
European Journal of Operational Research 220 (2012) 295–304
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization

The single vehicle routing problem with toll-by-weight scheme:
A branch-and-bound approach

Zizhen Zhang a, Hu Qin b,⇑, Wenbin Zhu c, Andrew Lim a

a Department of Management Sciences, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
b School of Management, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan, China
c Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
a r t i c l e i n f o

Article history:
Received 16 June 2011
Accepted 17 January 2012
Available online 25 January 2012

Keywords:
Branch and bound
Vehicle routing problem
Toll-by-weight
0377-2217/$ - see front matter � 2012 Elsevier B.V. A
doi:10.1016/j.ejor.2012.01.035

⇑ Corresponding author. Tel.: +852 64117909/+8
34420189.

E-mail addresses: zizzhang@cityu.edu.hk (Z. Zhan
(H. Qin), i@zhuwb.com (W. Zhu), lim.andrew@cityu.e
a b s t r a c t

Expressways in China make use of the toll-by-weight scheme, in which expressway tolls are collected
based on the weight and traveling distance of the vehicle. Most vehicle routing models assume that
the cost of traversing each edge is equivalent to edge length or some constant; as a result, such models
cannot be practically applied to the Chinese expressway transportation system. This study addresses a
new single vehicle routing problem that takes the vehicle’s (laden and unladen) weight into account.
To solve this problem exactly, we provide a branch-and-bound algorithm with a provably valid lower
bound measure, along with five dominance checkers for additional pruning. We analyze our algorithm
using instances generated from standard TSP test cases, as well as two new sets of test cases based on
real expressway information from the Gansu and Jiangxi provinces in China. The algorithm can be applied
to any toll scheme in which the toll per unit distance monotonically increases with weight, even if the toll
function is non-linear.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The construction of modern expressway systems has signifi-
cantly accelerated the economic and social development of China
by facilitating the establishment of a unified market system,
increasing the efficiency of modern logistics and narrowing the
development gaps among different regions. At the end of 2010,
China’s expressway network has a total length of over 74,000 km
(Wikipedia, 2011), second only to the United States, and its overall
construction cost exceeds 240 billion US dollars.

In some countries like Australia and the United States, the
majority of expressways are state-owned and toll-free. In contrast,
almost all expressways in China are currently owned by for-profit
corporations that raise construction funds from securities markets
or banks, and recoup investments through tolls. Previously, and for
a long time, expressway tolls in China have been levied based on
the type of the vehicle (e.g., tonnage or seating capacity) and trav-
eling distance. Under this toll scheme, a vehicle is charged the
same toll regardless of whether it is empty, normally loaded or
overloaded. This toll scheme violates the principle of equity where
a greater load should incur greater cost, and encourages transpor-
ll rights reserved.

6 13349921096; fax: +852

g), tigerqin1980@gmail.com
du.hk (A. Lim).
tation service providers to overload their vehicles for economic
benefits.

The overloading of transport vehicles brings about several seri-
ous issues. Firstly, overloaded vehicles damage the expressways,
and the damage caused grows exponentially as the load increases;
this leads to higher maintenance cost and shortens the service life-
time of the expressway. Secondly, an overloaded vehicle puts the
driver and other expressway users at risk. Braking and steering
are significantly more difficult when the maximum weight limit
of a vehicle is exceeded. Furthermore, many vehicles were illegally
modified to enable them to carry greater loads, and the resultant
instability of the vehicles is the cause of a large number of fatal
traffic accidents. Thirdly, overloading undercuts the transportation
service providers that do comply with the transportation regula-
tions, which gives rise to cut-throat competition. Since providers
that overload vehicles are able to quote lower transportation rates
and gain greater market share, transportation service providers are
forced to overload their vehicles simply to compete on an equal
footing.

Since 2003, over twenty Chinese provinces have implemented a
new toll scheme, known as the toll-by-weight scheme, in which
expressway tolls are collected based on the weight and traveling
distance of the vehicle. The primary aim of the toll-by-weight
scheme is not to increase toll revenue, but to introduce a fairer ap-
proach of collecting tolls and to effectively discourage overloading.
For ease of collection, the government stipulates that the toll-by-
weight scheme used in all expressways within a province must

http://dx.doi.org/10.1016/j.ejor.2012.01.035
mailto:zizzhang@cityu.edu.hk
mailto:tigerqin1980@gmail.com
mailto:i@zhuwb.com
mailto:lim.andrew@cityu.edu.hk
http://dx.doi.org/10.1016/j.ejor.2012.01.035
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

296 Z. Zhang et al. / European Journal of Operational Research 220 (2012) 295–304
be identical. Weighing machines and electronic displays are in-
stalled at the exit gates of the toll stations; when a vehicle passes
through a gate, its weight and toll are immediately shown on the
electronic display. Commonly, a very high surcharge is imposed
on the overloaded vehicles.

Most existing vehicle routing models assume that the cost of
traversing each edge in the graph representation of the problem
is equivalent to edge length or some constant (Toth and Vigo,
2002); a common objective for such models is to minimize the
overall traveling distance of one or more vehicles. However, in
practice transportation service providers wish to minimize their
total transportation costs rather than the total traveling distance.
When the toll-by-weight scheme is imposed, minimizing cost
and distance are two different objectives, which makes classical
vehicle routing models inapplicable.

This study addresses a new vehicle routing problem that takes a
single vehicle and its weight into account. We call this problem the
single vehicle routing problem with toll-by-weight scheme
(SVRPTBW); this problem is directly applicable to the increasing
number of Chinese provinces that are imposing toll-by-weight
schemes on their expressway systems. Additionally, in regions with
toll-free expressways, this model is also applicable when minimiz-
ing fuel consumption is the objective, because the fuel consumption
of a vehicle is approximately proportional to its weight.

The remainder of the paper is organized as follows. Section 2
precisely defines the SVRPTBW, and also shows how it relates to
some of the problems in existing literature. We then describe our
branch-and-bound approach in Section 3, including details on
how we generate a solution for the initial upper bound, the valid
lower bound as well as a proof of its validity, and our dominance
checkers. Our computational experiments are reported in Section
4, where we use our algorithm to solve both existing (adapted)
TSP test instances and new instances based on actual expressway
information in China. We conclude our study in Section 5 with
some remarks on further directions of research.
d1= 6

d2= 2

= 5 , q 1= 4 , q 2= 2 , q 3= 1 , q 4= 3

d3= 2

d4= 2

d0= 2

w 0= 1 5

w 1= 1 1

w 2= 9

w 3= 8

w 4= 5
5

0D e p o t

1 2

4 3

Q

Fig. 1. An example of calculating total transportation cost.
2. Problem description and literature

The SVRPTBW is defined on a complete and undirected graph
G = (V,E), where V = {0,1, . . . ,n,n + 1} is the vertex set and
E = {ei,j = (i, j) : i, j 2 V, i – j} is the edge set. Vertices 0 and n + 1 rep-
resent the exit from and the entrance to the depot, respectively.
We denote the vertices representing the set of n customers by
VC = {1, . . . ,n}. Each customer i has a non-negative weight demand
qi (q0 = qn+1 = 0) to be delivered from the depot, and each edge ei,j

has a non-negative distance di,j, where the distance matrix [di,j] sat-
isfies the triangle inequality rule.

A vehicle with unladen weight Q and unlimited capacity is
loaded with goods that satisfy all customer demands weighingPn

i¼1qi at the depot, and then successively visits each vertex exactly
once. Upon arriving at vertex i 2 VC, the vehicle’s weight is de-
creased by qi to fulfill customer demand. If the vehicle travels from
vertex i to j, its weight during this traversal is denoted by wi,j;
otherwise, wi,j = 0. The toll function f(w), where w is the vehicle’s
weight, is used to calculate the transportation cost per unit dis-
tance and is applied to all graph edges. The traversal cost from ver-
tex i to j paid by the vehicle with weight wi,j is given by di,j � f(wi,j).
The objective of the problem is to find a Hamiltonian path on G,
starting from vertex 0 and ending at vertex n + 1, that minimizes
the total transportation cost of the vehicle.

