
European Journal of Operational Research 229 (2013) 573–584
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization
A memetic algorithm for the multiperiod vehicle routing problem with
profit
0377-2217/$ - see front matter � 2012 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.ejor.2012.11.059

⇑ Corresponding author. Tel.: +852 64117909; fax: +852 34420189.
E-mail addresses: zizzhang@cityu.edu.hk (Z. Zhang), oscarche@cityu.edu.hk (O.

Che), lim.andrew@cityu.edu.hk (A. Lim), tigerqin1980@gmail.com (H. Qin).
Zizhen Zhang a, Oscar Che a, Brenda Cheang b, Andrew Lim a, Hu Qin c,⇑
a Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
b Division of Information and Technology Studies, Faculty of Education, The University of Hong Kong, Pokfulam, Hong Kong
c School of Management, Huazhong University of Science and Technology, Wuhan, China
a r t i c l e i n f o

Article history:
Received 31 March 2011
Accepted 30 November 2012
Available online 21 December 2012

Keywords:
Memetic algorithm
Metaheuristics
Giant-tour
Multiperiod
Periodic vehicle routing
a b s t r a c t

In this paper, we extend upon current research in the vehicle routing problem whereby labour regula-
tions affect planning horizons, and therefore, profitability. We call this extension the multiperiod vehicle
routing problem with profit (mVRPP). The goal is to determine routes for a set of vehicles that maximizes
profitability from visited locations, based on the conditions that vehicles can only travel during stipulated
working hours within each period in a given planning horizon and that the vehicles are only required to
return to the depot at the end of the last period. We propose an effective memetic algorithm with a giant-
tour representation to solve the mVRPP. To efficiently evaluate a chromosome, we develop a greedy
procedure to partition a given giant-tour into individual routes, and prove that the resultant partition
is optimal. We evaluate the effectiveness of our memetic algorithm with extensive experiments based
on a set of modified benchmark instances. The results indicate that our approach generates high-quality
solutions that are reasonably close to the best known solutions or proven optima, and significantly better
than the solutions obtained using heuristics employed by professional schedulers.

� 2012 Published by Elsevier B.V.
1. Introduction

This paper examines a problem faced by a buying office that
procures assorted products predominantly from over 1000 di-
rect-source suppliers in Hong Kong and China for one off the larg-
est retail distributions in the world. Upon the placement of product
orders by the buying office, the goods must be inspected before
shipment. Thus, each supplier has to make an inspection request
with the buyer when the ordered goods are ready for delivery.
The buyer, in turn, schedules a professional quality inspector to
perform an on-site inspection. And in order to facilitate coordina-
tion between inspectors and suppliers, the inspections should oc-
cur during office hours (e.g. 9:00 am to 5:00 pm). A weekly
schedule is created to assign inspectors to requests for the upcom-
ing week. The buying office has a stable of in-house inspectors who
receive their weekly inspection schedules at regional offices, and
each inspector only reports back to their regional offices after they
have completed all their inspections for the week (note that
inspectors are not required to return to the regional offices every
day). During the week, an inspector generally travels to different
locations and performs several inspections per day, and then finds
overnight accommodation in the vicinity of his/her last/next
inspection site. The objective of the problem is to assign as many
inspection requests as possible to the stable of inspectors while
satisfying the working hour constraints; unfulfilled inspection re-
quests are outsourced and are appropriated as additional costs.

A variant of the well-studied vehicle routing problem (VRP), we
call the model of this problem the multiperiod vehicle routing prob-
lem with profit (mVRPP). It is defined on a complete undirected
graph, where each node represents a location with an associated
reward (in the case of inspection scheduling, this is equivalent to
the cost of outsourcing that inspection request), and the weight
of each edge is the traveling distance between the corresponding
locations. The goal is to devise a set of K vehicle routes that maxi-
mizes the total reward collected from the visited nodes, and each
node can be visited at most once. Each vehicle route is divided into
at most D sub-routes (called trips), and the length of each trip is
limited by working hour constraints. Vehicles depart from the de-
pot at the beginning of the planning horizon. Each vehicle stays at
the last visited node at the end of each trip and begins the next trip
from that node. Finally, the last trip must end at the depot.

There are two features that distinguish the mVRPP from exist-
ing research on routing and scheduling problems. The first is the
requirement of having D periods. Many studies on such problems
assume that the scheduling subjects (e.g. vehicles or field techni-
cians) are always in service within the planning horizon. However,
this assumption may not be valid for many practical applications
such as those of the freight and transportation industry. This is

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejor.2012.11.059&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2012.11.059
mailto:zizzhang@cityu.edu.hk
mailto:oscarche@cityu.edu.hk
mailto:lim.andrew@cityu.edu.hk
mailto:tigerqin1980@gmail.com
http://dx.doi.org/10.1016/j.ejor.2012.11.059
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

574 Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584
due to working hour regulations, where sufficient downtime for
rest and recuperation is essential in terms of road safety for drivers,
and providing punctual service deliveries during working hours is
always well-appreciated by clients. The second feature is the
objective of maximizing total reward rather than the number of
vehicles to the total distance travelled.

In this paper, we devise a Memetic Algorithm (MA) (Moscato,
1999) to solve the mVRPP, which is an approach combining an evo-
lutionary algorithm (e.g. genetic algorithm) with a local improve-
ment procedure. MA has been successfully implemented on
various routing and scheduling problems, including homogeneous
(Prins, 2004) and heterogeneous fleets (Prins, 2009). In our pro-
posed MA, a solution consisting of a set of K routes is represented
by a single chromosome called a giant-tour (Prins, 2004), which is
simply a permutation of the set of nodes in the problem graph. We
describe a fast, exact greedy procedure to partition a given giant-
tour into a set of K routes, and show that the resultant solution
is optimal for the giant-tour. Essentially, our approach can be clas-
sified under the family of memetic algorithms for the VRP pro-
posed by Prins (2004).

The contributions of this study are threefold. First, we introduce
a new but practical scheduling problem that considers regulated
working hours in multiperiod planning with a profit maximization
objective. Second, we provide an effective memetic algorithm (MA)
for the problem that incorporates a fast greedy procedure for the
optimal decoding of giant-tour chromosomes. Third, our dataset
and comprehensive experimental results serve as a baseline for fu-
ture researchers working on this and related problems.

The remainder of this paper is organised as follows. In Section 2,
we briefly describe the relevant literature, including studies con-
cerning working hour regulations and the team orienteering prob-
lem (TOP). We then provide a formal definition of the mVRPP in
Section 3. In Section 4, we introduce our memetic algorithm ap-
proach, which combines a genetic algorithm with a local improve-
ment procedure to solve this problem. To evaluate our approach,
Section 5 reports the series of experiments that we conducted
based on modified existing benchmark instances for related prob-
lems. And with some suggestions for future research in this area,
Section 6 closes our study.

2. Related work

Many variations of the vehicle routing problem (VRP) have been
studied in existing literature. In most cases, the objective of the
VRP variant is to minimize the number of vehicles used and/or
the total travel distance. This is different from the mVRPP, whose
objective is to maximize the total profit. We refer the reader to
Laporte (2007) for an overview of the VRP. In addition, Toth and
Vigo (2002) and Golden et al. (2008) provide detailed discussions
on the state of the art for the VRP and its future research directions.

One of the defining characteristics of the mVRPP that distin-
guishes it from other VRP variants is the consideration of working
hour regulations. Savelsbergh and Sol (1998) studied a dynamic
and generalized pickup and delivery problem in which lunch
breaks and night breaks must be taken within fixed time intervals,
while Powell et al. (2000) and Campbell and Savelsbergh (2004)
considered the maximum number of working hours permitted dur-
ing a tour as capacity restrictions. Tan et al. (2007) considered reg-
ular working hours and overtime as soft constraints. Velasco et al.
(2009) studied a pickup and delivery problem that considers the
time availability of a helicopter due to the limit on fuel capacity.
Recently, some researchers have investigated certain routing and
scheduling problems under specific sets of actual working hour
regulations. Xu et al. (2003) applied column generation techniques
to solve a heterogeneous vehicle pickup-and-delivery problem
involving several practical constraints such as nested loading and
unloading order constraints on loads, and working hour restric-
tions by the United States Department of Transportation. By using
fast heuristics to solve the sub-problems, they generated a
near-optimal solution for several randomly-generated problems.
Similarly, Goel (2009), Goel (2010) and Kok et al. (2010) studied
a combined vehicle routing and driver scheduling problem under
the European Union regulations for drivers. Goel (2009) proposed
two scheduling approaches embedded into a large neighbourhood
search algorithm; Kok et al. (2010) proposed a dynamic program-
ming algorithm that extends the scheduling approach and consid-
ers the ignored regulations in Goel (2009); and Goel (2010)
presented a procedure which is always able to find a feasible sche-
dule compliant with the EU regulations if one exists.

