank differences are greater than C D.
Besides, the computational time of M2 is very short. There-
fore, we can safely conclude that M2 is the best solver in this
scenario.

Lastly, we evaluate our algorithms on DPDP with both
traffic and customer changes. Different combinations of σ ,
Q, c0, cM , ρ+ and ρ− are tested. The results are provided
in Table VIII. For DPDP instances, M2 still provides the best
policy. For the instances with c = 20, M2 is 0.9% better than
DP and significantly better than M1 and GR. For the instances
with c = 40, M2 is 13.9% better than GR and 13.6% better
than M1.

D. Analysis of Different Training Configurations

We first show some training details of models M1 and M2.
Figs. 5 and 6 display the L2-norm of gradient (grad_norm)
and expected reward (i.e., total traveling time) in the training
period for the case with σ = 0 and c = 19. As we can
see, the gradient decreases steadily as the number of epoches
increases. The spike in the grad_norm plot reflects that the
model parameters change rapidly in that epoch. With respect
to the expected reward of M1, it significantly drops from
640th to 560th epoches. Correspondingly, the expected reward
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TABLE VIII

COMPUTATIONAL RESULTS ON DPDP INSTANCES

Fig. 5. Plot of gradient norm and reward in training M1.

of M2 drops from 590th to 560th epoches. The figure verifies
the convergence of the model training. We can also observe
that the convergence plots of M1 and M2 are both smooth,
but in the first epoch, M2 decreases much more than M1.

Fig. 6. Plot of gradient norm and reward in training M2.

Fig. 7. Results of different training algorithms.

This observation indicates that the pretraining stage is helpful.
The submodels (i.e., Node2Vec and Traffic2Vec) can learn the
latent features of customer requests and traffic patterns.

Different training algorithms are also tested, including pol-
icy gradient, policy gradient with baseline, and actor–critic.
Fig. 7 shows their convergence curves. From it, we find
that all the training algorithms can make the model con-
verge steadily. The proposed policy gradient with baseline
performs slightly better than actor-critic, and much better
than policy gradient. This verifies the effectiveness of our
approach.

V. CONCLUSION

In this article, we study a DTSP and its related pickup
and delivery problem, which consider the change of traffic
conditions and customer requests in dynamic environments.
In order to solve the problem in a real-time manner, we treat
them as sequential decision-making problems. A reinforce-
ment learning approach, which incorporates two deep NN
models, is proposed. Benchmark datasets extracted from a
real-world application are introduced to evaluate the efficiency
of the approach. Experiments verify that our approach can
much better to tackle TSP and PDP in dynamic environments
and with uncertainty issues than other existing methods.

Our solution method can be easily modified to deal with
different real-world dynamic routing problems, e.g., dynamic
versions of other vehicle routing problems [2], [43]–[46].
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TABLE IX

PERFORMANCE GAP BETWEEN SA AND CP ON TDTSP INSTANCES

Algorithm 2 SA Algorithm
Input: objective function z(π)
Parameter: initial temperature Tinit = 100, initial solution
πinit, cooling rate α = 0.7
Output: a near-optimal route
1: T ← Tinit, π

∗ ← πinit

2: while the stopping criterion not reached do
3: repeat
4: πlast ← π∗
5: for i ← 1 to 5 do
6: π ← π∗
7: for j ← 1 to n2 do
8: randomly choose a neighbor solution π 	 generated

by operator Oi on π

9: if z(π 	) < z(π) or rand() < e
z(π)−z(π 	 )

T then
10: π ← π 	
11: end if
12: if z(π 	) < z(π∗) then
13: π∗ ← π 	
14: end if
15: end for
16: end for
17: until π∗ = πlast

18: T ← αT
19: end while
20: return π∗

While most of the previous approaches are iteration-based
and difficult to apply in various dynamic environments, our
method is learning-based and flexible. We only need to revise
our encoder–decoder architecture to make it perceivable to
other features of the environments. In addition, spatio-temporal
GNNs [47] could be introduced to make more accurate traffic
predictions in dynamic environments. However, how to design
a tailored deep NN that has excellent generalization capabil-
ities in dealing with different scale problems, and is easy to
train via various approaches [48]–[52] remains open.

APPENDIX

A. MHA Layer

The MHA layer propagates the information between nodes.
With M = 8 heads, the nodes can receive messages from
different perspectives.

