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Abstract The Capacitated m-Ring-Star Problem (CmRSP)
models a network topology design problem in the telecom-
munications industry. In this paper, we propose to solve this
problem using a memetic algorithm that includes a crossover
operation, a mutation operation, a local search involving
three neighborhood operators, and a population selection
strategy that maintains population diversity. Our approach
generates the best known solutions for 131 out of 138 bench-
mark instances, improving on the previous best solutions for
24 of them, and exhibits more advantages on large bench-
mark instances when compared with the best existing ap-
proach. Additionally, all existing algorithms for this prob-
lem in literature assume that the underlying graph of the
problem instance satisfies the triangle inequality rule; our
approach does not require this assumption. We also gener-
ated a new set of 36 larger test instances based on a digital
data service network price structure to serve as a new bench-
mark data set for future researchers.
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1 Introduction

The Capacitated m-Ring-Star Problem (CmRSP) is an im-
portant and practical problem in the field of network topol-
ogy design for telecommunications, particularly when deal-
ing with fiber-optic communication networks. It models the
situation where a central telephone exchange (called the de-
pot) is required to provide telecommunications services to
a set of customers using m networks so as to minimize the
total connection costs. Additionally, there are a number of
transition points that can serve as way stations to reduce
costs. Each network connects certain customers and/or tran-
sition points to the depot in a ring structure via high-quality
fiber-optic cables, which prevents the failure of a single net-
work node or link from causing the entire network to fail.
For the remaining customers not in a ring, each is connected
directly to a point in an existing ring using possibly cheaper
cables.

The CmRSP is defined on a mixed graph G = (V ,

E ∪ A). The set of nodes V = {0} ∪ U ∪ W , where node
0 is the depot, U is the set of customers and W is the set
of transition points (also called Steiner nodes). The edge set
E = {(i, j) : i, j ∈ V, i �= j} is a complete set of undirected
edges connecting all nodes in V ; each edge (i, j) ∈ E has an
associated non-negative routing cost c(i, j) representing the
cost of connecting nodes i and j in a ring. In addition, each
customer i can be directly connected to a subset of nodes
Ci ⊆ U ∪ W ; the arc set A = {(i, j) : i ∈ U,j ∈ Ci} is the
set of all such possible connections. For each arc (i, j) ∈ A,
there is an associated non-negative allocation cost d(i, j)

corresponding to the cost of directly connecting customer i

to node j .
A ring R is a simple cycle consisting of edges in E that

visits a subset of nodes including the depot. For a given ring
R, there may be a number of customers i /∈ R that are con-
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Fig. 1 An example of a feasible
CmRSP solution

nected to nodes j ∈ R by arcs (i, j) ∈ A. The resultant net-
work topology is called a ring-star, denoted by R̃. The task
of the CmRSP is to find a set of m ring-stars such that each
customer is assigned to exactly one ring-star, each Steiner
node is visited at most once and the number of customers
in each ring-star does not exceed the capacity Q, where
Q ≥ |U |/m. The objective is to minimize the total routing
and allocation costs.

A feasible solution to the CmRSP is represented by a set
of m ring-stars S = {R̃1, R̃2, . . . , R̃m}. We say that a node
i ∈ S is a visited node if i is in a ring; otherwise it is an
allocated node. Furthermore, a visited node i is also called
a connecting node if there exists an edge (i, j) ∈ S where
j is an allocated node; we say that customer j is allocated
to node i. By convention, we do not regard the depot as a
visited node. Figure 1 gives an example of a feasible CmRSP
solution. The CmRSP is easily to be shown as NP-hard in the
strong sense, since we can reduce the well-known traveling
salesman problem to it when m = 1, Q = |U |, W = A = ∅.

In the seminal work on the CmRSP by [2] that first in-
troduced the problem, the authors generated two classes of
test instances that have since been regarded as the standard
benchmark test data by subsequent researchers. These in-
stances have between 26 and 101 nodes, 3 to 5 ring-stars and
varying ring-star capacities. It was stated in [2], “Note that
the set of routing costs of all generated instances satisfied
the triangle inequality, therefore any optimal CmRSP solu-
tion could not use a Steiner node without assigning it a cus-
tomer.” However, [12] found that the routing costs in some
instances do not in fact satisfy the triangle inequality, which
makes the conclusion of this statement invalid. In particular,
there were instances where c(i, j) + c(j, k) < c(i, k) and
node j is a Steiner node, whereupon the inclusion of node j

would reduce the total connection cost even if no customer is
allocated to it. Unfortunately, due to this small oversight, the
published solutions by [2] (and possibly other researchers)
do not consider non-connecting Steiner nodes. Note that the
routing costs are not required to fulfill the triangle inequal-
ity in the definition of the CmRSP in [2]. Therefore, [2] as

well as some subsequent researchers such as [22, 23] did not
actually study the CmRSP, but had instead studied a variant
of the CmRSP in which non-connecting Steiner nodes could
not be used.

The non-satisfaction of the triangle inequality is entirely
reasonable. Although the connection and allocation costs are
usually related to the distance between the connected nodes,
the costs are seldom strictly proportional to the distance for
many practical applications. A direct connection that tra-
verses a long distance is likely to involve the excavation of
difficult or highly populated terrain in order to lay the cables,
which increases the costs involved. This terrain may be cir-
cumvented by using multiple indirect, shorter connections
whose total cost is less than installing the direct connection.
Another common scenario involves different fixed and vari-
able costs for laying cables of different lengths [34], which
also violates the triangle inequality.

There are three main contributions in this paper. Firstly,
we propose a new memetic algorithm (MA) to solve the
CmRSP, which combines a genetic algorithm with a local
search component. Our approach is simple and practically
implementable, consisting primarily of a crossover, a muta-
tion and three basic neighborhood search operations. Fur-
thermore, our approach does not assume that the routing
costs satisfy the triangle inequality, and therefore it consid-
ers solutions with non-connecting Steiner nodes. Secondly,
we thoroughly test our approach with the existing bench-
mark data generated by [2] and [23], some of which vio-
late the triangle inequality. For the variant of the CmRSP
that disallows non-connecting Steiner nodes, our MA ap-
proach with a simple repair procedure obtained the best
known solutions for 131 out of 138 benchmark instances
and improved on the previously best known solutions for
24 of them, outperforming all approaches in existing liter-
ature. Moreover, experimental results clearly show that our
approach is more suitable to solve the instances of large size
when compared with the best existing approach. We also
present the solutions of the benchmark instances directly ob-
tained by our MA approach and found that the costs could be
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further reduced for more than one-third of them when non-
connecting Steiner nodes are allowed. Thirdly, we generate
a new CmRSP data set containing larger instances based on
the cost structure detailed in [34] for digital data service net-
works, which expands on the existing benchmark test in-
stances. The results by our MA approach on this new data
set can serve as a baseline for future researchers.

This paper is organized as follows. Section 2 provides an
overview of the existing literature on the CmRSP and related
problems. We then explain our memetic algorithm in Sect. 3,
describing our chromosome representation, crossover and
mutation operators, local refinement scheme and popula-
tion composition strategy. Our computational experiments
are given in Sect. 4, which include experiments to decide
parameter values; we also provide results on both existing
and newly generated CmRSP benchmark test data. We con-
clude our article in Sect. 5 with some closing remarks.

2 Literature review

The premise behind the CmRSP is to create a survivable
network system that can avoid the scenario where the entire
network fails as the result of the failure of a small number
of critical components. The general survivable network de-
sign problem aims to find the most cost-effective network
where there are at least l disjoint paths between any pair of
nodes. The problem can be defined in terms of node-disjoint
or edge-disjoint paths, which ensures that the network sur-
vives up to l − 1 node or edge failures, respectively. In the
excellent survey on designing survivable networks by [10],
the authors conducted polyhedral studies on the problem and
proposed some optimization methods, such as heuristics and
branch-and-cut, to solve it.

For many practical applications, it is sufficient to con-
sider topologies that can survive a single failure (i.e., l = 2).
A simple and common tactic is to use a ring topology. For
example, [34] addressed a particular digital data service net-
work design problem, where the task is to interconnect a set
of customer locations through a ring of end offices so as to
minimize the total tariff cost and provide reliability.