Let R = (r0,r1, . . . ,rn,rn+1) be an SVRPTBW route, where r0 = 0 and
rn+1 = n + 1. We denote by dR

i;j and wR
i;j the distance and vehicle

weight associated with the movement from vertex ri to rj, respec-
tively; we also use the shorthands dR

i and wR
i to represent dR

i;iþ1

and wR
i;iþ1 respectively. The weight demanded at vertex ri is given
by qR
i . The cost of traversing route R incurred by the vehicle with

initial weight Q 0 ¼ Q þ
Pn

i¼1qi can be calculated by:

zðRÞ ¼
Xn

i¼0

dR
i � f wR

i

� �
¼
Xn

i¼0

dR
i � f Q þ

Xnþ1

j¼iþ1

qR
j

 !
ð1Þ

For example, if f(w) = 0.08w, the total transportation cost of route R
shown in Fig. 1 is:

zðRÞ ¼ 2f ð15Þ þ 6f ð11Þ þ 2f ð9Þ þ 2f ð8Þ þ 2f ð5Þ ¼ 11:2

Fig. 2 gives two typical toll functions (or schemes) in which the
unit of f(w) is Chinese Yuan (RMB) per kilometer and the weight unit
is tonne. As shown in Fig. 2(a), the tolls in the Gansu province are
charged directly proportionally to the vehicle’s weight; the toll per
tonne per kilometer is fixed at 0.08 RMB. The Jiangxi province uses
a relatively more complex toll-by-weight scheme (see Fig. 2(b)),
which is given by the following non-linear piecewise function:

f ðwÞ ¼

0 if w ¼ 0
0:4 if 0 < w 6 5
0:08w if 5 < w 6 10
�0:0005w2 þ 0:07wþ 0:15 if 10 < w 6 40
2:15 if w > 40

8>>>>>><
>>>>>>:

Consider the case where the toll function f(w) is linear, i.e.,
f(w) = aw + b, where a and b are non-negative constants. If a = 0
and b > 0, then the SVRPTBW reduces to the well-studied traveling
salesman problem (TSP) (Gutin and Punnen, 2002). If a > 0 and
b P 0, we show that the SVRPTBW is equivalent to the minimum la-
tency problem (MLP) (Blum et al., 1994; Goemans and Kleinberg,
1998; Arora and Karakostas, 2003; Wu et al., 2004; Archer et al.,
2008), which is also termed the traveling repairman problem
(García et al., 2002; Salehipour et al., 2008), the traveling delivery-
man problem (Minieka, 1989; Fischetti et al., 1993; Méndez-Díaz
et al., 2008) and the cumulative traveling salesman problem (Bianco
et al., 1993). The MLP is a variant of the TSP in which the objective is
to minimize the sum of the first arrival times at all vertices; the first
arrival time at a vertex, also called the latency, is the total distance
covered prior to reaching the vertex.

The transformation from the SVRPTBW to the MLP is as follows.
By expression (1), for any route R, we have:

zðRÞ ¼
Xn

i¼0

dR
i � a � Q þ

Xnþ1

j¼iþ1

qR
j

 !
þ b

 !

¼ ðaQ þ bÞ
Xn

i¼0

dR
i þ a

Xn

i¼0

dR
i

Xnþ1

j¼iþ1

qR
j

¼ ðaQ þ bÞ
Xn

i¼0

dR
i þ a

Xnþ1

j¼1

qR
j

Xj�1

i¼0

dR
i

¼ aQ þ bþ aqR
nþ1

� �Xn

i¼0

dR
i þ

Xn

j¼1

aqR
j

Xj�1

i¼0

dR
i ð2Þ

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4

Weight

To
ll

pe
r U

ni
t d

is
ta

nc
e

f(w)=0.08w
↓

Gansu Province, China

(a)

0 5 10 20 30 40
0

0.5

1

1.5

2

2.5

f(w)=0.4
↓

Weight

To
ll

pe
r U

ni
t d

is
ta

nc
e

f(w)=0.08w
↓

← f(w)=−0.0005w2+0.07w+0.15

f(w)=2.15
↓Jiangxi Province, China

(b)

Fig. 2. (a) Linear toll-by-weight function. (b) Nonlinear piecewise toll-by-weight
function.

Z. Zhang et al. / European Journal of Operational Research 220 (2012) 295–304 297
Let q0Ri ¼ aqR
i for 0 6 i 6 n and q0Rnþ1 ¼ aQ þ bþ aqR

nþ1. We can rewrite
z(R) as:

zðRÞ ¼
Xnþ1

j¼1

q0Rj
Xj�1

i¼0

dR
i ð3Þ

Hence, z(R) can be viewed as the total weighted latency of route R,
where q0Rj is the weight of vertex rj; the SVRPTBW with such a toll
function is equivalent to identifying a route with the minimum
weighted latency. As stated by Archer et al. (2008), the weighted
MLP can be transformed into the unweighted MLP by substituting
k vertices joined by zero-length edges for each vertex with weight k.

To date, all Chinese provinces that have implemented toll-by-
weight schemes have adopted monotonically increasing toll func-
tions; our paper focuses on developing a branch-and-bound
(B&B) algorithm that is able to produce optimal solutions for
SVRPTBW instances with any monotonically increasing toll func-
tion f(w). At present, there are only two articles that study the
toll-by-weight scheme in the vehicle routing problem in existing
literature (Chen et al., 2007; Shen et al., 2009); both apply heuris-
tics to solve their models.

When solving SVRPTBW cases where the toll function is linear,
we can transform them into the TSP or the MLP. As reported by
Applegate et al. (2006), the largest solved TSP instance consists
of a tour of 85,900 cities. Three types of solution approaches have
been applied to the MLP, namely exact algorithms (Minieka, 1989;
Bianco et al., 1993; Fischetti et al., 1993; García et al., 2002; Wu
et al., 2004; Méndez-Díaz et al., 2008), approximation algorithms
(Blum et al., 1994; Goemans and Kleinberg, 1998; Arora and Kara-
kostas, 2003; Archer et al., 2008) and meta-heuristics (Salehipour
et al., 2008). Compared with the TSP, the size of the largest MLP in-
stance that has been solved exactly is much smaller, containing
only 60 randomly generated vertices (Fischetti et al., 1993).

To the best of our knowledge, there are no existing papers that
address the SVRPTBW with non-linear toll functions at the time of
writing.
3. Branch-and-bound algorithm

Branch-and-bound (B&B) is a common technique for finding
optimal solutions of various combinatorial optimization problems.
For the rest of this discussion, we distinguish between the terms
node and vertex, which are usually considered the same and are
used interchangeably in standard graph terminology; we specify
that node refers to the B&B search tree node, and vertex refers to
the vertex in a graph.

Our B&B technique first finds an initial upper bound by gener-
ating an SVRPTBW route using a simulated annealing algorithm;
this upper bound is updated over the course of the B&B search pro-
cess. We then explore the search space of possible routes according
to a depth-first policy. At each node, we calculate a feasible lower
bound value, and the node is pruned if it is greater than or equal to
the current upper bound. We also make use of a dominance rule,
and the node is similarly pruned if it is found to be strictly domi-
nated by another node.

In this section, we describe the algorithm used to generate our
initial upper bound, our feasible lower bound as well as a proof of
its correctness and our dominance rule along with the set of five
subroutines that make use of this rule. For ease of exposition, we
introduce some additional notations as follows. For a complete
graph G = (V,E) and toll function f(x), we denote an instance of
the SVRPTBW by the quadruple (x,y,V0,Q), where x 2 V and y 2 V
are the starting and ending vertices respectively; V0 # V is the
vertex set of the instance; and Q is the initial weight of the vehicle.
Hence, this quadruple describes an SVRPTBW instance on a com-
plete subgraph of G. Correspondingly, the cost of the optimal solu-
tion to this instance is denoted by z(x,y,V0,Q). In order to fulfill all
customer demands, Q must be greater than or equal to Q þ

P
i2V 0qi;

in the case of Q > Q þ
P

i2V 0qi, we can transform the problem into
the standard form described in Section 2 by setting Q ¼ Q�

P
i2V 0qi.

