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a b s t r a c t

This paper introduces a multi-period inspector scheduling problem (MPISP), which is a new variant of
the multi-trip vehicle routing problem with time windows (VRPTW). In the MPISP, each inspector is
scheduled to perform a route in a given multi-period planning horizon. At the end of each period, each
inspector is not required to return to the depot but has to stay at one of the vertices for recuperation. If
the remaining time of the current period is insufficient for an inspector to travel from his/her current
vertex A to a certain vertex B, he/she can choose either waiting at vertex A until the start of the next
period or traveling to a vertex C that is closer to vertex B. Therefore, the shortest transit time between
any vertex pair is affected by the length of the period and the departure time. We first describe an
approach of computing the shortest transit time between any pair of vertices with an arbitrary departure
time. To solve the MPISP, we then propose several local search operators adapted from classical operators
for the VRPTW and integrate them into a tabu search framework. In addition, we present a constrained
knapsack model that is able to produce an upper bound for the problem. Finally, we evaluate the
effectiveness of our algorithm with extensive experiments based on a set of test instances. Our
computational results indicate that our approach generates high-quality solutions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies a new manpower routing and scheduling
problem faced by a company that procures products from over one
thousand suppliers across Asia. The company places orders with a
large number of suppliers and must inspect the goods at the
factories of the suppliers before shipment. Therefore, the suppliers
are required to make inspection requests with the company when
the ordered goods are ready for delivery. An inspection request is
characterized by the workload, the inspection site and the time
window within which the inspection can be started. In turn, the
company dispatches a team of professional quality inspectors to
perform all on-site inspections. In order to facilitate coordination
between inspectors and suppliers, the inspections could only be
carried out during working hours (e.g., 8:00 am–6:00 pm). Usually,
a weekly schedule is created to assign inspectors to requests for
the upcoming week. The company has a stable of in-house
inspectors, each having a specified weekly workload limit, and

the unfulfilled inspection requests are outsourced to external
agencies with additional costs. After receiving their weekly
inspection schedules, the inspectors depart from the regional
office and will not report back until they have performed all their
assigned inspections for the week. More specifically, they leave the
regional office on Monday, visit a set of inspection sites and return
to the regional office on Friday or some earlier workday. In each
workday, an inspector generally travels to diffident locations,
completes several inspections and finds overnight accommodation
(i.e., hotel) in the vicinity of his/her last/next inspection site at or
before the end of the office hours. The objective of the problem is
to assign as many inspection workloads as possible to the stable of
in-house inspectors while satisfying all the above-mentioned
practical constraints.

We call this problem the multi-period inspector scheduling
problem (MPISP), which can be viewed as a variant of the multi-
trip vehicle routing problem with time windows (VPRTW) [2,30].
There are four main features that distinguish the MPISP from the
multi-trip VRPTW. First, the scheduling subjects, e.g., vehicles or
inspectors, are not required to return to the regional office every
workday. Second, at the end of each workday, each scheduling
subject must stay at one of the vertices for recuperation. Third,
each vertex can be visited more than once. If the remaining time of
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the current period is insufficient for an inspector to travel from
his/her current vertex A to a certain vertex B, he/she can choose
either waiting at vertex A until the start of the next period or
traveling to a vertex C that is closer to vertex B. The vertex C is
called a waypoint, which only acts as the intermediate point in a
route. Fourth, the objective is to maximize the total inspected
workload rather than to minimize the number of inspectors used
and/or the total distance traveled.

In this study, we propose a tabu search algorithm to solve the
MPISP. This algorithm employs a tailored fitness function consist-
ing of three lexicographically ordered components, a local
improvement procedure with tabu moves, an ejection pool
improvement process and a perturbation phase. The contributions
of this study are fourfold. First, we introduce a new and practical
multi-period manpower routing and scheduling problem that
considers multiple working periods. Second, we provide an effec-
tive tabu search algorithm that uses a set of problem-specific
neighborhood search operators. Third, we construct a constrained
knapsack model that can produce an upper bound for the MPISP.
Fourth, the comprehensive experimental results on a large number
of test instances show the effectiveness of our approach.

The remainder of this paper is organized as follows. We first
provide an overview of related research in Section 2. In Section 3,
we then give a formal definition of the MPISP. In Section 4, we
describe an approach of computing the shortest transit time for
any pair of vertices with any departure time. Our proposed tabu
search algorithm is detailed in Section 5 and the constrained
knapsack model is presented in Section 6. Section 7 reports the
experiments results and Section 8 concludes this study with some
closing remarks.

2. Related work

The MPISP is one type of manpower scheduling problems.
Scheduling staff members is a traditional research area; example
problems include the nurse rostering problem [10], the technician
planning problem [15] and the airline crew rostering problem [23].
As for the manpower scheduling problems that involve creating
routes for staff members, we refer the reader to Li et al. [27], Tang
et al. [36], Zäpfel and Bögl [43], Cai et al. [7], Zhang et al. [44].

Since each inspector has to perform inspections at different
locations, the MPISP is essentially a variant of the vehicle routing
problem [37]. One of the defining characteristics is its objective of
maximizing the total inspected workload. Two previously studied
problems with similar objective are the team orienteering problem
with time windows (TOPTW) [41,39,25,22] and the vehicle routing
problem with time windows and a limited number of vehicles
(m-VRPTW) [26,28]. The m-VRPTW is an extension of the TOPTW
with the consideration of vehicle capacity and customer demands.
These two problems both aim to determine a set of routes that
maximizes the total reward of the vertices visited during a single
period with a distance or duration limit. The multi-period plan-
ning horizon of the MPISP is related to the periodic vehicle routing
problem (PVRP) [16,21] and the multiple trip vehicle routing
problem (MTVRP) [4]. However, the MPISP is quite different from
the PVRP and MTVRP. In the PVRP, each customer requires a
certain number of visits within the planning horizon, and two
types of decisions are involved in the planning, namely determin-
ing the visit days for each customer and the routing plan for each
time period. The PVRP and MTVRP both require that each vehicle
must return to the depot at the end of each period.

Another defining characteristic of the MPISP is the consideration of
multiple working periods. Working hour regulations have recently
received increasing attention from some researchers studying vehicle
routing problems. Savelsbergh and Sol [34] proposed a dynamic and

general pickup and delivery problem in which lunch and night breaks
must be taken into account. Xu et al. [42] applied column generation
based solution approaches to solve a pickup and delivery vehicle
routing problem that involves a set of practical complications, such as
heterogeneous vehicles, last-in-first-out loading and unloading opera-
tions, pickup and delivery time windows, and working hour restric-
tions by the United States Department of Transportation. Similarly,
Goel [18,19] and Kok et al. [24] investigated combined vehicle routing
and driver scheduling problems under the European Union regula-
tions for drivers.

The MPISP problem can be viewed as a natural extension of the
orienteering problem with hotel selection (OPHS) [13,14]. In the
OPHS, a scheduling subject can visit a set of vertices each with a
score and find accommodation at a given set of hotels. The tour is
divided into multiple trips, each with a limited duration and
starting from and ending at one of the hotels. The objective of
the OPHS is to determine a tour that maximizes the total collected
score. The OPHS is a variant of the traveling salesperson problem
with hotel selection (TSPHS) [40,8], which aims to serve all
vertices with the minimum number of connected trips and the
minimum total travel distance. The common characteristic of the
above three problems is the involvement of hotel selection.

Tang et al. [36] and Zäpfel and Bögl [43] introduced two
manpower routing and scheduling problems that involve max-
imization of profits, multiple periods and working hour restric-
tions. However, their problems require that the trip in each period
must start from and end at the depot. Most recently, Zhang et al.
[44] proposed an inspector scheduling problem which is very
similar to our problem. Their problem differs from our problem in
the following four assumptions: (1) each vertex can only be visited
at most once; (2) if a vertex is visited by an inspector, its inspection
request must be fulfilled by this inspector; (3) an inspector reaches
a vertex and completes the corresponding inspection task in the
same period; and (4) each vehicle stays at the last served vertex at
the end of each period and begins the trip of the next period from
that vertex. By ignoring these four assumptions, the MPISP is more
difficult but practical.

3. Problem description

The MPISP is defined on a directed graph G¼ ðV ; EÞ, where
V ¼ f0;1;…;ng is the vertex set and E¼ fði; jÞ : i; jAV ; ia jg is the
edge set. Vertex 0 represents the depot location and VC ¼ f1;…;ng
denotes the locations of n suppliers. Each supplier i is character-
ized by a location iAVC , a workload di, a required service time si
and a time window ½ei; li�. For notational convenience, we assign
d0 ¼ 0 and s0 ¼ 0 for the depot. Each edge ði; jÞAE requires a non-
negative traveling time ti;j, where the matrix ½ti;j� satisfies the
triangle inequality.

We are given a set K of m homogeneous inspectors, each of which
has aworkload limit Q and can only work within a set P ¼ f1;…;wg of
w working periods (or called working time windows). For any period
pAP, ap and bp ðapobpÞ are its starting and closing working times,
respectively, and bp�ap equals a positive constant T that is not less
than si for any iAV . An inspector can arrive at vertex iAVC prior to ei
and wait at no cost until the service of supplier i becomes possible. All
inspectors must leave the depot after e0 ðe0 ¼ a1 ¼ 0Þ and return to
the depot before l0 ðl0 ¼ bwÞ, where ½e0; l0� is called depot time window.
At the end of each period, each inspector is not required to return to
the depot but has to stop traveling and stay at one of the vertices.
Moreover, service cannot be interrupted, i.e., if the service of some
supplier cannot be completed before the end of a period, it must be
restarted in the later periods. Each vertex can be visited more than
once while each supplier can be served by at most one inspector, so
some supplier locations can be used aswaypoints. The objective of the
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MPISP is to construct m inspector routes to complete as many
workloads as possible while respecting depot time window, workload
limit, supplier time windows and inspector working time windows.
We provide a mixed integer programming model for the MPISP in
Appendix A.

In reality, ap should be larger than bp�1, and the duration
between ap and bp�1 is the downtime for rest and recuperation.
Without loss of generality, we can assume that the length of the
downtime is extremely small by setting bp�1 ¼ ap and imposing a
break at time bp�1. As illustrated in Fig. 1, we can easily transform
the non-zero downtime cases to zero downtime ones. In Fig. 1(a),
T¼20 and the time windows of suppliers 1, 2, and 3 are ½5;90�,
½10;50� and ½85;95�, respectively. After transformation, their time
windows become [5, 50], [10, 30] and [45, 55] (see Fig. 1(b)).

To further describe the MPISP, we convert the graph G¼ ðV ; EÞ
into a directed (not complete) graph G0 ¼ ðV 0; E0Þ by the following
three steps: (1) split each vertex iAVC into two vertices iþ and i� ,
and create an edge ðiþ ; i�Þ, where vertex iþ represents the arrival
of vertex i and vertex i� represents the completion of supplier i's
service; (2) create edges ð0; iþÞ, ðiþ ;0Þ, ði� ;0Þ, ðiþ ; jþÞ and
ði� ; jþÞ, where i; jAVC and ia j; and (3) set tiþ ;i� ¼ si, t0;iþ ¼ t0;i,
tiþ ;0 ¼ ti� ;0 ¼ ti;0 and tiþ ;jþ ¼ ti� ;jþ ¼ ti;j. An example to illustrate
this conversion is shown in Fig. 2, where Fig. 2(b) is the resultant
graph derived from Fig. 2(a).