1) Notations:

1) dh : The number of hidden dimensions (e.g., 128)
2) dk : The number of key dimensions, dk = (dh/M)
3) hi : The i th input embedding, a dh-dimensional vector

Algorithm 3 Online DP Algorithm
Input: actual travel time functions fi j(t), estimated travel time
functions gi j(t)
Output: a near-optimal route
1: t ← 0, π ← {0}, next← 0, last← 0
2: for i ← 1 to c do
3: Cmin, next←Held-Karp(g, last, t, π, None)
4: π ← π ∪ {next}, t ← t + flast,next(t)
5: last← next
6: end for
7: return π

Algorithm 4 Held-Karp Algorithm
Input: estimated travel time function gi j(t), last visited node
i , the current time t , the set of visited customers π , an array
DP representing the best route starting from customer i with
visited customer set π .
Output: the minimal cost and the next node to visit
function Held-Karp()
1: if DP is None then
2: initialize DP with value −1
3: end if
4: if DP[i ][π] ≥ 0 then
5: return DP[i ][π], None
6: end if
7: if π contains all customers then
8: DP[i ][π] ← gi0(t)
9: return gi0(t), 0

10: end if
11: Cmin ←∞, next←−1
12: for j ← 1 to c do
13: if j is not in π then
14: p, k = Held-Karp(g, j, t + gi j(t), π ∪ { j}, DP)
15: if p + t < Cmin then
16: next← j
17: Cmin ← p + t
18: end if
19: end if
20: end for
21: DP[i ][π] = Cmin

22: return Cmin, next

4) m: The index of attention head
5) qim : The mth query vector of the i th input, a dk-

dimensional vector
6) kim : The mth key vector of the i th input, a dk-

dimensional vector
7) vim : The mth value vector of the i th input, a dk-

dimensional vector
8) W Q

m : The mth query matrix, a dh ∗ dk matrix
9) W K

m : The mth key matrix, a dh ∗ dk matrix
10) W V

m : The mth value matrix, a dh ∗ dk matrix
11) ui jm: A temporary dk-dimensional vector
12) ai jm: The mth attention between node i and j ,

a dk-dimensional vector
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Fig. 8. First example solution. (a) First visit. (b) Second visit. (c) Third visit.
(d) Fourth visit. (e) Fifth visit.

13) W O
m : The mth output matrix, a dk ∗ dh matrix

14) MHAi : The i th output embedding, a dh-dimensional
vector

2) Formulations:

qim = W Q
m hi

kim = W K
m hi

vim = W V
m hi

ui jm = qT
imk jm

ai jm = eui j m


n−1
k=0 euikm

MHAi (h0, . . . , hn−1) =
M�

m=1

W O
m

n−1�
j=0

ai jmv jm .

B. SA Algorithm

The pseudo code of the proposed SA is presented in
Algorithm 2. Five neighborhood operators are used: O1:
2-opt, O2: exchange, O3: relocate, O4: or-opt, O5: 3-opt.
The performance gap between SA and an exact constraint
programming (CP) on the TDTSP dataset [35] is pro-
vided in Table IX. The results indicate that the solution
obtained by SA is at most 2% worse than the optimal
solution.

Fig. 9. Second example solution. (a) First visit. (b) Second visit. (c) Third
visit. (d) Fourth visit. (e) Fifth visit.

C. Dynamic Programming

The online DP algorithm for TDTSP is presented in
Algorithm 3. After each visit, it invokes a subroutine
Held-Karp algorithm [41], as shown in Algorithm 4, to decide
the optimal route based on the time-dependent function gi j(t).
Note that the real traveling time is depending on fi j (t).

D. Example Solution Visualization

In Figs. 8 and 9, we provide two example solutions on two
5-node DTSP instances obtained by the model M1. In these
figures, the red, yellow and green lines represent that the
corresponding edges are in heavy, normal, and light traffic,
respectively.

As we can see, for most of the time, the DRL agent
would choose the most promising edge (light traffic) with high
confidence to travel. In Fig. 8(c), it is difficult for the DRL
agent to decide whether the next visited customer is 1 or 2,
since the expected traveling time between the partial route
(3,1,2,0) and (3,2,1,0) is very close.
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