We also define F(R,Q) as the traversal cost of route R (which may
be a partial route) incurred by a vehicle with initial weight Q. Note
that if Q � Q cannot satisfy the demands of customers along R,
then F(R,Q) = +1; if R is a complete route on (0,n + 1,V,Q) where
Q ¼ Q þ

Pn
i¼1qi, then F(R,Q) = z(R).
3.1. Upper bound

The initial upper bound to the problem is generated by a stan-
dard simulated annealing (SA) algorithm; this upper bound is up-
dated during the B&B search process. In our SA algorithm, three
conventional local search operations are employed (see Fig. 3):

2-opt remove two edges (ri�1,ri) and (rj,rj+1) in the route, replace
them with (ri�1,rj) and (ri, rj+1), and reverse the path
(ri, . . . , rj)

shift move one non-null route segment to another position in
the route

0 i- 1 i j j + 1 k k + 1 n + 1

0 i- 1 j + 1 k i j k + 1 n + 1

0 i- 1 i j j + 1 k - 1 k l l+ 1 n

0 i- 1 k l j + 1 k - 1 i j l+ 1 n

0 i- 1 i j j + 1 n

0 i- 1 i j j + 1 n

(a)

(b)

(c)

Fig. 3. (a) The 2-opt operation. (b) The shift operation. (c) The exchange operation.

e 1 e 2 e 1 e 2

e ' 3

e ' 4

e ' 3

e ' 4
e ' 2

e ' 2

e ' 1

2 3

4

2 3

4

2 3

4

T ' T T + T '

298 Z. Zhang et al. / European Journal of Operational Research 220 (2012) 295–304
exchange exchange the positions of two non-null and non-overlap-
ping route segments

The initial temperature is set to T0. In each iteration of the SA
algorithm, we randomly perform one of the three search opera-
tions to generate a new route. If N consecutive non-improving iter-
ations occur, we replace the current temperature T with T � c,
where c (0 < c < 1) is the cooling ratio. Our values for the parame-
ters are as follows: T0 = 600, Te = 0.001, c = 0.99 and N = 2000.

3.2. Lower bound

The quality of the lower bound has a significant effect on the
performance of a B&B algorithm. In our approach, we employ a
lower bound measure for the SVRPTBW that relies on the mono-
tonically increasing nature of the toll function, as well as certain
properties of minimum spanning trees (MST). In this section, we
first prove two lemmas. Then, we describe our lower bound mea-
sure and show its validity using these lemmas.

Lemma 1. Let d̂R
0; . . . ; d̂R

n

� �
be non-decreasingly sorted edge lengths

of any SVRPTBW route R, i.e., d̂R
i 6 d̂R

iþ1 for 0 6 i 6 n � 1. If f(w) is a
monotonically increasing toll function, then:
e 3e 4 e 3e 4
e ' 1

1 5 1 5 1 5

zðRÞ ¼

Xn

i¼0

dR
i f wR

i

� �
P
Xn

i¼0

d̂R
i f wR

i

� �
ð4Þ
e ' 1 e ' 2 e ' 3 e ' 4 X

2 3

G ' G B

(a) (b) (c)

Proof. For any route R; wR

i P wR
iþ1. Since the toll function f(w) is

monotonically increasing, therefore f wR
i

� �
P f wR

iþ1

� �
for 1 6 i 6 n.

The rearrangement inequality (Hardy et al., 1988) states that:
x1y1 þ � � � þ xnyn P xpð1Þyn þ � � � þ xpðnÞy1 P x1yn þ � � � þ xny1

for every choice of real numbers x1 6 � � � 6 xn and y1 6 � � � 6 yn and
every permutation xp(1), . . . , xp(n) of x1, . . . ,xn. The direct application
of the rearrangement inequality proves this lemma. h
e 1 e 2 e 3 e 4

Y
4

(d) (e)

Fig. 4. (a) Arbitrary spanning tree T0 . (b) Minimum spanning tree T. (c) T + T0 , where
T0 is denoted by dashed lines. (d) Bipartite graph GB. (e) G0 = ({2,3,4}, {(2,3)}).
Lemma 2. Let T be a minimum spanning tree (MST) on a complete
and undirected graph GM = (VM,EM), where VM contains n vertices,
and let T0 be an arbitrary spanning tree on GM. Let the sequences
ðê1; . . . ; ên�1Þ and ê01; . . . ; ê0n�1

� �
be the edges of T and T0, respectively,

sorted in non-decreasing order of length. Then, jêij 6 jê0ij for
1 6 i 6 n � 1.
Proof. Let E(T) and E(T0) denote the sets of edges of T and T0,
respectively. Since T is an MST, the addition of any edge e0i 2 EðT 0Þ
into T must generate a single cycle Ci= e0i; ek1 ; . . . ; ekm

� �
, where

ekj
2 EðTÞ; 1 6 j 6 m. It can be shown that jekj

j 6 je0ij for 1 6 j 6m,
as follows. Assume to the contrary that there exists ekj

2 Ci � e0i
� �

such that je0ij < jekj
j. Then the tree T - fekj

g þ e0i
� �

will have a smal-
ler total length than T, which contradicts the fact that T is an MST.

Construct a bipartite graph GB = (X,Y,EB), where each vertex in X
corresponds to one edge in E(T0), i.e., X ¼ v 0i : e0i 2 EðT 0Þ

� �
; similarly,

each vertex in Y corresponds to one edge in E(T), i.e., Y = {vj:ej 2 E(T)}.
If ej 2 E(T) is in the cycle associated with e0i 2 EðT 0Þ, i.e., ej 2 Ci, then EB

contains an edge connecting the vertices corresponding to e0i and ej.
To illustrate this construction process, we consider an example
shown in Fig. 4, where e01 ¼ e02 ¼

ffiffiffi
2
p

=2; e03 ¼ e04 ¼ 1 and
e1 ¼ e2 ¼ e3 ¼ e4 ¼

ffiffiffi
2
p

=2. In this example, since e04; e1; e4
� �

is a
cycle, so e04 is connected to e1 and e4 in GB.

Next, we show that there exists a perfect bipartite matching on
GB. By Hall’s Theorem (Hall, 1935), it suffices to show that for all
S # X, jSj 6 jN(S)j, where N(S) is the set of vertices adjacent to the
vertices of S in GB.

Let V(S) and V(N(S)) be the vertices of GM that are associated
with S and N(S) respectively; in our example, if S ¼ e03

� �
, then

V(S) = {2,3}. We construct a graph G0 = (V0,S), where G0 is a
subgraph of GM and V0 = V(S) [V(N(S)). Continuing the example,
given S ¼ e03

� �
, we have N(S) = {e1, e2}, V(S) = {2,3}, V(N(S)) =

{2,3,4}, and G0 = ({2,3,4},{(2,3)}) (see Fig. 4(e)).
G0 is a forest with c(G0) components, each of which is either a

subset of S or an isolated vertex. Since S does not contain cycles, we
can deduce that jV0j = jSj + c(G0) (by Corollary 3.1.7 of Gross and
Yellen (2005)). In the same way, we can also construct G00 = (V0,N(S))
and get jV0j = jN(S)j + c(G00). By the definition of N(S), we find that any
pair of vertices in GM connected by one edge in S must be connected
by one or several edges in N(S), and accordingly c(G0) P c(G00). This
implies jSj 6 jN(S)j, and therefore there is a perfect bipartite
matching on GB by Hall’s Theorem. As a result, each e0i can be
exclusively matched to one edge ej 2 Ci � e0i

� �
EðTÞ, where

je0ijP jejj.
Finally, we show that jêij 6 jê0ij for 1 6 i 6 n � 1. Recall that ê0i is

the ith smallest element in E(T0), i.e., jê0ijP jê0i�1jP � � �P jê01j. Since
each edge ê0k ð1 6 k 6 iÞ exclusively corresponds to one edge

Z. Zhang et al. / European Journal of Operational Research 220 (2012) 295–304 299
êj 2 EðTÞ whose length is less than or equal to jê0kj, we can deduce
that ê0i is at least larger than or equal to i elements of E(T), which
guarantees that jêij 6 jê0ij. h

We can now derive a lower bound for the SVRPTBW. For a prob-
lem instance denoted by the graph G, find an MST T0 of
Vc = {1, . . . ,n}. Then, construct a spanning tree T of G by connecting
vertices 0 and n + 1 to their nearest neighbors in T0. Both vertices 0
and n + 1 have a degree of one; we denote the lengths of the edges
incident to vertices 0 and n + 1 by d0 and dn respectively. Let
ðd̂1; . . . ; d̂n�1Þ be the lengths of the edges of T0 sorted in ascending
order, and let ð�q1; . . . ; �qnÞ be the weights of the goods demanded
by the customers sorted in descending order.

