
European Journal of Operational Research 234 (2014) 37–48
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization
The freight consolidation and containerization problem
0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.09.015

⇑ Corresponding author. Address: Department of Management Sciences, City
University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong.
Tel.: +852 69250203; fax: +852 34420189.

E-mail addresses: tigerqin@hust.edu.cn, tigerqin1980@gmail.com (H. Qin),
zzzhang@cityu.edu.hk, zhangzizhen@gmail.com (Z. Zhang), zhuxuan.qi900330@
aliyun.com (Z. Qi), lim.andrew@cityu.edu.hk (A. Lim).
Hu Qin a, Zizhen Zhang b,⇑, Zhuxuan Qi c, Andrew Lim b

a School of Management, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan, China
b Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
c School of Labor and Human Resources, Renmin University of China, Beijing 100872, China

a r t i c l e i n f o
Article history:
Received 19 August 2012
Accepted 12 September 2013
Available online 21 September 2013

Keywords:
Packing
Freight consolidation
Containerization
Memetic algorithm
Third-party logistics
a b s t r a c t

In today’s global free market, third-party logistics providers (3PLs) are becoming increasingly important.
This paper studies a problem faced by a 3PL operating a warehouse in Shanghai, China, under contract
with a major manufacturer of children’s clothing based in the United States. At the warehouse, the 3PL
receives textile parcel shipments from the suppliers located in China; each shipment is destined for dif-
ferent retail stores located across the United Sates. These shipments must be consolidated and loaded
into containers of varying sizes and costs, and then sent along shipping routes to different destination
ports. An express company, such as UPS and FedEx, unloads the shipments from the containers at the des-
tination ports and distributes them to their corresponding stores or retailers by parcel delivery. The
objective is to find an allocation that minimizes the total container transportation and parcel delivery
costs. We formulate the problem into an integer programming model, and also propose a memetic algo-
rithm approach to solve the problem practically. A demonstration of a good solution to this problem was
a decisive factor in the awarding of the contract to the 3PL in question.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The use of third-party logistics providers (3PL) has become an
increasingly integral part of modern supply chain management
(Marasco, 2008). Major business enterprises commonly span
across several geographical locations at different sides of interna-
tional borders, which makes central logistics planning difficult
and inefficient. Consequently, companies prefer to employ the ser-
vices of 3PLs for the storage and transportation of goods along
parts of the supply chain. There are several benefits for doing so:
(1) the company avoids the setup costs involved in managing the
logistics in a new location; (2) 3PLs specialize in logistics and are
likely to perform the required tasks more efficiently than the cus-
tomer by taking advantage of economies of scale; and (3) 3PLs pos-
sess regional expertise and are therefore better able to take local
conditions into account during logistics management. Further-
more, in addition to the storage and transportation of goods,
3PLs often provide other value-added services such as inbound
operations, inspection, sorting, labeling, containerization, tracking
and outbound operations. These and other services position 3PLs
as one-stop shops for the logistical needs of their customers.

We consider the case of a major manufacturer of clothing for
babies, toddlers and children. Products bearing the manufacturer’s
brand are sold at over 400 company-owned retailer stores as well
as thousands of national department stores and some of the largest
retailers across the United States. The company has outsourced
some of its manufacturing needs to suppliers located in China, tak-
ing advantage of the lower costs in this rapidly developing region.
As a result, they have contracted with 3PLs based in China for
transporting these manufactured products to their target markets.
This enables the company to focus on its core business while sav-
ing on costs without sacrificing product quality.

This study is motivated by a project awarded to our team by a
3PL that services the manufacturer via a warehouse hub in Shang-
hai, China. The 3PL industry in China has experienced significant
and rapid growth since the economic reforms of 1978 when its
borders were opened to foreign investors, and especially since its
entry into the World Trade Organization in 2001. Historically, the
main concern of investors with regards to logistics in China is its
poor transport infrastructure (Ta, Choo, & Sum, 2000), a concern
that has been addressed by the rapid development and moderniza-
tion of the country in the past decades. There is therefore tremen-
dous growth potential in the Chinese logistics market, resulting in
intense competition that requires 3PLs in China to constantly seek
new sources of competitive advantage (Wang, Zantow, Lai, &
Wang, 2006).
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Fig. 2. Multiple routes for a single store.
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The transportation process that concerns the 3PL in question is
briefly described as follows. First, the suppliers send the finished
goods from their manufacturing plants to the warehouse hub oper-
ated by the 3PL via domestic truck transportation. Next, the 3PL
loads the goods into containers of various sizes and ships these
containers to distribution hubs situated in the United States, each
of which is operated by an express delivery company such as FedEx
or UPS. Finally, the express company unloads the goods from the
containers and distributes them to the corresponding stores or
retailers by parcel delivery.

Fig. 1 illustrates the transportation network, which can be
viewed as a type of hub-and-spoke network. At the warehouse
hub, the 3PL provides the manufacturer with value-added services;
no extra services beyond the delivery of the goods are required
from the express company at the distribution hubs. The goods
can be shipped to any of several distribution hubs from the ware-
house hub. Therefore, there are several possible transportation
routes that a shipment of goods destined for a particular store
can take, as illustrated in Fig. 2. This study examines the scenario
that is relevant to our client, where there is only a single ware-
house hub with multiple distribution hubs. We refer to the ware-
house hub in Shanghai as the origin hub, and the distribution
hubs in the United States as destination hubs.

