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Abstract
A multiobjective optimization problem called a vehicle routing problem with route balancing (VRPRB) is studied. VRPRB
extends traditional VRPs by considering two objectives simultaneously. The first objective is the minimization of the total
traveling cost and the second one tries to ensure the balance among multiple routes. Different from another commonly used
balancing objective, namely, the minimization of the difference between the maximal and minimal route cost, the objective
we introduce is the minimization of the maximal route cost. Such setting can effectively avoid the occurrence of distorted
solutions. In order to find Pareto-optimal solutions of VRPRB, we develop a multiobjective memetic algorithm (MMA),
which integrates a problem-specific local search procedure into a multiobjective evolutionary algorithm. The MMA is further
enhanced by using parallel computations on GPU devices. A simple version and a revised version of GPU-based MMAs are
proposed and implemented on the CUDA platform. All the algorithms are tested on the benchmark instances to demonstrate
their efficacy and effectiveness. Furthermore, the performances of CPU-based and GPU-based algorithms are analyzed.

Keywords Vehicle routing problem · Multiobjective · Parallel · GPU · CUDA

1 Introduction

In this work, we investigate a vehicle routing problem with
route balancing (VRPRB) and devise highly parallelized
algorithms for solving it. VRPRB is an extension of the
well-known VRP [28], which is considered as one of
the most important topics in the scope of combinatorial
optimization, transportation, operations research and so
on. VRPs describe real-world applications concerning the
delivery (and/or the pick-up) of goods to customers. The
optimal set of routes has to be determined subject to various
kinds of constraints.

Traditionally, the studies on VRP and its extensions
mostly aim at optimizing a single target, e.g., the opera-
tional cost or the incurred traveling time. In the last two
decades, the research on multiobjective optimization has
been receiving more and more attention. This is because
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1) the presence of multiple objectives is natural in many
applications [6], and 2) the maturity of evolutionary algo-
rithms and other heuristic approaches provides standard and
accessible frameworks for optimizing multiple objectives
simultaneously.

VRPRB we study is a multiobjective optimization problem.
Its solution space is the same as that of the classic capacitated
VRP, which is detailed in Section 3. And the following two
objectives are taken into consideration.

1. Minimization of the total traveling cost.
2. Minimization of the maximal route cost.

The first objective of VRPRB is originated from the
classic VRP and the second one is regarded as the route
balancing objective. It is worth noting that some approaches
use the minimization of the difference between the maximal
and minimal route cost for route balancing (e.g., [12]).
We point out in Section 3 that such setting may result in
distorted solutions, but our setting guarantees to produce
doable solutions.

In order to solve multiobjective optimization problems,
the posteriori method [6] is commonly adopted, i.e., Pareto-
optimal solutions are generated and then the decision-maker
makes a trade-off between different objectives and selects
the solution(s) based on his preference or experience. A
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solution is called Pareto-optimal, if it is non-dominated
by other solutions in the solution space. Pareto-optimal
solutions constitute a Pareto front. In practice, finding the
Pareto front of a complex problem such as VRPRB is
computationally intractable. A conventional approach is to
obtain a set of non-dominated solutions to approximate it.
To do so, applying multiobjective evolutionary algorithms
may be a desirable option. In addition, local search is one
of the critical components in meta-heuristics for solving
discrete optimization problems. Thus, we decide to integrate
problem-specific local search operators, which basically use
the concept of memetic algorithms, into an evolutionary
framework. We formally call our approach a multiobjective
memetic algorithm (MMA).

The proposed MMA can attain satisfactory results for
VRPRB according to our experiments. However, there is
still room to improve the MMA in terms of running time.
This can be done by parallelizing the algorithm and executing
with multiple devices. Recently, along with the development
of artificial intelligence techniques, GPU (graphics process-
ing unit) programming has been witnessed its success in
many computing areas, e.g., computer games, image pro-
cessing, neural computing, etc. A GPU is a highly parallel,
multithreaded, manycore processor with tremendous com-
putational horsepower and very high memory bandwidth
[10]. GPUs are available in most personal computers and
originally designed to render computer graphics which are
to be displayed on the screen. Nowadays, in addition to tra-
ditional graphics-rendering tasks, GPU programs can also
address general-purpose tasks [24]. To apply GPU comput-
ing in a convenient way, a widely adopted programming
model is the NVIDIA’s CUDA (compute unified device
architecture) platform. It allows programmers to program
with Nvidia GPUs to perform general-purpose computing
tasks. It leverages the parallel computer engine to solve
many complex computational problems in an efficient way
[10]. Therefore, our work tries to transplant the execution of
the MMA to GPU by using the CUDA platform.

The remaining of the paper is organized as follows.
Section 2 gives some related work on VRPRB and GPU
programming. In Section 3, we present a formal definition
and some properties of VRPRB. In Section 4, we describe
an MMA for solving VRPRB. It is then extended to two
GPU-based parallel versions, which is detailed in Section 5.
In Section 6, we report a series of experiment results
to demonstrate the effectiveness and efficiency of our
algorithms. Finally, conclusions are drawn in Section 7.