Theorem 1. A polynomially computable lower bound for the
SVRPTBW is:

LB ¼ d0f
Xn

i¼1

qi þ Q

 !
þ
Xn�1

i¼1

d̂if
Xn

j¼iþ1

�qj þ Q

 !
þ dnf ðQÞ ð5Þ
Proof. Suppose R = (r0,r1, . . . ,rn,rn+1) is an optimal SVRPTBW route
on G. With the exception of dR

0 and dR
n , sort all edge lengths of R in

ascending order, generating a sequence d̂R
1; d̂

R
2; . . . ; d̂R

n�1

� �
. By

Lemma 1, we have:

zðRÞ ¼
Xn

i¼0

dR
i f wR

i

� �
P dR

0f wR
0

� �
þ
Xn�1

i¼1

d̂R
i f wR

i

� �
þ dR

nf wR
n

� �
By the construction process of T, we know that dR

0 P d0 and dR
n P dn.

Since the subroute (r1, r2, . . . ,rn) is a spanning tree covering vertices
{1,2, . . . , n}, by Lemma 2 we have d̂R

i P d̂i for 1 6 i 6 n � 1. Subse-
quently, we can deduce that:

zðRÞP d0f wR
0

� �
þ
Xn�1

i¼1

d̂if wR
i

� �
þ dnf wR

n

� �
ð6Þ

It is apparent that wR
0 ¼

Pn
i¼1qi þ Q ; wR

n ¼ Q and wR
i ¼

Pn
j¼iþ1qjþ

Q P
Pn

j¼iþ1�qj þ Q . Since f(w) is monotonically increasing,

f
Pn

j¼iþ1qj þ Q
� �

P f
Pn

j¼iþ1�qj þ Q
� �

. By substituting these equations

into (6), we can derive the lower bound. h

Given a non-leaf node u at level k of the tree, the path from the
root to node u is a partial route of the SVRPTBW, represented by
Ru ¼ ru

0; . . . ; ru
k�1; r

u
k

� �
, where ru

0 ¼ 0 and ru
k ¼ u. Let Pu be the sub-

problem starting from vertex ru
k and ending at n + 1, having already

traveled along subroute Ru, i.e., Pu ¼ ru
k ;nþ 1;V � i : i 2 Ru�f

�
ru

k

� �
g;Q 0 �

P
i2Ru

qiÞ. The lower bound LBu associated with node u
is the sum of F(Ru,Q0) and the lower bound of Pu calculated by
expression (5).

The branching rule of our algorithm works as follows. Assume
that node u is the selected node for further branching or pruning.
If LBu is greater than or equal to the current upper bound, then
node u is pruned and the search process selects the unexplored sib-
ling of node u or the unexplored sibling of the parent of node u (if
all siblings of node u have been explored) that has the smallest
lower bound. Otherwise, the search process constructs
jV � i : i 2 Ru � ru

k

� �� �
j branches originating from node u, each cor-

responding to one child of node u, and then selects the child node
with the smallest lower bound.

3.3. Dominance rule

Dominance rules are widely applied in B&B algorithms (Fisch-
etti and Toth, 1988; Bianco et al., 1993; Fliedner and Boysen,
2008; Azi et al., 2010) and dynamic programming (Dumas et al.,
1995; Mingozzi et al., 1997) for reducing search space; the purpose
of dominance rules is to determine when the partial solution rep-
resented by a node in the search tree must produce a poorer solu-
tion than another node; if so, the node need not be further
explored and can be safely pruned.

The dominance rules used in our B&B algorithm are derived on
the basis of the following property.

Lemma 3. For two problems P1 = (x,y,V1,Q1) and P2 = (x,y,V2,Q2), if
V1 # V2; Q1 ¼

P
i2V1

qi and Q2 ¼
P

i2V2
qi, then z(x,y,V1,Q1) 6

z(x,y,V2,Q2).
Proof. Suppose by way of contradiction that z(x,y,V1,Q1) > z(-
x,y,V2,Q2), and R0 ¼ ðx; r01; r02; . . . ; yÞ is an optimal route of P2. If the
vehicle with initial weight Q1 travels along R0 and does not fulfill
the demands of customers in V2 � V1, then the traversal cost
incurred must be less than or equal to z(x,y,V2,Q2) because
Q1 6 Q2 and the toll function is monotonically increasing. This
implies that we can find a route with the transportation cost less
than z(x,y,V1,Q1) for P1, which is a contradiction. h

By Lemma 3, we can easily derive the dominance rule as the fol-
lowing theorem:

Theorem 2 (Dominance rule). Let Ru and Rv be two partial routes
that start from vertex 0, visit vertex sets Vu and Vv, and end at the
same vertex k. If Vu # Vv and F(Ru,Q0) > F(Rv,Q0), then Rv strictly
dominates Ru.

In addition to comparing the lower bound of the node to the
upper bound, a tree node can also be eliminated from consider-
ation by the dominance relation. The B&B search process does
not prune node u if its lower bound LBu is less than the current
upper bound. At this point, before branching to the next tree le-
vel, our algorithm checks if node u is strictly dominated by
other nodes; this requires the identification of nodes v with
the property that Ru and Rv has the same ending vertex, and
the vertex sets covered by these two paths have relationship
Vu # Vv.

Various search heuristics can be applied to identify such nodes
v; however, there is a trade-off between the potential amount of
pruning brought about by more advanced search heuristics and
the added computation time required for the search. After some
preliminary experimentation, we chose five simple subroutines
that search for node v, which we call dominance checkers; node u
will be ignored if Ru is strictly dominated by an Rv found by these
dominance checkers. For ease of discussion and without loss of
generality, we assume Ru = (0,1, . . . ,k) and Vu = {0,1, . . .,k} for the
remainder of this section.

3.3.1. Dominance checker 1 (forward shift)
For this checker, partial routes Rv are produced by shifting each

vertex i (1 6 i 6 k � 2) to the position between vertex k � 1 and k.
Note that it is not necessary to consider shifting i to a position be-
tween vertices i + 1 and k � 1 because if such a shift can produce a
route Rv that strictly dominates Ru, then an ancestor of node u asso-
ciated with the path from vertex 0 to that position must have al-
ready been pruned, and the search process would not have been
able to reach node u in the first place.

After the forward shift of one vertex, the calculation of F(Rv,Q0)
requires the recalculation of the traversal cost of each edge be-
tween vertices i � 1 and k, which takes O(n) time; since this oper-
ation is performed on k � 2 vertices, this checker runs in O(n2)
time.

0 1 k - 3. k - 1
Ru

k

k+ 1 , k+ 2 ,
.

j,
.

n- 1 , n

V- Vu-{n+ 1 }

0 1 k - 3. k - 1
R1

jk - 2

0 1 k - 3. j
R2

k- 1 k - 2

k - 2

k

k

R ' ' 1

R ' ' 2 R ' 2

R ' 1

(a)

(b)

(c)

Fig. 6. (a) Ru. (b) R1 created by inserting j into the position between k � 1 and k. (c)
R2 created by inserting j into the position between k � 2 and k � 1.

300 Z. Zhang et al. / European Journal of Operational Research 220 (2012) 295–304
3.3.2. Dominance checker 2 (backward shift)
This checker produces partial routes Rv by shifting vertex k � 1

backwards to the position between j and j + 1 for 0 6 j 6 k � 3. For
much the same reason as the forward shift checker, it is unneces-
sary to consider the shifting of other vertices. For example, given
the initial partial route Ru in Fig. 5(a), shifting vertex k � 1 to the
position between k � 3 and k � 2 would result in the route R1

shown in Fig. 5(b).
After satisfying the demand at vertex k, the weight of the vehi-

cle is Q 0 ¼ Q 0 �
P

i2Vu
qi. It can be seen that the initial vehicle

weight of subroute R01 is Q 01 ¼ Q 0 þ qk, and the traversal cost of
the subroute F R01;Q

0
1

� �
¼ dk�2;kf Q 01

� �
. Moreover, F R001;Q 0

� �
has been

calculated during the previous level of the B&B tree. We can com-
pute the traversal cost of R1 by:

FðR1;Q 0Þ ¼ F R001;Q0

� �
þ F R01;Q

0
1

� �
þ dk�1;k�2f Q 01 þ qk�2

� �
þ dk�3;k�1f Q 01 þ qk�2 þ qk�1

� �
ð7Þ

Because Q 02 ¼ Q 01 þ qk�2 and F R02;Q
0
2

� �
¼ F R01;Q

0
1

� �
þ dk�3;k�2f Q 02

� �
,

the traversal cost of R2 (see Fig. 5 (c)) can be computed using an
expression similar to Eq. (7). Observe that with the previously com-
puted cost of route Ri, the traversal cost of route Ri+1 can be com-
puted in O(1) time. As there are k � 2 positions for the backward
shift of vertex k � 1, the overall time complexity of this checker is
O(n).