We can denote a feasible solution of the MPISP by S, consisting
of m routes, namely S¼ fr1; r2;…; rmg. A route rk ð1rkrmÞ is
divided into w sub-routes by periods and therefore can be expr-
essed as rk ¼ ðr1k ; r2k ;…; rwk Þ, where rk

p ð1rprwÞ denotes the trip in
period p. If an inspector returns to the depot before period w, he/
she will stay at the depot for the remaining periods. The sub-route
rk
p is a sequence of vertices, where its starting and ending vertices

are denoted by vsðrpkÞ and veðrpkÞ, respectively. If an inspector k stays
at the depot during the whole period p, we set rpk ¼ ð0Þ and
vsðrpkÞ ¼ veðrpkÞ ¼ 0. According to the definition of our problem, an
inspector must stay at vertex veðrpkÞ for rest and will start the next
trip from this vertex in period pþ1, i.e, veðrpkÞ ¼ vsðrpþ1

k Þ for all
1rprw�1. Obviously, the starting vertex of period 1 and the
ending vertex of period w for each route must be vertex 0. Fig. 3
gives a feasible solution to an MPISP instance involving 10
suppliers, four inspectors and three periods.

In Fig. 3, the solid and dash lines denote the working (i.e.,
traveling or providing service) and idle statuses of the inspectors,
respectively. The set U ¼ f9;10g indicates that suppliers 9 and 10
are not served by any inspector. The route r1 ¼ ðr11; r21; r31Þ comprises
three trips, i.e., r11 ¼ ð0;1þÞ, r21 ¼ ð1þ ;1� ;2þ ;2�Þ and r31 ¼
ð2� ;3þ ;3� ;0Þ. This route shows that inspector 1 arrives at vertex
1, but does not have sufficient time to complete the service for
supplier 1 in the first period. Thus, he/she has to wait until the
start of the second period and then provides service to supplier 1.
Subsequently, inspector 1 travels to vertex 2, completes the service
of supplier 2 and stays at vertex 2 for recuperation. In the third
period, inspector 1 travels from vertex 2 to vertex 3, provides
service for supplier 3, and finally returns to the depot. Since each
supplier i can be served by at most one inspector, edge ðiþ ; i�Þ can
be included in at most one route. In route r2, after completing the
service of supplier 4, inspector 2 travels to vertex 5 via a waypoint,
namely vertex 3. Note that any waypoint must be the ending
vertex of a certain period (and also be the starting vertex of the
following period) due to the rule of triangle inequality. As shown

0 2 0 4 0 6 0 8 0 1 0 0 

downtimedowntime working

workingworkingworking

workingworking

e1 l2e2 l1e3 l3

0 2 0 e1 e2 4 0 l2

time 

time 

6 0 l1e3 l3

Fig. 1. (a) The original case. (b) The case after transformation.

0

1

2

1 + 1 - 

2 + 2 - 

0

Fig. 2. (a) G¼ ðV ; EÞ. (b) G0 ¼ ðV 0 ; E0Þ.

0 1+ 1- 2+ 2- 2- 3+ 3- 0

0 4+ 4- 3+ 3+ 5+ 5- 5- 0

0 6+ 6- 3+ 3+ 9+ 9+ 7+ 7- 0

0 8+ 8- 0

r1

r2

r3

r4

Period 1 Period 2 Period 3

Set of unserved suppliers U ={9, 10} working

idle

0 0

1+

Fig. 3. An example feasible solution to an MPISP instance.
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in route r3, an inspector may use two or more waypoints between
two consecutively served suppliers. In this route, inspector 3 visits
but does not serve supplier 9, i.e., vertex 9 only acts as a waypoint.
As no route traverses edge ð9þ ;9�Þ, supplier 9 is not served by
any inspector in this solution. The route r4 illustrates that an
inspector may be idle during some periods; its three trips are
represented by r14 ¼ ð0;8þ ;8� ;0Þ, r24 ¼ ð0Þ and r34 ¼ ð0Þ.

4. Shortest transit time

In a complete graph that satisfies the triangle inequality, the
shortest path from vertex i to vertex j must be edge ði; jÞ. When
working periods are imposed on the inspectors, edge ði; jÞ may be
unusable in some situations and therefore the shortest transit time
may be greater than ti;j. The simplest such situation can be
encountered when ti;j4T . To move from vertex i to vertex j, an
inspector has to use some waypoints and the transit time may
cross several periods. We illustrate this situation in Fig. 4, where
an inspector has completed the service of supplier i and departs
from vertex i at the beginning of a certain period.

Unlike the classical VRP models, in the MPISP the shortest transit
times from vertex i to other vertices are affected by the departure time
(denoted by dti) of the inspector. Therefore, we define t̂ i;jðdtiÞ as the
shortest transit time from vertex i to vertex jwith departure time dti. If
dti is the opening time of a certain period, i.e., dti¼ap for some pAP,
t̂ i;jðdtiÞ can be simplified to t̂ i;j. Further, we define ceilðdtiÞ as the
closing time of the period within which dti lies, i.e., if apodtirbp,
then ceilðdtiÞ ¼ bp. If ceilðdtiÞ�dtiZti;j, an inspector can travel across
edge ði; jÞ within the current period and thus t̂ i;jðdtiÞ ¼ ti;j. Otherwise,
the inspector has to either wait at vertex i until the start of the next
period or travel to some waypoint u. We illustrate these situations in
Fig. 5, where an inspector may travel from vertex i to vertex j via some
waypoint.

As previously mentioned, a waypoint u can only be positioned as
the last or the first vertex in the trip of some period. More precisely, if
an inspector travels to a waypoint u, he must stay at u for downtime
(see Fig. 5(b)). Taking NðdtiÞ ¼ fuAV j ti;urceilðdtiÞ�dtig to be the set
of all vertices that can act as waypoints for vertex i, the value of t̂ i;jðdtiÞ

can be calculated by

t̂ i;jðdtiÞ ¼
ti;j if ceilðdtiÞ�dtiZti;j;

ceilðdtiÞ�dtiþ min
uANðdtiÞ[ fig

ft̂ u;jg otherwise

8<
:

ð1Þ
The above expression shows that computing any t̂ i;jðdtiÞ requires O(n)
time given the values of all t̂ i;j, which can be calculated prior to
applying any algorithm to the problem. If the last waypoint between
vertex i and vertex j is vertex u, the corresponding shortest transit
time, denoted by t̂

u
i;j, can be obtained by

t̂
u
i;j ¼

t̂ i;uþtu;j if ceilðt̂ i;uÞ� t̂ i;uZtu;j;

ceilðt̂ i;uÞþtu;j if ceilðt̂ i;uÞ� t̂ i;uotu;jrT

þ1 otherwise:

8><
>: ð2Þ

Obviously, we have

t̂ i;j ¼min
uAV

ft̂ ui;jg

To compute all t̂ i;j, we can apply an algorithmmodified from Dijkstra's
algorithm [1], one of the most well-known label-setting algorithms for
the classical shortest path problem. This modified Dijkstra's algorithm
employs expression (2) as the extension function and has a time
complexity of Oðn2Þ. Since we need to compute the shortest transit
time between each vertex pair, the total time complexity for all t̂ i;j is
bounded by Oðn3Þ.

We can accelerate the computation of t̂ i;jðdtiÞ by the following
procedure. We first remove from the graph all edges whose lengths
are greater than T and then sort all neighbors u of vertex i in ascending
order of ti;u, generating a vertex sequence ði0; i1;…; ihÞ. Note that we
have i0 ¼ i since ti;i ¼ 0. For 0rkrh, let t̂

ðkÞ
i;j ¼min0rk0 rkft̂ ik0 ;jg be

the shortest transit time from one of the first kþ1 vertices in the
sequence to vertex j. The values of all t̂

ðkÞ
i;j can be computed by

Algorithm 1 in time complexity of Oðn3Þ. Fig. 6 pictorially shows
the process of computing all t̂

ðkÞ
i;j . According to expression (1),

Fig. 4. (a) The vertex locations. (b) The route associated with the shortest transit
time from vertex i to vertex j, where vertices i1 and i2 are waypoints.

i - 

t d i
i - i - 

t d i
u + u + 

p e r i o d p p e r i o d p + 1 p e r i o d p p e r i o d p + 1

bp   - t d i bp   - t d i

j + j + 

Fig. 5. (a) Wait at vertex i. (b) Travel to a waypoint u.

Fig. 6. The process of computing all t̂
ðkÞ
i;j .
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t̂ i;jðdtiÞ¼ceilðdtiÞ�dtiþminuANðdtiÞ[ figft̂ u;jg if ceilðdtiÞ�dtioti;j. To
achieve this t̂ i;jðdtiÞ, we identify the largest k satisfying ceil
ðdtiÞ�dtiZti;ik using binary search on ti;i0 ; ti;i1 ;…; ti;ih , and retrieve
the value of t̂

ðkÞ
i;j , which is equal to minuANðdtiÞ[ figft̂ u;jg. The above

procedure shows that the time complexity of computing t̂ i;jðdtiÞ can
be reduced to OðlognÞ given that all t̂

ðkÞ
i;j are available.

Algorithm 1. The algorithm for preprocessing all t̂
ðkÞ
i;j .

1: INPUTS: all t̂ i;j;
2: for i¼0 to n do
3: Sort all neighbors u of vertex i in ascending order of ti;u

to generate a vertex sequence ði¼ i0; i1;…; ihÞ;
4: for j¼0 to n do

5: t̂
ð0Þ
i;j ¼ t̂ i;j;

6: for k¼1 to h do

7: t̂
ðkÞ
i;j ¼min ft̂ ðk�1Þ

i;j ; t̂ ik ;jg;
8: end for
9: end for
10: end for

The computation of all t̂ i;j and t̂
ðkÞ
i;j can be done in a preproces-

sing stage, which requires a time complexity of Oðn3Þ. The
approach described in the following section needs to frequently
compute t̂ i;jðdtiÞ. Thus, this preprocessing stage is particularly
useful to save the overall computation time.

5. Tabu search algorithm

Tabu search algorithm has been successfully applied to a wide
variety of routing and scheduling problems, such as the classical VRP
[17,38], the VRPTW [11,20], the three-dimensional loading capacitated
VRP [45], the job-shop scheduling problem [3] and the nurse rostering
problem [6]. Basically, tabu search algorithm starts from an initial
solution and iteratively proceeds from the incumbent solution to its
best allowable neighbor. The neighborhood of a solution is a set of
solutions that can be reached from that solution by a certain
operation. Each type of operation corresponds to a neighborhood
and the procedure of identifying the best allowable neighbor in the
neighborhood is called an operator. The transition from the incumbent
solution to one of its neighbors is called a move.

Our tabu search algorithm employs several operations adapted
from classical operations for the VRPTW, namely 2-opt, Or-opt, 2-optn,
Relocate and Exchange [5], and an ejection pool [28,32]. The most
noteworthy characteristic that distinguishes these adapted operations
from their classical counterparts is the procedure of checking the
feasibility of the modified solution. For example, after performing an
operation on a VRPTW solution, we can check the feasibility of the
resultant solution in Oð1Þ time (it is assumed that for each vertex the
latest arrival time that does not lead to the violation of the time
windows of all successive vertices has been calculated in a preproces-
sing step). However, for a modifiedMPISP solution, we may require up
to OðnlognÞ time to check its feasibility due to the re-computation of
the shortest transit times associated with the affected vertices, which
will be elaborated in Section 5.4.1.