2 Related work

We first review the literature related to VRPRB. [12] pro-
posed an evolutionary algorithm for VRPRB, in which two

objectives are defined by the minimization of total route
length and the minimization of difference between the max-
imal and minimal route length. An elitist diversification
mechanism and a parallel model were used within their
approach. With the same balancing objective, [14] proposed
an algorithm called Multi-Start Split-based Path Relink-
ing for VRPRB and compared their results with [12]. [16]
also considered the same balancing objective and designed a
memetic NSGA-II algorithm to solve the problem. [15] stud-
ied the VRP with load balancing. They developed a heuristic
algorithm to minimize the travel length and balance drivers’
load simultaneously. The proposed balancing objective is to
minimize the sum of working time difference between every
vehicle and the vehicle with the smallest working time.
[17] introduced an algorithm based on the scatter search
metaheuristic to solve a real problem from a company in
Tenerife, Spain. Daily routes have to be designed for a
given fleet of vehicles so as to minimize the total travel-
ing distance while balancing the workload of drivers. The
balancing objective is to minimize the difference between
the maximum and minimum route length. [13] suggested a
new approach based on the free disposal hull to solve the
VRP with time windows (VRPTW). Apart from minimiz-
ing the number of vehicles and the total traveling distance,
they also considered the balance of the load carried by each
active member of the vehicle fleet. [9] treated VRPTW as
a bi-objective problem, which tried to minimize the number
of routes and the total cost simultaneously. They focused
on the similarity of solutions in the recombination process
and a method based on Jaccard’s similarity was adopted.
[21] devised a novel algorithm, which combined a local
search and a variant of a greedy randomized adaptive search
procedure, to find VRPRB solutions. They tried to achieve
route balancing by minimizing the difference between the
longest and the shortest route. [31] proposed a genetic algo-
rithm with a complex chromosome representation to solve
a bi-objective VRPTW, which considered the total traveling
distance as well as the workload imbalance of vehicles. To
better address the balancing issue, they designed a balance
factor, which is the difference between the maximal and
minimal route length divided by the average route length.
[22] conducted research on a bus routing problem. They for-
mulated the problem into a bi-objective optimization model
that dealt with the minimization of both the longest route
length and the total route length. Tabu search within a
multiobjective adaptive memory programming framework
was proposed to solve the problem. [26] studied VRPRB
and developed an NSGA-II based memetic algorithm. The
experiments showed that their results are superior to those
in [12].

Next, the literature on GPU-based algorithms for
related routing problems is presented as follow. [4] gave a
brief introduction to modern PC architectures and GPU
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programming. To illustrate the execution model of GPU, a
simple example of a GPU-based local search procedure was
presented. Moreover, strategies and guidelines for software
development and performance optimization were discussed.
[25] conducted a comprehensive survey on GPU computing
in the area of discrete optimization. It showed that GPU
computing in discrete optimization, especially in routing
problems, is still in its infancy. But in later years, more and
more routing problems were tackled with GPU computing.
For example, [30] proposed a multi-GPU parallel memetic
algorithm for the capacitated VRP. They used a hierarchical
Parallel Random Access Machine (PRAM) model to
analyze the time complexity and cost of the algorithm. The
algorithm was coded in C++ using CUDA and OpenMPI
library. [27] used parallel tabu search algorithm to solve a
multi-criteria distance-constrained VRP. In each iteration of
the algorithm, parallel neighborhood search is performed
on the solutions from current Pareto frontier. To solve the
VRP with single and multi-depots, [2] proposed a GPU
implementation of a heuristic method based on Clarke and
Wright algorithm. The proposed algorithm generates an
initial solution in parallel in one step and then iteratively
improves the costs of all pairs of neighbor vehicle routes,
also in parallel. Experimental results demonstrated that
the proposed implementation exploited the parallelism of
GPU efficiently. [24] studied the implementation of local
search for the vehicle routing problem on GPU. The local
search method they considered was the best improving
strategy for 2-opt and 3-opt operators using the giant
tour representation. The experiments demonstrate that local
search can be implemented in an efficient way on GPU. [29]
established a new guideline to design and implement Local
Search Metaheuristics (LSMs) effectively on GPU. In this
paper, efficient approaches were proposed for the mapping
of neighboring solutions to GPU threads. They also proved
the effectiveness of the proposed method through four
well-known combinatorial and continuous optimization
problems. [8] investigated a parallelization of 2-opt and
3-opt local search heuristics for the traveling salesman
problem. The insight of parallelization strategies for better
utilizing GPU resources was discussed. [23] developed
a multi-GPU and multi-core metaheuristic based on the
iterated local search. Experimental results for an NP-hard
problem (i.e., minimum latency problem) demonstrated the
effectiveness of the proposed techniques in terms of solution
quality, performance and scalability.

3 Problem definition, formulation
and properties

VRPRB is defined on a complete and undirected graph
G = (N, E), where N = {0, 1, . . . , n} is the node set and

E = {(i, j)|i, j ∈ N} is the edge set. Node 0 indicates the
depot and nodes 1, . . . , n correspond to n customers. Define
by cij the traveling cost between node i and node j , and
define by di the demand of each customer i ∈ N \ {0}.
For convenience, we assume that d0 = 0. Let V be the
collection of m homogeneous vehicles and C be the capacity
of a vehicle. VRPRB requires that each customer must be
serviced by exactly one vehicle, and the load of a vehicle
must not exceed its capacity.

VRPRB is a bi-objective problem and we can provide a
mathematical model to formulate it. Three sets of decision
variables are introduced as follows.

xijk: a binary decision variable which represents the
number of times that vehicle k traverses edge (i, j);

yik: a binary decision variable which is equal to 1 if
customer i is serviced by vehicle k, and 0 otherwise;

uik: a continuous variable which denotes the load of
vehicle k after servicing customer i.