The inventory of the stores is replenished periodically, and each
store may demand goods from one or several suppliers. For each
period, the manufacturer aggregates the demands of its stores
and places orders with suppliers. In most cases, the total volume
of demanded goods for a single store in one time period is much
less than the capacity of a single container, which is one Twenty-
foot Equivalent Unit (TEU); hence, consolidating goods for different
stores into one container becomes necessary for reducing transpor-
tation cost. In order to facilitate the consolidation process, the
manufacturer stipulates that the suppliers must send their goods
to the origin hub within a predetermined time window that ranges
from one day to several days. Since there is only one origin hub in
our problem, the cost of truck transportation is fixed and we can
assume that all goods have already arrived at the origin hub. The
goods heading to the same store are combined into one shipment
at the origin hub, so a single shipment may consist of one or sev-
eral items. To simplify some store operations such as tracking
and receiving goods, it is required that all items in one shipment
must be transported along a single route, but they are allowed to
be loaded into different containers.

In this study, we investigate the freight consolidation and
containerization problem (FCCP). It models the task faced by the 3PL,
which requires the assignment of shipments to routes as well as
items to containers, with the objective of minimizing the total cost
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Fig. 1. Overall transportation process.
of two transportation modes, namely container transportation and
parcel delivery. We assume that each item transported by the 3PL
is an indivisible textile package that must be loaded into only one
container. Moreover, the flexibility and non-fragility of textiles al-
low us to treat the process of loading items into containers as a
variable sized bin packing problem (VSBPP). The main difficulty
lies in managing the tradeoff between container transportation
cost and parcel delivery cost: on one hand, if we send every ship-
ment to the destination hub with the cheapest associated parcel
delivery cost, the containers may be underutilized; on the other
hand, if we try to minimize container cost by loading each con-
tainer as fully as possible, then higher parcel delivery costs may
be incurred for some shipments.

The FCCP models an actual problem that combines goods con-
solidation and containerization (i.e., container loading). In contrast
to other typical services such as inspection and tracking, a good
solution to this problem translates directly into cost savings that
can be passed onto the customers, which provides the 3PL with a
competitive advantage. In fact, a demonstration of this capability
was a decisive factor in the awarding of the contract by the manu-
facturer to the 3PL in question. Furthermore, consolidation and
containerization often exist in tandem in the logistics industry,
and the FCCP is likely to be applicable in a variety of practical sce-
narios. To the best of our knowledge, this problem has not been
investigated in the existing literature.

The contributions of this paper are twofold. Firstly, we formally
define the problem examined in this article, and also provide an
integer programming (IP) model for it. Secondly, the problem is
easily shown to be NP-hard. To solve it practically, we focus our ef-
forts on devising an efficient heuristic approach that provides high
quality solutions within a reasonable amount of computing time.
Consequently, we propose a memetic algorithm (MA) for the FCCP
that combines genetic algorithm operations, local search, and a
heuristic for the VSBPP. The effectiveness of our algorithm was ver-
ified via extensive experiments on a large number of generated test
instances.

The remainder of this paper is structured as follows. In Section 2,
we give an overview of the relevant research in existing literature.
We provide a formal description of the problem in Section 3, along
with a mixed integer formulation and a brief discussion of the
computational complexity of the problem. Section 4 describes
the details of our MA approach. We evaluate our approach using
a large set of generated test instances, which are described in
Section 5 along with the computational results. Finally, we conclude
our article in Section 6 and suggest some possible directions for
future research.
2. Literature review

Freight consolidation, which is an important practice in logistics
management, has been investigated extensively. The related
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research can be categorized into two main categories depending on
whether the decisions are made at the strategic level or the oper-
ational level. The strategic level is concerned with the design of
networks, involving decisions on factors such as the number and
locations of consolidation centers and the capacity of each center.
The aim is to minimize the long-term overall cost, including trans-
portation cost, consolidation center setup cost, inventory cost and
labor cost. We refer the reader to Ahuja, Magnanti, and Orlin
(1993) for a thorough review of these network design problems.
Hub-and-spoke is a typical network topology for freight consolida-
tion that has been widely adopted in different transport sectors.
Consequently, there is a large body of literature studying the de-
sign of hub-and-spoke networks, such as air transportation (Martín
& Román, 2004), truck transportation (Cunha & Silva, 2007), rail-
way transportation (Jeong, Lee, & Bookbinder, 2007), sea transpor-
tation (Takano & Arai, 2009), and express delivery service (Kara &
Tansel, 2001).

The operational level deals with the planning and execution of
product distribution on an existing network configuration. Kli-
ncewicz (1990) presented a model in which each shipment can
be sent from source to destination either directly or via a consoli-
dation terminal. At the terminal, the products bound for the same
destination are combined into one shipment and incur linear
inventory holding cost. To embody the value of consolidation,
i.e., economics of scale, the authors assumed that the shipping
costs are piecewise linear concave functions of the shipping vol-
ume. Heuristics incorporating facility location techniques were
developed to solve the model. Liu, Li, and Chan (2003) studied a
transportation model allowing two delivery methods: one is direct
shipment, where goods are collected from a supplier and directly
sent to multiple customers, and the other is hub-and-spoke ship-
ment in which various types of goods are collected from suppliers
and consolidated at hubs, and then redistributed to multiple cus-
tomers. Homogeneous vehicles are used to carry out all goods
movements, and the objective is to minimize the total traveling
distance of the vehicles. The authors designed a heuristic that uti-
lizes a solution improvement procedure to determine the delivery
method for the goods demanded by each customer and to schedule
the vehicles.