An alternative is the ring-star topology. Labbé et al. [13]
studied a generic telecommunication network and intro-
duced the Ring Star Problem (RSP), which seeks the most
cost-effective solution to connect all nodes in a single (unca-
pacitated) ring-star configuration. The article also analyzed
the polyhedral properties of the problem and developed a
branch-and-cut algorithm that could solve instances involv-
ing up to 300 nodes optimally. The ring-star topology is also
considered to be a variant of the location-routing problem,
which generalizes the allocation of customers to the facil-
ities and the allocation of customers to the routes. Related
problems in this area include the Vehicle Routing Alloca-
tion Problem [3], the Median Cycle/Tour Problem [5, 14],

and the Plant Cycle Location Problem [15]. For more infor-
mation about location-routing problems, we refer the reader
to [21] and [30].

As a generalization of the RSP, the CmRSP was first pro-
posed by [2], who presented two integer programming for-
mulations for the problem along with a branch-and-cut al-
gorithm that could solve small instances optimally in rea-
sonable time. Subsequently, [11, 12] proposed another two
exact algorithms, namely branch-and-price and branch-and-
cut-and-price algorithms, to attack this problem. The size
of instances that can be solved optimally by these exact al-
gorithms is very limited. For the large instances widely en-
countered in practice, the best approaches so far have made
use of efficient meta-heuristics. The first meta-heuristic for
the CmRSP was proposed by [19], which is a GRASP algo-
rithm [29] that incorporates the tabu search strategy to es-
cape from local optima. More recently, [22, 23] designed
several local search operations based on properties of the
problem and then integrated them into a variable neighbor-
hood search (VNS) framework. Currently, the best approach
on existing benchmark instances is the VNS algorithm by
[23] involving an initialization procedure, an improvement
procedure, an integer linear programming based procedure,
a modified assignment procedure, a Lin-Kernighan proce-
dure and a shaking (perturbation) procedure combined with
a threshold accepting criterion.

Aside from the CmRSP, two other variants of the RSP
have recently received attention in the literature. Liefooghe
et al. [17] investigated a bi-objective ring star problem that
consists of locating a simple cycle through a subset of nodes
of a graph while optimizing two kinds of cost. Baldacci and
Dell’Amico [1] studied a multi-depot ring-star problem and
proposed a primal-based heuristic, which can also be used
for the CmRSP.

3 Memetic algorithm

The term memetic algorithm (MA) has been used to describe
the incorporation of domain knowledge (e.g., in the form
of a customized search procedure) into an evolutionary al-
gorithm. The idea is to combine the ability of evolutionary
algorithms to explore diverse regions of the search space to-
gether with domain-specific local search in order to lever-
age on the strengths of both types of approaches. We refer
the reader to [24] for the full details on MA. Several recent
studies have successfully applied MA to a variety of com-
binatorial optimization problems, such as the vehicle rout-
ing problems [7, 25], the graph coloring problem [18], the
job shop scheduling problem [26] and the quadratic multi-
ple container packing problem [31].

Our solution approach is a memetic algorithm (Algo-
rithm 1), which combines a genetic algorithm with a local
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Algorithm 1: The memetic algorithm framework for
the CmRSP

1 Construct the initial population P ;
2 for num_gens generations do
3 Offspring population PO ← ∅;
4 while PO is not full do
5 Randomly select two parent chromosomes

from P ;
6 Produce two offspring from the parent

chromosomes using Crossover operator;
7 Put offspring chromosomes into PO ;

8 foreach chromosome χ ∈ PO do
9 Convert χ into solution S;

10 Perform Mutation operation on S;
11 for hc_iters times do
12 Apply Extraction-assignment operator on

S;
13 Apply Steiner node insertion operator on

S;
14 Apply Steiner node removal operator on S;

15 Revert S into chromosome χ ;

16 PN ← P ∪ PO ;
17 Update population P using PN ;

refinement procedure. The algorithm begins by construct-
ing an initial population P consisting of |P | chromosomes
corresponding to feasible CmRSP solutions. In each gener-
ation, we first produce a set of offspring PO from P using
crossover operations. Next, we perform a mutation opera-
tion on each chromosome in PO . We then perform a simple
hill-climbing procedure on each solution in PO that utilizes
several neighborhood operators (lines 11–14). Finally, we
update the population P using PN = P ∪ PO in a manner
that maintains some population diversity (line 17). At any
stage of the algorithm, we update the best solution found so
far. We repeat this process for num_gens generations.

In this section, we will describe the various components
of our MA in detail, namely the chromosome representation,
crossover operation, mutation operation, local refinement
procedure (including the neighborhood operators used) and
the way of updating the population P at the end of each gen-
eration.

3.1 Chromosome representation

In our MA, each chromosome χ is a set of m rings
(not ring-stars), i.e. χ = {R1,R2, . . . ,Rm}, where Rk =
(0, v1

k , v
2
k , . . . , v

qk

k ,0) is the k-th ring and qk is the number
of visited nodes. Let uk be the number of customers in the
k-th ring; in order for the solution to be feasible, we must

have ui ≤ Q (∀i = 1, . . . ,m) and no two rings can share a
common node except the depot. We use the notation V (χ)

to denote the set of nodes in the m rings in χ , and V (Rk) to
denote the set of nodes in ring Rk .

This chromosome representation χ corresponds to the
best CmRSP solution where the ring portion of each ring-
star is given by χ . To find the best way to allocate the re-
maining customers such that allocation cost is minimized,
we can solve an assignment problem or transportation prob-
lem [4]. Let G′ = (X,Y,A′) be a bipartite graph, where
X = U − V (χ) is the set of customers to be allocated, and
Y = {1, . . . ,m} corresponds to the set of rings in χ . Each
arc (i, k), i ∈ X, k ∈ Y in the arc set A′ has an associated
minimum allocation cost f (i, k) = min{d(i, j)|j ∈ V (Rk)},
which is the minimum cost to allocate customer i to a node
in ring Rk .

To obtain the minimum allocation cost Za(χ), we can
solve the following mathematical model:

Za(χ) = min
∑

i∈X

∑

k∈Y

f (i, k) · xik (1)

subject to
∑

k∈Y

xik = 1, ∀i ∈ X (2)

∑

i∈X

xik ≤ Q − uk, ∀k ∈ Y (3)

xik ∈ {0,1} (4)

This model can be solved in time polynomial to the size
of sets X and Y . The values of the decision variables xik de-
termine the best allocations of the customers. In this manner,
a chromosome χ = {R1,R2, . . . ,Rm} can be converted into
its corresponding CmRSP solution S = {R̃1, R̃2, . . . , R̃m}.

The total routing cost Zr(χ) for all rings in χ is com-
puted by

Zr(χ) =
m∑

k=1

[
c
(
0, v1

k

) +
qi∑

j=2

c
(
v

j−1
k , v

j
i

) + c
(
v

qi

k ,0
)
]

Hence, the total cost of the solution represented by χ

is Z(χ) = Zr(χ) + Za(χ). Note that the local refinement
phase of our MA employs neighborhood operators that act
on the full ring-star solution representation, although all
chromosomes are re-optimized by solving the above model
at the end of the phase.

3.2 Initial population

One member of our initial population P is generated using
the initialization procedure by [23], which was derived from
the clustering procedure proposed by [8]. This approach be-
gins with a set of “seed” nodes S that initially contains only



A memetic algorithm for the capacitated m-ring-star problem 309

Algorithm 2: Modified sweep algorithm

1 Randomly select a node j as the basis;
2 for k = 1 to m do
3 foreach i ∈ U do
4 if i is not marked then
5 cos θi = (c(0, j)2 + c(0, i)2 − c(j, i)2)/(2 ·

c(0, j) · c(0, i));

6 U ′ ← unmarked nodes in U sorted in decreasing
order of cos θ ;

7 Label first node as seedk ;
8 Ring k is set to be (0, seedk,0);
9 Mark the first �|U |/m nodes in U ′;

10 Set the (�|U |/m + 1)th node in U ′ to be basis
node j ;

11 Randomly permute the nodes in U ;
12 foreach i ∈ U do
13 if i is not a seed then
14 Assign i to its best position;

the depot node 0. It then repeatedly locates the customer
that is furthest from all nodes in S, marks it as a seed cus-
tomer, and inserts it into S, until m seed customers have been
marked. Next, each of the seed customers are connected to
the depot to construct m rings. Finally, each remaining non-
seed customer is chosen in a random sequence and assigned
to its best feasible position (either as a visited or allocated
node). The set of rings in this solution is one chromosome in
our population. Note that Steiner nodes are not considered
in this process.