The bi-objective optimization model is:

min{f1(x, y, u), f2(x, y, u)} (1)

subject to

∑

k∈V

yik = 1, ∀ i ∈ N \ {0} (2)

∑

k∈V

y0k = m (3)

∑

j∈N

xijk =
∑

j∈N

xjik = yik, ∀ i ∈ N, k ∈ V (4)

∑

i∈N

diyik � C, ∀ k ∈ V (5)

uik − ujk + Cxijk � C − dj , ∀ i, j ∈ N \ {0},
i �= j, k ∈ V, di + dj � C (6)

di � uik � C, ∀ i ∈ N \ {0}, k ∈ V (7)

yik ∈ {0, 1}, ∀ i ∈ N, k ∈ V (8)

xijk ∈ {0, 1}, ∀ i, j ∈ N, k ∈ V (9)

In the model, Constraints (2) ensure that each customer
must be serviced by exactly one vehicle. Constraints (3)
guarantee that all vehicles must start from the depot.
Constraints (4) are the flow conservation constraints.
Constraints (5) are the capacity constraints. Constraints (6)
and (7) are subtour elimination constraints, which were
originally proposed for the traveling salesman problem
(TSP) by Miller et al [19] and later modified to suit the VRP.

The objective (1) consists of two functions. The first
function is to minimize the total traveling cost:

f1(x, y, u) =
∑

k∈V

∑

i∈N

∑

j∈N

cij xijk (10)
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The second function is to optimize the balance among all
the vehicle routes, which can be written as:

f2(x, y, u) = max
k∈V

∑

i∈N

∑

j∈N

cij xijk (11)

We call the minimization of f2(x, y, u) a min max method
for route balancing. It is worth pointing out that another com-
monly used objective function is to minimize the difference
between the maximal and minimal route cost, namely,

f̄2(x, y, u) = max
k∈V

∑

i∈N

∑

j∈N

cij xijk − min
k∈V

∑

i∈N

∑

j∈N

cij xijk

(12)

However, minimizing f̄2(x, y, u) may result in the
occurrence of distorted solutions. A solution s is called
distorted, if s is Pareto-optimal but some route(s) is not
optimal in terms of the total traveling cost.

Figure 1 illustrates an example of the distorted solution.
It contains two vehicle routes marked in solid lines. The
square and the circles represent the depot and the customers,
respectively. Routes 1 and 2 have the same total traveling
cost, which is equal to 6. The difference between the
maximal and the minimal route cost is 0. When the second
objective is given by f̄2(x, y, u), two objectives of this
solution can be represented by (12, 0). If we replace Route
2 with the route indicated by the dash lines, then the cost of
Route 2 becomes 5 and the two objectives of the solution
become (11, 1). Both of the solutions are Pareto-optimal.
However, it is obvious that the previous one is distorted
because Route 2 takes a detor to achieve the balance.

When the second objective is defined by f2(x, y, u),
no matter Route 2 is constituted by the solid lines (the
objectives can be represented by (12, 6)) or the dash
lines (the objectives can be represented by (11, 6)),
the corresponding solutions have the same value of f2.
Therefore, (11, 6) is the only Pareto-optimal solution. The
following theorem ensures the effectiveness of our objective
settings in preventing distorted solutions.

Theorem 1 For a Pareto-optimal solution s = (x, y, u)

with two objectives f1(s) and f2(s) defined by Expression

1

1

1 1

2

1

1

1
1

1

1

2

Route 1 Route 2

Fig. 1 An example of the distorted solution

(10) and (11), each route in solution s must be an optimal
TSP tour.

Proof Proof by contradiction. Assume that s is Pareto-
optimal with some route r which is not TSP optimal. Then
route r can be improved into a TSP optimal route r ′,
leading to a new solution s′. Because the cost of route r ′ is
smaller than that of route r , f1(s

′) < f1(s). For the second
objective, two cases may happen.

Case 1. Route r has the maximal route cost in solution s.
If route r is replaced with route r ′, the maximal route cost
of solution s′ must be given by route r ′ or the other route
shorter than route r . Hence, f2(s

′) < f2(s) and solution s is
dominated by s′.

Case 2. The maximal route cost in solution s is not given
by route r . If route r is replaced with route r ′, the maximal
route cost of solution s′ remains unchanged. Therefore,
solution s is also dominated by s′ due to f1(s

′) < f1(s) and
f2(s

′) = f2(s).
To sum up, either of the above two cases contradicts with

the assumption that s is Pareto-optimal, which proves the
correctness of the theorem.

4 CPU-basedmultiobjective memetic
algorithm

In this section, we describe a CPU-based multiobjective
memetic algorithm (CMMA) for approximating Pareto-
optimal solutions of VRPRB. The CMMA is essentially
a modification of the well-known multiobjective algorithm
NSGA-II [7]. It also borrows the concept of memetic
algorithm [20], in which a domain-specific refinement is
applied to improve the solution quality locally.

4.1 Solution framework

The framework of the proposed CMMA is shown in
Algorithm 1. In line 1, an initial population P consisting
of |P | individual solutions is produced. Line 2 – 13 are the
evolutionary process. The evolution stops when the number
of generations exceeds Ngen. In line 3, a recombination
procedure is employed to generate a new population P ′.
Next, I ter iterations are performed. In each iteration, a
guiding vector w is first generated (line 5). Subsequently,
a solution s is chosen from P ∪ P ′ according to the
tournament selection (line 6). Then local refinements are
conducted LS iter times to improve the quality of solution
s. One of K local search (LS) operators is randomly chosen
and applied to solution s (line 8 – 9). In line 12, an update
procedure is involved to form a new population for the next
generation.
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Detailed solution procedures of Algorithm 1 are provided
in the next few subsections. From this algorithm, we can
observe that the LS operators are invoked Ngen ·I ter ·LSiter

times in total. All the codes are serially executed with a CPU
core.

4.2 Solution encoding and decoding

The solution space of VRPRB is exactly the same as that
of the traditional VRP. A solution consists of m routes,
where each route can be represented by a customer visiting
sequence. Because a customer is visited exactly once, we
can also use a giant tour [1] to encode a solution. A giant
tour is a tour starting from the depot and visiting all the
customers. It is essentially a permutation of the node set
N where 0 (the depot) is always the first node in the
permutation. The giant tour representation can be very helpful
in the initialization phase and the recombination phase.