Most existing work on routing and scheduling problems with
working time considerations concerns truck drivers, which in-
volves different factors compared to our inspector scheduling
problem. There is relatively less existing research on the routing
and scheduling of field technicians. Bostel et al. (2008) developed
a memetic algorithm and a column generation technique for a field
technician planning problem over a rolling horizon that considers
time windows and lunch breaks, and the technicians are required
to start and end their working days at the depot. Qin et al.
(2009) proposed a tabu search approach to solve the single vehicle
version of the mVRPP.

The other defining characteristic of the mVRPP is its profit max-
imization objective. This is different from most other VRP variants
in literature, whose objective is usually to minimize the number of
vehicles used and/or the total travel distance. A previously studied
problem with this objective is the team orienteering problem
(TOP), which requires the determination of a set of routes maxi-
mizing the total reward of nodes visited during a single period with
a distance limit; this is a special case of the mVRPP (where the
number of periods D = 1). Existing research on the TOP has focused
on developing meta-heuristic algorithms to solve the problem. The
first published TOP heuristic was developed by Chao et al. (1996).
Several meta-heuristic algorithms have been subsequently pro-
posed, including tabu search (Tang and Miller-Hooks, 2005), vari-
able neighbourhood search (Archetti et al., 2007), ant colony
optimization (Ke et al., 2008), GRASP (Souffriau et al., 2010) and
memetic algorithm (Bouly et al., 2010). For further details about
the TOP, we refer the reader to the survey by Vansteenwegen
et al. (2011).

The multiperiod planning horizon of the mVRPP is related to the
periodic vehicle routing problem (PVRP) (Cordeau et al., 1997). In
the PVRP, two types of decisions are involved in the planning,
namely determining the visiting sequence of each location and
the routing plan for each period. Population-based algorithms
using a giant-tour representation have been shown to be effective
for the PVRP. Mendoza et al. (2009) developed a distance-
constrained routing module for a decision support system to
resolve an auditor routing problem over multiple periods. The
module includes two memetic algorithms to generate routing
plans, and two integer-programming clustering models to balance
the workload of each auditor over periods. However, the PVRP usu-
ally requires each vehicle to return to the depot at the end of each
period. This requirement gives the PVRP (and its solution techniques)
a very different flavour from the mVRPP. Another problem with a
multiperiod planning horizon is the periodic capacitated arc routing
problem, which was examined by Chu et al. (2006) who also em-
ployed a giant-tour representation in their scatter search approach.
3. Problem description

The multiperiod vehicle routing problem with profit (mVRPP) is
defined on a complete undirected graph G = (V,E), where

Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584 575
V = {0, . . . ,n} is the set of nodes, and E = {(i, j)ji, j 2 V} is the set of
edges. Each node i has an associated reward (or profit) wi, and
an associated service time si. The depot node is labelled 0 with re-
ward w0 = 0 and service time s0 = 0. Each edge (i, j) 2 E has a non-
negative cost cij, where cij is the travel time between i and j, and
the travel time matrix satisfies the triangle inequality. There are K
vehicles that begin at the depot. The objective of the mVRPP is to
schedule K routes, each starting and ending at node 0, in the
planning horizon consisting of D periods such that the total re-
ward collected from all visited nodes is maximized. We assume
that when a vehicle visits a node, the service begins immediately.
Furthermore, each node can be visited at most once, and the
accumulated travel time in any period for a vehicle cannot exceed
a limit L.

Since a vehicle begins service immediately upon arriving at a
node, we can convert the graph G into a complete bidirected graph
where the cost of each edge is (i, j) is cij + sj, and solve the equiva-
lent problem; this eliminates the necessity of explicitly considering
the service time si for each node i. For the remainder of this paper,
we employ this alternative problem representation, and assume
that the cost of each directed edge cij includes the service time
for node j.

We denote a feasible solution to the mVRPP by S, which is a set
of K routes, i.e. S = {r1,r2, . . . ,rK}. Each route starts and ends at the
depot. A route rk ¼ r1

k ; r
2
k ; . . . ; rD

k

� �
is divided into D sub-routes

called trips, where rd
k is a sequence of nodes representing a trip in

period d. We denote the starting and ending nodes of trip rd
k by

v s rd
k

� �
and ve rd

k

� �
, respectively. We assume the vehicle stays at

the node ve rd
k

� �
at the end of period d, and the vehicle will start

a new trip from ve rd
k

� �
in next period, i.e. ve rd

k

� �
¼ v s rdþ1

k

� �
,

d 6 D � 1. Note that v sðr1
kÞ ¼ ve rD

k

� �
¼ 0. A vehicle may return to

the depot before period D, whereupon it remains at the depot for
the rest of the planning horizon.

Fig. 1 illustrates an example of an mVRPP solution S = {r1,r2}
involving K = 2 routes and D = 3 periods. The route r1 ¼ r1

1; r
2
1; r

3
1

� �

comprises three trips, where r1
1 ¼ ð0;1;2Þ; r2

1 ¼ ð2;3;4Þ and
r3

1 ¼ ð4;5;0Þ. In the first period, the vehicle starts from node 0
and visits nodes 1 and 2 to collect their respective rewards. At
the end of the first period, the vehicle stays in node 2. In the second
period, the vehicle departs from node 2, visits nodes 3 and 4, and
stays at node 4. Finally, in the third period the vehicle departs from
node 4, visits node 5 and returns to the depot (node 0).

Let T rd
k

� �
be the total travel time for route k in period d. A trip rd

k

is feasible if T rd
k

� �
6 L, and all non-depot nodes in rd

k are visited at
most once. A route rk is feasible if all its trips are feasible, and all
non-depot nodes in rk are visited at most once. A solution S is fea-
sible if all its routes are feasible, and all non-depot nodes are vis-
ited at most once.

Let W(S) be the total amount of reward collected by solution S.
We similarly define W rd

k

� �
and W(rk) to be the collected rewards by

trip rd
k and route rk, respectively. A solution S is optimal if W(S) is

maximum among all feasible solutions.
Fig. 1. An example of
4. Memetic algorithm

Algorithm 1 presents the overall process of our MA approach to
solve the mVRPP. The population P consists of a set of chromo-
somes, which are initialized with randomly generated permuta-
tions at the start of the algorithm. In each generation, we create
an offspring population Pnew as follows. First, we uniformly ran-
domly select two members of P and apply a crossover operation,
producing two new chromosomes that we place into Pnew; this con-
tinues until there are off_size chromosomes in Pnew. Next, we per-
form a mutation operation on each member of P [Pnew with
probability q. Finally, we apply a local improvement procedure
on each chromosome in P [Pnew. The best pop_size chromosomes
from P [Pnew are selected to be the initial population P for the next
generation. Whenever a new solution is formed at any stage of the
process, it is evaluated and the best solution found is retained. The
algorithm runs until max_iter consecutive generations have oc-
curred where the best solution found has not been updated.

Algorithm 1. Process of the Memetic Algorithm

1 P pop_size randomly generated permutations;
2 repeat
3 New offspring population Pnew ;;
4 repeat
5 Uniformly randomly select two parent chromosomes

from P;
6 Produce two offspring from the parent chromosomes

using Crossover;
7 Put offspring chromosomes into Pnew;
8 until jPnewj = off_size;
9 P0 P [Pnew;
10 Perform Mutation on each chromosome in P0;
11 Perform Local Improvement on each chromosome in P0;
12 P ;;
13 Put the pop_size best chromosomes from P0 into P;
14 until max_iter consecutive non-improving generations have

occurred;

In the remainder of this section, we describe the various compo-
nents of our MA, namely the giant-tour chromosome representa-
tion, crossover operation, mutation operation and local
improvement procedure. How the values for the various parame-
ters involved in our approach are determined is discussed in
Section 5.2.
4.1. Chromosome encoding and decoding

In our MA, each chromosome is a ‘‘giant-tour’’, which is simply
a permutation of the set of nodes {1, . . . ,n}. This idea was first
routes and trips.

576 Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584
proposed by Beasley (1983) as part of a route-first cluster-second
heuristic, and was subsequently applied by Prins (2004) to the first
competitive memetic algorithm for the VRP with chromosomes en-
coded as giant-tours and evaluated by a splitting procedure. Re-
cently, this approach has been applied to other variants of the
vehicle routing problem, including heterogeneous fleets (Prins,
2009), pickup and delivery VRP (Velasco et al., 2009) and a two-
level (truck and trailer) routing problem (Villegas et al., 2010).

Given a giant-tour p, we can convert it into a solution to the
mVRPP by partitioning it into K + 1 sub-sequences. The first K
sub-sequences correspond to the K vehicle routes, while the last
sub-sequence contains the set of unvisited nodes. The solution
is feasible if all of the K vehicle routes are feasible. For ease
of discourse, we use the symbol S to represent a feasible parti-
tion of p as well as the mVRPP solution corresponding to that
partition.