In order to generate the remaining members of the ini-
tial population, we use a sweep algorithm similar to the ap-
proach by [9] to determine a further |P | − 1 sets of seed
customers. Assume that the depot is the pole (i.e., the origin
of a Cartesian system), and that all customers have Carte-
sian coordinates corresponding to their locations. Each cus-
tomer i is represented by its polar coordinate (θi, ρi), where
θi is the angle and ρi is the ray length. We first sort the cus-
tomers in increasing order of θi , and then choose the cus-
tomers at index α, α +�|U |/m, α + 2 ×�|U |/m, . . . , α +
(m − 1) × �|U |/m to be seeds, where α is a uniformly
randomly selected integer from [0, �|U |/m − 1]. Finally,
we use the same process of randomly sequentially assigning
the remaining customers to their best positions to generate a
chromosome from the seed customers. This is repeated for
each chromosome with a newly selected value of α.

When the input instance does not include location infor-
mation for each customer, we employ the modified sweep
algorithm given in Algorithm 2 to approximate our sweep
algorithm. It begins by randomly selecting a customer j as a

Fig. 2 An example of modified sweep algorithm

basis. Next, we sort the remaining customers by their angle
from the virtual line segment from customer j to the depot
using the Cosine Law, i.e., cos θ = (a2 + b2 − c2)/(2 · a · b),
where a and b are the lengths of the adjacent sides and
c is the length of the opposite side of the triangle. Note
that greater values of cos θ correspond to smaller values
of angle θ , and θ is unsigned. We label the first node as a
seed node and mark the first �|U |/m nodes; this effectively
marks a “wedge” of nodes. An iteration ends when we set
the �|U |/mth node as the basis node for the next iteration.
This is repeated m times, considering only the unmarked
nodes each time, which produces a set of m seeds.

Figure 2 gives a conceptual example of our modified
sweep algorithm, which assumes that the distances between
each pair of nodes are their Euclidean distances. Given the
basis node selected in Fig. 2(a) and �|U |/m = 3, the algo-
rithm would mark the “wedge” of nodes corresponding to
the greatest cos θ values, namely θ1, θ2 and θ3. The node
corresponding to θ4 will then be the basis for the next itera-
tion, as shown in Fig. 2(b).

3.3 Crossover

Our crossover operator is motivated by the work done by [6,
20, 33] and constructs two offspring from two parent chro-
mosomes. It is a combination of two-point crossover, feasi-
bility reparation and re-optimization.
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Let χ1 = {R1
1,R1

2, . . . ,R1
m} and χ2 = {R2

1,R2
2, . . . ,R2

m}
be two parent chromosomes. We define the similarity be-
tween two rings to be the number of common nodes ap-
pearing on both rings, and reorder the rings in the chromo-
somes such that the total similarity between the correspond-
ing rings is maximized. To do so, we find the maximum
weight perfect matching [27, 32] on the m × m similarity
matrix A for χ1 and χ2, where each element aij of A is equal
to the similarity of the two rings R1

i ∈ χ1 and R2
j ∈ χ2. The

similarity between any chromosome pair, such as χ1 and χ2,
is represented by the sum of weights associated with their
maximum weight perfect matching. Without loss of gener-
ality, let the resultant (ordered) chromosomes for χ1 and χ2

be p1 = (R1
1,R1

2, . . . ,R1
m) and p2 = (R2

1,R2
2, . . . ,R2

m), re-
spectively. We then randomly select two cross points x and
y, 1 ≤ x ≤ y ≤ m, and swap the genes in p1 and p2 within
the range [x, y]. Hence, the resultant chromosomes are
o′

1 = (R1
1, . . . ,R1

x−1,R
2
x, . . . ,R

2
y,R

1
y+1, . . . ,R

1
m) and o′

2 =
(R2

1, . . . ,R2
x−1,R

1
x, . . . ,R

1
y,R

2
y+1, . . . ,R

2
m), respectively.

Since o′
1 or o′

2 may contain duplicate nodes, we pro-
ceed to repair both chromosomes. For o′

1, we simply remove
all duplicate nodes in the gene sequences (R1

1, . . . ,R1
x−1)

and (R1
y+1, . . . ,R

1
m), and similarly for o′

2. Finally, we re-
optimize both chromosomes to produce the final offspring
chromosomes o1 and o2, respectively, by considering in a
random sequence each node i that is not in the chromosome.
The node i is inserted to its best position only if it satisfies
one of the following conditions:

– If i is a customer node, insert it to its best position if and
only if its best position is to visit some ring.

– If i is a Steiner node, insert it to its best position if and
only if its best position is to visit some ring and the addi-
tional cost is less than 0.

Figure 3 provides an example of our crossover opera-
tor. Suppose the set of customers U = {1,2,3,4,5} and
the set of Steiner nodes W = {6,7}. Given the parent chro-
mosomes p1 = ((1,6,3), (2,5), (4)) and p2 = ((1,2,5),

(3,7), (4)) as shown in Fig. 3(a), the similarity matrix
will be T = [1 1 0;2 0 0;0 0 1]. The maximum weight
matching of T is {(1,2), (2,1), (3,3)} with the total weight
of 4, resulting in the reordered parent chromosomes in
Fig. 3(b). If the cross points are x = 1 and y = 2, we obtain
o′

1 = ((1,6,3), (1,2,5), (4)) and o′
2 = ((3,7), (2,5), (4))

(Fig. 3(c)). Since node 1 is duplicated in o′
1, we repair it

by deleting node 1 from the first ring. For o′
2, the best posi-

tion of customer 1 may be as the second visited node on the
first ring, resulting in o2 = ((3,1,7), (2,5), (4)). The final
offspring chromosomes are shown in Fig. 3(d).

3.4 Mutation

Our mutation operation works on a CmRSP solution S =
{R̃1, R̃2, . . . , R̃m}, which is a set of ring-stars, rather than a

Fig. 3 An example of crossover operator

chromosome. Hence, we first convert a given chromosome
χ ∈ PO into a CmRSP solution S using Eqs. (1)–(4). The
mutation operation is simple: for each customer in S, we
swap it with a randomly selected customer with a mutation
probability μ. This introduces a small amount of perturba-
tion in the offspring population, which can help the pro-
cess locate promising neighborhoods in a wider region of
the search space.

3.5 Local refinement

After performing the mutation operation, we attempt to lo-
cally improve the solution S using a hill-climbing proce-
dure that sequentially applies three neighborhood operators
hc_iters times, where hc_iters is a user-defined parameter
(lines 11–14 in Algorithm 1). Over the course of our re-
search, we investigated several complex neighborhood oper-
ators with mixed results. After careful experimentation and
analysis, we have determined that the three operators de-
scribed in this section are sufficient to produce high-quality
results on our test data.

3.5.1 Extract-assign operator

The first operator is called extract-assign, which works as
follows. Each node i ∈ S has an extraction probability ε of
being selected for extraction. First, we remove all selected
nodes from their current positions along with any nodes that
are allocated to them (if any). Let V̄ be the set of all nodes
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removed in this way. We then reassign all nodes in V̄ in
a random order to their best positions (either as allocated or
visited nodes) in S− V̄ by considering all possible positions.
If the resultant solution S′ is superior to S, then it replaces S;
otherwise we discard S′. We perform this process |U | times,
where |U | is the number of customers.

Note that the approach by [23] describes an extraction-
assignment operator, but it differs from ours in significant
ways. In particular, it only considers extracting each node
once, and it only considers reassigning the node to the vicin-
ity of its T nearest nodes.

3.5.2 Steiner insert operator

Given the current solution S = {R̃1, R̃2, . . . , R̃m}, the
Steiner insert operator first randomly selects a ring-star R̃i .
We denote the ring portion of R̃i by Ri = (0, v1

i , v
2
i , . . . ,

v
qi

i ,0). Next, we randomly select and remove a segment
(va

i , va+1
i , . . . , vb

i ), 1 ≤ a ≤ b ≤ qi (i.e., a consecutive se-
quence of visited nodes) from Ri along with all nodes allo-
cated to this segment; let V̄ be the set of all nodes removed
in this way. We then insert the best unused Steiner node j in
place of the segment such that the cost of the resultant ring-
star with ring portion (0, . . . , va−1

i , j, vb+1
i , . . . ,0) is mini-

mized. Finally, we reassign all nodes in V̄ in a random order
to the best positions in S − V̄ + {j}. We replace S with the
resultant solution S′ only if it is superior. We perform this
process Ni times, where Ni is the number of unused Steiner
nodes in the solution S.

3.5.3 Steiner remove operator

The Steiner remove operator randomly selects a used Steiner
node j ∈ S and removes it along with all customer nodes
connected to j (if any), and then reassigns these customer
nodes to their best positions in random order. Once again,
the resultant solution S′ (with one fewer Steiner node) re-
places S only if it is superior, otherwise it is discarded. This
is done Nr times, where Nr is the number of used Steiner
nodes in the solution S.