To decode a giant tour, we have to split it into a set of
m feasible vehicle routes. Because there are different ways
for the splitting, and VRPRB has two objectives, we would
like to decide the optimal splitting when only one objective
is taken into consideration.

Formally, suppose that a giant tour is denoted as (0, π1, π2,

. . . , πn), where each element corresponds to a customer
index. The first splitting method aims at seeking a splitting
such that the total traveling cost is minimized. Let the state
T [k][i] be the minimum traveling cost for the first k vehicles
sequentially visiting customers (π1, π2, . . . , πi). The dynamic
programming recursion for calculating T [k][i] is:

T [k][i] = min
0�j�i and cap(j+1,i)�C

{T [k − 1][j ] + cost (j + 1, i)} (13)

where cost (j, i) and cap(j, i) correspond to the traveling
cost and the required capacity of route (0, πj , . . . , πi, 0),
that is,

cost (j, i) =
{

c0,πj
+ cπi ,0 + ∑i−1

j ′=j cπj ′ ,πj ′+1
, ifj ≤ i;

0, otherwise.

(14)

cap(j, i) =
{ ∑i

j ′=j dπj ′ , ifj ≤ i;
0, otherwise.

(15)

The boundary condition is T [0][0] = 0 and the optimal
splitting value is T [m][n], i.e., the minimum total traveling
cost achieved by dispatching m vehicles to service all
customers.

The second splitting method tries to find a splitting that
can minimize the maximal route cost. Define by F [k][i]
the minimum value of the maximal route cost for the first
k vehicles visiting customers (π1, π2, . . . , πi). Similar to
(13), the calculation of B[k][i] is given by:

B[k][i] = min
0�j�i and cap(j+1,i)�C

{max{F [k−1][j ], cost (j+1, i)}} (16)

The initial state is B[0][0] = 0 and the final optimal
value is B[m][n].

The above descriptions show that, given a giant tour, it
can be decoded into two VRPRB solutions according to
different splitting methods. The time complexity of each
splitting method is O(mn2).

4.3 Initial population

The initial population contains |P | solutions, which can
be simply determined as follows. First, |P |/2 permutations
are randomly generated to form giant tours. Next, the two
splitting methods are applied on each giant tour to obtain a
total of |P | solutions.

4.4 Recombination

The recombination procedure tries to produce a new
population P ′ in which the solutions can inherit some
characteristics of solutions in the original population P . The
recombination first encodes all the solutions into giant tours.
Next, it randomly mates giant tours in pairwise. For each
pair, the two giant tours are regarded as parents and they are
recombined to generate one offspring giant tour using the
order crossover (OX) operator. Finally, for each resultant
offspring giant tour, the two splitting methods are used to
generate two VRPRB solutions and then they are added to
the population set P ′. Finally, we must have |P ′| = |P |
offspring solutions.
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4.5 Local search operators

Local search (LS) operators are very important in designing
an effective meta-heuristic. We devise the following four
(i.e., K = 4 in line 8 of Algorithm 1) operators in LS
procedure. These operators are also widely used in other
meta-heuristics for VRPs (e.g., [3]).

1. exchange(i, j). Customer i in route r1 is replaced by
customer j in route r2. Customer j in route r2 is
replaced by customer i in route r1.

2. relocate(i, j). Customer i in route r1 is removed and
inserted into the position after customer j in route r2.

3. 2 − opt(i, j). All the customers after position i in
route r1 are removed and inserted into the position after
customer j in route r2. All the customers after position
j in route r2 are removed and inserted into the position
after customer i in route r1.

4. reverse(i, j). Different from the above operators, the
reverse operator is used for a single route. Customers
from position i to position j are reversed, changing
a part of the route from (i, i + 1, . . . , j − 1, j) to
(j, j − 1, . . . , i + 1, i).

For each operator, two different customers i and j are
randomly selected from solution s. After performing the
operator, the value of the resultant solution is measured by
the weighted sum of two objectives, where the weights are
given according to the guiding vector w. If the weighted
sum decreases, the corresponding operator is accepted and
solution s gets improved. Note that all the operators must
guarantee the feasibility of their resultant solutions.

4.6 Tournament selection and population updating

At each iteration, a solution s is selected from the
population P ∪ P ′ for the local refinement. We use the
tournament selection method [18] to determine the solution.
Specifically, a percentage τ of individual solutions are first
chosen at random from P ∪ P ′. The winner individual (the
one with the smallest weighted sum) is then selected.

For the population updating procedure, the standard non-
dominated sorting and crowding-distance approaches are
employed. These methods are originated from NSGA-II.
For more details of population updating, we refer the readers
to [7].

5 GPU-basedmultiobjective memetic
algorithm

The proposed CMMA suffices to yield excellent results
according to the computational experiments (see Section 6).

However, it is still not efficient enough, because it maintains
a large population and involves many iterations. After
carefully analyzing the framework of CMMA, we find that
many procedures can be parallelized for accelerating the
execution.

In this section, we describe two GPU-based multiobjec-
tive memetic algorithms (GMMAs): one slightly modifies
CMMA with transferring code snippets on GPU; the other
re-designs the algorithm framework and extensively exploits
the power of GPU. To start with, the architecture of GPU
and the concept of CUDA programming are introduced.

5.1 GPU hardware and CUDA programming

Figure 2 shows the hardware structure of a GPU, which
consists of an array of Streaming Multiprocessors (SMs)
[10]. Different GPUs may have different numbers of
SMs. An SM has its own memory and many simple
processors that can run a bunch of parallel threads. When a
multithreaded program is executed, GPU is responsible for
assigning thread blocks to hardware SMs. All the SMs run
independently and in parallel.