Song, Hsu, and Cheung (2008) introduced a consolidation prob-
lem that aims at coordinating shipments between suppliers and
customers through a consolidation center. This problem requires
decisions to be made on the inbound and outbound times of the
shipments while considering multiple factors including product re-
lease and latest arrival times, different consolidation policies, mul-
tiple transportation options, and inventory costs. A dual-based
heuristic was devised to solve the problem. Leung, Hui, Wang,
and Chen (2009) proposed a problem of determining the optimal
integrations and consolidations of air cargo shipments. A shipment
commonly goes through a number of sequential activities, such as
pickup, truck transportation, warehousing and air transportation.
Integration and consolidation are defined as assigning consecutive
activities of a shipment and the similar activities of different ship-
ments to one agent, respectively. A solution procedure that in-
cludes heuristics and a branch-and-bound algorithm was
designed for the problem. Other freight consolidation models at
the operational level can be found in Popken (1994), Croxton,
Gendron, and Magnanti (2003), Dror and Hartman (2007), etc.

This study addresses a freight consolidation problem at the
operational level with a hub-and-spoke distribution network. The
most significant difference between our research and previous
work is the fact that the loading of items into containers of various
sizes is explicitly considered; this reflects the use of containers
with different standard sizes in industry, such as the standard
20-ft, the standard 40-ft and the 40-ft high cube containers.
It has been shown that since the VSBPP is an extension of the
one-dimensional bin packing problem (1DBPP), it is NP-hard
(Friesen & Langston, 1986). Three types of solution approaches
have been applied to the VSBPP, namely exact algorithms (Alves
& Valério de Carvalho, 2007; Correia, Gouveia, & Saldanha-da
Gama, 2008; Haouari & Serairi, 2011), approximation algorithms
(Epstein & Levin, 2008; Kang & Park, 2003), and heuristics (Haouari
& Serairi, 2009). Over the course of our MA, a large number of
VSBPPs must be solved. Therefore, an efficient and effective solu-
tion approach to the VSBPP is crucial. After comparing the solution
qualities and running times of several solution approaches, we
came to the conclusion that a heuristic approach is most suitable
for handling the VSBPPs in our MA.
3. Problem definition and formulation

We assume that each shipping route can provide a sufficient
number of containers of different sizes. Each container is charac-
terized by three attributes: shipping route, price, and capacity. In
practice there is a fourth attribute of weight limitation, but since
the products in our problem are light textiles that commonly do
not exceed the container weight limitations even when being fully
loaded, so we do not include this aspect in the model.

The FCCP can be modeled in the following manner. Let S and R
be the sets of shipments and shipping routes, respectively. Each
shipment k 2 S may consist of one or multiple items, and set I com-
prises all items, each having a size vi. The shipment containing item
i 2 I is denoted by S(i). The collection of all containers is denoted by
set B, and the attributes of each container j 2 B are shipping route
R(j), price pj and capacity Vj. We assume that all containers with the
same size and shipping route have the same price. The parcel deliv-
ery cost associated with assigning item i to container j is given by ri,

j. Note that once an item is assigned to a shipping route, its parcel
delivery cost is determined since this cost is only related to the
locations of the destination hub and its store. In particular, assign-
ing an item to any container in a given shipping route would incur
the same parcel delivery cost ri, j.

We define three types of binary decision variables in our model.
Let xi, j be a binary decision variable that is equal to 1 if item i is
loaded into container j, and 0 otherwise; let zk, l be equal to 1 if
shipment k is assigned to route l, and 0 otherwise; and let yj be
equal to 1 if container j is used, and 0 otherwise. The following is
an IP model for the FCCP:

ðIPÞ : min
X
j2B

pjyj þ
X
i2I

X
j2B

ri;jxi;j ð1Þ

s:t:
X
j2B

xi;j ¼ 1; for all i 2 I ð2Þ

xi;j 6 yj; for all i 2 I and j 2 B ð3Þ
xi;j 6 zk;l; for all i 2 I : SðiÞ ¼ k and j 2 B : RðjÞ ¼ l ð4ÞX
l2R

zk;l ¼ 1; for all k 2 S ð5Þ
X
i2I

v ixi;j 6 Vj; for all j 2 B ð6Þ

xi;j; yj 2 f0;1g; for all i 2 I and j 2 B

zk;l 2 f0;1g; for all k 2 S and l 2 R

The objective (1) is to minimize the total transportation cost.
Constraints (2) guarantee that each item is loaded into only one
container. The container into which any item is loaded must be
marked as ‘‘used’’, which is realized by Constraints (3). Constraints
(4) state that if item i is loaded into container j, the shipment that
includes item i must be assigned to the shipping route that
provides container j. Constraints (5) ensure that each shipment
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must be assigned to only one shipping route. Constraints (6) re-
quire that the capacity limitations of the containers are not
violated.