3.3.3. Dominance checker 3 (vertex swap)
This checker swaps vertex k � 1 with each vertex j in

{1,2, . . . ,k � 2}. It requires O(n) time to compute the traversal cost
of the resultant partial route because the traversal cost of all edges
between vertices j and k � 1 are affected. Hence, the time complex-
ity of this checker is O(n2).

3.3.4. Dominance checker 4 (2-opt)
For each vertex i 2 {1, . . . ,k � 2}, this checker works like a 2-opt

exchange. First, edges (i � 1, i) and (k � 1,k) are broken. Then,
edges (i � 1,k � 1) and (i,k) are inserted. Finally, the route segment
(i,i + 1, . . . ,k � 2,k � 1) is reversed to create the route Rv. After these
operations, it is necessary to calculate the traversal cost of edges
(i � 1,k � 1) and (i,k), as well as the route segment (k � 1,k � 2, . . . ,
i + 1,i), which requires O(n) time. Therefore, this checker runs in
O(n2) time.

3.3.5. Dominance checker 5 (vertex insert)
This checker inserts each of the vertices j 2 V � Vu � {n + 1} into

the partial route Ru. After inserting j at any point in Ru, the weight
of the vehicle at k becomes Q 0 ¼ Q0 �

P
i2Vu

qi � qj. Consider the
case where j is inserted between vertices k � 1 and k (see
Fig. 6(b)). The traversal cost of R1 can be calculated as:
Ru
0 1 k- 4 k- 3 k- 2 k- 1 k.

R1
0 1 k- 4 k- 3 k- 1 k- 2 k.

R2
0 1 k- 4 k- 1 k- 3 k- 2 k.

R ' ' 1 R ' 1

R ' ' 2 R ' 2

(a)

(b)

(c)

Fig. 5. (a) Ru. (b) R1 created by backward shift of k � 1 to the position between k � 3
and k � 2. (c) R2 created by backward shift of k � 1 to the position between k � 4
and k � 3.
FðR1;Q 0Þ ¼ F R001;Q 0

� �
þ dk�1;jf ðQ 0 þ qk þ qjÞ þ dj;kf ðQ 0 þ qkÞ ð8Þ

where F R001;Q0

� �
has been computed in a previous level. Like for

dominance checker 2 (Backward Shift), when the cost of Ri has been
precomputed, the traversal cost of Ri+1 can also be computed in O(1)
time; with k � 1 positions where j can be inserted into Ru, it takes O
(n) time to check all positions. Since there are n � k vertices in
V � Vu � {n + 1}, the overall time complexity of this checker is O(n2).

It is theoretically possible to insert more than one vertex into
Ru, although the number of combinations of possible insertions in-
creases exponentially as a result. We performed some experiments
where more than one vertex is inserted, and found that the amount
of computation time increased enormously but the amount of in-
creased pruning was not significant. Therefore, we limited this
checker to consider only the insertion of a single vertex.

This dominance checker is invalid for instances that do not
satisfy the triangle inequality rule. The minimum cost of all com-
plete SVRPTBW routes containing Ru is FðRu;Q 0Þ þ z k;nþ 1;ð
fk; kþ 1; . . . ;n;nþ 1g;Q0 �

Pi¼k
i¼0qiÞ. When vertex j (j > k) is in-

serted into Ru, the minimum cost related to the resultant
Rv = {0,1, . . . , j, . . . ,k � 1,k} is calculated by FðRv ;Q 0Þ þ z k;nþ 1;ð
fk; kþ 1; . . . ; j� 1; jþ 1; . . . ;n;nþ 1g;Q0�

Pi¼k
i¼0qi � qjÞ. For an in-

stance that violates the triangle inequality rule, we cannot prove
zðk;nþ 1; fk; kþ 1; . . . ; j; . . . ;n;nþ 1g;Q 0 �

Pi¼k
i¼0qiÞP z k;nþ 1; fk;ð

kþ 1; . . . ; j� 1; jþ 1; . . . ;n;nþ 1g;Q0�
Pi¼k

i¼0qi � qjÞ. Therefore,
even when F(Rv,Q0) < F(Ru,Q0), we still cannot judge whether Rv
strictly dominates Ru. When this dominance checker is disabled,
our B&B algorithm is capable of solving instances that do not nec-
essarily satisfy the triangle inequality rule.
4. Experiments and analysis

Our computational experiments are divided into two distinct
test sets. The first data set was derived from the TSPLIB library of
TSP instances; the second data set was generated based on the real
expressway information of the Gansu and Jiangxi provinces in Chi-
na. For each problem instance, the first vertex was designated as
the depot. All instances and results are available in the online sup-
plement to this paper at: www.computational-logistics.org/orlib/
tbw.

The algorithm described in this paper was coded in C++, and all
experiments were run on a Linux server with 8 GB memory and In-
tel Xeon (R) 2.66 GHz processor. Computation times reported here
are in CPU seconds on this machine.

http://www.computational-logistics.org/orlib/tbw
http://www.computational-logistics.org/orlib/tbw

Table 2
Unweighted MLP instances solved by B&B algorithm.

Instance Cost Time Nodes LB/Cost (%) UB/Cost (%)

burma14 151.5 0.00 284 76.2 100.0
ulysses16 338.9 0.00 678 65.4 100.0
gr17⁄ 10,845.0 0.07 21,434 75.8 100.0
gr21⁄ 21,096.0 0.02 903 77.1 100.0
ulysses22 452.6 0.03 3,436 62.2 100.0
gr24⁄ 12,292.0 0.16 6,082 82.0 100.0
fri26⁄ 9,664.0 0.17 6,207 84.0 100.0
bayg29⁄ 20,439.0 3.24 87,561 81.8 100.1
bays29⁄ 24,408.0 3.43 86,223 79.0 100.0
dantzig42 11,277.6 7.98 85,298 81.0 100.9
swiss42⁄ 20,905.0 16.83 134,963 82.7 100.0
gr48⁄ 96,744.0 993.21 5,400,258 79.0 104.0
hk48⁄ 234,588.0 1,423.14 9,710,210 80.0 101.2
eil51 9,712.0 1,944.15 12,710,046 87.4 100.4
berlin52 134,852.0 1,433.89 16,703,646 74.0 101.8

Table 3
Weighted MLP instances solved by B&B algorithm.

Instance Cost Time Nodes LB/Cost (%) UB/Cost (%)

burma14 138.6 0.00 288 74.1 100.0
ulysses16 331.3 0.00 752 61.3 100.0
gr17⁄ 9,931.0 0.07 20,862 72.3 100.0
gr21⁄ 20,054.5 0.06 3,953 72.2 100.0
ulysses22 467.1 0.05 5,211 55.6 100.0
gr24⁄ 11,748.5 0.31 10,611 77.5 101.2
fri26⁄ 9,421.7 0.36 12,445 80.8 101.9
bayg29⁄ 20,252.9 11.95 321,084 75.4 100.2
bays29⁄ 24,704.5 16.21 434,095 72.6 100.6
dantzig42 11,507.2 34.54 389,123 75.1 101.4
swiss42⁄ 21,709.9 101.64 833,534 76.5 100.7
gr48⁄ 98,714.9 26,239.08 166,542,140 72.7 102.0
hk48⁄ 240,594.2 26,078.89 201,824,403 73.1 103.0
eil51 9,498.2 7,992.44 51,323,043 82.9 102.4
berlin52 136,183.2 5,496.05 67,130,237 66.7 101.9

Z. Zhang et al. / European Journal of Operational Research 220 (2012) 295–304 301
During preliminary experimentation, it was found that as jVuj
(the cardinality of Vu) grows, the effectiveness of the dominance
checkers decreases. Based on our analysis, we modified our algo-
rithm so that when jVujP 0.7 � jVj, we disable three of the domi-
nance checkers, namely dominance checkers 1 (forward shift), 3
(vertex swap) and 4 (2-opt). When jVujP 0.75 � jVj, we disable
dominance checker 5 (vertex insert). Finally, dominance checker
2 (backward shift) is disabled when jVujP 0.8 � jVj.

4.1. Modified instances from TSPLIB

Our first data set consists of symmetric TSP instances taken from
the standard test suite for the traveling salesman problem TSPLIB
(Reinelt, 1991) (available at http://www.iwr.uni-heidelberg.de/
groups/comopt/software/TSPLIB95/tsp/). Some TSP instances do
not satisfy the triangle inequality rule, so we disabled dominance
checker 5 when solving the SVRPTW instances modified from such
TSP instances.