Naji-Azimi et al. [23] describes a Steiner-node-removal
operator that only considers the reassignment of the allo-
cated customers to their T nearest neighbors. In contrast, our
Steiner remove operator considers all possible positions.

3.6 Population composition strategy

Our approach uses an adaptive strategy that takes both solu-
tion quality and diversity into account to determine the com-
position of the chromosome population. This kind of strat-
egy is also widely used in scatter search algorithms [16].
On the one hand, it is important to preserve the best solu-
tions in our population so that their desirable qualities can

Algorithm 3: Population updating procedure
Input: P : population from the previous generation
Input: PN : new population from the current generation
Output: P : updated population

1 PU ← sort P ∪ PN in increasing order of solution cost;
2 Let a = �λ · |P |;
3 PE ← first a elements of PU ;
4 Let P ′ = PU − PE ;
5 foreach χ ∈ P ′ do
6 Calculate the similarity between χ and PE ;

7 Sort P ′ in increasing order of similarity;
8 PP ← first |P | − a elements of P ′;
9 P ← PE ∪ PP ;

be transmitted to their offspring and refined over future gen-
erations. On the other hand, diversity in the population is
also a significant factor when attempting to escape from lo-
cal optima; our preliminary experiments showed that if two
chromosomes in the population are similar, they are more
likely to converge to the same solution after local refine-
ment. Hence, the population pool should be carefully con-
sidered to achieve a good balance between elite and dissim-
ilar but promising solutions.

Our procedure for updating the population in each gen-
eration is given by Algorithm 3, which is invoked in line 17
of Algorithm 1. We divide the population P into two cat-
egories: an elite set PE and a promising set PP . The elite
set contains the highest quality chromosomes in the entire
population in terms of their cost, while the promising set
contains the chromosomes that are most “unlike” the elite
set. We use the parameter λ to control the sizes of the two
sets: the first a = �λ · |P | chromosomes correspond to the
elite set and the remaining chromosomes correspond to the
promising set.

Given the population P from the previous generation and
the new population PN from the current generation, we sort
their union PU in decreasing order of solution cost. The first
a elements of this set is marked as the elite set PE . For the
remaining elements, we calculate their similarity from the
elite set and retain the most dissimilar |P |−a chromosomes.
Given a population P and a chromosome χ , the similarity
between χ and P is defined as the minimum similarity be-
tween χ and all the elements in P ; we use the same notion
of similarity as our crossover operator described in Sect. 3.3.

The parameter λ decreases linearly over the generations.
It starts from λ = 1 and decreases to λ = λmin, where
λmin is a user-defined parameter. Let iter be the number
of the current iteration; the value of λ is calculated as
λ = ((num_gens − iter)/num_gens)× (1 −λmin)+λmin.
This strategy increases the diversity of the population as the
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number of consecutive non-improving generations increase,
which helps the algorithm escape from local optima.

4 Experiments and analysis

Our MA approach was implemented in C++ and compiled
by GCC 4.1.2. The experimental results reported in this pa-
per were obtained on a PC with a 2.27 GHz Xeon processor
and 4GB of RAM under the Linux operating system. Com-
putation times reported are in CPU seconds on this machine.

We first conducted experiments over four classes of
CmRSP test instances proposed by [2] and [23]. In [2], the
authors generated two classes of 45 instances (Classes A
and B) that contain either 26, 51, 76 or 101 nodes based on
three TSPLIB instances eil51, eil76 and eil101 [28]. The un-
derlying graph of the instances with 26 nodes consists of the
first 26 nodes of eil51, and other instances were derived from
their corresponding TSPLIB instances. Class A instances as-
sume that the routing costs and allocation costs between two
nodes i and j are identical and equal to their EUC_2D dis-
tance e(i, j), i.e., c(i, j) = d(i, j) = e(i, j); this models a
small-scale network where all connections consist mainly
of cheaper cables. EUC_2D distance of two nodes is the in-
teger closest to their real Euclidean distance; specifically,
half-integers are always rounded to even numbers. Class B
instances have c(i, j) = 7× e(i, j) and d(i, j) = 3× e(i, j),
which simulates a large-scale network spanning a large geo-
graphical area, where the connections in a ring might repre-
sent high-quality fiber optic cables while the allocated nodes
are connected to the ring using relatively cheaper cables.
Recently, [23] generated another two classes (Classes C
and D) of 24 instances using two TSPLIB instances kroA150
and kroA200 with the instance generation procedure of [2],
where Classes C and D correspond to Classes A and B,
respectively. Due to the rounding issue, some instances in
these four classes do not satisfy the triangle inequality. More
precisely, there exist three-edge cycles in which the sum of
the lengths of two edges is less than the length of the remain-
ing edge by 1 unit in some instances of Classes A and C and
by 7 units in some instances of Classes B and D. We refer
the reader to [2] for the details of generating these instances.

Next, we randomly generated two new classes of larger
test instances (called Classes E and F) for the CmRSP. These
new instances use a pricing structure for digital data service
networks [34], and also address some possible shortcomings
of the existing instances. We describe the full details of our
new instances along with the computational results obtained
by our MA approach on these instances in Sect. 4.4.

All instances as well as their detailed computational re-
sults are available in the online supplement to this paper at
www.computational-logistics.org/orlib/cmrs.

Table 1 Parameters for MA approach

Symbol Description

hc_iters Number of iterations of hill-climbing local refinement
procedure

|P | Retained population size

|PO | Number of offspring per generation

ε Extraction rate for extract-assign operator

μ Mutation rate for mutation operator

λmin Minimum proportion of elite vs. diverse chromosomes

4.1 Parameter tuning

Our proposed MA approach contains a number of param-
eters as given in Table 1. In order to determine appropri-
ate values for these parameters, we selected 10 instances
from Classes C and D for our preliminary testing, namely
C01, C06, C11, C16, C21, D01, D06, D11, D16 and D21
(we omit the suffixes in the instance names for the sake of
brevity). We then performed a series of experiments where
we tested different values for one or two parameters while
keeping the others constant. After each experiment, we se-
lected the parameter value(s) that produced the best results
and used these values for subsequent experiments. This is a
common method of parameter tuning that allows us to find
suitable parameter values without over-fitting our algorithm
to the data set. For each experiment, we executed our MA
approach on each of the 10 instances 5 times with differ-
ent random seeds, where a time limit of 200 seconds was
imposed on each execution. For each instance, we recorded
the best value (BV) and calculated the average value (AV)
and standard deviation (SD) of the five solution values. The
values under the columns “ABV”, “AAV” and “ASD” in the
following tables in this subsection represent the average val-
ues of BV, AV and SD over the 10 selected instances.

Our first experiment aims to determine the number of it-
erations of hill-climbing local search per generation hc_iters
from the set {1,2,4,8,16}; the results are reported in Ta-
ble 2. The remaining parameters were fixed as: ε = 0.1,
μ = 0.1, |P | = 10, |PO | = 20 and λmin = 1. We eventually
decided on hc_iters = 8 since this setting could generate the
smallest “ABV” and “AAV” and the second smallest “ASD”.
This table also provides an indication of the effectiveness of
our hill-climbing local refinement procedure. Observe that
when hc_iters = 1, the “AAV” value is 92162.1, which is
higher than the other values in the same column, namely the
AAV values obtained after the same amount of computation
time when hc_iters = 2,4,8. This suggests that the inclu-
sion of our local refinement procedure, which is a defining
characteristic of a memetic algorithm compared to a genetic
algorithm, has a positive effect on algorithm performance.