Observe that a special case of the FCCP that involves only one
shipping route is essentially a generalized cost variable-sized bin
packing problem (Epstein & Levin, 2008). From another perspec-
tive, if we assume that each container is large enough to accommo-
date all items in I, then only a single (cheapest) container will be
needed on each shipping route. Consequently, by viewing con-
tainer prices as facility setup costs, the classical uncapacitated
facility location problem (Drezner & Hamacher, 2004) can also be
reduced to the FCCP. These observations prove the NP-hardness
of the FCCP, which implies that it is impossible to find a polyno-
mial-time algorithm to solve the problem unless P = NP. In addi-
tion, preliminary experiments revealed that although small
instances of the FCCP can be solved by the leading commercial IP
solver ILOG CPLEX 11.1, the computation time required increases
astronomically as the size of the problem increases. Hence, to ob-
tain high quality solutions to the FCCP in a practical time frame,
we developed an MA for the problem.
4. Memetic algorithm

Genetic algorithm (GA) is a search meta-heuristic based on the
process of natural evolution, such as natural selection and sexual
reproduction. Since the pioneering work of Holland (1975), GA
has proven to be a highly successful technique for solving a wide
variety of combinatorial optimization problems (see Goldberg,
1989; Mitchell, 1998; Sivanandam & Deepa, 2008). A natural mod-
ification of the GA approach is to include a local search component
in order to find better solutions over the course of the evolutionary
process. This technique has been called a memetic algorithm (MA),
which has been successfully employed in a variety of applications.
The reader is encouraged to refer to Moscato (1999), Lu and Hao
(2010), Ngueveu, Prins, and Wolfler Calvo (2010) for the details
and applications of MA.

Our MA approach begins by generating an initial chromosome
set, each member of which corresponds to a feasible solution to
the FCCP. A fitness function is used to evaluate chromosomes.
We maintain two chromosome sets of fixed sizes: a population
set PI for generating offspring, and an offspring set PO that includes
all the newly generated offsprings. In each generation, we choose
chromosomes from the population set using an elitist scheme
favoring fitter members to be parents, and then use the chosen
chromosomes to generate offspring set by reproduction. We call
the set PI [ PO, which is the combination of the population and off-
spring sets, the candidate set; the same elitist strategy is employed
to select chromosomes from the candidate set to construct the
population for the next generation. The above process runs itera-
tively until a termination criterion is satisfied and a near-optimal
solution can be retrieved from the fittest member of the
population.

In summary, the MA proposed in this paper consists of six com-
ponents: (1) chromosome representation; (2) generation of the ini-
tial population; (3) fitness function; (4) selection process; (5)
offspring generation, including crossover, mutation and local
refinement of chromosomes; and (6) termination criterion. The
( 1 , 3 ) ( 1 , 8 ) Chromosome ( 1 , 2 ) ( 1 , 4 ) ( 1 , 7 ) ( 1 , 6 ) ( 2 , 5 ) ( 2 , 1 ) 

Item 1 2 3 4 5 6 7 8 

Shipment 3Shipment 2Shipment 1

Fig. 3. An example of chromosome encoding scheme.
process of our MA approach is shown in Algorithm 1. The remain-
der of this section presents the detailed description of its
components.

Algorithm 1. Process of the memetic algorithm.
1:
 PI generate the initial population;

2:
 Evaluate the chromosomes in PI;

3:
 while the termination criterion is not satisfied do

4:
 PO ;

5:
 repeat

6:
 Randomly select two parent chromosomes from PI;

7:
 Produce two offsprings from the parent

chromosomes using crossover;

8:
 Insert offsprings into PO;

9:
 until PO is full;
10:
 for each chromosome in PO do

11:
 Perform the mutation operation;

12:
 Perform the refinement operations;

13:
 end for

14:
 Evaluate the chromosomes in PO;

15:
 P PI [ PO;

16:
 PI ;;

17:
 Insert the best chromosome of P into PI;

18:
 Select chromosomes using roulette-wheel selection

from P to insert into PI until PI is full;

19:
 end while

20:
 Return the best chromosome in PI.
4.1. Chromosome encoding

In our approach, the information coded into a chromosome
simultaneously specifies the assignment of shipments to shipping
routes and the loading sequence of items into containers. A gene
consists of a 2-tuple and the number of genes in a chromosome
is equal to the number of items, i.e., n = jIj. Formally, we express
a chromosome as a vector v = ((s1, r1), . . ., (si, ri), . . ., (sn, rn)),
where si and ri represent the shipping route and loading order of
item i, respectively. The genes in a chromosome are grouped into
jSj blocks, each corresponding to a shipment. Since our chromo-
some encoding does not contain information on how the items
are loaded into containers, to transform a chromosome into a
feasible solution of the FCCP requires the solutions of several
one-dimensional VSBPPs with a pre-determined item loading
sequence; the VSBPP requires that a set of items is loaded into a
number of containers with different volumes and costs such that
the total cost of containers used is minimized.

An example chromosome is shown in Fig. 3. This chromosome
involves shipments 1, 2 and 3, which contain item sets {1, 2},
{3, 4, 5, 6} and {7, 8}, respectively. Items 1–6 and 7–8 are assigned
to shipping routes 1 and 2, respectively, and the loading sequence
of items 1–8 is (3, 8, 2, 4, 7, 6, 5, 1). Note that the item loading se-
quence is relative; for instance, on shipping route 1 we sequen-
tially load items 3, 1, 4, 6, 5, 2 into containers since their loading
orders have the relationship 2 < 3 < 4 < 6 < 7 < 8. As the items of
each shipment must be transported along a unique shipping route,
the first element of all 2-tuples in the same block are identical. To
obtain a feasible solution from this chromosome, we need to solve
two VSBPPs with item sequences (3, 1, 4, 6, 5, 2) and (8, 7).

To highlight the benefits of our chromosome encoding scheme,
consider the alternative scheme where the number of genes is
equal to the number of shipments and each gene specifies a ship-
ping route. Using the previous example, this encoding scheme is
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illustrated in Fig. 4, where shipments 1 and 2 are assigned to ship-
ping route 1, and shipment 3 is assigned to shipping route 2. This
encoding scheme does not explicitly specify the item loading se-
quence. Therefore, to calculate the cost of the containers associated
with a chromosome, we need to solve at most jRj VSBPPs without
fixed item loading sequences. For example, for the chromosome
shown in Fig. 4, we must solve two VSBPPs, one for shipping route
1 with item set {1, 2, 3, 4, 5, 6}, the other for shipping route 2 with
item set {7, 8}.