We modified the TSP instances to become SVRPTBW problems
by setting the weight demanded at each vertex to 1 tonne. When
Q ¼ 0 and f(w) = w, these instances are equivalent to unweighted
MLP instances. Since the MLP is a special case of the SVRPTBW,
our algorithm can be used to solve MLP instances. The two best ex-
act algorithms for the unweighted MLP in existing literature were
proposed by Wu et al. (2004) and Méndez-Díaz et al. (2008). We
compared our B&B algorithm with these techniques using the TSP-
LIB instances employed by Méndez-Díaz et al. (2008), and present
the running times required to find the optimal solutions in Table 1.
The instances that violate the triangle inequality rule are marked
with an asterisk (⁄) in this and the following two tables. Since
Wu et al. (2004) only reported computational results for ulysses16,
ulysses22, gr24 and fri26, the remaining cells in column 2 are
marked ‘‘N/A’’.

The results show that our algorithm found the optimal solution
for the first seven instances in not more than 0.2 s, and for the rest
of the instances in less than 4 s. In contrast, the technique by Wu
et al. (2004) requires up to 30 s for some instances, while the tech-
nique by Méndez-Díaz et al. (2008) requires computing times lar-
ger than 1000 seconds for some instances. Although our machine is
more powerful, this cannot account for the dramatic difference in
speed compared to the two existing techniques; it is reasonable
to conclude that our approach is more efficient than the existing
best MLP approaches.

We then attempted to solve as many of these unweighted MLP
instances from TSPLIB as possible using our B&B approach. Our
algorithm was able to solve 15 of the instances within 1 h. The sta-
tistics for these instances are given in Table 2. The column Nodes
gives the total number of explored nodes in the B&B search tree;
LB/Cost gives the percentage of the initial lower bound (at the root
node) calculated by Eq. (5) from the optimal solution value; and
Table 1
Performance comparison on unweighted MLP instances.

Instance Wu et al. (2004) Méndez
P4 2.4 GHz + 256 M RAM Sun Ultr

2 GB RA
Time Time

burma14 N/A 0.61
ulysses16 0.09 64.11
gr17⁄ N/A 22.44
gr21⁄ N/A 22.57
ulysses22 3.40 1,190.91
gr24⁄ 30.23 18.06
fri26⁄ 26.09 293.74
bayg29⁄ N/A 5,334.55
bays29⁄ N/A 1,440.34
UB/Cost gives the percentage of the initial upper bound obtained
using the SA algorithm from the optimal solution value.

The average initial lower bound over all instances is about 78%
of the optimal solution value, which shows that our lower bound
measure provides a reasonable approximation of the cost of the
optimal solution for this data set. It is interesting to note that the
initial upper bound found by our standard SA algorithm is very
close to the optimal value (the maximum absolute error is less
than 2%); this suggests that SA is an effective technique for the
SVRPTBW and can produce a near-optimal solution quickly. As ex-
pected, problem difficulty increases sharply with n with a corre-
sponding increase in the time taken and the nodes searched.

Finally, we again modified the TSP instances such that the
weight demanded at each vertex is a uniformly randomly gener-
-Díaz et al. (2008) Branch-and-bound algorithm
aSparc III 1 GHz +
M

Intel Xeon (R) 2.66 GHz +
8 GB RAM
Time

0.00
0.00
0.07
0.02
0.03
0.16
0.17
3.24
3.43

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/

Table 4
Detailed results for Gansu and Jiangxi generated data.

Instance Gansu Expressway toll scheme (Fig. 2(a)) Jiangxi expressway toll scheme (Fig. 2(b))

Cost Time Nodes LB/Cost (%) UB/Cost (%) Cost Time Nodes LB/Cost (%) UB/Cost (%)

gansu25-1 5264.0 1.55 136,255 61.0 101.3 4718.2 2.89 226,122 61.2 100.0
gansu25-2 5353.2 0.47 36,702 54.9 102.2 4704.0 0.63 45,606 56.8 102.1
gansu25-3 4616.8 1.00 70,791 61.9 100.0 4092.3 1.86 122,247 63.1 100.0
gansu25-4 6265.4 1.09 68,781 65.6 100.0 5436.1 1.48 85,494 67.5 100.0
gansu25-5 5126.5 0.12 9069 62.6 100.0 4588.5 0.20 13,262 64.1 100.0

gansu30-1 7224.5 8.97 567,507 61.8 102.2 6105.8 17.76 954,998 63.0 100.2
gansu30-2 7326.2 6.99 357,089 63.7 100.6 6303.6 13.98 680,430 64.9 100.4
gansu30-3 6818.1 4.90 230,000 61.7 100.4 5784.1 8.58 358,615 63.5 100.0
gansu30-4 7179.6 3.85 195,393 61.4 101.1 6210.9 9.36 417,356 62.3 100.4
gansu30-5 6242.8 3.32 169,554 57.4 100.9 5322.5 5.39 245,255 59.4 100.2

gansu35-1 7906.0 15.41 467,532 65.6 103.0 6411.4 26.82 740,155 68.7 100.6
gansu35-2 8478.8 49.50 1,561,205 59.5 102.1 6943.8 127.43 3,646,451 61.8 101.8
gansu35-3 7711.1 70.85 2,299,375 64.7 101.9 6536.0 209.76 6,676,884 65.6 101.3
gansu35-4 7339.0 60.91 1,817,959 59.7 101.8 6067.9 127.72 3,561,418 61.6 102.4
gansu35-5 6689.7 79.75 2,847,785 60.0 103.0 5569.2 180.47 5,918,448 61.8 101.8

gansu40-1 7838.3 71.01 1,719,561 63.0 104.9 6406.5 369.10 8,573,415 63.6 102.2
gansu40-2 9651.2 383.13 8,220,591 63.1 102.1 7725.5 1020.19 20,747,015 65.0 102.3
gansu40-3 8607.8 282.55 6,686,751 61.9 102.2 7005.2 737.91 16,380,111 63.0 101.5
gansu40-4 9257.7 2854.33 62,116,466 62.7 101.8 7198.3 5024.06 107,446,538 65.9 100.5
gansu40-5 10,176.0 1267.53 30,434,344 68.1 103.0 8033.0 4549.15 108,846,017 69.1 101.3

gansu45-1 10,593.4 21,649.52 395,857,260 61.0 103.0 N/A > 40,000.00 N/A N/A N/A
gansu45-2 10,575.1 1341.82 23,110,153 60.7 102.6 8055.0 30,842.27 469,436,556 64.1 102.9
gansu45-3 10,567.7 4079.46 65,983,410 59.5 100.6 N/A > 40,000.00 N/A N/A N/A
gansu45-4 10,453.1 942.79 16,328,648 61.7 105.1 8059.0 24,570.87 380,517,909 63.9 103.4
gansu45-5 9187.4 3633.14 51,204,824 66.1 101.6 7224.5 34,239.86 533,482,431 67.9 101.5

jiangxi25-1 3474.5 0.57 32,768 69.2 100.5 3013.5 0.85 44,010 71.8 100.4
jiangxi25-2 3414.9 0.23 12,189 69.1 100.0 2971.8 0.26 9706 71.5 100.0
jiangxi25-3 2960.5 0.11 5262 73.8 100.0 2623.8 0.21 9057 75.1 100.0
jiangxi25-4 2114.4 0.18 11,387 63.3 100.0 1868.7 0.45 26,328 66.0 100.0
jiangxi25-5 3337.1 0.19 9620 65.6 100.0 2935.6 0.29 13,012 67.4 100.1

jiangxi30-1 4229.3 1.41 45,074 70.0 100.7 3604.4 2.35 70,443 72.4 100.5
jiangxi30-2 4160.6 1.91 45,860 69.6 100.7 3523.1 4.19 111,444 71.1 100.3
jiangxi30-3 4128.3 0.81 21,253 73.3 100.1 3490.3 1.08 26,654 76.0 100.0
jiangxi30-4 4154.7 7.54 237,599 62.5 102.0 3540.2 16.06 450,011 64.6 101.9
jiangxi30-5 4161.7 2.49 77,330 64.2 100.3 3489.8 3.84 106,744 67.0 100.3