Our next experiment determines the best combination of
population size |P | and the number of offspring |PO | in our

http://www.computational-logistics.org/orlib/cmrs
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Table 2 Experiment to find the
best value of hc_iters hc_iters |P | |PO | ε μ λ ABV AAV ASD

1 10 20 0.1 0.1 1 91853.1 92162.1 224.84

2 10 20 0.1 0.1 1 91290.5 91334.54 49.7

4 10 20 0.1 0.1 1 91286.6 91327.96 33.87

8 10 20 0.1 0.1 1 91268.6 91322.12 48.65

16 10 20 0.1 0.1 1 91274.8 91341.54 50.66

Table 3 Experiment to find the
best values of |P | and |PO | hc_iters |P | |PO | ε μ λ ABV AAV ASD

8 5 5 0.1 0.1 1 91263.3 91307.6 54.27

8 5 10 0.1 0.1 1 91268.4 91307.7 39.45

8 10 10 0.1 0.1 1 91244.6 91318.82 63.44

8 10 20 0.1 0.1 1 91268.6 91322.12 48.65

8 20 10 0.1 0.1 1 91282.7 91363.78 57.75

8 20 20 0.1 0.1 1 91332.1 91385.22 58.36

Table 4 Experiment to find the
best values of ε and μ hc_iters |P | |PO | ε μ λ ABV AAV ASD

8 10 10 0.05 0.05 1 91277.9 91253.5 53.88

8 10 10 0.05 0.1 1 91327.6 91414.7 64.37

8 10 10 0.05 0.2 1 91379.8 91465.9 84.35

8 10 10 0.1 0.05 1 91232.8 91283.1 36.67

8 10 10 0.1 0.1 1 91244.6 91318.82 63.44

8 10 10 0.1 0.2 1 91377.8 91429.66 41.52

8 10 10 0.2 0.05 1 91348.9 91383.82 29.22

8 10 10 0.2 0.1 1 91386.1 91454.48 60.80

8 10 10 0.2 0.2 1 91419.2 91456.22 39.81

parameter setting. The value of |PO | has a significant effect
on the running time of the algorithm since it determines the
number of chromosomes that require mutation and local re-
finement in each generation. A full 32 experimental design
process was conducted for the values of |P | and |PO |. After
some preliminary experiments, the levels of both parameters
were taken from {5,10,20}. The results of this experiment
are presented in Table 3. We can see that when |P | = 10 and
|PO | = 10, the algorithm generated the smallest “ABV” with
the value 91244.6. However, this setting did not generate the
smallest values for “AAV” and “ASD”. Since our aim is to
find the solution with smallest objective value, the parame-
ter setting resulting the best “ABV” should have the highest
priority to be selected. As a result, we fixed the values of
parameters |P | and |PO | at 10.

Subsequently, we tested various combinations of extrac-
tion rate ε and mutation rate μ by conducting another full
32 experimental design, where the levels of both parameters
were taken from {0.05, 0.10, 0.20}. The results of this ex-
periment are shown in Table 4. Note that a higher extraction
rate requires the extract-assign operator to reassign more

nodes per operation, increasing the running time of the algo-
rithm. The remaining parameter values remain unchanged,
i.e., hc_iters = 8, |P | = 10, |PO | = 20, and λmin = 1. We
find that the combination of ε = 0.10 and μ = 0.05 pro-
duced the smallest “ABV” and the second smallest “AAV”
and “ASD”. Thus, we fixed the values of ε and μ at 0.10 and
0.05, respectively.

Finally, we performed an experiment to determine the
value of λmin. We tested our approach with λmin = {0.2,

0.5,0.8,1.0} on the selected 10 instances and report the re-
sults in Table 5. We find the algorithm with λmin = 0.5 was
able to find the smallest “ABV”, “AAV” and “ASD”; this
motivated us to fix the value of λmin at 0.5.

In summary, the values for our various parameters were
fixed as follows: hc_iters = 8, ε = 0.10, μ = 0.05, |P | = 10,
|PO | = 10, and λmin = 0.5. These are the settings used for
the remainder of this study. As the sizes of the selected 10
instances are close, we imposed a time limit of 200 seconds
on each execution in the parameter tuning stage. However,
we need to perform this algorithm to solve all test instances
whose sizes are considerably different. So it is not appro-
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Table 5 Experiment to find the
best value of λmin

hc_iters |P | |PO | ε μ λ ABV AAV ASD

8 10 10 0.1 0.05 0.2 91247.8 91290.02 45.21

8 10 10 0.1 0.05 0.5 91219.3 91252.4 34.87

8 10 10 0.1 0.05 0.8 91230.9 91288.6 39.01

8 10 10 0.1 0.05 1 91232.8 91283.1 36.67

priate to fix computation time at a constant value. Instead,
in the following experiments we fixed the number of gen-
erations at 500 for each execution and report the average
computation time consumed in the tables in the subsequent
subsections.

4.2 Results on Classes A and B

Our MA approach does not assume that the routing costs
satisfy the triangle inequality, and therefore it allows non-
connecting Steiner nodes. However, we can convert our
solution into one that contains no non-connecting Steiner
nodes using a “repair” procedure, which simply removes
each such Steiner node j and then connects the two nodes
adjacent to j . For ease of discussion, we will refer to our
MA approach with the repair procedure as MA+R.

Tables 6 and 7 show the results obtained by our MA
and MA+R approaches compared to the branch-and-cut ap-
proach by [2] and two heuristic methods, called HP and
NST, by [22, 23] on the Class A and B instances; note
that all of these approaches upon which we make our com-
parisons can only produce solutions that contain no non-
connecting Steiner nodes. All computational results of HP
and NST were taken from [23] which were obtained on a
machine that is superior to ours. However, we believe that
there is no dramatic difference between the speeds of these
machines, so it is reasonable to directly compare the com-
putational times of the HP, NST and MA+R approaches.

The instance names are listed in column Instance. The
best costs of solutions without the non-connecting Steiner
nodes are highlighted in bold. For the branch-and-cut ap-
proach by [2], we give the cost of the solution obtained
and the time taken in columns Cost and Time, respectively;
all solutions that were obtained within 7200 seconds are
optimal if non-connecting Steiner nodes are not allowed.
For the heuristic methods by [22, 23] and our MA+R ap-
proach that were all executed 5 times using different ran-
dom seeds, columns Best, Average and A.T. give for each
instance the best cost, the average cost and the average time
of the five runs. The last column Best_nr gives the cost of
the best solutions found by our MA approach, where the val-
ues marked with an asterisk (*) indicate solutions containing
non-connecting Steiner nodes.

When non-connecting Steiner nodes are not allowed, the
branch-and-cut, HP, NST and MA+R approaches achieved

the best solutions for 65, 85, 89, and 89 out of the 90 Class
A and B instances, respectively. In particular, our MA+R ap-
proach found a solution better than all other algorithms for
instance B30 and a solution worse than the best known solu-
tion for instance B22. The NST and MA+R approaches are
both capable of producing the best solutions for almost all
instances. However, the running time required by our MA+R
approach is much larger than that required by NST. Hence,
we suggest that the best existing algorithm for solving the
Class A and B instances is the NST heuristic.

The column Best_nr shows that our MA approach can
further reduce the costs for 31 out of 90 instances when tak-
ing non-connecting Steiner nodes into account. Moreover,
for each instance the value in the column Best_nr is not
larger than the value in each of the four Best columns. To
the best of our knowledge, all algorithms in existing liter-
ature assume that these instances abide by the triangle in-
equality rule. It may be possible to achieve good results on
these instances by adapting the NST heuristic to allow non-
connecting Steiner nodes, failing which our MA approach
could be employed instead.

4.3 Results on Classes C and D

For each of the Class C and D instances, the HP and NST
heuristics were executed 20 times while our MA+R ap-
proach was only executed 10 times. The superiority of our
MA approach over the branch-and-cut, HP and NST ap-
proaches is clearly exhibited by the results shown in Tables 8
and 9: these four approaches achieved the best solutions that
contain no non-connecting Steiner nodes for 6, 16, 24 and
42 out of the 48 Class C and D instances, respectively.

Our MA+R approach achieved better solutions than the
other approaches for 23 instances: 5 Class C instances (C12,
C21–C24) and 18 Class D instances (D01, D04, D06–D13,
D16–D17, D19–D24). This shows that MA+R has a greater
advantage over existing algorithms when solving the Class
D instances. The NST heuristic found better solutions than
the other approaches for only three instances (C17, D15,
D18); HP found such a solution for only instance C18; and
the branch-and-cut approach found no such solution. The
high quality of our MA+R solutions came at a cost of added
computational time. From the last rows of Tables 8 and 9,
we can see that on average our MA+R approach consumed
about 4 to 10 times the computational time required by the