Over the course of the MA, a large number of chromosomes are
generated. Consequently, since we require high quality solutions to
the corresponding VSBPPs within a reasonable amount of compu-
tation time, we can only employ very simple heuristics for this pur-
pose, e.g., adaptations of the first-fit, best-fit, first-fit decreasing, or
best-fit decreasing heuristics for the 1DBPP (Simchi-Levi, 1994),
and such heuristics only generate one packing pattern for a given
input item set. In contrast, the first encoding scheme allows the
MA to produce multiple packing patterns (Haouari & Serairi,
2009), which greatly increases the potential of identifying high
quality solutions.
4.2. Initial population

The first chromosome in the initial population corresponds to
the greedy assignment of all items in a shipment such that the
shipping route si for item i is the route with the smallest parcel
delivery cost ri, j; this greedy heuristic approximates the approach
employed by the decision-makers at the 3PL prior to this research.
For the remaining chromosomes, the values of si are randomly se-
lected from the set S. The item loading sequences (r1, . . ., rn) for all
chromosomes are randomly generated permutations.
4.3. Fitness function

The MA ranks chromosomes based on a value that is calculated
using a fitness function. Given a chromosome, let the vector
nl = (nl(1), . . ., nl(nl)) denote the loading sequence of the nl items
assigned to shipping route l. For the chromosome shown in
Fig. 3, we have n1 = (3, 1, 4, 6, 5, 2) and n2 = (8, 7).

Each shipping route l 2 R in a chromosome v is given a fitness
value Hl(v), computed as: Hl(v) = Dl(v) + Cl(v) + a(1 � Fl(v)),
where Dl(v) is the parcel delivery cost, Cl(v) is the container cost,
Fl(v) is a measure of the utilization rate of the containers, and a
is a user-defined parameter. When no items are assigned to ship-
ping route l, Hl(v) = 0. The overall fitness of a chromosome v is
the sum of the fitness values of its component shipping routes,
i.e., HðvÞ ¼

P
l2RHlðvÞ.

Recall from Section 3 that once an item is assigned to a partic-
ular shipping route, its parcel delivery cost is determined. There-
fore, Dl(v) can be directly computed from the information in nl.

To compute Cl(v), we need to solve a VSBPP with a predeter-
mined item loading sequence (we refer to this problem as VSBPPS).
The VSBPPS assumes the following procedure: starting from the
first item, select a container and sequentially load the items into
it according to the loading sequence. If the current container can-
not accommodate the current item, close it and select another con-
tainer for loading. When all items are loaded into containers, we
have found a feasible solution to the VSBPPS. The task is to find
1 1 2Chromosome

1 2 3Shipment

Fig. 4. An alternative chromosome encoding scheme.
the best selection of containers so as to minimize the total con-
tainer cost.

Haouari and Serairi (2009) introduced a technique to optimally
solve the VSBPPS. The authors defined an acyclic digraph G = (V, A),
where V consists of a node for each item and an additional dummy
node, and A is constructed based on the item sizes, item loading se-
quence and bin sizes. The optimal solution for the VSBPPS can be
obtained by identifying a shortest path in G = (V, A), which is
achieved using an algorithm with time complexity O(jAj). In a
worst case, O(jAj) can be equal to O(jVj2). For the practical problem
instances faced by the 3PL, the cardinality of A is generally very
close to jVj2 when solving most of VSBPPSs using this technique,
i.e., the time complexity approaches O n2

l

� �
for a given chromosome

and shipping route l. Since the MA will generate a large number of
chromosomes and the evaluation of each chromosome requires the
solution of up to jRj VSBPPSs, this technique is too slow for our
purposes.

Consequently, we devised the following dynamic programming
approach to solve the VSBPPS to near optimality. Let the price and
capacity of a type q container be cq and Vq, respectively. We define
the vector Pm = (1, . . ., m) to be the collection of m container types
for a certain shipping lane, sorted in ascending order of capacity
(i.e., 1 6 q1 < q2 6m implies Vq1

6 Vq2
). Instead of solving the

VSBPPS, our approach solves a modified version of the problem
with the additional restriction that a newly selected container
must be no larger than any previously selected container; we call
this problem the restricted VSBPPS. This approach is motivated by
the observation that larger containers almost always have a lower
cost per unit capacity in practice, i.e., cq2

=Vq2
6 cq1

=Vq1
for

1 6 q1 < q2 6m. Therefore, selecting larger containers first is a good
greedy approach for minimizing total container cost.

For a given loading sequence nl and a set of available containers
Pm, our approach solves this restricted VSBPPS optimally. Preli-
minary experiments revealed that the optimal solution to the re-
stricted VSBPPS is usually very close to that of the corresponding
VSBPPS, and in fact they are equal in certain instances.

We next describe our dynamic programming algorithm for the
restricted VSBPPS. Let n(s, t) = (n(s), n(s + 1), . . ., n(t � 1), n(t)),
t P s be the loading sequence from item n(s) through n(t), which
involves t � s + 1 items. In addition, let function fq(n(s, t)) be the
minimum number of type q containers required for packing
n(s, t) if only type q containers are employed; note that the value
of fq(n(s, t)) can be computed in O(m) time by following the packing
procedure. We denote the minimum cost of the restricted VSBPPS
on loading sequence n(s, t) and containers Pm by C(n(s, t), Pm),
which can be defined recursively as follows:

Cðnðs; tÞ;PmÞ ¼min min
s6i<t
fCðnðiþ 1; tÞ;PmÞ þ cmfmðnðs; iÞÞg;

�

cmfmðnðs; tÞÞ;Cðnðs; tÞ;Pm�1Þ
�

ð7Þ

where C(;, Pm) = 0, C(n(s, t), ;) = +1 and C(n(i1, t), Pm) P C(n(i2, t),
Pm) > 0, if s 6 i1 < i2 6 t.