We now describe a greedy procedure called split that converts a
given giant-tour p = (p1,p2, . . . ,pn), pi 2 {1, . . . ,n}, into a feasible
mVRPP solution S. Consider hk = (pj,pj+1, . . . ,pn), where k 6 K, which
is a sub-sequence of p. We can divide hk into two parts dk and hk+1

by choosing a suitable cut-point i, j 6 i 6 n. The first part dk = (pj, -
. . . ,pi) is a sequence of nodes that can be converted into a feasible
route rk; the remaining nodes hk+1 = (pi+1, . . . ,pn) are a new se-
quence of nodes. After K executions of this split procedure on p
starting with h1 = p, we have K feasible routes and a sequence
hK+1 of unvisited nodes. Note that if there does not exist an appro-
priate cut-point i, then the corresponding route will be empty.

For a given sequence hk, only some nodes can be a cut-point.
Observe that for any node pi+1, if c0;piþ1

> L, then a feasible route
cannot begin from pi+1. Therefore, any node pi 2 hk can be classified
into one of three sets VA, VB or VC as follows:

� pi 2 VA if (pj, . . . ,pi) can be converted into a feasible route and
cpiþ1 ;0 6 L.
� pi 2 VB if (pj, . . . ,pi) can be converted into a feasible route but

cpiþ1 ;0 > L.
� pi 2 VC if (pj, . . . ,pi) cannot be converted into a feasible route.

Hence, i is not a valid cut-point if pi 2 VC, but is a valid cut-point
otherwise.

To determine if a sequence (pj, . . . ,pi), i 6 n can be converted
into a feasible route, we first compute the vehicle’s earliest arrival
time at each node in hk. The earliest arrival time at node pi is rep-
resented by a two-dimensional label:

li ¼ ðdi; tiÞ;

where di, 1 6 di 6 D, denotes the arrival period and ti represents the
accumulated travel time since the beginning of period di. If a se-
quence (pj, . . . ,pi), i 6 n can be converted into a feasible route, then
the label li satisfies one of the following conditions:

� di = D and ti þ cpi ;0 6 L;
� di < D and cpi ;0 6 L .

On the other hand, the sequence is infeasible if the label li sat-
isfies one of the following cases:

Case 1 di = D and ti þ cpi ;0 > L;
Case 2 di > D.

For Case 1, the node pi can be reached in the last period, but the
accumulated travel distance to the depot will exceed the limit.
Since cpi ;j þ cj;0 P cpi ;0 for all nodes j, all nodes after pi will also
not be valid cut-points. Case 2 indicates that the node cannot be
reached within the planning horizon.
Algorithm 2. Greedy labelling procedure getcut

Input hk = (pj,pj+1, . . . ,pn): a sequence of distinct nodes
Output icut: the index of the last node in route rk

1 i j;
2 Current period d 1;
3 Accumulated travel time t 0;
4 Current node last the depot;
5 Cut-point icut the depot;
6 while i 6 n do
7 if t þ clast;pi

6 L then
8 t t þ clast;pi

;
9 last pi;
10 if k < K and ((di = D and ti þ cpi ;0 6 L) or (di < D and

cpi ;0 6 L)) and c0;piþ1
6 L then icut i //pi 2 VA

11 if k = K and ((di = D and ti þ cpi ;0 6 L) or (di < D and
cpi ;0 6 L)) then icut i //pi 2 VA [VB

12 if d = D and t þ cpi ;0 > L then break;
13 (di, ti) (d, t);
14 i i + 1;
15 else
16 d d + 1;
17 t 0;
18 If d > D then break;
19 end
20 end
21 return icut;
Algorithm 3. The split procedure

Input p = (p1,p2, . . . ,pn): the chromosome
Output S = (d1, . . . ,dK,dK+1): an optimal partition of p

1 k 1;
2 j 1;
3 h1 (p1, . . . ,pn);
4 while k 6 K do
5 icut getcut(hk);
6 dk ðpj; . . . ;picut Þ;
7 if k < K and dk is empty then
8 k K;
9 else
10 k k + 1;
11 j icut + 1;
12 end
13 hk (pj, . . . ,pn);
14 end

Given the above observations, we can use the greedy labelling
procedure getcut given in Algorithm 2 to find the largest cut-point
in a given sequence of distinct nodes hk = (pj, . . . ,pn). The procedure
calculates the earliest arrival time li of the nodes sequentially. In
each iteration, the current period d and the accumulated travel
time t (where t cannot exceed L) is updated. As long as the current
node is in VA or VB, it is a valid cut-point (lines 10–11). However,
the labelling procedure terminates once the current node is in VC,
which is divided into Case 1 (line 12) and Case 2 (line 18). This pro-
cedure returns the largest valid cut-point, which maximizes the
profit of the current route.

To convert a giant-tour chromosome into a feasible mVRPP
solution, we use the procedure split shown in Algorithm 3 that
employs getcut as a subroutine. The algorithm begins with the

Table 1
Solutions produced on the example problem.

(a) Solution by split procedure

Route 1 Length
Trip 1 0 ? 1 ? 2 16
Trip 2 2 ? 3 ? 4 19
Trip 3 4 ? 0 13

Route 2 Length

Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584 577
giant-tour p as the first sequence of distinct nodes h1. In each iter-
ation, the maximal cut-point icut is determined by the getcut proce-
dure, and the route dk ¼ ðpj; . . . ;picut Þ and a new sequence of
distinct nodes hk+1 are generated. Note that if dk is empty, then
we simply label the last sequence dK (line 7).

Theorem 1. For the given giant-tour p, the partition S found by the
split procedure is optimal in terms of collected reward.
Trip 1 0 ? 5 17
Trip 2 5 ? 6 ? 7 19
Trip 3 7 ? 8 ? 0 20

(b) Solution by naive greedy procedure
Route 1 Length
Trip 1 0 ? 1 ? 2 16
Trip 2 2 ? 3 ? 4 19
Trip 3 4 ? 5 ? 0 20

Route 2 Length
Trip 1 0 ? 0 0
Trip 2 0 ? 0 0
Trip 3 0 ? 0 0
Proof. Let S⁄ be an optimal partition of p, and assume sequence
d�h ¼ ðpj; . . . ;piÞ is the first sequence in S⁄ that is different from
S = (d1, . . . ,dK,dK+1).

When h = K, pi must be the node with the largest index in the
node set VA [VB of dK. However, this is the node chosen by the split
procedure, which contradicts the assumption that d�h is the first
sequence that is different from S.

When h < K, the corresponding sequence in S is dh ¼ ðpj; . . . ;pi0 Þ
and i0 > i. We have d�h ¼ ðpj; . . . ;piÞ and d�hþ1 ¼ ðpiþ1; . . . ;plÞ.
Observe that when we replace d�h and d�hþ1 with (pj, . . . ,pi+1) and
(pi+2, . . . ,pl) (i.e., set the first node in d�hþ1 to be the last node in d�h),
the resultant solution is still feasible and the same amount of
reward is collected. We can repeat this procedure until the
resultant solution is the same as S. Therefore, S is optimal. h

The following example demonstrates our split procedure. Sup-
pose the input graph G is as given by Fig. 2a, the number of vehicles
K = 2, the number of periods D = 3, the working time limit L = 20,
and each node i, i = 1, . . . ,n has a service time si = 2. The corre-
sponding bidirected graph G0 for the alternative problem represen-
tation is given by Fig. 2b. Consider the giant-tour
p = (1,2,3,4,5,6,7,8,9,10); the solution produced by the split pro-
cedure is given by Table 1a, which obtains the rewards for nodes
1–8. In contrast, a naive greedy procedure that simply maximizes
the number of nodes visited per route would produce the solution
given by Table 1b, which only visits nodes 1–5 because the cost of
the edge from the depot to node 6 exceeds L. This example illus-
trates why the consideration of nodes in the sets VA and VB is re-
quired to find the optimal partition.

We now show that the split procedure runs in O(n) time. Given
an optimal partition S = (d1,d2, . . . ,dK,dK+1) generated by the split
procedure, consider dk = (pj, . . . ,pi) and dk+1 = (pi+1, . . . ,ph),
1 6 k < K. Observe that the getcut subroutine, when given hk as in-
put, labels fewer than jdkj + jdk+1j nodes; if this is not the case, then
ph will be labelled with the label lh and does not fulfil either termi-
nation criterion (i.e., dh 6 D and th þ cph ;0 6 L). This implies that
(pj, . . . ,ph) can be converted into a feasible route, which contradicts
the fact that getcut returns the largest cut-point. Since the total
number of nodes labelled is less than

PK
k¼1jdkj þ jdkþ1j < 2n, the

split procedure runs in O(n) time.
1

2

3

4

5

0

48

11

4

13

6
3

5

7

8

9
6

10

15

8

11

9

19

10

7

4
7

10

(a) GraphG

10

Fig. 2. An mVRP
Note that we now have an O(n � n!) exact algorithm for the
mVRPP by trying each of the n! possible giant-tours (which is just
a permutation of {1, . . . ,n}) and finding its optimal partition using
split in O(n) time.
4.2. Crossover

In each generation, we use an order-based crossover (OX) opera-
tor to generate all offspring chromosomes, which is a common
crossover operator for both the travelling salesman problem
(TSP) (Oliver et al., 1987) and the VRP (Prins, 2004). We performed
some preliminary experiments with both the one-point and the
two-point versions of the OX operator; the results suggested that
both operators provide similar performance. Hence, we selected
the simpler one-point crossover operator for our approach.