The pseudocode of our tabu search algorithm is presented in
Algorithm 2, which is an iterative approach that follows a four-phase
framework: initialization, local search with tabu moves, ejection pool
algorithm and perturbation. At the beginning of the algorithm, we
generate an initial solution S0 using the function best_init (see Section
5.3) and then initialize both the best solution Sbest and the current
solution S by S0. In each iteration, we first invoke the local search
procedure with tabumoves (function local_search, see Section 5.4) and

set S0 to be the best solution found by this procedure. Subsequently,
we try to improve on S0 by an ejection pool algorithm (function EPA,
see Section 5.5) and then update Sbest if possible. Finally, the search
process is diversified by perturbing the best solution found in this
iteration. The above process is repeated until the perturbation
procedure (function perturb, see Section 5.6) is consecutively per-
formed maxPerturbation times without improving on Sbest.

Algorithm 2. Framework of the tabu search algorithm.

1: S0’best_initðÞ;
2: Sbest’S0 and S’S0;
3: i’0;
4: while ir maxPerturbation do
5: S0’the best solution found by local_search(S);
6: S0’EPAðS0Þ
7: if S0 is better than Sbest Then
8: Sbest ’S0 and i’0;
9: else
10: i’iþ1;
11: end if
12: S’perturb ðS0Þ;
13: end while
14: return Sbest.

5.1. Solution representation

In Section 3, we have used the sequences of visited vertices to
represent the problem solution (see Fig. 3). However, in our tabu
search algorithm, we represent the route of each inspector by a
sequence of served suppliers. For example, Fig. 7 shows a solution
that is exactly the same as the one in Fig. 3. The routes r1; r2; r3 and
r4 include the served suppliers and the ejection pool U contains
the leftover suppliers. All waypoints are not displayed in this
solution representation and there may exist waypoints and/or
breaks between two consecutively served suppliers.

5.2. Fitness function

The tabu search algorithm ranks solutions using a fitness function.
It is natural to define the fitness value of a solution S as the total
completed workload, denoted by P(S). However, many distinct solu-
tions have the same value of P(S). To further differentiate solutions, we
incorporate into the fitness function another two measures denoted
by D(S) and F(S), respectively, which is inspired by Lim and Zhang [28].
As a result, the fitness function consists of three lexicographically
ordered components, namely P(S), D(S) and F(S).

The second component D(S) employs a function mvðu; SÞ that
estimates the difficulty of inserting supplier uAU into the routes
of solution S. Denoting any route in S by r¼ ðv0; v1;…; vj r j ; vj r j þ1Þ,
where j rj is the number of served suppliers in route r and
v0 ¼ vj r j þ1 ¼ 0, the definition of mvðu; SÞ is given by

mvðu; SÞ ¼min
rA S

mvðu; rÞ

0 1 2 3 0r1

0 4 5 0r2

0 6 7 0r3

0 8 0r3

U   =   { 9 ,   1 0 } 

Fig. 7. An example of the solution representation used in our tabu search
algorithm.
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where

mvðu; rÞ ¼maxfη�mvlðu; rÞ; mvtðu; rÞg ð3Þ

mvlðu; rÞ ¼
0 if wlðrÞþdurQ ;

ðl0�e0Þ �
ðwlðrÞþdu�Q Þ

wlðrÞþdu
otherwise:

8><
>: ð4Þ

wlðrÞ ¼
X
vA r

dv

mvtðu; rÞ ¼ min
0r ir j r j

cðu; vi; rÞ

cðu; vi; rÞ ¼max ea0u� lu;0
� �þmax eu� la0u;0

� �þmax ea0viþ 1
� laviþ 1 ;0

n o
ð5Þ

The cost of inserting supplier u into route r, denoted bymvðu; rÞ,
is computed based on the extent of violating the workload limit
and the time-window constraint. The amount of workload is
translated into time unit by expression (4), where wl(r) is the
cumulative workload in route r. If the inspector has enough
capability to serve supplier u, namely wlðrÞþdurQ , then no
workload penalty is incurred. Otherwise, the penalty, denoted by
mvlðu; rÞ, equals the length of the depot time window multiplied
by the workload violation percentage.

The penalty for time-window violation, denoted by mvtðu; rÞ,
considers all possible insertions. For each viAr, we can easily find
its earliest arrival time eavi when ð0; v1;…; viÞ is feasible, and its lat-
est arrival time lavi that does not affect the feasibility of ðviþ1;

viþ2;…; vj r j ;0Þ. Inserting u into r at the position immediately after
vi creates a new route r0, which may be infeasible. Under the condition
that ð0; v1;…; viÞ is feasible, we can find the earliest arrival times at u
and viþ1 in r0, denoted by ea0u and ea0viþ 1

, respectively. The partial
route ð0; v1;…; vi;u; viþ1Þ may be infeasible, i.e., ea0u4 lu and/or
ea0viþ 1

4 lviþ 1 . Furthermore, we can also find the latest arrival time at
u, denoted by la0u, that makes ðviþ1; viþ2;…; vj r j ;0Þ feasible. The
penalty for time-window violation incurred by inserting u between vi
and viþ1 is calculated by summing up the violations of lu, eu and laviþ 1

(see expression (5)). As shown in expression (3), the cost of inserting u
into r takes into account both mvlðu; rÞ and mvtðu; rÞ whose relative
weights are controlled by a parameter η. After sorting the mvðu; SÞ
values of all unserved suppliers in ascending order, we can obtain a
sequence ðmv1;…;mvjU j Þ, where jU j is the cardinality of U. The value
of D(S) is calculated by

Pj U j
i ¼ 1 mvi=i. We believe that the solution S

with smaller D(S) has more chance to be improved by including the
unserved suppliers.

The third component F(S) is the summation of the maximal free
times of all routes in S. The maximal free time of route r is defined as
mftðrÞ ¼max0r ir j r j þ1flai�eaig and accordingly FðSÞ ¼P

rA SmftðrÞ.

5.3. Initialization

We obtain an initial feasible solution for the tabu search algorithm
using Algorithm 3. This algorithm first generates Ninit feasible solutions
using the function init (see Algorithm 4) and then chooses the best
one as the initial solution. In each iteration of init, we begin with
computing the shortest transit time stri from the tail of each route r to
each unserved supplier vi. If vi cannot be feasibly appended at the tail
of r, we set stri ¼ þ1. Next, we calculate the ratio of stri to di and set ρi
to be the minimal ratio of vi over all routes (see Algorithm 4, line 11). If
the value of ρi is positive infinity, i.e., vi cannot be appended at the tail
of any route, we remove vi from U. Finally, we sort all suppliers in U by
increasing value of ρi and relocate the kth supplier vs from U to the tail
of the route r who has ρs ¼ strs=ds. The value of k is a random number

generated by k¼ ⌊randomð0;1Þα1 � jU j c, where the controlling para-
meter α141. This process is repeated until U becomes empty.

Algorithm 3. Function best_init.

1: Initialize S0 ¼∅;
2: while irNinit do
3: S¼ initðÞ;
4: if S is better than S0 then
5: S0’S;
6: end if
7: i¼ iþ1;
8: end while
9: return S0.

Algorithm 4. Function init.

1: INPUT: the set U of unserved suppliers and m empty
routes;

2: while U is not empty do
3: for each vi in U do
4: for r¼ 1;…;m do
5: if vi can be feasibly appended to the tail of r then
6: stri’the shortest transit time from the last

supplier of r to vi;
7: else
8: stri’þ1;
9: end if
10: end for
11: ρi ¼minm

r ¼ 1fstri =dig;
12: if ρi ¼ þ1 then
13: Remove vi from U;
14: end if
15: end for
16: Sort all suppliers in U by increasing value of ρi;
17: vs ’the kth supplier in the sorted supplier list, where

k¼ ⌊randomð0;1Þα1 � jU j c and α141;
18: Append vs at the tail of r with strs=ds ¼ ρs;
19: Remove vs from U;
20: end while

5.4. Local search with tabu moves

The pseudocode of the local search procedure with tabu moves
is provided in Algorithm 5. The following context of this subsec-
tion presents all main components of this procedure, including
neighborhood structure, tabu list, aspiration and termination
criteria.

Algorithm 5. The local search procedure with tabu moves
(local_search).

1: INPUT: the initial solution S;
2: The current best solution S0’S and Iter’0;
3: while IterrmaxLocalIter do
4: Apply the 2-opt, Or-opt, 2-optn, relocate and exchange

operators on S ;
5: S’the best allowable solution found by the above

operators;
6: if S is better than S0 then
7: S0’S and Iter’0;
8: else
9: Iter’Iterþ1;
10: end if
11: Update the tabu list;
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12: end while
13: return S0.

5.4.1. Neighborhood structure
The neighborhood structure is one of the most important compo-

nents that determine the size of the search space and the quality of
the final solution. Our tabu search algorithm employs five neighbor-
hood operations adapted from classical operations for the VRPTW [5],
namely 2-opt, Or-opt, 2-optn, Relocate and Exchange. We treat the
ejection pool as a dummy route that includes all unserved suppliers.
Compared with their classical counterparts, these adapted operations
require more computational efforts to check the feasibility of the
resultant solution, and to update the earliest and latest arrival times at
the affected suppliers.

Fig. 8 illustrates the 2-opt and Or-opt operations. Assume that
we are given the earliest and latest arrival times (eai and lai) at
each supplier i in route r. The earliest departure time (edi) of each
supplier can be easily derived by

edi ¼
eaiþsi if ceilðeaiÞ�eaiZsi;

ceilðeaiÞþsi otherwise:

(

The 2-opt operation replaces edges (i; iþ1) and ðj; jþ1Þ with
edges ði; jÞ and ðiþ1; jþ1Þ, and then reverses the directions of all
edges between iþ1 and j. The resultant route r0 shown in
Fig. 8(b) must be feasible if its subroute ðj; j�1;…; iþ1; jþ1;…;0Þ
is feasible. To check the feasibility of r0, we need to re-calculate
the earliest arrival time (ea0k) at each supplier k in subroute
ðj; j�1;…; iþ1; jþ1Þ. If ea0k is less than ek or within ½ek; lk� for each
supplier, this subroute must be feasible. If ea0jþ1 in r0 is less than or
equal to lajþ1 in r, subroute ðjþ1;…;0Þ must be feasible. All ea0k
can be obtained in OðnslognÞ time using the procedure described
in Section 4, where ns is the number of suppliers in subroute
ðj; j�1;…; iþ1; jþ1Þ. Therefore, it requires OðnslognÞ time to check
the feasibility of route r0. By contrast, when dealing with the
VRPTW, a 2-opt operation only requires OðnsÞ time to accomplish
the feasibility check. In addition, updating the values of ea0i and la0i
for all suppliers in r0 requires Oðj rj lognÞ time and computing the
fitness of the resultant solution requires Oðj rj jU j log nÞ time.

The Or-opt operation replaces three edges (i�1), (iþ1; iþ2) and
(j; jþ1) with edges (i�1; iþ2), (j; i) and (iþ1; jþ1); the resultant
route is illustrated in Fig. 8(c). After an Or-opt operation, we can also
derive the time complexity for checking the feasibility of the resultant
route, updating the earliest and latest arrival times at each supplier,
and computing the fitness of the resultant solution in a manner
similar to that used for the 2-opt operation.