This recursion divides the choice of container made during the
packing procedure of the VSBPPS into three cases: (1) the next sev-
eral items in the sequence are loaded into a number of the largest
legal containers, (2) all remaining items are loaded into the con-
tainers with the largest size, or (3) the largest legal container is
not selected.

For a given loading sequence n(s, t) and bin type q, let iq(s) be the
largest index i, s 6 i 6 t of an item such that all items from s to i in
the loading sequence can be contained in a single container of type
q, i.e., iq(s) = max{i: fq(n(s, i)) = 1, s 6 i 6 t}.

The following theorem allows us to compute the values of
C(n(s, t), Pm) efficiently using dynamic programming:
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Theorem 1. Let �i ¼ imðsÞ ¼maxfi : fmðnðs; iÞÞ ¼ 1; s 6 i 6 tg. Then,

Cðnðs;tÞ;PmÞ¼
minfCðnð�iþ1;tÞ;PmÞþcm;Cðnðs;tÞ;Pm�1Þg; if �iþ16 t

cm; if �i¼ t

(

ð8Þ
Proof. See Appendix A. h

Before executing the dynamic programming algorithm, we per-
form a preprocessing phase to calculate iq(s) for all combinations of
n(s, t) and bin type q. In this phase, a sliding window algorithm is
invoked for each bin type (see Algorithm 2). For each shipping
route l in the restricted VSBPPS, Algorithm 2 runs in O(nl) time.
Since the algorithm is performed once for each of the m bin types,
the overall time complexity of the preprocessing phase is O(mnl).
The values of iq(s) obtained from the preprocessing phase can then
be employed by the dynamic programming algorithm to run in
O(mnl) time. Hence, the restricted VSBPPS can be solved optimally
in O(mnl) time in this manner.

Now, we have two approaches to compute Cl(v): one is to solve
the VSBPPS with time complexity O n2

l

� �
and the other is to solve

the restricted VSBPPS with time complexity O(mnl).

Algorithm 2. Preprocessing for Type q bin.
1:
 INPUT: size of type q bin Vq, and an item sequence n(s, t);

2:
 OUTPUT: iq(s), iq(s + 1), . . ., iq(t � 1), iq(t);

3:
 Let v[n(i)] be the size of item n(i);

4:
 Initialize head = tail = s and volume = 0;

5:
 while tail 6 t do

6:
 while head 6 t and volume + v[head] 6 Vq do

7:
 volume = volume + v[head];

8:
 head = head + 1;

9:
 end while
10:
 volume = volume � v[tail];

11:
 iq(tail) = head � 1;

12:
 tail = tail + 1;

13:
 end while
In practice, each container can accommodate many items be-
cause containers are usually much larger than the individual items
to be loaded. For example, a 20-ft container can contain about 30
items with average size of 1 cubic meter. Good solutions to the
FCCP tend to have a high proportion of containers with high utili-
zation due to the high costs of containers. Thus, the MA may
encounter several VSBPPSs where the number of items nl allocated
to the shipping route l is large. However, the number of container
types m is comparatively much smaller. Therefore, our O(mnl)
approach is much faster than the O n2

l

� �
approach by Haouari and

Serairi (2009). This allows us to increase the sizes of the population
and candidate sets as well as the number of generations in the MA,
which enables the algorithm to explore more item sequences and
increases the probability of identifying better solutions.

The process of computing Cl(v) also generates a packing pattern
for item sequence nl, which is a set of containers Bl(v) along with
the items in each container. With this information, we can com-
pute the utilization rate measure Fl(v) as:
FlðvÞ ¼

P
j2BlðvÞVjðaj=VjÞ2=

P
j2BlðvÞVj, where aj is the total size of

the items in container j. Given a set of containers and a set of items
loaded into these containers, the measure Fl(v) favors a loading
configuration with several well-filled containers over one with
mostly equally-filled containers. Several papers on the 1DBPP
(e.g., Falkenauer, 1996; Osogami & Okano, 2003; Loh, Golden, &
Wasil, 2008) have applied F1(v) as the fitness function. Note that
since Fl(v) 6 1 and the objective of the FCCP is to minimize cost,
we include this utilization rate measure as a part of the fitness va-
lue Hl(v) using the term a(1 � Fl(v)), where a is a user-defined
coefficient that determines its relative importance.

4.4. Selection

In each generation, the MA selects parents from the population
set for reproduction (line 6 in Algorithm 1), and also selects mem-
bers from the candidate set to form the population set for the next
generation (line 18 in Algorithm 1). We use the same elitist rou-
lette-wheel (or fitness proportionate) selection criterion for both
purposes. For a chromosome v 2 X, its probability of being selected
is given by: probðvÞ ¼ 1=HðvÞP

v2X
1=HðvÞ

.