A memetic algorithm for the capacitated m-ring-star problem 315

Table 6 Computational results for Class A instances

Instance Branch-and-cut HP NST MA + R MA

Cost Time Best Average A.T. Best Average A.T. Best Average s A.T. Best_nr

A01 242 0.10 242 242.0 0.10 242 242.0 0.18 242 242.0 0 15.63 242

A02 261 0.00 261 261.0 0.10 261 261.0 0.16 261 261.0 0 17.69 261

A03 292 0.00 292 292.0 0.08 292 292.0 0.14 292 292.0 0 25.97 292

A04 301 0.50 301 301.0 0.16 301 301.0 0.24 301 301.0 0 11.28 301

A05 339 0.30 339 339.0 0.20 339 339.0 0.38 339 339.0 0 13.75 339

A06 375 0.70 375 375.0 0.32 375 375.0 0.26 375 375.0 0 25.58 375

A07 325 3.80 325 325.0 0.30 325 325.0 0.28 325 325.0 0 0.84 325

A08 362 0.30 362 362.0 0.24 362 362.0 0.22 362 362.0 0 0.87 362

A09 382 0.20 382 382.0 0.46 382 382.0 0.40 382 382.0 0 0.87 382

A10 242 0.20 242 242.0 0.12 242 242.0 0.14 242 242.0 0 52.29 242

A11 261 0.40 261 261.0 0.14 261 261.0 0.14 261 261.0 0 38.45 261

A12 286 0.10 286 286.0 0.12 286 286.0 0.12 286 286.0 0 39.52 286

A13 322 2.10 322 322.0 0.34 322 322.0 0.40 322 322.0 0 86.58 322

A14 360 2.10 360 360.0 0.38 360 360.0 0.44 360 360.0 0 71.56 360

A15 379 2.30 379 379.0 0.48 379 379.0 0.52 379 379.0 0 65.04 379

A16 373 8.40 373 373.0 0.64 373 373.0 0.50 373 373.0 0 37.81 373

A17 405 41.70 405 405.0 0.70 405 405.0 0.72 405 405.0 0 54.07 404*

A18 432 52.20 432 432.8 0.76 432 432.0 0.94 432 432.0 0 45.90 432

A19 458 182.80 458 458.2 1.00 458 458.0 1.62 458 458.0 0 4.13 458

A20 490 220.40 490 490.0 1.08 490 490.0 1.44 490 490.0 0 4.24 490

A21 520 6334.20 520 520.8 1.24 520 520.8 1.64 520 520.1 0.3 4.42 520

A22 330 48.30 330 330.0 0.34 330 330.0 0.26 330 330.3 0.5 133.53 328*

A23 385 30.60 385 385.0 0.32 385 385.0 0.14 385 385.0 0 161.55 383*

A24 448 63.70 448 448.0 0.50 448 448.0 0.42 448 448.0 0 169.51 445*

A25 402 567.70 402 402.0 0.92 402 402.0 0.94 402 402.0 0 90.95 401*

A26 460 7200.00 457 457.8 0.96 457 458.0 1.12 457 457.3 0 85.03 456*

A27 479 509.30 479 479.0 1.04 479 479.0 1.28 479 479.0 0 78.51 477*

A28 471 1584.40 471 471.0 1.60 471 471.0 2.88 471 471.0 0 51.66 470*

A29 523 7200.00 519 519.8 1.60 519 519.6 1.96 519 519.0 0 59.45 518*

A30 545 3221.30 545 548.0 1.76 545 547.4 2.30 545 545.0 0 58.64 544*

A31 564 479.50 564 565.0 2.50 564 566.2 3.76 564 564.2 0.4 12.29 564

A32 606 7200.00 602 604.2 2.40 602 602.5 4.72 602 602.4 0.8 12.12 602

A33 654 7200.00 640 648.8 2.50 640 642.0 6.60 640 640.0 0 10.99 640

A34 363 8.70 363 363.0 0.58 363 363.0 0.40 363 363.0 0 147.93 361*

A35 415 91.80 415 415.0 0.60 415 415.0 0.32 415 415.0 0 152.45 414*

A36 448 680.40 448 448.0 0.90 448 448.0 0.98 448 448.2 0.4 176.61 446*

A37 500 7200.00 500 500.0 1.40 500 500.0 1.48 500 500.0 0 113.15 499*

A38 532 7200.00 528 528.0 1.66 528 528.0 2.10 528 528.3 0.5 87.96 528

A39 568 7200.00 567 567.0 1.54 567 567.0 1.76 567 567.0 0 122.78 566*

A40 595 6690.10 595 595.0 2.86 595 595.2 4.50 595 595.0 0 83.63 595

A41 625 7200.00 623 623.2 3.16 623 623.6 6.42 623 623.4 0.5 92.69 623

A42 662 7200.00 657 658.6 2.74 657 657.8 4.80 657 657.3 0.5 87.09 657

A43 646 283.00 648 651.0 5.30 646 649.8 10.52 646 646.8 1.5 23.26 646

A44 680 7200.00 679 680.2 5.18 679 679.8 10.06 679 679.6 0.7 26.49 679

A45 700 1310.80 700 700.0 4.76 700 700.4 10.18 700 700.0 0 26.14 700
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Table 7 Computational results for Class B instances