Fig. 9 illustrates the 2-optn operation which exchanges the latter
subroutes of r1 and r2 by replacing edges (i; iþ1) and (j; jþ1) with
edges (i; jþ1) and (j; iþ1). The feasibility of the resultant routes can

be checked by simply comparing ea0jþ1 (resp. ea0iþ1) with lajþ1 (resp.
laiþ1) in OðlognÞ time. After this operation, we need Oððj r1 j
þ j r2 j ÞlognÞ time to update ea0i and la0i in r01 and r02 and Oððj r1 j
þ j r2 j ÞjU j lognÞ time to update the fitness of the resultant solution.

The relocate operation can either relocate supplier j in route r1 to
another position in the same route or to route r2, which is illustrated
in Fig. 10. In the former case, the feasibility of the resultant route
shown in Fig. 10(b) can be checked by calculating ea0i for all suppliers
in subroute ðj; iþ1;…; j�1; jþ1Þ. In the latter case, we only need to
check the feasibility of r02 shown in Fig. 10(c), which can be done in
OðlognÞ time. The relocation operation can also relocate a supplier in
the ejection pool to a certain route or vice versa.

The exchange operation exchanges positions of two suppliers.
Fig. 11(b) shows the resultant route after exchanging the positions of
two suppliers in the same route. The feasibility of this route can be
checked by calculating ea0i for all suppliers in subroute ðj; iþ 1
;…; j�1; i; jþ1Þ. The resultant routes created by exchanging two
suppliers from two different routes are shown in Fig. 11(c). The
feasibility check can be done in OðlognÞ time. This operation can also
exchange a supplier in some route with a supplier in the ejection pool.

5.4.2. Tabu list, aspiration and termination
Tabu search algorithm employs one or more tabu lists to

prevent the search process from being trapped in local optima.
In our implementation, the tabu list stores edges that have been
created within the previous ξ iterations. A move is considered as
tabu if it attempts to remove the edges in the tabu list. The tabu
restriction can be overridden if the aspiration criterion is satisfied.
Specifically, we allow the tabu moves to be performed if the
solutions they result in are better than the current best solution S0.
The solutions that are created by non-tabu moves or by aspiration
are called allowable neighbors. All allowable moves are stored in a

0 i- 1 i i+ 1 i+ 2 j j+ 1 0

0 i- 1 i i+ 1 i+ 2 j j+ 1 0

0 i- 1 i i+ 1 i+ 2 j j+ 1 0

Fig. 8. (a) The original route r. (b) The resultant route r0 after a 2-opt operation. (c) The resultant route r0 after an Or-opt operation.

0 i i + 1 0

0 j j + 1 0

0 i i + 1 0

0 j j + 1 0

r1

r2

r ' 1

r ' 2

Fig. 9. (a) The original routes r1 and r2. (b) The resultant routes r01 and r02 after a
2-optn operation.
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candidate list and sorted according to the fitness values of their
resultant solutions. The best candidate is performed to generate
the next incumbent solution. We terminate the local search
procedure when maxLocalIter consecutive iterations are unable
to improve on S0.

5.5. Ejection pool

Ejection pool has been previously used in the algorithms for
reducing the number of routes for some routing problems (see for
example [28,32,9]). Our ejection pool algorithm (EPA) is presented
in Algorithm 6. The initial solution S0 of this algorithm is the best
solution found by function local_search. Since S0 is a local optimum,
no supplier in the ejection pool can be feasibly inserted into S0. The
EPA generates a candidate solution based on S0 for each of the
unserved suppliers by an insertion-ejection procedure. If the best
candidate solution is superior to S0, then S0 is updated.

Algorithm 6. The ejection pool algorithm (EPA).

1: INPUT: the initial feasible solution S0;
2: for each uAU do
3: Evaluate all insertion positions using the function

cði;u; jÞ;
4: Su’the resultant solution after inserting u into S0 at the

best position;
5: Eject suppliers one by one using the function c(i) until Su

becomes feasible;
6: Improve Su by function local_search with ξ¼ 0;
7: end for

8: if the best candidate solution Su is better than S0 then
9: S0 ’Su;
10: end if
11: return S0.

For each uAU, we evaluate its insertion positions using func-
tion cði;u; jÞ, namely the cost of inserting u between two consecu-
tively served suppliers i and j, which is defined as

cði;u; jÞ ¼ β1 � du�β2 � max 0; ea0u� lu
� �þmax 0; ea0j� lj

n o� �
;

where β1 and β2 are controlling parameters, and ea0u and ea0j are
the earliest arrival times at suppliers u and j after inserting u
between i and j. The position with the smallest value of cði;u; jÞ is
selected for insertion.

The target route rt becomes infeasible after the insertion. Thus,
some of its suppliers (except the newly inserted one) need to be
ejected one by one until its feasibility is restored. The supplier i to
be ejected is determined based on the value of c(i), which is
defined as

cðiÞ ¼ β3 � diþβ4 �max wlðr0tÞ�Q ;0
� �þβ5 � violationtwðr0tÞ;

where β3, β4 and β5 are controlling parameters, r0t is the resultant
route after removing i from rt, and violationtwðr0tÞ is the total time-
window violation of all suppliers in route r0t , defined as

violationtwðr0tÞ ¼
X
jA r0t

max 0; ea0j� lj
n o

:

The supplier i with minimal c(i) is ejected from the route rt.
After performing the insertion-ejection procedure on each uAU,

we obtain jU j candidate solutions, which are further improved by
local_search without tabu moves, namely ξ¼ 0. The solution S0 is
updated by the best candidate solution if possible.

5.6. Perturbation

The perturbation procedure is a diversification scheme that
helps the search process escape from local optima. Our perturba-
tion procedure (function perturb) randomly removes some suppli-
ers from the solution S0 following the rule that the suppliers with
smaller workloads have more chances to be removed. Given a
solution S0, we sort the served suppliers in non-decreasing order of
workloads, generating a supplier list ðv1; v2;…; vn0 Þ. The probability
of removing the kth supplier is determined by

pminþðpmax�pminÞ �
k
n0; ð6Þ

where pmin and pmax are controlling parameters satisfying 0r
pminrpmaxr1. It implies that the supplier with larger workload
has smaller probability to be kicked out.

The tabu search algorithm performs at least maxPerturbation
iterations (see line 4–13, Algorithm 2). We store the best solution S0

found within each iteration in a solution list. The solutions with equal
values of P(S), D(S) and F(S) are regarded as the same. The number of
times that the current solution S0 appears in the solution list is
represented by Nrep. When Nrep grows large, we expect that the
perturbed solution deviates far from the current solution S0. To this
end, we replace pmin and pmax in expression (6) by

pmin’pminþpΔ �minfNrep;Nmaxg;

pmax’pmaxþpΔ �minfNrep;Nmaxg;
where pΔ is a controlling parameter, and the parameterNmax is used to
set an upper bound for the probability. The introduction of Nmax can
help avoid the overly large probability, which would cause the process
to degenerate into an ineffective multi-start method.

0 i i+ 1 j- 1 j j+ 1 0

0 k k + 1 0

0 i j i + 1 j - 1 j+ 1 0

0 i i+ 1 j- 1 j+ 1 0

0 k k + 1 0j

r1

r2

r ' 1

r ' 1

r ' 2

Fig. 10. (a) The original routes r1 and r2. (b) The resultant routes r01 after relocating
supplier j between suppliers i and iþ1. (c) The resultant routes r01 and r02 after
relocating supplier j between suppliers k and kþ1.

0 i i+ 1 j- 1 j j+ 1 0

0 k - 1 k + 1 0

r1

r2

i - 1

k

0 j i+ 1 j- 1 i j+ 1 0r ' 1 i - 1

0 i i+ 1 j- 1 k j+ 1 0

0 k - 1 k + 1 0

r ' 1

r ' 2

i - 1

j

Fig. 11. (a) The original routes r1 and r2. (b) The resultant routes r01 after exchanging
suppliers i and j. (c) The resultants routes r01 and r02 after exchanging suppliers j and k.
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6. Upper bound

The solutions generated by our tabu search algorithm are lower
bounds to the MPISP. In this section, we construct a constrained
knapsack model to produce an upper bound for the MPISP; this
model is motivated by Lau et al. [26].

The time windows of all suppliers can be adjusted based on the
following straightforward observations. For a supplier i, if the
opening time of its time window lies within period p, i.e.,
apreirbp, and it is impossible to complete its service during
that period, i.e., bp�eiosi, then the real earliest service starting
time for supplier i should be the opening time apþ1 of the next
period. Consequently, in this situation ei can be updated by
ei ¼ apþ1. Analogously, if apr lirbp and bp� liosi, we can update
li by li ¼ bp�si. Let λi ¼ ceilðliþsiÞþ t̂ i;0 denote the time of returning
to the depot immediately after severing supplier i with the service
starting time li. We construct a supplier set VG ¼ fg1; g2;…; gmg
DVC that contains m distinct suppliers satisfying λiZλj for all
iAVG and jAVC \VG.

Obviously, if ei4 li, supplier i cannot be served by any inspector
and vertex i can only be used as a waypoint. We define f 1ðiÞ ¼ 0 if
ei4 li and f 1ðiÞ ¼ 1 otherwise. Suppose ei and li lie within periods
p1 and p2, respectively. We define f 2ði; pÞ ¼ 1 if p1rprp2 and
f 2ði; pÞ ¼ 0 otherwise, where f 2ði; pÞ ¼ 1 indicates that supplier i
could probably be served during period p. Furthermore, we use
f 3ði; jÞ ¼ 1 to indicate that it is possible for an inspector to serve
both suppliers i and j when supplier time windows, workload
capacity and working periods are not considered. Thus, the
definition of f 3ði; jÞ is

f 3ði; jÞ ¼
1 if eiþsiþti;jr lj or ejþsjþtj;ir li;

0 otherwise:

�

We denote by rip the time required to directly travel from supplier i
to its nearest neighbor who could probably be served by the same
inspector during period p. Define set Vp

i ¼ fjAV j ja i; f 2ðj; pÞ ¼ 1
; f 3ði; jÞ ¼ 1g. We set rpi ¼ þ1 if Vi

p is empty, and otherwise rpi ¼
minjAVi

fti;jg. Let xi;k;p be a binary decision variable that equals 1 if
supplier i is served by inspector k during period p, and 0 otherwise.
The optimal solution value of the following integer programming
model gives an upper bound to the MPISP:

max
X
iAVC

X
kAK

X
pAP

dixi;k;p ð7Þ

s:t:
X
kAK

X
pAP

xi;k;pr f 1ðiÞ; 8 iAVC ð8Þ

X
kAK

xi;k;pr f 2ði; pÞ; 8 iAVC ; pAP ð9Þ

X
pAP

ðxi;k;pþxj;k;pÞr1þ f 3ði; jÞ; 8 i; jAVC ; ia j; kAK ð10Þ

X
iAVC

X
pAP

dixi;k;prQ ; 8kAK ð11Þ

X
iAVC

X
pAP

siþminfrpi ; r
pþ1
i ;…; rwi g

� �
xi;k;pþr10rλgk ; 8kAK ð12Þ

X
iAVC

xi;k;pðsiþrpi Þ�max
iAVC

rpi rT ; 8kAK ; pAP ð13Þ

xi;k;pAf0;1g; 8 iAVC ; kAK; pAP ð14Þ
The objective (7) is to maximize the total completed workload.
Constraints (8) state that each supplier must be assigned to at
most one inspector and be served in at most one period.