The above selection criterion defines an inverse relationship be-
tween the fitness value of a chromosome and its selection. When
selecting parents for reproduction, it is possible for the same chro-
mosome to be selected multiple times. However, each chromo-
some from the candidate set can only be selected once to be a
member of the population set for the next generation. Note that
the best chromosome in each generation is always retained for
the next generation (line 17 in Algorithm 1). Other applications
that have used this type of selection method include Back, Fogel,
and Michalewicz (1999), Moon Kratica, Stanimirovic, Tosic, and
Filipovic (2002), Kratica et al. (2007).

4.5. Crossover

After two parent chromosomes are selected, the MA produces
two offsprings by performing a crossover operation. With our
encoding scheme, the offsprings obtained by applying classical
crossover operators would be infeasible in most cases. To deal with
this issue, we devised an adapted two-point partially mapped
crossover (APMX) operator for the MA. The partially mapped cross-
over (PMX) operator is a common operator in the approaches for
the traveling salesman problem. It allows information contained
in subsequences in the parent chromosomes to be transferred to
offsprings. Our APMX operator is a combination of the PMX and
classical crossover operators.

Our APMX is performed in three steps. (1) Two block bound-
aries are randomly selected from the parent chromosomes as
crossover points, thereby dividing each chromosome into three
segments (see Fig. 5(a)). (2) The genes in the middle segments (be-
tween the crossover points) are exchanged to generate two off-
springs (Fig. 5(b)), which may be infeasible because two different
items may have the same loading order. The middle segments also
define mappings between the corresponding loading orders; in our
example, the mappings are 2 M 3, 3 M 4, 7 M 5, 6 M 6. Note that
due to transitivity, the first two mappings effectively become
2 M 4 (Fig. 5(c)). (3) The loading orders in the first and third seg-
ments that lead to conflicts are replaced according to the mapping
(see Fig. 5(d)). In this case, we find that the second gene has a
duplicate order number 2, so it is replaced by 4 using the mapping
2 M 4. The remaining conflicting genes are replaced in a similar
manner for both chromosomes.

The effect of the APMX operator on the affected genes is to per-
form a classical block-based crossover on the shipping routes, and
the PMX operation on the loading orders. This preserves the load-
ing sequence information contained in the middle segments of the
parent chromosomes.

4.6. Mutation

Mutation operations allow the exploration of wider regions of
the solution space, generally by introducing random variations into
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Fig. 5. (a) Randomly choose two crossover points. (b) Swap genes. (c) The gene
mappings. (d) Replace loading orders based on mapping.
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Fig. 6. (a) Type 1 mutation modifies the shipping route of shipment 2 from 1 to 3.
(b) Type 2 mutation exchanges loading orders of items 2 and 6.
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Fig. 7. An example of consolidation with k = 2.
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the chromosomes. In our MA, we perform mutation on the set of
offsprings produced by the crossover operations. Two types of
mutations are implemented (see Fig. 6). For each shipment in the
chromosome, a Type 1 mutation occurs with probability q1, which
modifies the shipping route for the shipment to another value that
is uniformly and randomly chosen from R. For each gene in the
chromosome, a Type 2 mutation occurs with probability q2; an-
other gene is uniformly and randomly selected, and the loading or-
ders of the two genes are exchanged. If an offspring has been
selected for mutation, we conduct the Types 1 and 2 mutations
in order.

4.7. Local refinement

After the crossover and mutation operators, we attempt to lo-
cally improve the resultant offsprings (in terms of the fitness func-
tion) using three types of refinement operations:

1. Consolidation. Choose k shipments at random and assign them
to a single shipping route that results in the biggest improve-
ment in the fitness value. If there does not exist a shipping route
whereby the assignment of the shipments improves the fitness,
then do nothing. In our implementation of the MA, we perform
this operation on k = {2, 3, 4}. Fig. 7 shows an example consoli-
dation with k = 2.

2. Route swap. Choose two shipments at random and swap their
shipping routes if the resultant solution has a superior fitness
value.

3. Loading-order swap. Choose two items at random and swap
their loading orders if the resultant solution has a superior fit-
ness value.

These operations are applied in the following order: consolida-
tion with k = 2, 3, 4, route swap, and finally loading-order swap. An
operation is repeatedly applied until no improvement is found
after b consecutive tries, whereupon the next operation is applied.
4.8. Termination criterion

The MA terminates when the number of generations reaches a
user-defined value NmaxGen.

5. Computational experiments

In this section, we evaluate the merits of our proposed MA on a
large number of randomly generated test instances. To provide a
benchmark for the performance of our approach, we also applied
the branch-and-cut search scheme in ILOG CPLEX 11.1 with default
settings to solve the IP model. Both algorithms were implemented
in C++ and executed on an Intel Xeon (R) 2.66 GHz server with 3 GB
RAM. All computation times reported here are in CPU seconds on
this server.

5.1. Test instances

The FCCP is a new problem, and therefore there are no specific
benchmark test sets available in existing literature. Consequently,
we generated a number of test instances using the following
scheme, which was developed after discussions with experts from
the 3PL in question. We take the number of shipments (jSj) from
{20, 50, 80} and the number of shipping routes (jRj) from {5, 10}.
For each shipment, the number of items is selected from Ud[3,
12], where Ud[a, b] denotes the discrete uniform distribution in
the interval [a, b]. The item sizes (vi) in cubic meters are indepen-
dently randomly generated using two distributions Uc[0.3, 1] and
Uc[2, 6], where Uc[a, b] denotes the continuous uniform distribu-
tion in the interval [a, b]. For convenience, we refer to the items
with sizes generated by Uc[0.3, 1] and Uc[2, 6] as small and big
items, respectively.