Given two randomly selected parent chromosomes, the one-
point OX operation consists of three steps. First, a crossing point
(between two genes) is selected at random. Next, the nodes of each
chromosome up to the crossing point are copied to the offspring
chromosomes C1 and C2, respectively, at the same locations. Final-
ly, the remaining genes of each offspring are constructed in the or-
der determined by the other parent chromosome.

Fig. 3a shows an example of the one-point OX operation on two
randomly selected parent chromosomes P1 and P2 where the
selected crossing point is between positions 2 and position 3. The
offspring chromosome C1 is generated by first copying the left
sub-sequence of P1, i.e. (1,2,5). We then scan each gene in P2 in
order, and copy the non-duplicated genes to the end of C1 in that
1

2

3

4

5

0

6

 4

10

13

6 15

13

6
5

7

7

8

9
8

6

12
10

17
15

8

10

11
13

9
11

19
21

10

12

9

6
9

12

(b) GraphG

10

P example.

(a) An example of one-point
crossover

(b) An example of mutation operator

Fig. 3. Examples of memetic operators.

578 Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584
order. The other offspring chromosome C2 is obtained in the same
way.

4.3. Mutation

After applying the crossover procedure, our candidate pool con-
sists of both the parent and the offspring population. We then per-
form a mutation operation on every chromosome, which
introduces some random variation into the chromosomes. The
aim is to prevent the algorithm from being trapped in local optima
and to maintain diversity in the population.

Our mutation operation works as follows. Each gene in the
chromosome has a probability of q to be chosen for mutation. If
chosen, the gene is swapped with another randomly selected gene.
Fig. 3b shows an example where a single gene was selected for
mutation. We empirically determined that q = 0.005 is a suitable
value for our test data (see Section 5.2).

4.4. Local improvement process

After the crossover and mutation operations, we apply a local
improvement approach to improve chromosomes in the candidate
pool. Let W(S) and t(S) be the total reward and total travel time for
a solution S, respectively. Algorithm 4 shows the overall process of
our approach, which is applied on a single giant-tour chromosome.

Algorithm 4. Local improvement procedure
1 S input chromosome;
2 repeat
3 for each operator

op 2 {exchange,2 � opt,relocate,segment �move} do
4 S0 op(S);
5 if W(S0) > W(S) or (W(S0) = W(S) and (t(S0) < t(S))

then S S0;
6 then
7 until LIP_iters consecutive non-improving iterations have

occurred;
8 S TSPP(S);

In each iteration, we first apply four simple heuristic operators
exchange, 2-opt, relocate and segment-move on the chromosome in
this order. Given the current chromosome S = (p1,p2, . . . ,pn), let x, y
and z,x < y < z, be three uniformly randomly selected distinct indi-
ces in the chromosome. These operators modify it to produce a
new chromosome S0 as follows:

Exchange Exchange px and py, i.e., S0 = (p1, . . . ,px�1,py,px+1, . . . ,
py�1,px,py+1, . . . ,pn); this is similar to our mutation operator.
2-opt Reverse the sequence (px, . . . ,py) in place, i.e., S0 =
(p1, . . . ,px�1,py,py�1, . . . ,px, . . . ,pn).
Relocate Move py to the position just before px, i.e.
S0 = (p1, . . . ,py,px, . . . ,py�1,py+1, . . . ,pn).
Segment-move Swap two consecutive segments (px, . . . ,py) and
(py+1, . . . ,pz), i.e., S0 = (p1, . . . ,px�1,py+1, . . . ,pz,px, . . . ,py,pz+1,
. . . ,pn).

Given the new solution S0 generated by an operator and the ori-
ginal current solution S, the new solution replaces the current solu-
tion if its total reward is greater, or if its reward is equal but total
travel time is less. We repeat this process until LIP_iters consecu-
tive iterations have occurred where the current solution S has
not been replaced. In our implementation, we set LIP_iters = 800
after some preliminary experiments (see Section 5.2).

Finally, we attempt to improve the resultant solution using a
dynamic programming (DP) approach. Given the nodes for a trip
within a period, finding the path with the lowest travel cost for
these nodes is a travelling salesman path problem (TSPP), which
is a well-known NP-hard problem. However, when the number of
nodes visited is small (e.g., 610 nodes), the dynamic programming
algorithm proposed by Bellman (1962) is able to find the
optimal sequence efficiently. Hence, for each sub-sequence
rk

d ¼ ðpx; . . . ;pyÞ representing a trip from S, we perform this DP
algorithm on the set of nodes {px+1, . . . ,py�1}, and replace the
sub-sequence with the solution. Note that the starting node px

and the ending node py of the trip are considered to be the fixed
source and destination, respectively. Moreover, since the DP al-
ways generates a sequence with travel cost no more than the ori-
ginal sequence, we always perform the replacement.
5. Experiments and analysis

In order to evaluate the performance of our proposed MA, we
conducted several computational experiments on two classes of
test data. The algorithm was coded in C++, and all experiments

Table 2
Trade-off between solution quality and computation time.

Modification Improvement
(%)

Time
increment (%)

Set max_iter = 200, LIP_iter = 800,
pop_size = 20

0.302 77.5

Set max_iter = 100, LIP_iter = 1600,
pop_size = 20

0.363 95.6

Set max_iter = 100, LIP_iter = 800,
pop_size = 40

0.272 67.1

Disable TSPP operator �0.055 �14.7

Table 3
Parameter tuning for q.

max_iter LIP_iter pop_size off_size q Avg. gap (%) Avg. CPU

100 800 20 20 0 1.14 21.97
100 800 20 20 0.005 0.88 38.47
100 800 20 20 0.01 1.17 38.07

Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584 579
were performed on a PC with a 2.27 gigahertz Xeon processor and
8 gigabyte of RAM.

5.1. Computational data

Our computational data is divided into two classes. The Class I
instances were derived from existing benchmark data for the
team orienteering problem (TOP), which is identical to the mVRPP
except that it only involves a single period. This data was origi-
nally generated by Chao (1993), and was subsequently filtered
by Archetti et al. (2007) who removed the instances that had
obvious optimal solutions or were obviously infeasible. Although
there are seven sets of data, we only consider set 7, which is the
only group where the starting and ending destinations are identi-
cal. The graph G for all instances in this class are identical (taken
from an instance of the period routing problem by Christofides
and Beasley (1984)), which consists of 102 nodes with a total
profit of 1498; the instances differ only in the maximum travel
time Tmax and the number of vehicles K = 2,3,4. Currently, the best
TOP results are held by Bouly et al. (2010) and Vansteenwegen
et al. (2011).

Given a TOP instance with maximum travel time Tmax, we can
convert it into an mVRPP instance by dividing the single working
period into D sub-periods, where the working time restriction for
each period is set to be L = Tmax/D. We modified the 43 instances
of the original test set in this manner for D = 2 and D = 4. Combined
with the unmodified data (D = 1), we have a total of 129 instances
in Class I. All other characteristics (e.g., the location coordinates,
node rewards and the number of vehicles) were unchanged, and
service times are ignored, i.e., "i2Vsi = 0. The original TOP instances
can be found at http://prolog.univie.ac.at/research/OP/.

The Class II instances were derived from the 8 benchmark in-
stances for the vehicle routing problem with distance restriction
(DVRP) created by Golden et al. (1998). The DVRP differs from
the mVRPP in that the objective is to fulfil the demand at all loca-
tions using the lowest travel cost given a distance restriction Tmax,
and there is only one period. The customers in these instances are
located in concentric circles around the depot. To the best of our
knowledge, the latest investigation of the DVRP on this data set
with sufficiently detailed results for comparison was conducted
by Groër (2008); while there are more recent publications on the
DVRP (Nagata and Bräysy, 2009; Prins, 2009), they do not provide
individual route details.

We convert a given DVRP instance with maximum travel time
Tmax into an mVRPP instance as follows. Given the best solution
found by Groër (2008) for the DVRP, we set the number of routes
K to be the number of vehicles used in the solution, and set Tmax

to be the longest time taken by any vehicle in the solution. Then,
we set the total working time restriction per period to be L = Tmax/
D. We performed this modification for D = 1,2,4. The demand for
each node is assigned in two ways:

� For the Group 1 instances, the reward for each node wi = 1.
� For the Group 2 instances, the reward wi for each node is the

demand in the original instances by Golden et al. (1998).