Constraints (9) guarantee that if supplier i cannot be served by
any inspector during period p, all relative variables must be set to
zero. Constraints (10) ensure that if f 3ði; jÞ ¼ 0, suppliers i and j
cannot be served by the same inspector. As the inspector workload
capacity cannot be exceeded, Constraints (11) apply. When sup-
plier i is served by some inspector, the time it consumes must be at
least the sum of si and the traveling time to its nearest neighbor.
Any feasible solution to the MPISP must have m routes, each of
which has an earliest time of returning to the depot. It is easy to
observe that the kth largest return time must be less than or equal
to the kth largest λgk . Obviously, the sum of siþminfrpi ; r

pþ1
i ;…; rwi g

associated with all suppliers covered by a route should be less than
or equal to the length of that route, which is capped by λgk .
Therefore, Constraints (12) hold. After completing the service of
supplier i, the inspector may stay at vertex i until the start of the
next period. The difference between the total siþrpi of all suppliers
served in each period and the largest rip must be less than or equal
to the period length, which is ensured by Constraints (13).

Any feasible solution to the MPISP must be also feasible to the
constrained knapsack model (7)–(14). The knapsack problem and
many of its variants have been well-studied and can be efficiently
handled by several commercial mathematical programming solvers.

7. Computational experiments

Our tabu search (TS) algorithm was coded in Cþþ and compiled
using the gcc 4.6.1 compiler, and was tested on a Dell server with an
Intel Xeon E5430 2.66 GHz CPU, 8 GB RAM and running Linux-
CentOS-5.0 64-bit operating system. The algorithm was configured
with determined parameter settings: η¼ 1:0, Ninit ¼ 100, α1 ¼ 5,
maxPerturbation¼4, maxLocalIter¼200, ξ¼ 100, β1 ¼ 0:6, β2 ¼ β3
¼ β4 ¼ 0:4, β5 ¼ 0:2, pmin ¼ 0:05, pmax ¼ 0:30, pΔ ¼ 0:1 and Nmax ¼ 5.
The MPISP reduces to the traditional TOPTW when w¼1 and
Q ¼ þ1. In our experiments, we first applied the TS algorithm to
the TOPTW instances and compared the results with the recent results
reported in Vansteenwegen et al. [41], Lin and Yu [29], Labadie et al.
[25], Hu and Lim [22]. Next, we conducted experiments on the MPISP
instances generated from the Solomon's VRPTW instances [35]. Since
our TS algorithm is not deterministic, we solved each instance 10
times. Finally, we achieved an upper bound for eachMPISP instance by
solving the model (7)–(14) using ILOG CPLEX 12.1 with default
settings. Computation times reported are in CPU seconds on this
server. All instances and detailed results can be found online at: http://
www.computational-logistics.org/orlib/mpisp/.

7.1. Test instances

We considered the TOPTW instances used in Vansteenwegen et al.
[41] and Hu and Lim [22], which can be accessed at http://www.mech.
kuleuven.be/en/cib/op. Hu and Lim [22] classified these instances into
two categories, namely “INST-M” and “OPT”; the instances in category

Table 1
Programming languages and experimental environments.

Algorithm Language Experimental environment

ILS N/A Intel Core 2 2.5 GHz CPU, 3.45 GB RAM
SSA C Intel Core 2 2.5 GHz CPU
GVNS Embarcadero Delphi

2010
Intel Pentium (R) IV 3 GHz CPU

I3CH Java Intel Xeon E5430 CPU clocked at 2.66 GHz,
8 GB RAM

TS Cþþ Intel Xeon E5430 CPU clocked at 2.66 GHz,
8 GB RAM
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INST-M have unknown optimal solution values while the optimal
solution values of the instances in category OPT are given.

The TOPTW instances in category INST-M were constructed by
Montemanni and Gambardella [31] based on the OPTW instances by
considering the number of vehicles taken from set {1, 2, 3, 4}. These
OPTW instances were designed by Righini and Salani [33] using 56

Solomon's VRPTW instances [35] and 20 Cordeau's multi-depot
VRP (MDVRP) instances [12]. The Solomon's VRPTW instances, each
containing 100 customers, are divided into six groups, namely C1
(c101–c109), C2 (c201–c208), R1 (r101–r112), R2 (r201–r211), RC1
(rc101–rc108) and RC2 (rc201–rc208). The numbers of customers in
the MDVRP instances (pr01–pr20) range from 48 to 288. The TOPTW

Table 2
The summarized results for the TOPTW instances.

Instance group ILS (1 run) SSA (1 run) GVNS (5 runs) I3CH (1 run) TS (10 runs)

Ratio (%) Time (s) Ratio (%) Time (s) Ratio (%) Time (s) Ratio (%) Time (s) Ratio (%) Time (s)

m¼1
C1 0.9889 0.3 1.0000 21.1 0.9944 166.5 1.0000 25.2 1.0000 7.2
C2 0.9772 1.7 0.9987 37.5 0.9945 192.4 0.9960 84.4 1.0000 68.2
R1 0.9815 0.2 0.9995 23.3 0.9834 29.4 0.9950 28.6 1.0000 4.0
R2 0.9731 1.7 0.9891 45.8 0.9776 33.8 0.9916 176.2 0.9970 110.7
RC1 0.9708 0.2 1.0000 22.2 0.9812 9.8 0.9834 25.5 0.9958 2.9
RC2 0.9699 1.6 0.9947 50.3 0.9789 16.0 0.9774 119.3 0.9974 157.2
pr01–pr20 0.9318 1.9 0.9801 137.3 0.9850 18.3 0.9768 119.6 0.9938 536.8

m¼2
C1 0.9906 1.1 1.0000 26.4 0.9953 139.5 1.0000 87.0 1.0000 21.8
C2 0.9746 3.5 0.9882 53.7 0.9975 33.8 0.9933 401.2 1.0000 63.8
R1 0.9777 0.9 0.9991 36.6 0.9895 60.3 0.9955 63.0 0.9970 14.1
R2 0.9702 2.3 0.9917 91.4 0.9909 14.7 0.9955 526.8 0.9992 91.5
RC1 0.9771 0.7 1.0000 40.5 0.9940 20.3 0.9928 58.9 0.9952 11.6
RC2 0.9593 2.2 0.9883 80.1 0.9839 12.8 0.9945 439.7 0.9995 243.2
pr01–pr20 0.9311 5.0 0.9699 187.8 0.9915 60.8 0.9825 275.8 0.9935 1,809.5

m¼3
C1 0.9745 1.5 0.9967 35.3 0.9955 165.0 0.9989 190.2 1.0000 31.1
C2 0.9807 2.2 0.9876 59.7 0.9993 7.7 1.0000 12.3 1.0000 6.8
R1 0.9832 1.7 0.9972 56.1 0.9889 73.9 0.9990 118.3 0.9983 16.6
R2 0.9970 1.4 0.9992 41.9 0.9989 7.0 0.9999 90.8 1.0000 14.8
RC1 0.9695 1.1 0.9946 42.8 0.9918 33.7 0.9982 101.0 0.9944 14.3
RC2 0.9856 1.7 0.9973 59.0 0.9968 7.4 0.9996 164.1 0.9998 52.1
pr01–pr20 0.9213 9.5 0.9695 224.4 0.9933 118.3 0.9928 460.5 0.9895 1,680.5

m¼4
C1 0.9689 2.6 0.9945 49.5 0.9897 133.2 0.9990 261.8 1.0000 38.6
C2 1.0000 1.0 1.0000 41.8 1.0000 0.6 1.0000 0.1 1.0000 6.5
R1 0.9670 2.6 0.9929 58.4 0.9880 84.7 0.9986 184.3 0.9956 21.0
R2 1.0000 0.9 1.0000 39.7 1.0000 0.3 1.0000 0.2 1.0000 7.7
RC1 0.9693 2.0 0.9974 68.1 0.9916 36.9 0.9988 152.4 0.9975 17.7
RC2 1.0000 1.2 1.0000 40.2 1.0000 0.9 1.0000 0.2 1.0000 15.5
pr01–pr20 0.9249 13.9 0.9719 269.8 0.9872 180.0 0.9988 647.6 0.9940 1,542.4

m¼opt
C1 0.9859 3.0 0.9896 77.7 N/A 7.8 1.0000 47.6 1.0000 61.8
C2 1.0000 1.1 1.0000 41.9 N/A 0.5 1.0000 0.6 1.0000 113.3
R1 0.9807 3.0 0.9958 104.7 N/A 39.5 0.9993 877.7 0.9999 58.2
R2 0.9938 1.7 0.9984 58.3 N/A 5.5 0.9993 173.4 1.0000 265.2
RC1 0.9794 3.8 0.9965 84.6 N/A 39.5 1.0000 57.4 0.9994 54.3
RC2 0.9953 1.7 0.9993 41.4 N/A 2.8 0.9996 190.2 1.0000 194.9
pr01–pr10 0.9768 30.4 0.9896 566.0 N/A 51.3 0.9922 326.7 0.9933 420.5

Overall average 0.9751 3.2 0.9933 83.3 0.9914 51.6 0.9957 185.4 0.9980 222.2

m¼opt implies that these instances belong to category OPT.

Table 3
Average performance of four combinations on the 50 TOPTW instances generated from pr01 to pr10.

m EP þ PER LS þ EP LS þ PER LS þ EP þ PER

Avg. ratio (%) Avg. time Avg. ratio (%) Avg. time Avg. ratio (%) Avg. time Avg. ratio (%) Avg. time

1 0.9742 515.4 0.9755 184.9 0.9796 63.2 0.9895 347.3
2 0.9771 1985.8 0.9743 734.7 0.9689 123.6 0.9835 1046.7
3 0.9824 2883.0 0.9799 841.5 0.9688 148.1 0.9832 1122.6
4 0.9860 3956.5 0.9807 892.3 0.9697 179.9 0.9800 978.9
opt 0.9977 2169.2 0.9954 196.1 0.9979 401.2 0.9987 420.5

Overall average 0.9835 2302.0 0.9811 569.9 0.9770 183.2 0.9870 783.2

m¼opt implies that these instances belong to category OPT.
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instances were obtained from the VRPTW or MDVRP instances by the
following two steps: (1) set the profit collected at each customer to be
the demand of this customer, and (2) remove the vehicle capacity
restriction. The instances in category OPTare the same as the instances
in category INST-M except for the number of vehicles available.
Vansteenwegen et al. [41] designed the instances in category OPT by
setting the number of vehicles in each aforementioned TOPTW
instance except for pr11–pr20 to the number of vehicles appearing
in the solution of the corresponding VRPTW instance. This implies

that with such number of vehicles, all customers can be visited and
the optimal objective value must be equal to the total profits of all
customers. Therefore, we have 76 �4¼304 instances in category
INST-M and 66 instances in category OPT, for a total of 370 TOPTW
instances.

We generated 12 MPISP instances from each Solomon's VRPTW
instance by taking the values ofw andm from {1, 3, 5} and {7, 9, 11, 13},
respectively, for a total of 72 instance groups (each instance group is
identified by the name of Solomon's instance group, w andm) and 672

Table 4
Computational results for the MPISP instances with m¼7.