In order to utilize the GPU hardware, several important
concepts of the CUDA programming model are stated as
follows.

1. Thread, Block and Grid. Thread is the smallest unit in
GPU that can be executed [2]. CUDA works in terms
of threads. They execute independently of each other
unless explicitly synchronized. Threads which cooperate
to solve a problem can be grouped into a block. All
threads in a block execute the same code on the same
SM at the same time. Blocks are arranged into a grid.

2. Kernel. A kernel is a C function qualified with the
global keyword. Regular C functions are executed

only once with one call. However, kernels are executed
N times in parallel on GPU, by N different CUDA
threads according to kernel launch parameters. A
typical kernel call is as follows:

KERNEL <<< dim3(x1, y1, z1), dim3(x2, y2, z2) >>> ();

The function name of the kernel call is KERNEL. The
launch parameters of this kernel are dim3(x1, y1, z1)

Memory

SM

Memory

SM

Memory

SM

... ...

Simple

Processors

Fig. 2 The GPU hardware structure
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Fig. 3 Memory Hierarchy

Thread

Thread Block

Grid

Per-thread Local

Memory

Per-block Shared

Memory

Global Memory

and dim3(x2, y2, z2), which specify the dimensionality
of the grid of blocks and the dimensionality of the
threads within a block, respectively. GPU is capable of
running many blocks at the same time. Each block has
a maximum number of threads that it can support. Each
thread can be uniquely indexed by a thread index and a
block index which are provided inside the code.

3. Memory Hierarchy. When CUDA threads are executed,
they may access data from multiple memory spaces as
illustrated by Fig. 3. Each thread has access to local
memory which is private to that thread. Threads can
read and write from local memory. Each thread block
has shared memory visible to all threads in the block.
The threads in the block can communicate with each
other through reading and writing to per-block shared
memory. All threads in the entire system have access to
global memory.

CPU

(Host)

Memory

GPU

(Device)

Memory

A CUDA Program 

Written in C with extensions

CPU Codes GPU Codes

Kernels

Fig. 4 CUDA programming diagram

The CUDA programming model makes it possible to
integrate both CPU codes and GPU codes within a single
program. Figure 4 shows the CUDA programming diagram.
The plain codes of the program are run on CPU, while the
codes with CUDA qualifiers are run on GPU in parallel.
The program will be split into pieces for CPU and GPU
by the CUDA compiler. The memory from CPU (host) and
from GPU (device) can exchange with each other using the
cudaMemcpy function.

5.2 A simple GPU-basedmultiobjectivememetic
algorithm

A straightforward way to parallelize CMMA by the GPU
platform is to use the so-called algorithmic-level parallel
model [29], where local search operators are performed
independently and in parallel on the solutions inside the
population. A simple version of GPU-based multiobjective
memetic algorithm (S-GMMA for short) is proposed and
the framework is shown in Algorithm 2.

At the beginning (line 1), an initial population Ph is
generated, where the subscript “h” stands for “host” (i.e.,
CPU side). This line means that the population Ph is stored
in the host memory. In each generation, the recombination
is conducted on Ph, resulting in an offspring population P ′

h.
Next, in order to parallelize the local search, the tournament
selection process adopted in CMMA is removed. Instead,
all the offspring solutions in P ′

h are chosen for the local
refinement. To do so, P ′

h is copied to Pd using cudaMemcpy,
where the subscript “d” in Pd stands for “device” (i.e., GPU
side). Thereafter, local search is performed on GPU: kernel
calls are launched for processing Pd (line 6). The kernel
function is S-GMMA-LS. The launch parameters dim3(1)
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and dim3(xs
2, y

s
2) respectively mean that the number of

blocks is 1 and the number of threads is xs
2 · ys

2 (the total
number of threads must no less than |P |). Once the kernel
calls are finished, Pd is copied back from device to host
(line 7). The updating method of the population is the same
as that in CMMA. When the number of generations exceeds
Ns

gen, S-GMMA terminates.
The kernel function S-GMMA-LS is provided in

Algorithm 3. For each kernel call, |Pd | threads are created
and each thread can map to a unique solution in population
Pd according to the thread index. In each thread, the
corresponding solution s is optimized (LSiter/4) times
using four local search operators (i.e., LS1 – LS4). Note
that the local search procedure in S-GMMA-LS is slightly
different from that in CMMA. Observe lines 7 – 10 of
Algorithm 1, an LS operator is randomly selected and
applied on solution s. However, directly using such codes
may result in an excess of thread divergence [11], because
the switch of k will cause many branches to different
instructions. The implementation in Algorithm 3 can help
to reduce the thread divergence, which is important in
optimizing the performance of GPU execution.

S-GMMA invokes Ns
gen kernel calls. Each call launches

|Pd | (= |P |) threads executed in parallel. And each thread
includes LS iter LS operators. Therefore, LS operators are
performed Ns

gen · |P | · LS iter times in total.

5.3 A revised GPU-basedmultiobjectivememetic
algorithm

S-GMMA is easy to implement, however, it has some
deficiencies. First, it does not fully take advantage of
the computing power of GPU. In Algorithm 2, only |P |
threads are created, but an ordinary GPU can support
more than several thousand threads run in parallel. Second,
although we try to reduce the thread divergence in S-
GMMA, the combination of local search operators (line
2 – 7 in Algorithm 3) still generates many divergent
branches, which may slow down the execution. Third, in
CMMA, the tournament selection procedure may repeatedly
choose a particular solution for the local refinements. In
contrast, S-GMMA puts the same computational efforts
on every solution within a generation. Then some elitist
solutions may not have enough chances to get further
improvements.