Instance Branch-and-cut HP NST MA + R MA

Cost Time Best Average A.T. Best Average A.T. Best Average s A.T. Best_nr

B01 1684 0.10 1684 1684.0 0.12 1684 1684.0 0.06 1684 1684.0 0 17.02 1684

B02 1827 0.10 1827 1827.0 0.10 1827 1827.0 0.16 1827 1827.0 0 24.10 1827

B03 2041 0.00 2041 2041.0 0.10 2041 2041.0 0.12 2041 2041.0 0 39.27 2041

B04 2104 0.50 2104 2104.0 0.18 2104 2104.0 0.22 2104 2104.0 0 23.33 2104

B05 2370 0.50 2370 2370.0 0.26 2370 2370.0 0.40 2370 2370.0 0 31.35 2370

B06 2615 0.70 2615 2615.0 0.46 2615 2615.0 0.24 2615 2615.0 0 28.56 2615

B07 2251 0.40 2251 2251.0 0.24 2251 2251.0 0.48 2251 2251.0 0 0.85 2251

B08 2510 0.50 2510 2510.0 0.28 2510 2510.0 0.28 2510 2510.0 0 0.87 2510

B09 2674 0.80 2674 2674.0 0.38 2674 2674.0 0.42 2674 2674.0 0 0.88 2674

B10 1681 0.80 1681 1681.0 0.18 1681 1681.0 0.14 1681 1681.0 0 89.30 1674*

B11 1821 1.50 1821 1821.0 0.18 1821 1821.0 0.16 1821 1821.0 0 71.54 1821

B12 1972 0.30 1972 1972.0 0.20 1972 1972.0 0.18 1972 1972.0 0 79.51 1972

B13 2176 1.10 2176 2176.0 0.36 2176 2176.0 0.30 2176 2176.0 0 92.55 2176

B14 2470 7.20 2470 2470.0 0.42 2470 2470.0 0.42 2470 2470.7 2.2 90.62 2470

B15 2579 4.10 2579 2579.0 0.52 2579 2579.0 0.52 2579 2579.0 0 95.26 2579

B16 2490 17.90 2490 2490.0 0.84 2490 2496.8 0.58 2490 2490.0 0 64.30 2490

B17 2721 74.90 2721 2721.0 0.78 2721 2721.0 0.82 2721 2721.0 0 78.48 2714*

B18 2908 145.00 2908 2914.6 0.96 2908 2908.0 0.98 2908 2908.0 0 49.67 2908

B19 3015 296.70 3015 3015.0 1.80 3015 3015.0 1.72 3015 3015.0 0 4.39 3015

B20 3260 336.60 3260 3260.0 1.68 3260 3260.0 1.40 3260 3260.0 0 4.52 3260

B21 3404 6470.70 3404 3404.0 1.82 3404 3420.6 2.22 3404 3404.0 0 4.47 3404

B22 2253 105.50 2253 2253.0 0.44 2253 2256.6 0.36 2259 2259.0 0 214.12 2245*

B23 2620 29.50 2620 2620.0 0.42 2620 2620.0 0.24 2620 2620.0 0 194.12 2613*

B24 3059 85.30 3059 3059.0 0.48 3059 3059.0 0.38 3059 3060.3 4.1 212.98 3045*

B25 2720 1897.60 2720 2720.0 0.98 2720 2720.0 1.06 2720 2720.0 0 159.74 2713*

B26 3138 7200.00 3100 3115.2 1.36 3100 3113.8 1.34 3100 3110.6 9.4 108.23 3093*

B27 3311 7200.00 3284 3284.0 1.16 3284 3284.0 1.06 3284 3284.0 0 112.39 3277*

B28 3088 7200.00 3044 3060.0 2.96 3044 3049.4 2.82 3044 3044.0 0 80.09 3044

B29 3447 7200.00 3415 3438.6 3.24 3415 3440.8 2.40 3415 3422.1 8 51.26 3408*

B30 3648 7200.00 3636 3642.2 3.00 3632 3643.2 3.04 3631 3631.2 0.4 47.40 3624*

B31 3740 7200.00 3652 3687.2 5.38 3652 3670.2 5.46 3652 3652.0 0 12.60 3652

B32 4026 7200.00 4003 4006.4 4.78 3964 4002.8 6.32 3964 3982.7 18.4 12.41 3964

B33 4288 7200.00 4217 4217.0 4.70 4217 4217.0 6.28 4217 4217.0 0 11.79 4217

B34 2434 24.20 2434 2434.0 0.70 2434 2434.0 0.46 2434 2434.0 0 255.19 2427*

B35 2782 115.40 2782 2782.0 0.68 2782 2782.0 0.28 2782 2782.0 0 240.73 2775*

B36 3009 862.40 3009 3009.0 1.02 3009 3009.0 1.04 3009 3011.8 3.6 270.49 3002*

B37 3332 7200.00 3322 3322.0 1.88 3322 3322.0 1.98 3322 3322.0 0 172.60 3315*

B38 3533 7200.00 3533 3533.0 2.04 3533 3533.0 2.14 3533 3535.0 6.3 156.15 3526*

B39 3872 7200.00 3834 3839.6 2.42 3834 3839.2 2.76 3834 3839.2 4.8 181.90 3827*

B40 3923 7200.00 3887 3887.8 5.18 3887 3888.0 7.12 3887 3891.2 8.2 128.97 3887

B41 4125 7200.00 4082 4088.4 5.04 4082 4091.4 6.20 4082 4085.2 10.1 134.33 4082

B42 4458 7200.00 4358 4358.0 4.38 4358 4358.0 7.04 4358 4358.0 0 121.10 4358

B43 4110 7200.00 4135 4150.4 14.94 4110 4126.0 10.40 4109 4109.6 0.5 24.23 4109

B44 4506 7200.00 4358 4377.6 11.28 4355 4379.8 11.60 4355 4374.5 10.5 26.36 4355

B45 4632 7200.00 4565 4568.4 10.08 4565 4566.4 9.28 4565 4565.0 0 27.77 4565
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Table 8 Computational results for Class C instances

Instance Branch-and-cut HP NST MA + R MA

Cost Time Best Average A.T. Best Average A.T. Best Average s A.T. Best_nr

C01 17163 7200.00 17138 17138.0 2.27 17138 17138.0 1.06 17138 17138.0 0 50.83 17138

C02 18782 7200.00 18782 18782.0 2.28 18782 18782.0 0.87 18782 18782.0 0 138.20 18782

C03 20135 6534.50 20135 20186.3 3.20 20135 20237.6 1.49 20135 20135.0 0 66.38 20134*

C04 20741 7200.00 20741 20741.0 6.72 20741 20741.0 6.43 20741 20741.0 0 150.99 20741

C05 22810 7200.00 22525 22566.3 7.34 22525 22525.0 9.82 22525 22525.0 0 93.99 22525

C06 24955 7200.00 24949 24954.5 6.96 24949 24953.2 6.62 24949 24949.0 0 168.17 24948*

C07 23259 2914.70 23259 23259.0 14.65 23259 23314.8 15.01 23259 23259.0 0 81.91 23258*

C08 25121 7200.00 25006 25006.0 12.31 25006 25006.0 14.29 25006 25006.0 0 155.51 25005*

C09 27605 7200.00 27277 27288.8 13.43 27277 27284.2 17.37 27277 27277.0 0 85.58 27276*

C10 27250 7200.00 27233 27312.0 31.25 27273 27326.6 36.26 27223 27268.2 15.9 139.41 27223

C11 28536 2400.20 28536 28573.6 30.68 28536 28551.6 30.12 28536 28545.7 13 90.75 28536

C12 31286 7200.00 30811 30857.2 28.16 30669 30833.0 38.00 30667 30768.9 143.1 115.20 30667

C13 18614 7200.00 18567 18567.0 5.56 18567 18567.0 3.23 18567 18567.0 0 122.81 18567

C14 20834 7200.00 20650 20687.5 6.69 20650 20709.3 4.70 20650 20650.0 0 135.16 20650

C15 23510 7200.00 23496 23502.3 7.30 23496 23501.7 5.23 23503 23506.4 1.9 107.16 23503

C16 22919 7200.00 22882 22882.0 15.57 22882 22882.0 26.25 22882 22882.0 0 137.57 22882

C17 25660 7200.00 25485 25627.2 17.05 25472 25559.4 27.62 25473 25481.5 6.6 104.33 25473

C18 28413 7200.00 28300 28365.2 18.36 28333 28364.7 24.55 28334 28348.0 5.1 152.52 28334

C19 27325 7200.00 26987 27054.7 38.34 26971 26999.9 62.04 26971 26982.6 16.4 107.97 26970*

C20 29778 7200.00 29333 29649.5 36.89 29268 29586.9 75.16 29268 29341.0 99.3 126.31 29267*

C21 32243 7200.00 31944 32054.9 35.33 31946 31993.7 73.16 31915 31927.3 4.7 119.25 31914*

C22 30462 7200.00 30256 30591.8 67.27 30181 30351.0 130.69 30010 30165.4 121 136.34 30010

C23 32463 7200.00 32233 32404.2 64.26 32152 32362.3 109.76 32074 32181.5 118.4 115.91 32074

C24 34969 7200.00 34502 34590.2 56.80 34455 34524.2 109.58 34427 34477.1 35.5 143.21 34427

Average 6793.73 22.03 34.55 118.56

NST heuristic for these two classes of instances. This is rea-
sonable since it is easy for the NST heuristic to get trapped in
local optima, which makes it terminate quickly. Our MA+R
approach explores a broader solution region, so it requires a
longer computational time.

The construction of a telecommunication network com-
monly involves a large amount of monetary investment,
and the optimization of the network design must usually be
completed prior to construction. Hence, telecommunication
companies are willing to take a large amount of time in order
to find the most cost-efficient network design possible, e.g.,
as much as hundreds of hours, so computational time is not
a critical factor for the CmRSP. In this practical context, it is
reasonable to claim that the MA+R approach outperformed
the other three approaches when solving these two classes
of instances.

From the last columns of these two tables, we also find
that the MA approach produced better solutions for 19 out
of 48 instances than the MA+R approach. Since the NST
heuristic is inferior to our MA+R approach, we do not ex-
pect that its modification that allows non-connecting Steiner

nodes would be able to find better solutions than our MA
approach for the Class C and D instances. Thus, we can
conclude that our MA approach is the best choice for larger
instances of the CmRSP at the time of this writing.

4.4 New instances and results

An inspection of the results in Tables 6, 7, 8, and 9 leads
us to two hypotheses. Firstly, the large number of instances
where both NST and MA found solutions with identical
costs suggest that most of the Class A and B instances are
either optimally or close to optimally solved. Secondly, our
MA approach might scale better than the existing heuristic
methods as the number of nodes and customers increase.

In order to address these possibilities, we generated two
new classes of larger test instances to supplement the ex-
isting instances for the CmRSP. The underlying graphs for
our instances are also obtained from TSPLIB, namely the
gr202 and gr431 instances containing n = 202 and n = 431
nodes, respectively. The first node is selected as the de-
pot. We then randomly ordered the remaining nodes, set the
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Table 9 Computational results for Class D instances