Instance w¼1 w¼3 w¼5

UB Max. workload Ave. workload Ave. time UB Max. workload Ave. workload Ave. time UB Max. workload Ave. workload Ave. time

c101 1400 1400 1400.0 4.9 1400 1400 1399.0 25.4 1350 1240 1239.0 26.0
c102 1400 1400 1400.0 7.1 1400 1400 1400.0 7.7 1400 1400 1400.0 11.4
c103 1400 1400 1400.0 11.0 1400 1400 1400.0 12.0 1400 1400 1400.0 22.5
c104 1400 1400 1400.0 20.5 1400 1400 1400.0 23.5 1400 1400 1400.0 33.4
c105 1400 1400 1400.0 5.8 1400 1400 1400.0 7.0 1400 1400 1400.0 12.5
c106 1400 1400 1400.0 6.6 1400 1400 1400.0 6.6 1400 1370 1368.0 53.3
c107 1400 1400 1400.0 7.6 1400 1400 1400.0 7.8 1400 1400 1400.0 12.8
c108 1400 1400 1400.0 8.9 1400 1400 1400.0 10.7 1400 1400 1400.0 14.6
c109 1400 1400 1400.0 11.4 1400 1400 1400.0 12.5 1400 1400 1400.0 21.1

c201 1400 1400 1400.0 7.0 1400 1400 1400.0 7.4 1400 1400 1400.0 7.8
c202 1400 1400 1400.0 13.3 1400 1400 1400.0 12.2 1400 1400 1400.0 14.5
c203 1400 1400 1400.0 19.9 1400 1400 1400.0 23.1 1400 1400 1400.0 32.0
c204 1400 1400 1400.0 34.9 1400 1400 1400.0 35.8 1400 1400 1400.0 47.6
c205 1400 1400 1400.0 9.1 1400 1400 1400.0 10.0 1400 1400 1400.0 10.0
c206 1400 1400 1400.0 13.0 1400 1400 1400.0 13.2 1400 1400 1400.0 14.4
c207 1400 1400 1400.0 13.9 1400 1400 1400.0 15.2 1400 1400 1400.0 18.2
c208 1400 1400 1400.0 14.8 1400 1400 1400.0 15.8 1400 1400 1400.0 17.8

r101 1001 941 934.7 27.3 1001 891 889.1 36.0 1001 885 879.1 51.7
r102 1222 1146 1140.6 47.1 1222 1109 1103.4 106.7 1222 1122 1113.7 116.2
r103 1374 1277 1264.9 64.6 1374 1243 1233.8 102.0 1374 1231 1223.5 77.1
r104 1400 1335 1323.1 75.2 1400 1307 1288.4 84.2 1400 1290 1277.2 88.7
r105 1400 1128 1115.9 46.3 1400 1095 1086.6 53.5 1400 1071 1062.8 66.5
r106 1400 1247 1236.2 43.7 1400 1230 1218.8 68.9 1400 1210 1198.4 109.5
r107 1400 1302 1290.1 53.6 1400 1284 1268.0 86.1 1400 1262 1250.9 103.6
r108 1400 1342 1330.2 51.7 1400 1331 1317.6 72.8 1400 1311 1301.6 131.1
r109 1400 1235 1222.9 43.4 1400 1218 1204.1 60.3 1400 1190 1175.7 83.9
r110 1400 1295 1279.8 54.5 1400 1253 1241.2 56.6 1400 1247 1235.4 74.2
r111 1400 1295 1285.5 46.7 1400 1274 1263.5 79.3 1400 1259 1246.4 90.4
r112 1400 1343 1329.1 59.8 1400 1318 1306.9 90.6 1400 1319 1300.7 73.4

r201 1400 1400 1400.0 5.8 1400 1400 1400.0 6.1 1400 1400 1400.0 7.4
r202 1400 1400 1400.0 6.4 1400 1400 1400.0 6.5 1400 1400 1400.0 7.8
r203 1400 1400 1400.0 8.4 1400 1400 1400.0 7.3 1400 1400 1400.0 9.1
r204 1400 1400 1400.0 9.5 1400 1400 1400.0 10.4 1400 1400 1400.0 11.5
r205 1400 1400 1400.0 7.6 1400 1400 1400.0 9.6 1400 1400 1400.0 9.0
r206 1400 1400 1400.0 8.5 1400 1400 1400.0 9.8 1400 1400 1400.0 11.0
r207 1400 1400 1400.0 9.0 1400 1400 1400.0 11.3 1400 1400 1400.0 12.0
r208 1400 1400 1400.0 12.0 1400 1400 1400.0 14.0 1400 1400 1400.0 15.4
r209 1400 1400 1400.0 8.8 1400 1400 1400.0 10.7 1400 1400 1400.0 11.5
r210 1400 1400 1400.0 7.5 1400 1400 1400.0 8.9 1400 1400 1400.0 9.5
r211 1400 1400 1400.0 12.9 1400 1400 1400.0 16.2 1400 1400 1400.0 18.7

rc101 1400 1228 1211.1 33.0 1400 1174 1166.5 40.6 1400 1161 1149.7 66.2
rc102 1400 1359 1350.0 50.7 1400 1339 1326.6 56.5 1400 1331 1312.6 69.4
rc103 1400 1399 1383.1 61.0 1400 1393 1377.0 75.5 1400 1368 1359.0 86.7
rc104 1400 1400 1396.6 61.1 1400 1400 1395.6 79.4 1400 1398 1387.8 106.8
rc105 1400 1331 1321.2 43.5 1400 1309 1296.3 49.8 1400 1282 1275.2 57.3
rc106 1400 1369 1344.5 60.2 1400 1329 1315.2 76.7 1400 1310 1296.1 89.5
rc107 1400 1393 1379.2 61.5 1400 1361 1348.4 91.6 1400 1369 1347.9 198.6
rc108 1400 1399 1390.0 38.1 1400 1388 1375.4 95.4 1400 1370 1359.3 165.1

rc201 1400 1400 1400.0 8.6 1400 1400 1400.0 10.5 1400 1400 1400.0 12.1
rc202 1400 1400 1400.0 9.1 1400 1400 1400.0 11.0 1400 1400 1400.0 11.7
rc203 1400 1400 1400.0 12.3 1400 1400 1400.0 13.9 1400 1400 1400.0 16.2
rc204 1400 1400 1400.0 18.2 1400 1400 1400.0 28.7 1400 1400 1400.0 27.9
rc205 1400 1400 1400.0 10.4 1400 1400 1400.0 11.0 1400 1400 1400.0 10.8
rc206 1400 1400 1400.0 13.2 1400 1400 1400.0 16.3 1400 1400 1400.0 18.1
rc207 1400 1400 1400.0 16.0 1400 1400 1400.0 18.1 1400 1400 1400.0 19.8
rc208 1400 1400 1400.0 22.9 1400 1400 1400.0 28.1 1400 1400 1400.0 29.2
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instances. The workload of each supplier is set to be the demand of the
corresponding vertex. The duration of each period is set to
T ¼ ðl0�e0Þ=w and the workload limit of each inspector is set to 200.

The total profits in the MPISP instances related to the Solomon's
instance groups C1, C2, R1, R2, RC1 and RC2 are 1810, 1810, 1458,
1458, 1724 and 1724, respectively.

Table 5
Computational results for the MPISP instances with m¼9.

Instance w¼1 w¼3 w¼5

UB Max. workload Ave. workload Ave. time UB Max. workload Ave. workload Ave. time UB Max. workload Ave. workload Ave. time

c101 1730 1710 1707.0 22.5 1670 1630 1621.0 18.3 1480 1380 1380.0 6.2
c102 1800 1800 1799.0 24.6 1760 1750 1748.0 30.3 1640 1620 1620.0 9.8
c103 1800 1800 1800.0 9.9 1780 1770 1770.0 11.5 1680 1680 1680.0 8.7
c104 1800 1800 1800.0 5.5 1800 1800 1800.0 16.2 1680 1680 1680.0 13.9
c105 1800 1730 1728.0 31.6 1800 1680 1677.0 22.5 1710 1590 1590.0 11.1
c106 1800 1740 1738.0 32.6 1780 1690 1690.0 23.3 1650 1530 1530.0 10.1
c107 1800 1750 1748.0 52.5 1800 1720 1718.0 46.7 1710 1600 1600.0 12.0
c108 1800 1780 1770.0 34.0 1800 1740 1739.0 28.1 1710 1610 1610.0 14.6
c109 1800 1800 1800.0 22.8 1800 1800 1796.0 39.2 1710 1650 1650.0 15.5

c201 1800 1800 1800.0 4.3 1800 1800 1800.0 4.5 1800 1800 1800.0 4.7
c202 1800 1800 1800.0 5.0 1800 1800 1800.0 5.1 1800 1800 1800.0 4.8
c203 1800 1800 1800.0 5.6 1800 1800 1800.0 5.8 1800 1800 1800.0 5.9
c204 1800 1800 1800.0 6.5 1800 1800 1800.0 6.7 1800 1800 1800.0 6.9
c205 1800 1800 1800.0 4.6 1800 1800 1800.0 5.0 1800 1800 1800.0 4.6
c206 1800 1800 1800.0 4.9 1800 1800 1800.0 5.0 1800 1800 1800.0 5.1
c207 1800 1800 1800.0 5.5 1800 1800 1800.0 5.3 1800 1800 1800.0 5.4
c208 1800 1800 1800.0 5.7 1800 1800 1800.0 5.3 1800 1800 1800.0 5.5

r101 1171 1109 1098.3 37.4 1171 1045 1042.6 86.3 1171 1053 1048.8 62.7
r102 1321 1292 1287.7 81.1 1321 1247 1239.3 111.9 1321 1264 1259.9 92.4
r103 1413 1395 1388.2 69.6 1413 1370 1360.4 99.4 1413 1364 1359.6 103.6
r104 1458 1449 1445.4 65.0 1458 1414 1408.8 75.4 1458 1426 1418.9 89.3
r105 1458 1290 1273.8 42.0 1458 1270 1245.8 57.4 1458 1228 1218.3 95.8
r106 1458 1386 1371.5 43.8 1458 1359 1347.9 65.6 1458 1350 1340.0 112.0
r107 1458 1429 1419.8 46.2 1458 1419 1409.0 84.3 1458 1397 1390.8 99.3
r108 1458 1458 1457.5 71.5 1458 1455 1446.5 62.4 1458 1445 1436.4 119.7
r109 1458 1378 1371.1 33.0 1458 1367 1358.0 45.8 1458 1340 1330.7 97.1
r110 1458 1424 1416.0 46.3 1458 1407 1395.0 90.9 1458 1388 1373.4 81.5
r111 1458 1433 1426.3 69.2 1458 1411 1399.7 51.9 1458 1401 1394.1 61.4
r112 1458 1458 1455.4 65.4 1458 1452 1446.1 96.3 1458 1440 1430.3 86.5