jiangxi35-1 4612.3 1.57 35,835 70.2 101.0 3793.2 4.06 87,970 72.7 100.2
jiangxi35-2 4788.4 9.83 183,620 70.3 100.0 3933.8 17.86 304,084 72.3 100.2
jiangxi35-3 4468.6 10.99 223,477 68.3 101.1 3623.1 20.24 392,798 71.3 100.9
jiangxi35-4 4952.6 56.21 1,155,540 66.6 100.9 4039.6 127.86 2,484,916 69.0 100.5
jiangxi35-5 4724.5 2.62 43,830 74.0 100.9 3882.7 5.78 88,149 76.3 100.4

jiangxi40-1 5852.4 181.04 3,028,776 68.0 102.6 4629.6 555.22 8,494,720 70.9 101.5
jiangxi40-2 5150.4 24.95 349,536 68.9 103.1 4123.4 59.49 896,078 71.2 102.3
jiangxi40-3 5385.1 87.07 1,496,751 69.2 103.1 4307.8 222.58 3,628,112 71.8 101.8
jiangxi40-4 4767.9 68.38 1,141,590 62.1 100.3 3828.3 228.62 4,104,835 64.8 100.1
jiangxi40-5 5330.0 232.47 4,605,134 61.9 103.1 4285.6 745.22 17,519,049 64.4 102.5

jiangxi45-1 6021.5 1255.52 15,035,163 67.3 102.7 4558.6 17,375.94 183,187,608 70.4 102.7
jiangxi45-2 6385.5 1304.99 15,949,805 69.9 101.7 4843.9 7565.08 78,092,802 73.7 101.1
jiangxi45-3 5884.6 492.92 6,428,149 69.0 103.5 4594.5 10,984.19 147,540,859 71.3 103.5
jiangxi45-4 6160.4 513.07 7,296,658 65.5 102.5 4709.7 8938.38 103,251,920 69.2 103.0
jiangxi45-5 6480.9 590.35 6,872,015 71.2 104.6 5003.1 4993.45 52,972,654 73.6 103.0

302 Z. Zhang et al. / European Journal of Operational Research 220 (2012) 295–304
ated value in the range [0.8,1.2]; this converts the data set into
weighted MLP instances. There are no existing reported results
on algorithms that can find optimal solutions for the weighted
MLP on a general graph, although García et al. (2002) do propose
an exact algorithm for the weighted MLP when the underlying
graph is a path. Once again, we applied our algorithm to these
weighted MLP instances and attempted to solve as many instances
as possible; the results are reported in Table 3.

For almost all instances, our B&B approach searched more
nodes and took more time for the weighted version compared to
the unweighted version. Similarly, both the initial upper and lower
bound estimates were less accurate for the weighted MLP, even
though the underlying data is otherwise identical. This suggests
that having different weight demands for each customer signifi-
cantly increases the difficulty of the problem when using a
branch-and-bound approach. Nonetheless, our approach was still
able to solve 15 instances with up to 52 vertices within 8 h.

4.2. Generated instances based on Gansu and Jiangxi

Our second data set is constructed based on two Chinese prov-
inces, Gansu (52 cities) and Jiangxi (99 cities), and the real infor-
mation of the Chinese expressway network. Recently, Google
launched an online service that allows users to retrieve the real
traffic information between any two cities of China using the Goo-
gle Map API (available at: http://code.google.com/apis/maps/). By
using a JavaScript program that integrates the Google Map API,
we collected the shortest expressway distance between every pair
of cities within each province, and generated two complete graphs
representing the two provinces based on this information.

http://code.google.com/apis/maps/

Table 5
Summarized results for Gansu and Jiangxi generated data.

Instance Gansu expressway toll scheme Jiangxi expressway toll scheme

Time Nodes LB/Cost (%) UB/Cost (%) Time Nodes LB/Cost (%) UB/Cost (%)

gansu-25 0.85 64,319.6 61.2 100.7 1.41 98,546.2 62.5 100.4
gansu-30 5.61 303,908.6 61.2 101.0 11.01 531,330.8 62.6 100.2
gansu-35 55.28 1,798,771.2 61.9 102.4 134.44 4,108,671.2 63.9 101.6
gansu-40 971.71 21,835,542.6 63.8 102.8 2340.08 52,398,619.2 65.3 101.6
gansu-45 6329.35 110,496,859.0 61.8 102.6 29,884.33 461,145,632.0 65.3 102.6

jiangxi-25 0.26 14,245.2 68.2 100.1 0.41 20,422.6 70.3 100.1
jiangxi-30 2.83 85,423.2 67.9 100.7 5.50 153,059.2 70.2 100.6
jiangxi-35 16.24 328,460.4 69.9 100.8 35.16 671,583.4 72.3 100.4
jiangxi-40 118.78 2,124,357.4 66.0 102.5 362.23 6,928,558.8 68.6 101.6
jiangxi-45 831.37 10,316,358.0 68.6 103.0 9971.41 113,009,168.6 71.6 102.7

Table 6
The contributions of the dominance checkers.

Instance LB LB + DC1 LB + DC2 LB + DC3 LB + DC4 LB + DC5 LB + DC1-5

Gansu-25-1 1455.17 58.48 62.23 54.35 25.72 90.59 2.89
Gansu-25-2 1039.93 24.21 39.80 27.33 15.88 16.42 0.63
Gansu-25-3 669.87 30.84 33.12 32.08 18.49 31.63 1.86
Gansu-25-4 178.40 11.99 11.21 11.45 4.64 22.34 1.48
Gansu-25-5 113.03 4.27 5.56 4.28 2.25 3.88 0.20
Average 691.28 25.96 30.38 25.90 13.40 32.97 1.41

Jiangxi-25-1 22.41 3.29 3.32 3.49 2.58 4.53 0.85
Jiangxi-25-2 6.63 0.99 1.04 0.95 0.68 1.66 0.26
Jiangxi-25-3 6.84 0.77 0.82 0.75 0.60 1.91 0.21
Jiangxi-25-4 153.28 5.31 6.59 5.36 3.63 16.79 0.45
Jiangxi-25-5 13.64 1.85 2.17 1.93 1.54 1.88 0.29
Average 40.56 2.44 2.79 2.50 1.81 5.35 0.41

0

300

600

900

1200

1500

1800

2100

2400

2700

25 30 35 40
Number of Vertices

S
dnoce

f1
f2
f3
f4
f5

Fig. 7. The effect of toll functions.

Z. Zhang et al. / European Journal of Operational Research 220 (2012) 295–304 303
From the city set of each province, five subsets are randomly se-
lected for each value of n + 1 = 25, 30, 35, 40 and 45, for a total of 50
test instances; all these instances satisfy the triangle inequality
rule. The weight demanded at each city is also uniformly and ran-
domly chosen from the interval [0.8,1.2] tonnes, and the unladen
weight of the vehicle Q is set to 5 tonnes. We selected these values
because most provinces in China (including Gansu and Jiangxi) im-
pose a heavy monetary penalty on vehicles that exceed a laden
weight of 50 tonnes, and as a result it is not worthwhile for freight
companies to load their vehicles beyond this limit; our chosen
values will generate instances where the optimal solution will be
unlikely to exceed this 50-tonne limit by a large margin. We ran
our algorithm on these instances under both toll schemes shown
in Fig. 2.

The results of these experiments are given in Table 4, where
each row gives the statistics for an individual instance, and every
set of 5 instances contains the same number of vertices. Our B&B
technique was able to solve all but two instances within
40,000 seconds; both unsolved instances have 45 vertices and
were generated from the Gansu map under the Jiangxi scheme.

For better analysis, we grouped these results by province and
number of vertices as given in Table 5. Each row represents a set
of five instances with the same number of vertices for the given toll
scheme, and each value is the average over these five instances; the
exception is the row Gansu-45 under the Jiangxi scheme, which
averages the values of only the three solved instances. The results
show that the amount of time required to solve the same instance
under the Gansu toll function (which is linear) is significantly less
than under the Jiangxi toll function (which is piecewise non-linear),
with a corresponding increase in the number of nodes searched;
this implies that a piecewise non-linear toll function increases the
difficulty of the problem under our B&B algorithm by reducing
the opportunities for pruning. Our initial lower bound estimate is
about 60–70% of the optimal solution. Finally, the average initial
upper bound found by the SA algorithm is again very close to the
optimal value, with a maximum absolute error of less than 3%.