Group 1 produces mVRPP instances in which the goal is to cover
as many nodes as possible, while Group 2 simply follows the de-
mand distribution by Golden et al. (1998). There are 24 instances
per group (eight instances for each of D = 1,2,4), for a total of 48
Class II instances. Once again, the service times for all nodes are
set to zero. Note that these instances contain 240–440 nodes and
the number of vehicles K ranges from 5 to 10, so the scale of these
instances is larger than for Class I. To download the Class II test
data, it can be found at http://www.rhsmith.umd.edu/faculty/
bgolden/vrp_data.htm.
5.2. Parameter tuning

Our parameter tuning tests were performed using six of the
Class I instances where D = 1, namely p7.2.s, p7.2.t, p7.3.s, p7.3.t,
p7.4.s and p7.4.t. For each instance, we conducted five independent
runs using different random seeds and took the best solution. Be-
cause the MA approach contains five parameters, in order to find
appropriate values for these parameters, we conducted two
parameter tuning experiments.

In the first experiment, we deactivated the mutation operation
by setting the mutation probability q = 0, and then used a full fac-
torial design to determine the remaining four parameters. The
maximum number of consecutive non-improving generations
max_iter 2 {50,100} determines the amount of time invested to
search for the optimal solution. The number of iterations of neigh-
bourhood operations LIP_iters 2 {200,500,800} in the local
improvement process controls the intensification of the search. Fi-
nally, both the size of the retained population pop_size 2 {5,10,20}
and the number of offspring generated off_size 2 {5,10,20} affect
the convergence reliability and speed of the overall algorithm.
Due to page limit, the table of detailed results is not reported in
this paper. The experiment shows that using the values max_
iter = 100, LIP_iter = 800, pop_size = 20, and off_size = 20 produces
the best solutions using just under 22 CPU seconds on average,
which is sufficiently fast for our purposes. Consequently, we adopt
these values for the remainder of our experiments.

Furthermore, the experiment reveals that increasing any of the
three parameters max_iter, LIP_iter or pop_size produces an
improvement in solution quality at the expense of added computa-
tion time. Therefore, the practitioner can further tune the algo-
rithm in order to balance the trade-off between solution quality
and computational time depending on the practical situation. Ta-
ble 2 shows the percentage improvement in the solution quality
of our MA approach when we double one of these three parame-
ters, along with the percentage increase in computation time. We
see that doubling the number of non-improving iterations LIP_iter
of the local improvement procedure has the largest positive impact
on solution quality, but requires almost double the computation
time. Doubling the overall number of non-improving iterations
max_iter or the population size pop_size produces more modest
improvements and uses correspondingly less time. Finally, the last
row shows that omitting the TSPP dynamic program in the local
improvement procedure would speed up the algorithm by about
15% for a slight decrease in solution quality.

The purpose of the second experiment is to determine an appro-
priate mutation probability q. Using the above parameters, we

http://prolog.univie.ac.at/research/OP/
http://www.rhsmith.umd.edu/faculty/bgolden/vrp_data.htm
http://www.rhsmith.umd.edu/faculty/bgolden/vrp_data.htm

580 Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584
tested the values of q = {0,0.005,0.01}. As the results in Table 3
show, the value of q = 0.005 produced the best performance.
Hence, we set q = 0.005 for the remainder of our experiments.

5.3. Results for Class I instances

We compared the performance of our MA approach on the Class
I instances with D = 1 with the best existing TOP approaches in lit-
erature. These algorithms are:

� TMH: A tabu search heuristic by Tang and Miller-Hooks (2005)
� GTP: A tabu search with penalty strategy by Archetti et al.

(2007)
� ASe: A sequential ant colony optimization technique by Ke et al.

(2008)
� FPR: The fast path relinking approach by Souffriau et al. (2010)
� SPR: The slow path relinking approach by Souffriau et al. (2010)

We also devised an iterated local search (ILS) approach that is
similar to our MA approach except for the following changes: (1)
size of the population pop_size is one; (2) the crossover operation
is omitted; and (3) the mutation probability q is set to 0.05 so that
the mutation operator works as the perturbation device for the
iterated local search. We use this ILS approach primarily to provide
a basis of comparison for our MA for the instances with D = 2,4.

In addition, we also provide a comparison with five simple heu-
ristics that a human scheduler would employ. The five heuristics
are:

H1 Begin with an empty route r1. Repeatedly append the feasi-
ble node resulting in the smallest added travel distance to r1

until no such node exists. Continue this process with
r2, . . . ,rK.

H2 Same as H1, except the node appended is the one with
smallest travel distance divided by reward.

H3 Begin with K empty routes r1, . . . ,rK. Set d = 1. Repeatedly
append the feasible node resulting in the smallest added tra-
vel distance to period d of r1 until no such node exists. Per-
form this process with r2, . . . ,rK. Continue with d = 2, starting
once again with r1, until the trips for d = D periods for all
routes have been constructed.
Table 5
Summarized results for MA on Class I instances.

Periods #instances K Greedy gap (%)

D = 1 17 2 22.70
13 3 19.63
13 4 23.79

Average – – 22.10

D = 2 17 2 25.17
13 3 22.25
13 4 26.71

Average – – 24.75

D = 4 17 2 40.08
13 3 43.99
13 4 53.68

Average – – 45.38

Table 4
Comparison with TOP approaches on Class I instances with D = 1.

TMH FPR GTP SPR

Avg. gap (%) 1.154 0.536 0.429 0
Avg. CPU 432.6 6.3 158.97 272
H4 Same as H3, except the node appended is the one with
smallest travel distance divided by reward.

H5 Begin with K empty routes r1, . . . ,rK. Select the feasible node
with the largest reward, and append it to the route resulting
in the smallest added travel distance. Repeat until no such
node exists.

Heuristics H1 and H2 construct the solution one route at a time,
heuristics H3 and H4 perform the construction one period at a
time, and heuristic H5 greedily adds the node with the greatest re-
ward into the solution. We have conferred with the planners, who
confirmed that their human-generated schedules were produced
using similar heuristic rules.

The results are summarized in Table 4. The meanings of Avg Gap
and Avg CPU are the same as for Table 3. In terms of average gap,
our MA approach ranks third with a gap of 0.071%, which is less
than 0.1% behind ASe (0.002%) and SPR (0.041%). This result is
achieved in about 3 min, which is a shortter running time com-
pared to ASe and SPR on a comparable machine configuration.
Our approach is therefore competitive when applied to the TOP
even though it is designed for the mVRPP (the existing TOP ap-
proaches cannot be applied to the mVRPP without major modifica-
tion). Note that the gap between the best greedy heuristic and the
best known TOP solutions is above 22% on average, which indicates
that the greedy approaches that a human scheduler would use are
relatively poor.

Table 5 summarizes the results for all the Class I instances with
D = 1,2,4, where we compare the performance of our MA and ILS
algorithms. The column #instances gives the number of instances
in the test set, the column K is the number of vehicles, and the col-
umn Greedy Gap gives the gap between the best solutions found by
the five greedy heuristics and the best known TOP solutions.

For the multiperiod instances (D = 2 and D = 4), there are no
existing results to provide a completely fair comparison. However,
the best known solution for the corresponding single period (D = 1)
instance is likely to be an upper bound. Thus, we use of the same
best known solutions for the single period instances as a reference
to evaluate the quality of our approach, although naturally the
gaps will be larger.

Our experiments confirmed that for multiperiod instances, the
number of assigned tasks is less than the corresponding single
MA ILS

Avg. gap (%) Avg. CPU Avg. gap (%) Avg. CPU

0.04 14.27 2.025 0.47
0.13 18.51 2.034 0.79
0.06 23.22 1.702 0.91
0.07 18.26 1.930 0.70

1.69 15.51 4.009 0.51
1.95 24.74 4.578 0.86
4.02 24.91 5.977 0.99
2.47 21.14 4.776 0.76

7.41 15.82 9.594 0.53
7.88 22.94 10.830 0.78

21.20 24.44 23.152 0.70
11.72 20.57 14.067 0.66

ASe MA ILS Greedy

.041 0.002 0.071 1.930 22.10

.8 303.5 182.6 7.0 –

Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584 581
period instance and results in a decrease in total reward obtained.
This shows that the number of periods is a significant factor.
Hence, approaches that do not explicitly consider the effect of
working hour restrictions may not be directly portable to problems
where the planning horizon is periodic.

The detailed experimental results for the Class I instances are
reported in Table 6, and can serve as benchmarks for future
researchers on this problem. Interestingly, the solution produced
by our MA approach for the instance p7.3.t improved on the best
known solution.

5.4. Results for Class II Instances

Recall that the Class II instances are derived from DVRP in-
stances based on the solutions found by Groër (2008). When
D = 1, the route corresponding to this solution (that visits all nodes)
is optimal for the mVRPP instance, with a total reward of

P
i2V wi.

When D = 2 or D = 4, we use the same total reward value
P

i2V wi

as a naive upper bound on the solution for comparison.
Our experimental results on Group 1 of the Class II instances,

where the reward for each node is 1, is reported in Table 7. For each
instance, we report the worst reward (Zmin), the best reward (Zmax),
the average reward (Zavg) and the average travel distance (Cavg)
Table 6
Detailed results for MA on Class I instances.