Instance Branch-and-cut HP NST MA + R MA

Cost Time Best Average A.T. Best Average A.T. Best Average s A.T. Best_nr

D01 110350 3193.50 111185 111360.8 3.50 110607 110618.0 1.06 110350 110350.0 0 61.12 110343*

D02 121569 7200.00 122415 122855.0 4.47 122066 123211.9 1.17 122066 122271.0 171.2 132.38 122066

D03 129540 7200.00 129882 130224.7 5.43 129540 130045.9 2.11 129840 130402.5 302.6 68.02 129833*

D04 130349 7200.00 130117 130832.9 11.30 28736 130106.5 8.14 128475 128475.0 0 151.83 128475

D05 144646 7200.00 142675 142922.1 11.96 141680 141796.8 7.65 141680 141680.0 0 71.71 141673*

D06 161128 7200.00 160988 161570.0 10.95 159938 161178.4 5.91 159690 159884.8 101.9 135.97 159683*

D07 144756 7200.00 146479 147509.6 28.67 145257 145787.0 16.59 144519 144519.0 0 136.16 144512*

D08 159197 7200.00 159368 159951.2 24.56 157193 158128.8 15.27 156085 156085.0 0 183.03 156078*

D09 179727 7200.00 178790 179511.8 21.12 176635 177704.4 12.76 172722 172722.0 0 157.37 172715*

D10 163932 7200.00 167825 169422.2 66.67 164864 167790.3 18.86 162539 162548.6 12.4 197.26 162539

D11 174667 7200.00 175777 176683.3 51.63 172716 175427.1 24.37 171957 171957.0 0 152.55 171957

D12 195838 7200.00 196133 197087.5 45.17 192298 194374.9 21.45 190646 191027.2 317.8 220.69 190646

D13 120704 7200.00 121684 121812.2 7.90 120913 121306.1 3.82 120527 120557.7 61.1 233.46 120527

D14 134630 7200.00 135276 135754.8 8.59 134215 134947.7 5.36 134215 134225.7 16.8 308.29 134215

D15 151439 7200.00 152012 152779.4 9.79 151125 151772.2 5.18 152306 152399.0 49.1 256.75 152306

D16 145308 7200.00 145241 145764.5 29.40 144895 145513.4 25.84 144813 144816.1 9.8 333.51 144813

D17 163581 7200.00 163935 165012.7 27.83 162363 164571.5 24.40 162352 162582.8 164.9 253.25 162345*

D18 183284 7200.00 183190 185295.2 26.97 181182 184612.6 26.79 182181 183559.5 766.9 355.18 182181

D19 165666 7200.00 165878 166905.5 96.14 164306 165591.6 53.55 164243 164289.5 17.1 273.57 164236*

D20 185886 7200.00 185855 188008.5 71.09 182707 185268.9 50.08 182092 182244.3 417.3 356.89 182085*

D21 201848 7200.00 203294 204684.2 62.93 201134 203505.0 59.69 199760 200021.6 158.8 287.72 199753*

D22 183547 7200.00 186031 188502.5 186.28 181049 183388.3 100.35 180156 180662.7 475.9 384.66 180156

D23 199621 7200.00 202332 205043.7 146.23 197673 201010.7 116.07 196546 197030.8 445.6 292.78 196546

D24 218610 7200.00 221917 223632.5 100.00 216993 220696.7 63.28 214576 214918.1 256.8 431.83 214576

Average 7033.06 44.11 27.90 226.50

first �α(n − 1)� nodes where α ∈ {0.5,0.7,0.9} to be cus-
tomers, and set the remaining nodes to be Steiner nodes.
The number of ring-stars for each instance is set to be
m ∈ {3,5,7}. The capacity of each ring-star is given the
value Q = �|U |/(0.9m), which implies that each ring-star
can handle about 90 % of all customers; this is the method
used by [2] to determine the ring-star capacities.

To determine the routing costs for each pair of nodes, we
make use of the price structure for digital data service net-
works proposed by [34]. We first scale the graph distances
such that all nodes lie in a 20 mile × 20 mile square. Let
e(i, j) be the Euclidean distance between nodes i and j in
this square. The routing cost c(i, j) is calculated by:

c(i, j) =

⎧
⎪⎨

⎪⎩

30 e(i, j) < 1

125 + �e(i, j) × 1.2 1 ≤ e(i, j) ≤ 15

130 + �e(i, j) × 1.5 e(i, j) > 15

We separated our new instances into two classes (Classes
E and F) with different allocation costs in a similar man-

ner to the Class A–D instances. For the Class E instances,
the routing and allocation costs are identical, i.e., d(i, j) =
c(i, j). For the Class F instances, the ratio of routing
and allocation costs is 7:3, i.e., d(i, j) = � 3

7 × c(i, j).
For both classes, the set of possible edges for allocation
Ci is found by taking the average allocation cost AC =∑

(i,j)∈S d(i, j)/|A| and choosing the cheapest 40 % of
these edges, i.e., Ci = {j : d(i, j) ≤ 0.4 × AC}. For each
class, we randomly generated a single instance for each
combination of α and m for each graph, resulting in 18 in-
stances per class (36 instances in total). These newly gener-
ated instances do not necessarily satisfy the triangle inequal-
ity.

We set a time limit of 1800 seconds for the instances
with 202 nodes, and 3600 seconds for the instances with 431
nodes. Once again, we executed our approach 10 times for
each new instance using different random seeds. The results
obtained by our MA+R and MA approaches on these new
instances are given in Table 10, where column NNS gives
the number of the non-connecting Steiner nodes in the best
MA solutions.
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Table 10 Computational
results for Class E and F
instances

Instance m |U | Q MA+R MA

Best NNS Average s A.T. Best_nr

E01 3 101 38 4958 8 4978.1 40 226.86 4430*

E02 3 141 53 6075 5 6148.3 75.3 219.04 5744*

E03 3 181 68 7285 2 7306.6 60 212.53 7153*

E04 5 101 38 5151 8 5193.4 33.2 223.79 4621*

E05 5 141 53 6324 6 6406.4 96.6 203.79 5864*

E06 5 181 68 7438 2 7440.2 1.5 227.02 7243*

E07 7 101 38 5400 9 5564.1 132.6 259.40 4806*

E08 7 141 53 6683 9 6745.6 60.3 235.45 6088*

E09 7 181 68 7507 2 7592.8 70.0 233.13 7375*

E10 3 215 80 9016 3 9158.9 113.4 618.98 8756*

E11 3 301 112 11889 3 12035.3 116.1 930.41 11688*

E12 3 387 144 14722 2 14784.1 66.8 1375.93 14590*

E13 5 215 48 9507 8 9655.6 83.1 1503.86 8977*

E14 5 301 67 11861 1 12140.9 154.7 1312.76 11753*

E15 5 387 86 14775 3 14895.4 74 1563.27 14577*

E16 7 215 35 9864 10 9926.8 73.9 1651.23 9203*

E17 7 301 48 12276 3 12507.4 124.7 1465.22 12078*

E18 7 387 62 14844 0 14986.6 98.9 1579.86 14788

F01 3 101 38 3578 2 3674.6 75.9 205.60 3445*

F02 3 141 53 4404 0 4507.3 75.9 221.32 4327

F03 3 181 68 5111 0 5206.2 69.4 163.41 5111

F04 5 101 38 3888 2 3954.8 77.0 161.61 3727*

F05 5 141 53 4619 0 4751.4 56.3 232.67 4584

F06 5 181 68 5372 0 5460.4 63.8 177.97 5372

F07 7 101 38 4084 1 4203.8 112.3 173.34 4008*

F08 7 141 53 4855 0 5005.1 105.9 227.80 4835

F09 7 181 68 5713 0 5779.4 49.0 175.60 5713

F10 3 215 80 6084 1 6184.2 73.0 424.46 6018*

F11 3 301 112 7623 0 7686.7 44.7 559.34 7623

F12 3 387 144 8980 0 9007.2 25.1 912.13 8980

F13 5 215 48 6349 0 6458.7 66.3 1046.94 6260

F14 5 301 67 7927 1 7963.2 26.0 853.66 7861*

F15 5 387 86 9218 0 9288.4 30.8 1054.87 9188

F16 7 215 35 6701 1 6792.0 59.5 1044.27 6604*

F17 7 301 48 8255 0 8358.6 59.6 836.66 8213

F18 7 387 62 9627 0 9706.1 44.3 920.20 9627

We feel that our new instances model a practical scenario
that employs a digital data service network cost structure
and involves more customers than the existing benchmark
instances. These new instances, along with the results ob-
tained by our MA approach, can serve as additional bench-
marks for future researchers.

5 Conclusion

When non-connecting Steiner nodes are disallowed, our
memetic algorithm with a simple repair procedure obtained

the best known solutions for 131 out of 138 existing bench-
mark instances, improving on the previously best known so-
lutions for 24 of them. It is possible that previous researchers
worked under the mistaken assumption that the routing costs
of the instances satisfy the triangle inequality, which ad-
versely affected the quality of their solutions. Nonetheless,
our memetic algorithm generated the best known solutions
for the CmRSP under its proper definition, which does al-
low non-connecting Steiner nodes. We also contributed an
additional 36 larger instances with routing costs based on
the pricing scheme for a digital data service network, which
depicts a different practical scenario from the existing in-
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stances. This new data set supplements the existing data, en-
abling future researchers to more thoroughly test their ap-
proaches empirically.

There is a variant of the CmRSP that deserves further
study. Currently, there is no limit on the number of nodes
that can be allocated to a single connecting node. However,
having several nodes allocated to a single connecting node
defeats the purpose of the ring-star topology, since all of
these nodes will be affected if the connecting node fails. Fur-
thermore, Steiner nodes often represent way stations owned
by the telecommunications company that are not only more
easily maintained by technicians, they also tend to employ
more robust hardware than those found at customer loca-
tions. Hence, more nodes can be safely allocated to Steiner
nodes than customer nodes. These factors can be modeled
by limiting the number of nodes that can be allocated to a
customer node and a Steiner node to some values ac and as ,
respectively.
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