r201 1458 1458 1458.0 6.1 1458 1458 1458.0 5.9 1458 1458 1458.0 6.5
r202 1458 1458 1458.0 6.5 1458 1458 1458.0 6.6 1458 1458 1458.0 7.0
r203 1458 1458 1458.0 7.4 1458 1458 1458.0 7.4 1458 1458 1458.0 7.8
r204 1458 1458 1458.0 8.7 1458 1458 1458.0 8.8 1458 1458 1458.0 9.3
r205 1458 1458 1458.0 7.1 1458 1458 1458.0 7.4 1458 1458 1458.0 7.9
r206 1458 1458 1458.0 7.4 1458 1458 1458.0 7.8 1458 1458 1458.0 8.2
r207 1458 1458 1458.0 9.1 1458 1458 1458.0 8.9 1458 1458 1458.0 9.6
r208 1458 1458 1458.0 10.9 1458 1458 1458.0 11.0 1458 1458 1458.0 11.7
r209 1458 1458 1458.0 7.3 1458 1458 1458.0 7.9 1458 1458 1458.0 8.1
r210 1458 1458 1458.0 6.9 1458 1458 1458.0 7.9 1458 1458 1458.0 8.5
r211 1458 1458 1458.0 10.0 1458 1458 1458.0 9.7 1458 1458 1458.0 10.8

rc101 1724 1456 1435.9 51.9 1724 1391 1380.2 78.3 1724 1371 1362.4 91.6
rc102 1724 1585 1575.2 41.4 1724 1567 1556.4 75.9 1724 1535 1523.1 86.6
rc103 1724 1672 1655.3 52.9 1724 1651 1630.6 90.6 1724 1635 1612.0 79.6
rc104 1724 1702 1689.1 47.7 1724 1673 1663.0 58.4 1724 1668 1647.7 116.9
rc105 1696 1542 1533.8 45.3 1696 1527 1515.3 54.2 1696 1486 1477.9 68.5
rc106 1724 1606 1586.7 40.4 1724 1577 1563.2 85.8 1724 1552 1539.3 104.6
rc107 1724 1651 1633.5 59.0 1724 1637 1614.2 87.4 1724 1613 1596.5 92.2
rc108 1724 1687 1666.1 41.2 1724 1661 1642.4 52.4 1724 1658 1643.4 114.3

rc201 1724 1724 1724.0 5.1 1724 1724 1724.0 5.1 1724 1724 1724.0 5.5
rc202 1724 1724 1724.0 5.6 1724 1724 1724.0 5.7 1724 1724 1724.0 4.5
rc203 1724 1724 1724.0 5.9 1724 1724 1724.0 5.7 1724 1724 1724.0 5.6
rc204 1724 1724 1724.0 7.4 1724 1724 1724.0 7.1 1724 1724 1724.0 7.5
rc205 1724 1724 1724.0 5.4 1724 1724 1724.0 5.0 1724 1724 1724.0 4.1
rc206 1724 1724 1724.0 5.9 1724 1724 1724.0 5.6 1724 1724 1724.0 5.2
rc207 1724 1724 1724.0 6.4 1724 1724 1724.0 5.7 1724 1724 1724.0 5.6
rc208 1724 1724 1724.0 8.1 1724 1724 1724.0 7.6 1724 1724 1724.0 6.3
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7.2. Results for the TOPTW instances

To evaluate the performance of our algorithm based on the
TOPTW instances, we considered the following four state-of-the-
art existing algorithms in our comparisons:

� ILS: the iterated local search algorithm by Vansteenwegen et al.
[41].

� SSA: the slow version of the simulated annealing algorithm by
Lin and Yu [29].

� GVNS: the LP-based granular variable neighborhood search
algorithm by Labadie et al. [25].

� I3CH: the iterative three-component heuristic (I3CH) by Hu and
Lim [22].

Lin and Yu [29] proposed two versions of simulated annealing
algorithm for the TOPTW, namely a fast version and a slow one.
Compared with the fast version, the slow simulated annealing
algorithm (SSA) is able to find better solutions at the expense of
more computation time. As we are more concerned with solution

Table 6
Computational results for the MPISP instances with m¼11.

Instance w¼1 w¼3 w¼5

UB Max. workload Ave. workload Ave. time UB Max. workload Ave. workload Ave. time UB Max. workload Ave. workload Ave. time

c101 1810 1810 1810.0 4.0 1740 1740 1740.0 18.2 1540 1480 1480.0 4.2
c102 1810 1810 1810.0 4.9 1760 1760 1760.0 4.5 1670 1670 1670.0 11.3
c103 1810 1810 1810.0 5.4 1780 1780 1780.0 5.2 1730 1730 1730.0 6.3
c104 1810 1810 1810.0 6.9 1800 1800 1800.0 6.7 1750 1750 1750.0 8.2
c105 1810 1810 1810.0 4.0 1810 1810 1810.0 8.4 1810 1730 1730.0 7.2
c106 1810 1810 1810.0 4.7 1780 1780 1780.0 4.7 1710 1670 1670.0 7.0
c107 1810 1810 1810.0 4.8 1810 1810 1810.0 4.6 1810 1760 1760.0 8.7
c108 1810 1810 1810.0 5.1 1810 1810 1810.0 4.8 1810 1770 1770.0 14.7
c109 1810 1810 1810.0 6.7 1810 1810 1810.0 5.9 1810 1810 1810.0 7.7

c201 1810 1810 1810.0 4.8 1810 1810 1810.0 5.0 1810 1810 1810.0 5.0
c202 1810 1810 1810.0 5.4 1810 1810 1810.0 5.4 1810 1810 1810.0 5.6
c203 1810 1810 1810.0 6.5 1810 1810 1810.0 6.5 1810 1810 1810.0 6.3
c204 1810 1810 1810.0 8.2 1810 1810 1810.0 7.8 1810 1810 1810.0 8.3
c205 1810 1810 1810.0 5.2 1810 1810 1810.0 5.2 1810 1810 1810.0 5.3
c206 1810 1810 1810.0 5.3 1810 1810 1810.0 5.6 1810 1810 1810.0 5.6
c207 1810 1810 1810.0 5.9 1810 1810 1810.0 6.3 1810 1810 1810.0 5.9
c208 1810 1810 1810.0 6.0 1810 1810 1810.0 6.0 1810 1810 1810.0 6.5

r101 1307 1243 1225.5 28.2 1307 1170 1158.2 58.8 1307 1191 1181.3 51.3
r102 1388 1367 1358.3 38.9 1388 1328 1321.6 62.0 1388 1338 1333.5 80.2
r103 1441 1441 1433.6 22.2 1441 1423 1420.0 46.9 1441 1425 1421.9 77.3
r104 1458 1458 1458.0 5.3 1458 1458 1452.8 29.1 1458 1458 1458.0 27.4
r105 1458 1391 1379.0 25.0 1458 1378 1363.4 57.8 1458 1351 1339.2 61.7
r106 1458 1453 1445.5 53.4 1458 1435 1426.7 54.9 1458 1432 1422.0 83.7
r107 1458 1458 1458.0 5.4 1458 1458 1458.0 14.0 1458 1458 1458.0 37.0
r108 1458 1458 1458.0 5.2 1458 1458 1458.0 6.4 1458 1458 1458.0 6.5
r109 1458 1458 1455.7 39.5 1458 1456 1445.4 36.3 1458 1441 1432.4 71.8
r110 1458 1458 1458.0 7.3 1458 1458 1458.0 20.8 1458 1458 1457.4 54.0
r111 1458 1458 1458.0 6.4 1458 1458 1456.8 14.7 1458 1458 1457.2 39.8
r112 1458 1458 1458.0 5.1 1458 1458 1458.0 5.7 1458 1458 1458.0 7.1

r201 1458 1458 1458.0 6.2 1458 1458 1458.0 6.2 1458 1458 1458.0 6.7
r202 1458 1458 1458.0 6.5 1458 1458 1458.0 6.9 1458 1458 1458.0 7.1
r203 1458 1458 1458.0 7.4 1458 1458 1458.0 7.4 1458 1458 1458.0 8.2
r204 1458 1458 1458.0 8.6 1458 1458 1458.0 9.4 1458 1458 1458.0 10.1
r205 1458 1458 1458.0 7.2 1458 1458 1458.0 7.7 1458 1458 1458.0 8.0
r206 1458 1458 1458.0 7.4 1458 1458 1458.0 8.1 1458 1458 1458.0 8.7
r207 1458 1458 1458.0 9.8 1458 1458 1458.0 9.5 1458 1458 1458.0 10.0
r208 1458 1458 1458.0 10.8 1458 1458 1458.0 11.3 1458 1458 1458.0 11.9
r209 1458 1458 1458.0 8.3 1458 1458 1458.0 8.6 1458 1458 1458.0 8.7
r210 1458 1458 1458.0 8.1 1458 1458 1458.0 8.0 1458 1458 1458.0 8.7
r211 1458 1458 1458.0 10.3 1458 1458 1458.0 10.1 1458 1458 1458.0 10.7

rc101 1724 1621 1609.4 41.3 1724 1563 1548.6 46.2 1724 1538 1518.5 88.9
rc102 1724 1690 1677.0 33.5 1724 1674 1653.7 34.3 1724 1656 1644.6 39.7
rc103 1724 1724 1723.0 21.3 1724 1724 1717.2 50.5 1724 1714 1707.2 25.8
rc104 1724 1724 1724.0 7.3 1724 1724 1724.0 7.0 1724 1724 1724.0 17.5
rc105 1719 1681 1673.1 48.2 1719 1661 1642.6 49.2 1719 1645 1630.2 80.3
rc106 1724 1724 1714.5 55.2 1724 1707 1691.6 60.1 1724 1687 1671.8 59.2
rc107 1724 1724 1724.0 14.3 1724 1724 1722.7 37.1 1724 1724 1715.7 51.6
rc108 1724 1724 1724.0 4.6 1724 1724 1724.0 9.3 1724 1724 1723.4 22.3

rc201 1724 1724 1724.0 5.5 1724 1724 1724.0 5.5 1724 1724 1724.0 5.3
rc202 1724 1724 1724.0 6.2 1724 1724 1724.0 6.0 1724 1724 1724.0 5.0
rc203 1724 1724 1724.0 6.1 1724 1724 1724.0 6.0 1724 1724 1724.0 6.5
rc204 1724 1724 1724.0 8.4 1724 1724 1724.0 8.0 1724 1724 1724.0 8.1
rc205 1724 1724 1724.0 5.4 1724 1724 1724.0 5.7 1724 1724 1724.0 4.9
rc206 1724 1724 1724.0 6.0 1724 1724 1724.0 5.9 1724 1724 1724.0 5.4
rc207 1724 1724 1724.0 7.1 1724 1724 1724.0 5.9 1724 1724 1724.0 6.2
rc208 1724 1724 1724.0 8.4 1724 1724 1724.0 7.8 1724 1724 1724.0 6.9
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quality, we used the SSA rather than the fast version in the
comparisons. For each TOPTW instance, the ILS, SSA and I3CH
were executed only once while the GVNS was performed five
times. Although these algorithms were coded in different pro-
gramming languages and executed on different computational
environments (see Table 1), we believe that there is no dramatic
difference between the speeds of these algorithms and it is
acceptable to directly compare their computation times.

Table 2 summarizes the results of the TS, ILS, SSA, GVNS and
I3CH for the TOPTW instances. We first identified the best solution

value (BSV) obtained by these five algorithms and then computed
the ratio of the best solution value produced by each algorithm to
the BSV. The columns “Ratio (%)” and “Time (s)” show the average
ratios and average computation times of all instance groups. Since
Labadie et al. [25] did not report the best solution value in their
article, we filled the corresponding cells with “N/A” and ignored
these cells when calculating the overall average ratio. Beside the
name of each algorithm, we give the number of times it was run
for each instance. The overall average values of “Ratio (%)” and
“Time (s)” are presented in the last row and the best ratios in each

Table 7
Computational results for the MPISP instances with m¼13.