Instance Best known D = 1 D =

Zmax Zavg Avg. CPU Zma

p7.2.d 190 190 190 0.383 17
p7.2.e 290 290 289.6 1.251 27
p7.2.f 387 387 386.3 3.328 37
p7.2.g 459 459 459 3.775 45
p7.2.h 521 521 521 4.324 51
p7.2.i 580 580 577.9 13.289 57
p7.2.j 646 646 640.7 12.164 63
p7.2.k 705 705 700.2 9.008 69
p7.2.l 767 767 761.2 14.442 7
p7.2.m 827 827 820.5 20.083 81
p7.2.n 888 887 873 15.549 87
p7.2.o 945 945 936.6 16.419 92
p7.2.p 1002 1002 989.6 26.009 98
p7.2.q 1044 1044 1039.3 22.527 10
p7.2.r 1094 1093 1086.8 28.153 10
p7.2.s 1136 1131 1123.2 22.83 112
p7.2.t 1179 1179 1169.5 29.084 116
p7.3.h 425 425 424.3 9.167 41
p7.3.i 487 487 485.5 5.139 47
p7.3.j 564 564 561.5 9.534 55
p7.3.k 633 633 632 12.828 62
p7.3.l 684 684 682 9.859 67
p7.3.m 762 762 753.1 13.442 73
p7.3.n 820 820 816.6 24.269 8
p7.3.o 874 874 873.9 23.15 85
p7.3.p 929 925 920.6 21.193 91
p7.3.q 987 987 981.8 30.883 96
p7.3.r 1026 1014 1009.7 22.894 10
p7.3.s 1081 1078 1063.3 23.543 10
p7.3.t 1118 1120 1110.7 34.778 111
p7.4.g 217 217 217 0.718 18
p7.4.h 285 285 285 4.694 26
p7.4.i 366 366 366 2.28 34
p7.4.k 520 520 518.4 17.807 5
p7.4.l 590 590 588.8 19.319 56
p7.4.m 646 646 645.2 16.461 64
p7.4.n 730 727 725.7 15.074 7
p7.4.o 781 781 778.8 44.992 75
p7.4.p 846 846 839.4 21.549 82
p7.4.q 909 907 903.1 18.629 88
p7.4.r 970 970 964.6 36.024 94
p7.4.s 1022 1021 1016.6 50.715 10
p7.4.t 1077 1077 1076.3 53.629 10
from 10 independent runs, along with the average CPU time re-
quired by the corresponding algorithm to find its final solution
(Avg CPU (s)). The column G_Gap gives the average gap from the
best of the five greedy heuristics; this gives an indication of the
amount of improvement our MA approach obtains compared to a
human scheduler who employs simple rules of thumb. We also re-
port under column Gap the average gap between the obtained
solutions and the total profit of all nodes as given by TP.

For D = 1, the average gap between the solutions generated by
MA and the upper bound (which is optimal in this case) is 2.58%.
Considering the scale of the problem, these results show that the
proposed MA approach can effectively find solutions that are close
to optimal in a reasonable amount of time (just over 6 minute on
average). Our ILS approach can also find reasonable solutions (with
an average gap from optimal of 5.22%) using less than 7 second on
average, so our ILS approach is a reasonable alternative if time is a
crucial limiting factor. The quality of the solutions is also high-
lighted by the fact that the best of the 5 greedy heuristics can only
find solutions that are 10.68% away from optimal on average.

When D = 2 and D = 4, the average gaps from the naive upper
bound for MA are 2.79% and 4.92%, respectively. For the solutions
generated by ILS, the average gaps are 7.10% and 8.43%, respec-
tively. Unfortunately, it is difficult to judge the performance of
2 D = 4

x Zavg Avg. CPU Zmax Zavg Avg. CPU

9 179 0.235 105 105 1.301
6 274.9 2.246 254 254 0.72
7 377 2.989 333 331 3.954
5 451.6 5.347 428 423.6 7.622
7 517 3.398 498 498 3.366
5 572.6 7.872 560 558 7.206
9 635.8 19.064 615 610.8 16.649
7 691.8 10.426 679 675.4 11.363

60 753.4 21.146 733 727.2 11.133
7 808.2 19.983 788 783 11.966
1 856.8 11.96 842 835.1 20.757
9 920.3 19.078 914 902 24.255
6 974.5 17.202 959 954.7 30.421

40 1033.3 29.007 1018 1006.4 32.193
84 1077.8 33.95 1059 1053.3 21.507

8 1120.5 31.934 1106 1097.4 29.951
2 1151.9 27.85 1161 1151.7 34.522
7 417 1.173 332 332 1.575
4 473.9 9.823 427 425 6.654
5 551 20.396 500 496.9 15.75
4 615.4 14.426 589 580.4 4.572
5 673.5 12.416 629 628.3 10.051
4 726.1 15.322 704 690.9 20.35

00 798.4 20.987 757 755.8 24.692
3 849.6 25.211 818 807 32.027
2 904.6 37.702 899 897.1 24.95
9 962.8 32.934 948 941.3 26.981

11 1003.3 44.053 984 977.8 22.848
52 1042.6 41.534 1031 1022.8 56.418

6 1098.1 45.692 1070 1063.7 51.3
9 189 0.895 63 63 0.235
9 269 0.624 111 111 0.251
2 342 0.991 267 267 0.814

07 505.4 11.332 383 383 7.28
8 568 9.074 498 498 10.798
1 636.8 11.144 563 561.6 14.128

01 698.6 37.419 627 619.5 19.499
4 746.7 20.964 726 726 17.59
2 820.9 42.665 763 756.6 23.629
2 879.5 44.205 835 823.8 54.024
3 936.7 33.058 889 880.8 46.482

04 996.6 56.672 955 947.9 42.683
51 1041.1 54.82 994 988.7 80.248

Table 7
Results on Group 1 of the Class II instances.

Instance D K L TP G_Gap (%) MA ILS

Zmax Zmin Zavg Cavg Avg. CPU Gap (%) Zmax Zmin Zavg Cavg Avg. CPU Gap (%)

G.01 1 9 648 240 6.25 237 234 235.2 5671.72 130.972 1.25 234 223 227.8 5669.9 3.52 2.50
G.02 1 10 900 320 7.19 317 312 314.4 8689.97 313.441 0.94 312 297 299.9 8779.2 2.69 2.50
G.03 1 10 1171 400 12.00 389 381 385.4 11,401 480.416 2.75 380 362 369.6 11330.8 9.22 5.00
G.04 1 10 1410 480 11.25 461 452 456.7 13935.2 784.98 3.96 444 436 440.8 13821.8 15.66 7.50
G.05 1 5 1302 200 10.00 195 184 188.1 6449.7 74.264 2.50 186 180 183.8 6413.7 1.37 7.00
G.06 1 7 1222 280 16.79 266 260 263 8425.44 160.165 5.00 267 253 258.6 8380.5 7.93 4.64
G.07 1 9 1186 360 11.94 353 341 347 10498.2 383.312 1.94 344 329 333.3 10403.4 10.04 4.44
G.08 1 10 1200 440 10.00 430 416 423.6 11774.6 685.652 2.27 404 397 400 11715.2 5.36 8.18
Avg. – – – 10.68 – – – – 376.65 2.58 – – – – 6.97 5.22

G.01 2 9 324 240 7.08 237 229 232.1 5597.6 155.373 1.25 228 224 225.3 5667.0 0.84 5.00
G.02 2 10 450 320 9.38 317 311 313.7 8659.64 343.151 0.94 306 294 300.6 8612.0 8.56 4.38
G.03 2 10 585.5 400 13.25 390 379 381.7 11308.6 546.88 2.50 370 355 363.5 11102.5 10.82 7.50
G.04 2 10 705 480 11.46 457 435 450.2 13762.1 860.666 4.79 442 432 435.9 13704.3 13.78 7.92
G.05 2 5 651 200 10.00 196 179 187.7 6383.56 74.674 2.00 186 180 181.1 6387.8 0.68 7.00
G.06 2 7 611 280 16.79 266 258 261.3 8364.07 203.335 5.00 257 242 251.1 8231.4 6.26 8.21
G.07 2 9 593 360 12.50 353 337 346.3 10399.9 402.487 1.94 334 325 329.6 10188.6 8.10 7.22
G.08 2 10 600 440 11.36 423 413 418 11679.4 698.767 3.86 398 394 395.4 11574.2 7.20 9.55
Avg. – – – 11.48 – – – – 410.667 2.79 – – – – 7.03 7.10

G.01 4 9 162 240 16.67 233 220 227.8 5501.82 159.381 2.92 225 215 219.2 5368.5 3.82 6.25
G.02 4 10 225 320 10.94 313 305 309.2 8479.2 380.191 2.19 298 285 289 8294.9 4.04 6.88
G.03 4 10 292.75 400 16.25 386 373 378.2 11084.5 768.215 3.50 369 348 358.8 10926.0 14.20 7.75
G.04 4 10 352.5 480 14.17 448 437 443.3 13566.9 1080.86 6.67 430 420 424.1 13376.2 15.87 10.42
G.05 4 5 325.5 200 12.00 182 180 181 6241.98 72.449 9.00 181 177 178.9 6166.3 1.79 9.50
G.06 4 7 305.5 280 17.86 263 254 257 8178.26 200.391 6.07 256 243 248.7 8050.8 6.38 8.57
G.07 4 9 296.5 360 12.50 344 336 340.9 10184.9 485.769 4.44 330 323 326.5 10149.2 8.01 8.33
G.08 4 10 300 440 14.55 420 411 416.7 11528.3 830.589 4.55 397 386 389.7 11353.4 8.01 9.77
Avg. – – – 14.37 – – – – 497.231 4.92 – – – – 7.77 8.43

582 Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584
these approaches based on these values since the upper bounds are
not known to be tight. On the other hand, the average gaps for the
greedy approaches is 11.48% when D = 2 and 14.37% when D = 4,
respectively, which shows that our approaches significantly out-
perform human schedulers.
Table 8
Results on Group 2 of the Class II instances.