To overcome the above deficiencies, we propose a
revised version of GMMA (R-GMMA for short). The
framework of R-GMMA is shown in Algorithm 4. The loops
from line 8 – 15 remove the tournament selection procedure
in CMMA. Instead, they perform local improvements
on all the solutions in the population Pd . The variable
I ter controls the level of computational efforts on local
improvements. In early generations, I ter should be large,
because every solution could have great potentials to
become elitist solutions and heavy computational efforts
have to be made. In later generations, I ter can be small,
since it is generally difficult to locally improve the solutions
and it is not necessary to consume many computational
resources. To this end, func(g) in line 7 is better set to a
decreasing function of g.

In the inner loops (line 10 – 14), we further include a
solution-level parallel model [29] to parallelize the local
search. Observe that an LS operator is applied on at most
two random routes of a solution, so we first shuffle array v

to randomly pair up routes (line 12), then the LS operators
can parallelly perform on |P | solutions, each with m/2 pairs
of routes (line 13). The kernel function R-GMMA-LSk is
given in Algorithm 5 and the associated launch parameters
are dim3(xr

1) and dim3(xr
2, m/2). Note that k is not

a parameter but a fixed value in R-GMMA-LSk . This
means that the branches of k are made from line 13 of
Algorithm 4 but not from line 7 of Algorithm 5. Thus,
the thread divergence within GPU can be significantly
reduced.

The R-GMMA has Nr
gen generations. Each generation

has func(g) · LSiter/(m/2) kernel calls. Each call creates
|P | · (m/2) threads and each thread includes only one
LS operator. To sum up, LS operators are performed
∑Nr

gen

g=1 func(g) · |P | · LSiter times in total.
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6 Computational experiments

The proposed algorithms were implemented in C++. All the
experiments were conducted on a personal computer with
an Intel i5-4200 2.80 GHz CPU, 8 GB RAM, and Windows
10 operating system. The GPU model is NVIDIA GeForce
GTX 950M and the CUDA version is 8.0.

The test data of VRPRB can be directly obtained from
various existing VRP instances. Because [12] conducted
experiments on seven VRPRB benchmark instances, we

also used these instances to test the performance of our
algorithms. All these instances have the same form of names
denoted as “Ei-jk”, where the character E means that the
distance metric is Euclidean, i is the number of customers,
j is the number of vehicles and k is an identifier. For each
instance, 20 independent runs with different random seeds
were made for each algorithm. All the computation time
reported in the tables is in seconds.

6.1 Parameter settings

We first discuss the parameter settings of CMMA. Generally
speaking, increasing any of the following parameters: the
number of generations Ngen, the population size |P |, the
times of tournament selection I ter and the number of
local improvements LS iter , can potentially produce better
solutions but bring in additional running time. Similar to the
parameters used in [26], we set |P | = 200, LSiter = 3000,
I ter = 80 and Ngen = 12000. Such settings can yield
satisfactory solutions within reasonable running time.

The parameter τ (0 < τ ≤ 1) within the tournament
selection procedure was tuned as follows. Three levels of τ ,
i.e., n/4, n/2 and 3n/4, were tested. When τ is small, the
tournament tends to apply random selection. When τ grows
larger, the tournament performs more greedily for choosing
elite solutions. Table 1 presents the gaps of two objectives
for different τ values. The gap is calculated by averaging
the best-found objective with respect to the corresponding
τ over the best-known objective on all the instances. The
table shows that τ = n/2 can lead to relatively small gaps
considering both objectives, so we set τ to n/2 in our final
settings.

For GMMAs, the parameters which appear in CMMA
also follow their settings in CMMA. Those parameters
solely used in GMMAs are set as follows: xs

2 = 32, ys
2 = 7,

xr
1 = 7, xr

2 = 32 (32 × 7 ≥ 200 = |P |), and func(g) =
	60 ∗ 0.9925g�.

Note that the settings xs
2 = xr

2 = 32 relate to the
warp size of GPU, which is a sub-division used in the
hardware implementation to coalesce memory access and
instruction dispatch. Such settings can better utilize the
parallel capability of GPU. func(g) is set to a geometric
decreasing function. The settings of Ns

gen and Nr
gen are

discussed in Section 6.3.

Table 1 Parameter tuning for different τ values

τ = n/4 τ = n/2 τ = 3n/4

First objective gap 0.17% 0.08% 0.03%

Second objective gap 0.07% 0.05% 0.14%
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Table 2 Performance
comparison between
Jozefowiez et al. [12]’s method
and CMMA on VRPRB
instances (Minimization of the
total traveling distance)

Solely minimizing the total traveling distance

Instance Best known Results from Jozefowiez et al. [12] CMMA

Best found Associated difference Best found Associated difference

E51-05e 524.61 524.61 20.07 524.61 20.07
E76-10e 835.26 835.32 78.10 835.32 78.10
E101-08e 826.14 827.39 67.55 826.14 97.89
E101-10c 819.56 819.56 93.43 819.56 93.43
E121-07c 1042.11 1042.11 146.67 1042.11 146.67
E151-12c 1028.42 1047.35 74.78 1042.32 82.10
E200-17c 1291.45 1352.46 76.60 1324.48 75.64

6.2 Computational results of VRPRB

The first set of experiments is to test the quality of the
solutions found by CMMA. We compare our results with the
results given by the referenced approach Jozefowiez et al.
[12]. In their problem setting, the balancing objective is set to
the difference between the maximal and the minimal route
cost (see Expression (12)), which is different from our
description of VRPRB. Nevertheless, we modified the second
objective to Expression (12) and executed our programs.

Since VRPRB has two objectives, we only report two
extreme solutions for each instance, i.e., solely minimizing
the total traveling cost and solely minimizing the difference
between the maximal and the minimal route cost. The
results are shown in Tables 2 and 3.