Instance w¼1 w¼3 w¼5

UB Max. workload Ave. workload Ave. time UB Max. workload Ave. workload Ave. time UB Max. workload Ave. workload Ave. time

c101 1810 1810 1810.0 4.2 1740 1740 1740.0 3.6 1540 1530 1530.0 3.3
c102 1810 1810 1810.0 5.0 1760 1760 1760.0 4.2 1670 1670 1670.0 4.2
c103 1810 1810 1810.0 5.7 1780 1780 1780.0 5.1 1730 1730 1730.0 6.4
c104 1810 1810 1810.0 7.1 1800 1800 1800.0 7.1 1750 1750 1750.0 9.4
c105 1810 1810 1810.0 4.7 1810 1810 1810.0 4.7 1810 1810 1810.0 4.6
c106 1810 1810 1810.0 4.6 1780 1780 1780.0 4.4 1710 1710 1710.0 4.0
c107 1810 1810 1810.0 5.2 1810 1810 1810.0 4.9 1810 1810 1810.0 4.4
c108 1810 1810 1810.0 5.8 1810 1810 1810.0 5.4 1810 1810 1810.0 5.3
c109 1810 1810 1810.0 7.2 1810 1810 1810.0 6.5 1810 1810 1810.0 6.1

c201 1810 1810 1810.0 5.1 1810 1810 1810.0 5.1 1810 1810 1810.0 5.1
c202 1810 1810 1810.0 5.4 1810 1810 1810.0 5.8 1810 1810 1810.0 5.9
c203 1810 1810 1810.0 6.8 1810 1810 1810.0 6.6 1810 1810 1810.0 6.7
c204 1810 1810 1810.0 8.8 1810 1810 1810.0 7.8 1810 1810 1810.0 8.6
c205 1810 1810 1810.0 5.7 1810 1810 1810.0 5.8 1810 1810 1810.0 5.4
c206 1810 1810 1810.0 6.0 1810 1810 1810.0 6.3 1810 1810 1810.0 5.7
c207 1810 1810 1810.0 6.3 1810 1810 1810.0 6.0 1810 1810 1810.0 6.0
c208 1810 1810 1810.0 6.6 1810 1810 1810.0 6.2 1810 1810 1810.0 6.0

r101 1386 1345 1329.0 36.0 1386 1266 1255.4 45.8 1386 1302 1286.2 30.3
r102 1420 1412 1407.8 31.5 1420 1371 1367.5 43.9 1420 1387 1383.0 37.1
r103 1458 1458 1455.7 31.5 1458 1444 1444.0 25.3 1458 1451 1449.6 70.8
r104 1458 1458 1458.0 5.3 1458 1458 1458.0 5.9 1458 1458 1458.0 7.2
r105 1458 1450 1441.3 33.1 1458 1438 1429.0 37.3 1458 1419 1410.8 38.9
r106 1458 1458 1458.0 5.4 1458 1458 1458.0 22.1 1458 1458 1456.2 14.3
r107 1458 1458 1458.0 5.2 1458 1458 1458.0 5.9 1458 1458 1458.0 6.3
r108 1458 1458 1458.0 6.1 1458 1458 1458.0 6.8 1458 1458 1458.0 7.3
r109 1458 1458 1458.0 4.2 1458 1458 1458.0 6.3 1458 1458 1458.0 9.4
r110 1458 1458 1458.0 4.5 1458 1458 1458.0 5.7 1458 1458 1458.0 5.9
r111 1458 1458 1458.0 5.3 1458 1458 1458.0 6.1 1458 1458 1458.0 6.2
r112 1458 1458 1458.0 5.9 1458 1458 1458.0 6.7 1458 1458 1458.0 8.0

r201 1458 1458 1458.0 6.3 1458 1458 1458.0 6.7 1458 1458 1458.0 6.8
r202 1458 1458 1458.0 7.1 1458 1458 1458.0 7.1 1458 1458 1458.0 7.4
r203 1458 1458 1458.0 7.6 1458 1458 1458.0 8.0 1458 1458 1458.0 8.4
r204 1458 1458 1458.0 9.2 1458 1458 1458.0 9.3 1458 1458 1458.0 10.3
r205 1458 1458 1458.0 7.7 1458 1458 1458.0 8.4 1458 1458 1458.0 8.4
r206 1458 1458 1458.0 8.0 1458 1458 1458.0 9.1 1458 1458 1458.0 8.8
r207 1458 1458 1458.0 9.7 1458 1458 1458.0 9.9 1458 1458 1458.0 10.1
r208 1458 1458 1458.0 11.3 1458 1458 1458.0 11.2 1458 1458 1458.0 12.3
r209 1458 1458 1458.0 8.6 1458 1458 1458.0 8.5 1458 1458 1458.0 9.1
r210 1458 1458 1458.0 7.9 1458 1458 1458.0 8.4 1458 1458 1458.0 8.6
r211 1458 1458 1458.0 11.3 1458 1458 1458.0 11.5 1458 1458 1458.0 11.9

rc101 1724 1703 1691.1 29.2 1724 1677 1654.5 40.8 1724 1649 1637.7 39.1
rc102 1724 1724 1720.0 27.0 1724 1724 1712.3 26.3 1724 1721 1709.9 24.3
rc103 1724 1724 1724.0 4.4 1724 1724 1724.0 5.5 1724 1724 1724.0 6.0
rc104 1724 1724 1724.0 5.0 1724 1724 1724.0 6.0 1724 1724 1724.0 6.4
rc105 1724 1724 1717.8 22.8 1724 1709 1702.9 28.2 1724 1701 1692.8 36.0
rc106 1724 1724 1724.0 5.9 1724 1724 1724.0 7.5 1724 1724 1724.0 25.6
rc107 1724 1724 1724.0 4.4 1724 1724 1724.0 6.2 1724 1724 1724.0 5.7
rc108 1724 1724 1724.0 4.9 1724 1724 1724.0 5.9 1724 1724 1724.0 6.1

rc201 1724 1724 1724.0 5.8 1724 1724 1724.0 6.2 1724 1724 1724.0 5.9
rc202 1724 1724 1724.0 6.4 1724 1724 1724.0 6.5 1724 1724 1724.0 5.4
rc203 1724 1724 1724.0 6.4 1724 1724 1724.0 6.6 1724 1724 1724.0 6.5
rc204 1724 1724 1724.0 8.2 1724 1724 1724.0 7.8 1724 1724 1724.0 9.1
rc205 1724 1724 1724.0 5.9 1724 1724 1724.0 5.8 1724 1724 1724.0 4.9
rc206 1724 1724 1724.0 6.5 1724 1724 1724.0 6.9 1724 1724 1724.0 5.7
rc207 1724 1724 1724.0 7.3 1724 1724 1724.0 6.3 1724 1724 1724.0 6.2
rc208 1724 1724 1724.0 8.9 1724 1724 1724.0 8.5 1724 1724 1724.0 7.3
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row are marked in bold. All of the detailed solutions can be found
in Appendix B.

The numbers of the best solution values achieved by ILS, SSA,
GVNS, I3CH and TS are 85, 191, 138, 247 and 272, respectively (see
Appendix B). Although TS produced the largest number of the best
solution values and the largest overall average ratio (i.e., 0.9980),
we cannot conclude that this algorithm is superior to the rest since
it was executed more times and consumed more computation
time. We can only say that the results generated by our TS algori-
thm are comparable to those generated by the best existing
approaches for the TOPTW.

7.3. Analysis of components

As our TS algorithm consists of three main components, namely
local search with tabu moves (LS), ejection pool (EP) algorithm and
perturbation (PER) procedure, it is important to investigate
the performance of these components. In the experiments, we
considered the combinations LS þ EP, LS þ PER, EP þ PER and LS
þ EP þ PER and 50 TOPTW instances generated from pr01 – pr10.
Table 3 shows the average performance of these four combina-
tions. For each test instance, we calculated a ratio that is equal to
the average profit over ten runs divided by the best solution value
generated by these four combinations (for the detailed results, see
Appendix C). The column “Avg. Ratio (%)” shows the average
values of the ratios of the instances grouped by m. From this
table, we can see that on average, LS þ EP þ PER performed best
while LS þ PER generated the worst results. Moreover, EP þ PER
and LS þ EP performed slightly worse than LS þ EP þ PER. These
observations imply that the ejection pool algorithm plays a critical
role in improving the solution quality of our proposed approach.

7.4. Results for the MPISP instances

The computational results for the 672 MPISP instances are reported
in Tables 4–7. The column “UB” shows the upper bound of each
instance obtained from the constrained knapsackmodel (see Section 6).
Each block corresponds to a value of w and includes the maximum
workload Max. workload, the average workload Ave. workload and the
average computation time Ave. time over the 10 executions. Since the
MPISP is a new problem, there is no existing algorithm tailored for it. As
a consequence, we cannot compare our tabu search algorithm with
other approaches. The test instances and computational results
reported in this paper can serve as benchmarks for future researchers
on this problem.

Theoretically speaking, the optimal solution value of some instance
with w¼d must be greater than or equal to that of the same instance
with w¼ kd, where k is an integral number. This is because we can
always construct a feasible solution to an instance withw¼d from any
solution to this instance withw¼kd. For example, the optimal solution
value of an instance with w¼1 must be greater than those of this
instance with w¼3 and w¼5. Since our tabu search algorithm is a
stochastic approach, it is possible that the maximum workload of
some instance with w¼3 or w¼5 is larger than that of this instance
with w¼1. Fortunately, we did not encounter such phenomenon in
our experiments. However, whenw2=w1 is not an integer, an instance
with w2 may have larger optimal solution value than this instance
with w1. For example, the optimal solution value of an instance with
w¼5 may be larger than this instance with w¼3. In these tables, we
can find several instances with w¼3 have larger maximum workload
than their counterparts with w¼5. Since these maximum workloads
may not be optimal, we cannot judge whether these phenomenawere
resulted from the randomness of the tabu search algorithm or the
nature of the instances. Obviously, for each instance with a certain w,
the maximum workload increases as the number of vehicles.

For each instance group, we calculated the average of all “Ave.
Time” and show the statistical results in Table 8. From this table,
we can observe that in most cases (those are not marked in bold),
the average computation times increase as the value of w.

8. Conclusion

This paper introduces an inspector scheduling problem in
which a set of inspectors are dispatched to complete a set of
inspection requests at different locations in a multi-period plan-
ning horizon. At the end of each period, each inspector is not
required to return to the depot but has to stay at one of the
inspection locations for recuperation. We first studied the way of
computing the shortest transit time between any pair of locations
when the working time periods are considered. Next, we intro-
duced several local search operators that were adapted from
classical VRPTW operators and integrated these adapted operators
in a tabu search framework. Moreover, we presented a constrained
knapsack model that is able to produce an upper bound for the
MPISP. Finally, we evaluated the algorithm based on 370 TOPTW
instances and 672 MPISP instances. The experimental results
reported in this study show the effectiveness of our algorithm
and can serve as benchmarks for future researchers. Since the
working time windows of the scheduling subjects and the use of
waypoint are very common considerations in practice, a possible
research direction can focus on studying the variants of other
existing vehicle routing models that involves these two factors.
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