Instance D K L TP G_Gap
(%)

MA

Zmax Zmin Zavg Cavg A
CP

G.01 1 9 648 4800 4.17 4780 4710 4750 5713.7 1
G.02 1 10 900 6400 7.19 6390 6330 6368 8745.7 3
G.03 1 10 1171 8000 6.00 7950 7710 7844 11403.2 5
G.04 1 10 1410 9600 8.13 9400 9160 9267 13879.2 10
G.05 1 5 1302 4000 10.00 3990 3830 3897 6457.5
G.06 1 7 1222 5600 9.29 5500 5370 5443 8444.1 2
G.07 1 9 1186 7200 6.53 7110 6990 7066 10458.8 4
G.08 1 10 1200 8800 6.48 8700 8530 8601 11821.8 7
Avg. – – – 7.22 – – – – 4

G.01 2 9 324 4800 4.79 4740 4680 4715 5638.9 1
G.02 2 10 450 6400 7.97 6390 6290 6337 8634.8 4
G.03 2 10 585.5 8000 7.63 7910 7780 7845 11346.3 7
G.04 2 10 705 9600 7.71 9370 9050 9266 13780.9 11
G.05 2 5 651 4000 9.00 3970 3820 3866 6370.7
G.06 2 7 611 5600 9.29 5480 5400 5434 8383.5 2
G.07 2 9 593 7200 6.53 7080 6980 7034 10422.5 5
G.08 2 10 600 8800 8.07 8580 8360 8500 11656.8 8
Avg. – – – 7.62 – – – – 5

G.01 4 9 162 4800 18.33 4700 4550 4636 5463.1 1
G.02 4 10 225 6400 11.41 6300 6230 6266 8488.4 4
G.03 4 10 292.75 8000 23.50 7840 7580 7737 11132.8 7
G.04 4 10 352.5 9600 15.21 9220 8890 9081 13533.8 10
G.05 4 5 325.5 4000 8.25 3850 3760 3803 6247.2 1
G.06 4 7 305.5 5600 9.64 5390 5300 5342 8200.9 2
G.07 4 9 296.5 7200 11.25 7020 6800 6963 10174.2 5
G.08 4 10 300 8800 14.09 8590 8370 8473 11473.3 9
Avg. – – – 13.96 – – – – 5
The results for Group 2 are reported in Table 8. For D = 1, the
average gap from the upper bound for MA is 0.96% while it is
2.40% for ILS. This shows that the proposed approaches can effi-
ciently find solutions that are very close to optimal. When D = 2
and D = 4, the average gaps from the upper bound for MA are
ILS

vg.
U

Gap
(%)

Zmax Zmin Zavg Cavg Avg. CPU Gap (%)

76.52 0.42 4730 4660 4692 5678.96 3.52 1.46
46.53 0.16 6350 6140 6249 8730.45 9.05 0.78
84.80 0.63 7810 7680 7757 11254.2 13.76 2.38
02.92 2.08 9310 9160 9209 13851.6 20.94 3.02
86.79 0.25 3860 3730 3815 6392.13 3.13 3.50
11.38 1.79 5460 5360 5421 8360.28 5.84 2.50
95.89 1.25 7010 6950 6980 10282.5 10.85 2.64
67.57 1.14 8540 8450 8506 11786.1 14.53 2.95
59.05 0.96 – – – – 10.20 2.40

77.57 1.25 4690 4640 4664 5595.08 3.91 2.29
41.04 0.16 6300 6190 6250 8628.32 11.70 1.56
15.87 1.13 7860 7640 7738 11218.3 14.22 1.75
19.51 2.40 8990 8780 8922 13592.8 21.05 6.35
88.47 0.75 3830 3710 3764 6271.84 3.13 4.25
59.25 2.14 5480 5350 5395 8311.12 6.07 2.14
74.03 1.67 6970 6870 6931 10,242 9.18 3.19
00.47 2.50 8520 8370 8446 11652.7 18.71 3.18
22.03 1.36 – – – – 11.00 3.09

79.99 2.08 4570 4450 4497 5410.44 5.09 4.79
52.96 1.56 6250 6030 6099 8352.77 9.55 2.34
65.48 2.00 7660 7530 7606 10959.9 13.27 4.25
53.80 3.96 8990 8770 8816 13221.6 21.62 6.35
09.43 3.75 3760 3620 3683 6075.75 3.19 6.00
55.53 3.75 5360 5200 5322 8053.62 6.17 4.29
35.10 2.50 6950 6810 6872 10138.9 10.32 3.47
31.52 2.39 8400 8260 8345 11391.7 18.03 4.55
35.48 2.75 – – – – 10.91 4.51

Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584 583
1.36% and 2.75%, respectively; for ILS the average gaps are 3.09%
and 4.51%, respectively. Both algorithms are once again vastly
superior to the 5 greedy heuristics.

Note that all of the gaps from the upper bound are much smal-
ler than for the Group 1 instances. This is because when the reward
for all nodes wi = 1, all nodes are equally important, so the algo-
rithm improves a current solution only by finding a new route with
more nodes (or the same number of nodes but with lower total dis-
tance). In contrast, when the reward wi for each node is different,
then a better solution need not have more nodes than the previous
solution. As a result, the incumbent solution can be more easily re-
placed, which increases the diversity of the neighbourhood. In this
sense, the Group 1 instances are more difficult than the Group 2
instances.

It is worth mentioning that when the number of vehicles K is in-
creased by one compared to the best solutions found by Groër
(2008), our MA approach is able to find solutions that visit all
nodes for all instances (which are optimal in terms of the objective
for mVRPP). This shows that the number of vehicles is a crucial fac-
tor in determining the difficulty of mVRPP instances.

The detailed results for all experiments described in this section
can be obtained from the online supplement to this paper at http://
www.computational-logistics.org/orlib.

6. Conclusion

In this paper, we studied a multiperiod vehicle routing problem
with profit (mVRPP) that is motivated by the inspector scheduling
issues faced by a buying office for one of the largest retailers in the
world. In the mVRPP, we have to take into account a regular work-
ing time constraint that places a limit on an inspector’s daily work-
load; this problem is a generalization of the team orienteering
problem (TOP). We proposed a memetic algorithm (MA) to resolve
the problem and conducted a series of computational experiments
on various data sets to analyze its effectiveness. The results show
that our MA approach produces high-quality solutions that are
close to optimal for many cases, and is far superior to what a sea-
soned scheduler produces.

The algorithm described in this paper forms part of a decision
support system that is currently employed by decision-makers of
the said buying office. However, as with most practical problems,
there are numerous other factors to consider. Examples include:

1. It is not necessarily the case that an inspector must conduct the
inspection immediately upon arrival, i.e. it is possible that an
inspector first travels to an inspection site, stay overnight in
the vicinity of the site, and then perform the inspection at the
start of the next period.

2. Different inspectors have different skill sets. For example, one
inspector may only be qualified to inspect textiles, while
another can inspect both textiles and electronics.

3. Senior or experienced inspectors typically conduct inspections
rather quickly if they are familiar with the products. A less
experienced inspector can increase their competency by con-
ducting a set of similar inspection tasks. We can apply a learn-
ing/forgetting modeling (Hancock and Bayha, 1992) to generate
inspection schedules that can improve inspector familiarity
with sets of products.

4. As product inspection is one of the critical processes of import/
export activities, inspection schedules affect shipment sched-
ules. If a shipment is delayed as a result, buyers might have to
incur a loss on profit due to insufficient supply. Therefore, it is
worthwhile to consider including a time-dependent reward
for the timely completion of inspections.