In Table 2, the column “Best known” gives the currently
best total traveling cost found by the existing VRP
approaches. The column “Best found” indicates the best
value of the first objective found by the algorithm, and the
associated second objective value is shown in the column
“Associated difference”. Similarly, the column “Best found”
in Table 3 presents the best value of the second objective
and the column “Associated traveling cost” is the associated
first objective.

In both tables, the numbers are marked in bold if the
best found value is better than that of the other approach.

From the tables, we can find that our CMMA approach
outperforms Jozefowiez et al. [12]’s method on all the
instances in terms of the quality of the two extreme
solutions.

The problem setting by Jozefowiez et al. [12] may lead
to distorted solutions. We depict in Fig. 5a and b the two
extreme solutions produced by our approach on instance
E76-10e, respectively. We can observe from Fig. 5b that
when the second objective is defined by Expression (12),
many routes take detors for achieving route balancing, then
a distorted solution is produced.

We therefore changed the balancing objective back to
Expression (11) and re-executed our algorithm. The two
extreme solutions with respect to each instance are reported
in Table 4. We also take instance E76-10e as an example,
the two extreme solutions found are (835.32, 119.32)
and (865.62, 94.08), which are detailedly illustrated in
Fig. 6a and b. These figures demonstrate that by setting the
balancing objective to Expression (11), the occurrence of
detors can be effectively avoided.

6.3 Comparisons among CMMA and GMMAs

The second set of experiment is to compare CMMA with two
GMMAs. Two performance indicators, called inverted gen-
erational distance (IGD) and hypervolume (HV), are adopted

Table 3 Performance
comparison between
Jozefowiez et al. [12]’s method
and CMMA on VRPRB
instances (Minimization of the
difference between the
maximal and minimal route
cost)

Solely minimizing the difference

Instance Results from Jozefowiez et al. [12] CMMA

Best found Associated traveling cost Best found Associated traveling cost

E51-05e 0.24 618.22 0.013 791.05

E76-10e 0.59 1203.98 0.075 1142.93
E101-08e 0.29 1871.06 0.042 1297.47
E101-10c 1.15 1429.90 0.029 1378.36
E121-07c 0.10 2388.30 0.004 1598.49
E151-12c 0.80 1484.48 0.040 1526.14
E200-17c 1.38 1902.64 0.070 1889.03
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Fig. 5 a The solution for instance E76-10e with the minimum traveling cost. b The solution for instance E76-10e with the minimum difference

Table 4 The computational
results on VRPRB instances Instance Solely minimizing the total traveling cost Solely minimizing the maximal route cost

Best found Associated maximal route cost Best found Associated traveling cost

E51-05e 524.61 118.52 111.37 537.89

E76-10e 835.32 119.32 94.08 865.62

E101-08e 826.14 138.79 113.33 869.16

E101-10c 819.56 137.02 120.72 942.96

E121-07c 1042.12 213.63 200.84 1243.65

E151-12c 1031.96 120.62 102.82 1092.72

E200-17c 1312.88 119.41 99.86 1496.10
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Fig. 6 a The solution for instance E76-10e with the minimum traveling cost. b The solution for instance E76-10e with the minimum of maximal
route cost
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Table 5 The comparison of
IGD among different
algorithms

Instance IGD

CMMA S-GMMA (2400) S-GMMA (6000) R-GMMA (120) R-GMMA (6000)

E51-05e 0.3139 0.0870 0.0502 0.3240 0.2770

E76-10e 0.1489 0.1681 0.1305 0.4155 0.2380

E101-08e 0.0899 0.1466 0.1416 0.1137 0.0753

E101-10c 0.0464 0.1238 0.1173 0.1508 0.0485

E121-07c 0.1604 0.1845 0.1410 0.2413 0.1073

E151-12c 0.1310 0.2675 0.2233 0.1575 0.0711

E200-17c 0.1113 0.3514 0.2860 0.1788 0.1196

Average 0.1431 0.1898 0.1557 0.2259 0.1338

to numerically evaluate the performance of different algo-
rithms. These indicators are briefly introduced as follows.

1. Inverted generational distance (IGD) [5]. The IGD

indicator estimates the distance of the elements in
an approximated Pareto front toward those in the
true Pareto front. A smaller IGD indicates a better
approximated Pareto set.

2. Hypervolume (HV) [32]. For bi-objective minimization
problems, the HV value is given by the area of the
union of all rectangles covered by the Pareto optimal
solutions. Both convergence and diversity of the non-
dominated solutions can be reflected from the HV
value. The larger the HV value is, the closer the
corresponding non-dominated solution set is to the
Pareto front.

According to the above discussions, the true Pareto front
is required for calculating IGD and HV. However, the true
Pareto front is unknown. Hence, for each instance, the non-
dominated solutions produced by all the algorithms over 20
runs were collected to form the front.

We hereby provide five algorithms for the comparison,
which are CMMA, S-GMMA (2400), S-GMMA (6000), R-
GMMA (120) and R-GMMA (6000). Note that the number

inside the bracket denotes the number of generations for
the corresponding algorithm. The rationales behind such
generation settings are as follows. For S-GMMA (2400) and
R-GMMA (120), the corresponding number of LS operators
invoked is the same as that for CMMA. It is equivalent to
solving Ngen · I ter · LSiter = Ns

gen · |P | · LS iter =
∑Nr

gen

g=1 func(g) · |P | · LSiter . Because Ngen = 12000 for
CMMA, we have Ns

gen = 2400 and Nr
gen = 120. For S-

GMMA (6000) and R-GMMA (6000), the corresponding
execution time is roughly the same as that for CMMA.