Table 6 shows the marginal contribution of each dominance
checker over the ten 25-city instances where the Gansu and Jiangxi
instances are under the Gansu and Jiangxi toll schemes, respec-
tively; all values in this table are computation times. Column LB
gives the computation times of our B&B algorithm without any
dominance checker (i.e., a basic branch-and-bound algorithm);
the subsequent columns show the computation times obtained
by adding one dominance checker at a time to the algorithm; the
final column repeats the information given in Table 4 for the com-
plete algorithm for easy comparison. It can be seen that the
individual application of every dominance checker significantly

304 Z. Zhang et al. / European Journal of Operational Research 220 (2012) 295–304
decreases the running time compared to the basic branch-and-
bound algorithm, but the best performance is achieved by the
inclusion of all five checkers.

From the above experiments, it can be seen that the nature of the
toll function has an appreciable effect on the performance of our
B&B algorithm. To gain a better understanding of the effects of
the toll functions, we solved the instances under the following five
toll functions: f1ðwÞ ¼ w2; f 2ðwÞ ¼ w; f 3ðwÞ ¼

ffiffiffiffi
w
p

; f 4ðwÞ ¼ logðwÞ
and f5(w) = 1. For each toll function, we averaged the computation
times of all instances with the same number of vertices; the results
are graphically depicted in Fig. 7. It is apparent that as the steepness
of the toll function increases, so does the performance of our B&B
algorithm. This is logical since a steeper toll function implies that
the optimal solution would be closer to a ‘‘greedy’’ solution where
the greatest weight is unloaded as early as possible in the route;
as a result, routes that delay the unloading of goods are unlikely
to be optimal and are quickly pruned. Furthermore, under a steeper
function, the average computation time increases less quickly in
relation to the number of vertices. For example, under f1(w) = w2

the ratio of the average computation time for 40-vertex instances
compared to the 35-vertex instances is 2.2, while under f5(w) = 1
the ratio is 28.9. This is a likely explanation of the drop in perfor-
mance of our algorithm under the Jiangxi toll scheme compared
to the Gansu scheme.

5. Conclusions

Motivated by the toll-by-weight schemes implemented in over
twenty Chinese provinces, we propose a single vehicle routing
problem in which the transportation cost per unit distance mono-
tonically increases with the vehicle’s weight. This problem is a new
variant of the traditional traveling salesman problem, and is a gen-
eralization of both the unweighted and weighted minimum la-
tency problem. The branch-and-bound algorithm described in
this paper is the first exact algorithm for the problem and can be
implemented on instances with any monotonically increasing toll
function. Experiments show that our algorithm outperforms the
currently best known exact algorithms for the unweighted MLP
and was able to find the optimal solution for an instance with 52
vertices; is also capable of solving weighted MLP instances of up
to 52 vertices; and can find the optimal solutions for several
SVRPTBW instances with up to 45 vertices.

The SVRPTBW is a good starting point for the investigation of
the toll-by-weight scheme that is being used on Chinese express-
ways, and will continue to be used in the foreseeable future. The
model does simplify certain aspects of the problem, and more com-
plex models that consider additional factors can be fruitful avenues
for future research. Possibilities include the multiple vehicle rout-
ing version of the problem, consideration of vehicle capacity, pick-
up as well as delivery, and time windows for delivery.
References

Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J., 2006. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton, New
Jersey.

Archer, A., Levin, A., Williamson, D.P., 2008. A faster, better approximation
algorithm for the minimum latency problem. SIAM Journal on Computing 37
(5), 1472–1498.

Arora, S., Karakostas, G., 2003. Approximation schemes for minimum latency
problems. SIAM Journal on Computing 32 (5), 1317–1337.

Azi, N., Gendreau, M., Potvin, J.-Y., 2010. An exact algorithm for a vehicle routing
problem with time windows and multiple use of vehicles. European Journal of
Operational Research 202 (3), 756–763.

Bianco, L., Mingozzi, A., Ricciardelli, S., 1993. The traveling salesman problem with
cumulative costs. Networks 23 (2), 81–91.

Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.,
1994. The minimum latency problem. In: Proceedings of the 26th Annual ACM
Symposium on Theory of Computing (STOC’94), Montréal, Québec, Canada, pp.
163–171.

Chen, X., Li, J., Yang, F., Wu, Y.H., Ding, L.B., 2007. Design and implementation of
vehicle routing optimization system based on toll-by-weight. Manufacture
Information Engineering of China 17, 69–72.

Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.M., 1995. An optimal algorithm for
the traveling salesman problem with time windows. Operations Research 43
(2), 367–371.

Fischetti, M., Laporte, G., Martello, S., 1993. The delivery man problem and
cumulative matroids. Operations Research 41 (6), 1055–1064.

Fischetti, M., Toth, P., 1988. A new dominance procedure for combinatorial
optimization problems. Operations Research Letters 7 (4), 181–187.

Fliedner, M., Boysen, N., 2008. Solving the car sequencing problem via branch &
bound. European Journal of Operational Research 191 (3), 1023–1042.

García, A., Jodrá, P., Tejel, J., 2002. A note on the traveling repairman problem.
Networks 40 (1), 27–31.

Goemans, M., Kleinberg, J., 1998. An improved approximation ratio for the
minimum latency problem. Mathematical Programming 82 (1–2), 111–124.

Gross, J.L., Yellen, J. (Eds.), 2005. Graph Theory and Its Applications. Chapman and
Hall/CRC.

Gutin, G., Punnen, A.P. (Eds.), 2002. The Traveling Salesman Problem and Its
Variations. Kluwer Academic Publishers, Dordrecht, Netherlands.

Hall, P., 1935. On representatives of subsets. Journal of the London Mathematical
Society 10, 26–30.

Hardy, G., Littlewood, J., Pólya, G., 1988. Inequalities. Cambridge University Press,
The Edinburgh Building, Cambridge, UK.

Méndez-Díaz, I., Zabala, P., Lucena, A., 2008. A new formulation for the traveling
deliveryman problem. Discrete Applied Mathematics 156 (17), 3223–3237.

Mingozzi, A., Bianco, L., Ricciardelli, S., 1997. Dynamic programming strategies for
the traveling salesman problem with time window and precedence constraints.
Operations Research 45 (3), 365–377.

Minieka, E., 1989. The delivery man problem on a tree network. Annals of
Operations Research 18 (1–4), 261–266.

Reinelt, G., 1991. TSPLIB — traveling salesman problem library. ORSA Journal of
Computing 3 (4), 376–384.

Salehipour, A., Sörensen, K., Goos, P., Bräysy, O., 2008. An efficient GRASP+VND
metaheuristic for the traveling repairman problem. Working Papers, University
of Antwerp, Faculty of Applied Economics. URL <http://econpapers.repec.org/
RePEc:ant:wpaper:2008008>

Shen, C.H., Qin, H., Lim, A., 2009. A capacitated vehicle routing problem with toll-by-
weight rule. In: Chien, B.C., Hong, T.P. (Eds.), Opportunities and Challenges for
Next-Generation Applied Intelligence, Studies in Computational Intelligence,
vol. 214. Springer, Berlin, Heidelberg, pp. 311–316.

Toth, P., Vigo, D. (Eds.), 2002. The Vehicle Routing Problem. SIAM, Philadelphia, PA.
Wikipedia, 2011. Expressways of China. <http://en.wikipedia.org/wiki/

Expressways_of_China>
Wu, B.Y., Huang, Z.N., Zhan, F.J., 2004. Exact algorithms for the minimum latency

problem. Information Processing Letters 92 (6), 303–309.

http://econpapers.repec.org/RePEc:ant:wpaper:2008008
http://econpapers.repec.org/RePEc:ant:wpaper:2008008
http://en.wikipedia.org/wiki/Expressways_of_China
http://en.wikipedia.org/wiki/Expressways_of_China

	The single vehicle routing problem with toll-by-weight scheme: A branch-and-bound approach
	1 Introduction
	2 Problem description and literature
	3 Branch-and-bound algorithm
	3.1 Upper bound
	3.2 Lower bound
	3.3 Dominance rule
	3.3.1 Dominance checker 1 (forward shift)
	3.3.2 Dominance checker 2 (backward shift)
	3.3.3 Dominance checker 3 (vertex swap)
	3.3.4 Dominance checker 4 (2-opt)
	3.3.5 Dominance checker 5 (vertex insert)

	4 Experiments and analysis
	4.1 Modified instances from TSPLIB
	4.2 Generated instances based on Gansu and Jiangxi

	5 Conclusions
	References