5. When inspectors travel to and conduct inspections at various
sites, schedules may sometimes change unexpectedly due to
uncertainties in travel and inspection times. A quick recourse
action could be devised to adjust the remaining schedule, which
can minimize the inconvenience for both inspectors and
suppliers.

In practice, the solution we provided to the mVRPP can be ad-
justed to handle the above-mentioned examples by having one
or more inspectors perform overtime duties. But while this is an
adequate practical solution, it would be worthwhile to investigate
techniques that explicitly consider these factors.

Acknowledgment

This research was partially supported by NSFC Grant No.
71201065.

References

Archetti, C., Hertz, A., Speranza, M., 2007. Metaheuristics for the team orienteering
problem. Journal of Heuristics 13, 49–76.

Beasley, J., 1983. Route-first cluster-second methods for vehicle routing. Omega 11,
403–408.

Bellman, R., 1962. Dynamic programming treatment of the travelling salesman
problem. Journal of ACM 9, 61–63.

Bostel, N., Dejax, P., Guez, P., Tricoire, F., 2008. Multiperiod planning and routing on
a rolling horizon for field force optimization logistics. In: Golden, B., Raghavan,
S., Wasil, E. (Eds.), The Vehicle Routing Problem: Latest Advances and New
Challenges, vol. 43. Springer, US, pp. 503–525.

Bouly, H., Dang, D.-C., Moukrim, A., 2010. A memetic algorithm for the team
orienteering problem. 4OR: A Quarterly Journal of Operations Research 8, 49–
70.

Campbell, A.M., Savelsbergh, M., 2004. Efficient insertion heuristics for vehicle
routing and scheduling problems. Transportation Science 38, 369–378.

Chao, I.-M., 1993. Algorithms and Solutions to Multi-level Vehicle Routing
Problems. Ph.D. Thesis, College Park, MD, USA.

Chao, I.-M., Golden, B.L., Wasil, E.A., 1996. The team orienteering problem. European
Journal of Operational Research 88, 464–474.

Christofides, N., Beasley, J.E., 1984. The period routing problem. Networks 14, 237–
256.

Chu, F., Labadi, N., Prins, C., 2006. A scatter search for the periodic capacitated arc
routing problem. European Journal of Operational Research 169, 586–605.

Cordeau, J.-F., Gendreau, M., Laporte, G., 1997. A tabu search heuristic for periodic
and multi-depot vehicle routing problems. Networks 30, 105–119.

Goel, A., 2009. Vehicle scheduling and routing with drivers’ working hours.
Transportation Science 43, 17–26.

Goel, A., 2010. Truck driver scheduling in the European Union. Transportation
Science 44, 429–441.

Golden, B., Raghavan, S., Wasil, E. (Eds.), 2008. The Vehicle Routing Problem: Latest
Advances and New Challenges. Springer, US.

Golden, B., Wasil, E., Kelly, J., Chao, I.-M., 1998. The impact of metaheuristics on
solving the vehicle routing problem: algorithms, problem sets, and
computational results. In: Crainic, T., Laporte, G. (Eds.), Fleet Management
and Logistics. Kluwer, Boston, pp. 33–56.

Groër, C., 2008. Parallel and Serial Algorithms for Vehicle Routing Problems. Ph.D.
Thesis, University of Maryland, College Park, MD.

Hancock, W., Bayha, F., 1992. The learning curve. In: Salvendy, G. (Ed.), Handbook of
Industrial Engineering, second ed. John Wiley, New York.

Ke, L., Archetti, C., Feng, Z., 2008. Ants can solve the team orienteering problem.
Computers and Industrial Engineering 54, 648–665.

Kok, A.L., Meyer, C.M., Kopfer, H., Schutten, J.M.J., 2010. A dynamic programming
heuristic for the vehicle routing problem with time windows and european
community social legislation. Transportation Science 44, 442–454.

Laporte, G., 2007. What you should know about the vehicle routing problem. Naval
Research Logistics (NRL) 54, 811–819.

Mendoza, J., Medaglia, A., Velasco, N., 2009. An evolutionary-based decision support
system for vehicle routing: the case of a public utility. Decision Support Systems
46, 730–742.

Moscato, P., 1999. Memetic algorithms: a short introduction. In: Corne, D., Dorigo,
M., Glover, F. (Eds.), New Ideas in Optimization. McGraw Hill, pp. 219–234.

Nagata, Y., Bräysy, O., 2009. Edge assembly-based memetic algorithm for the
capacitated vehicle routing problem. Networks 54, 205–215.

Oliver, I., Smith, D., Holland, J., 1987. A study of permutation crossover operators on
the traveling salesman problem. In: JJ, G. (Ed.), Proceedings of the Second
International Conference on Genetic Algorithms. Lawrence Erlbaum, Hillsdale,
NJ, pp. 224–230.

Powell, W.B., Snow, W., Cheung, R.K., 2000. Adaptive labeling algorithms for the
dynamic assignment problem. Transportation Science 34, 50–66.

Prins, C., 2004. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers and Operations Research 31, 1985–2002.

Prins, C., 2009. Two memetic algorithms for heterogeneous fleet vehicle routing
problems. Engineering Applications of Artificial Intelligence 22, 916–928.

http://www.computational-logistics.org/orlib
http://www.computational-logistics.org/orlib
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0015
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0015
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0020
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0020
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0025
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0025
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0030
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0030
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0030
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0030
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0035
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0035
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0035
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0040
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0040
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0045
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0045
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0050
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0050
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0055
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0055
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0060
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0060
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0065
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0065
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0070
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0070
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0075
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0075
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0080
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0080
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0080
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0080
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0085
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0085
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0090
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0090
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0095
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0095
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0095
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0100
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0100
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0105
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0105
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0105
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0110
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0110
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0115
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0115
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0120
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0120
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0120
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0120
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0125
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0125
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0130
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0130
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0135
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0135

584 Z. Zhang et al. / European Journal of Operational Research 229 (2013) 573–584
Qin, H., Lim, A., Xu, D., 2009. The selective traveling salesman problem with regular
working time windows. In: Chien, B.-C., Hong, T.-P. (Eds.), Opportunities and
Challenges for Next-Generation Applied Intelligence, Studies in Computational
Intelligence, vol. 214. Springer, Berlin/Heidelberg, pp. 291–296.

Savelsbergh, M., Sol, M., 1998. Drive: dynamic routing of independent vehicles.
Operations Research 46, 474–490.

Souffriau, W., Vansteenwegen, P., Berghe, G.V., Oudheusden, D.V., 2010. A path
relinking approach for the team orienteering problem. Computers and
Operations Research 37, 1853–1859.

Tan, K., Cheong, C., Goh, C., 2007. Solving multiobjective vehicle routing problem
with stochastic demand via evolutionary computation. European Journal of
Operational Research 177, 813–839.

Tang, H., Miller-Hooks, E., 2005. A tabu search heuristic for the team orienteering
problem. Computers and Operations Research 32, 1379–1407.
Toth, P., Vigo, D., 2002. The vehicle routing problem. SIAM. Monographs on Discrete
Mathematics and Applications. SIAM, Philadelphia.

Vansteenwegen, P., Souffriau, W., Oudheusden, D.V., 2011. The orienteering
problem: a survey. European Journal of Operational Research 209, 1–10.

Velasco, N., Castagliola, P., Dejax, P., Guéret, C., Prins, C., 2009. A memetic algorithm
for a pick-up and delivery problem by helicopter. In: Pereira, F., Tavares, J.
(Eds.), Bio-inspired Algorithms for the Vehicle Routing Problem, Studies in
Computational Intelligence, vol. 161. Springer, Berlin/Heidelberg, pp. 173–190.

Villegas, J., Prins, C., Prodhon, C., Medaglia, A., Velasco, N., 2010. GRASP/VND and
multi-start evolutionary local search for the single truck and trailer routing
problem with satellite depots. Engineering Applications of Artificial Intelligence
23, 780–794.

Xu, H., Chen, Z.-L., Rajagopal, S., Arunapuram, S., 2003. Solving a practical pickup
and delivery problem. Transportation Science 37, 347–364.

http://refhub.elsevier.com/S0377-2217(12)00913-7/h0140
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0140
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0140
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0140
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0145
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0145
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0150
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0150
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0150
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0155
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0155
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0155
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0160
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0160
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0165
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0165
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0170
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0170
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0175
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0175
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0175
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0175
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0180
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0180
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0180
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0180
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0185
http://refhub.elsevier.com/S0377-2217(12)00913-7/h0185

	A memetic algorithm for the multiperiod vehicle routing problem with profit
	1 Introduction
	2 Related work
	3 Problem description
	4 Memetic algorithm
	4.1 Chromosome encoding and decoding
	4.2 Crossover
	4.3 Mutation
	4.4 Local improvement process

	5 Experiments and analysis
	5.1 Computational data
	5.2 Parameter tuning
	5.3 Results for Class I instances
	5.4 Results for Class II Instances

	6 Conclusion
	Acknowledgment
	References