Tables 5, 6 and 7 respectively show the values of IGD,
HV and average execution time of all the algorithms. In
these tables, the smallest IGD and the largest HV for each
instance are marked in bold. We can find that for those algo-
rithms with the same number of LS operators, CMMA
performs better than S-GMMA (2400) and R-GMMA (120).
This is because the serial implementation can take advan-
tage of the tournament selection procedure but the parallel
implementation cannot. However, the average computation
time of S-GMMA (2400) and R-GMMA (120) are much
faster than those of CMMA. Next, let us consider CMMA,
S-GMMA (6000) and R-GMMA (6000). Their average exe-
cution time is around 750. R-GMMA (6000) performs better
than S-GMMA (6000) and CMMA in terms of the average

Table 6 The comparison of HV
among different algorithms Instance HV

CMMA S-GMMA (2400) S-GMMA (6000) R-GMMA (120) R-GMMA (6000)

E51-05e 0.1968 0.4584 0.5351 0.2108 0.2108

E76-10e 0.6864 0.6849 0.7442 0.3429 0.7519

E101-08e 0.6374 0.5652 0.5740 0.6751 0.6989

E101-10c 0.8612 0.8723 0.8767 0.7436 0.8603

E121-07c 0.3009 0.2698 0.3140 0.2044 0.3520

E151-12c 0.5314 0.3732 0.4189 0.5410 0.6226

E200-17c 0.8062 0.5633 0.6442 0.6588 0.8028

Average 0.5743 0.5410 0.5867 0.4824 0.6142
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Table 7 The comparison of
average execution time among
different algorithms

Instance Time

CMMA S-GMMA (2400) S-GMMA (6000) R-GMMA (120) R-GMMA (6000)

E51-05e 617.88 234.99 595.04 485.75 1103.23

E76-10e 657.64 265.88 686.25 218.51 565.85

E101-08e 724.45 289.19 714.54 285.04 702.86

E101-10c 751.40 297.12 728.35 235.58 610.49

E121-07c 756.20 329.03 805.24 369.44 909.81

E151-12c 869.86 342.63 808.82 217.83 633.80

E200-17c 1051.93 396.22 936.67 178.42 634.50

Average 775.62 307.87 753.56 284.37 737.22
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Fig. 7 Approximated Pareto front obtained by different algorithms

Table 8 The execution time of
CMMA and R-GMMA and the
acceleration rate on six
instances

Instance Time of CMMA Time of R-GMMA(6000) α

E151-3c 922.63 2238.71 0.4121

E151-6c 924.25 1180.55 0.7829

E151-9c 919.93 711.33 1.2932

E151-12c 924.66 641.04 1.4424

E151-15c 932.44 450.46 2.0700

E151-18c 937.01 404.09 2.3188

E200-2c 1058.85 3778.34 0.2802

E200-5c 1108.33 1715.80 0.6460

E200-8c 1104.59 1015.23 1.0880

E200-11c 1098.96 889.39 1.2356

E200-14c 1087.66 770.30 1.4120

E200-17c 1101.99 634.50 1.7368
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Fig. 8 The trend of the acceleration rate along with the growth of the number of vehicles

IGD or HV value. In addition, when the scale of problems
enlarges, the performance of R-GMMA becomes much bet-
ter than S-GMMA. This can be attributed to the positive
effect of the controlled function func(g).

We further pictorialize the approximated Pareto fronts
obtained by R-GMMA (120) and R-GMMA (6000) on
instances E151-12c and E200-17c, as shown in Fig. 7. The
front of the initial population is also depicted. It can be seen
that both R-GMMA (120) and R-GMMA (6000) greatly
push the initial front toward left and bottom directions,
which means that two objectives get significantly improved.
We also notice that the extent of the approximated Pareto
front by R-GMMA (6000) is greater than that by R-GMMA
(120). This indicates that R-GMMA (6000) can produce a
set of non-dominated solutions with better diversity.

6.4 Analysis of the GPU acceleration

We would like to analyze the acceleration rate of R-GMMA
(6000) to CMMA when the structure of an instance varies.
The acceleration rate α is defined by:

α = tCMMA

tR−GMMA

(17)

where tCMMA and tR−GMMA represent the execution time
of CMMA and R-GMMA, respectively.

We selected two largest scale instance, i.e., E151-12c
and E200-17c for the analysis. E151-12c has n = 151
customers, m = 12 vehicles and the vehicle capacity is
C = 200. We altered the number of vehicles and the vehicle
capacity but remained other information unchanged, thereby

constructing six new instances (we named them E151-2c,
E151-5c, E151-8c, E151-11c, E151-14c and E151-17c).
The construction is as follows. When the number of vehicles
changed from m to m′, the new vehicle capacity was set to
	Cm

m′ �. For E200-17c, similar manner was adopted to create
six instances.

Table 8 shows the values of tCMMA, tR−GMMA and α

on these instances. Figure 8 further illustrates the trend of
the acceleration rate as the number of vehicles increases. In
R-GMMA, m/2 pairs of routes are optimized in parallel.
When m is small, R-GMMA ran much slower than CMMA
did. The acceleration rate increases steadily along with the
growth of the number of vehicles. When m grows large,
high acceleration rate is exhibited, which shows the power
of parallel computing.

7 Conclusions

In this paper, we analyze the structure of a vehicle routing
problem with route balancing (VRPRB). Some interesting
finding about the distorted solution is discussed. We propose
a multiobjective memetic algorithm (MMA) and try to
parallelize it based on GPU computing. The experiments
support our finding and demonstrate that GPU computing is
a good option to parallelize the algorithm. Our methodology
can certainly be extended to solve other kinds of complex
multiobjective optimization problems.

In practice, programming with GPU should consider not
only the domain knowledge of the problem, but also the
architecture of GPU devices. Our research is a preliminary
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attempt to the GPU computing. Much more efforts can be
made to further accelerate the execution of algorithms. For
example, adaptive methods can be employed to dynamically
make full use of GPU resources.
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