We represent the territory of the United States with a planar
rectangle with Cartesian coordinates [0, 1000] � [0, 1000], while
the origin hub in Shanghai can be conceptually visualized as a
point outside this rectangle (see the map shown in Fig. 8). There
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are 30 retailer stores randomly distributed in the planar rectangle.
The destination store for each shipment is randomly selected so
that some stores may receive more than one shipment while oth-
ers may receive none.

All test instances make use of three types of containers: stan-
dard 20-ft, standard 40-ft and 40-ft high cube, which have capaci-
ties of 29.4, 58.8 and 67.2 cubic meters, respectively. Each shipping
route corresponds to a unique destination hub whose location is
randomly chosen from the boundary of the planar rectangle
(resulting in jRj destination hubs in total).

We illustrate our method of assigning container costs for each
container type on each shipping route using Fig. 8. On the bound-
ary of the planar rectangle, we define six points A1, . . ., A6, each
with the fixed value NAl ð1 6 l 6 6Þ as shown in the figure:
NA1 ¼ NA5 ¼ 2400; NA2 ¼ NA4 ¼ 3000, NA3 ¼ 3400, and NA6 ¼ 2000.
These values were chosen based on the shipping distance between
the warehouse in Shanghai and points on the coast of North
America.

Consider a destination hub on the boundary of the planar rect-
angle at point Ah; observe that Ah must lie on some line segment
(Al, Am), where m = (l + 1)mod6. Let L(Al, Am) be the Euclidean dis-
tance between points Al and Am. We set the cost of a standard
20-ft container for the shipping route with destination hub Ah to
NAm þ ðNAl � NAm Þ � LðAm;AhÞ=LðAl;AmÞ. In our example, this cost
would be 2000 + (2400 � 2000) � L(A6, Ah)/L(A6, A1). We found that
the relative shipping costs for each route generated in this manner
closely approximate the actual data we received from the 3PL. For
each shipping route, the costs of the standard 40-ft and 40-ft high
cube containers are set to be 1.2 and 1.3 times that of the standard
20-ft container.

The cost ri, j of delivering item i from a destination hub to its re-
tailer store is a function of the item size and delivery distance. For
example, if item i is loaded into container j heading to destination
hub Ah and its store is situated at point As, we set ri, j = c � vi � L(Ah,
As), where c is a multiplicative factor for the delivery cost. A higher
value of c increases the relative cost of delivery compared to the
container cost. In our test instances, the value of c is taken from
{0.08, 0.16, 0.32}.

Hence, our test instances are divided into 36 groups, corre-
sponding to all combinations of the number of shipments (3 possi-
ble values), the number of shipping routes (2 possible values), the
item sizes (2 possible distributions) and the values of c (3 possibil-
ities). Each instance group is identified by four numbers separated
by dashes (‘–’): the first two numbers are the number of shipments
and shipping routes, respectively; the third number is the value of
c; and the last number indicates item size distribution, where ‘‘1’’
stands for Uc[0.3, 1] and ‘‘2’’ stands for Uc[1, 3]. For each instance
group, we generated 10 random instances, for a total of 360 in-
stances. All the instances and results can be found on http://
www.computational-logistics.org/orlib/fccp.

5.2. Experimental setup

We set a time limit of 1 CPU hour for all CPLEX executions when
solving the IP model. Recall from Section 4.3 that computing our
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A3 3400

3000

3000

A4A5

2000 A6

origin
hub

Ah

As

Fig. 8. Example FCCP map.
fitness function requires a solution to the VSBPPS. We imple-
mented the MA using our near-optimal O(mnl) VSBPPS solution
(denoted simply as MA1) as well as the optimal O n2

l

� �
VSBPPS solu-

tion by Haouari and Serairi (2009) (denoted by MA2). Since the MA
is not deterministic, we executed each of the two MA implementa-
tions ten times for each instance with different random seeds and
recorded the best, average and worst solutions of the ten runs.

When solving the IP model using CPLEX, an increase in the car-
dinality of set B (the collection of all containers) corresponds to an
increase in the number of decision variables, which has a signifi-
cant effect on the performance of CPLEX. Therefore, it is important
to minimize the size of set B while ensuring that no optimal solu-
tion is omitted.

Consider a special instance involving only one shipping route.
Suppose all items can be completely loaded into twenty standard
20-ft or ten standard 40-ft or nine 40-ft high cube containers by
some approach; this implies that the optimal solution to the IP
model with a set B including these thirty-nine containers is an
optimal solution to the FCCP instance. This observation allows us
to determine the set B for each test instance in the following man-
ner. For all items with different sizes and for each shipping route,
we solve two 1DBPPs with the first-fit decreasing heuristic (Coff-
man, Garey, & Johnson, 1996), one using only standard 40-ft con-
tainers, and the other using only 40-ft high cube containers. The
solutions to these problems are upper bounds for the numbers of
these two types of containers, which we include in set B. Note that
the capacity and cost ratios of the standard 40-ft container to the
standard 20-ft container are 2 and 1.3, respectively, so no optimal
solution can employ two standard 20-ft containers because they
can be combined into one standard 40-ft container with reduced
cost. Consequently, we include only one standard 20-ft container
in set B.

Our MA approach contains a number of parameters as given in
Table 1. These parameters can be divided into two classes: one
class consists of NmaxGen, jPIj, jPOj and b, which mainly affect the
computation speed of the algorithm, and the other class contains
the remaining parameters that mainly affect the quality of final
solutions. Our parameter tuning process is conducted in two
phases. In phase one, we set all parameters of the second class to
zero and calibrated the parameters in the first class by conducting
a 33 full factorial experimental design on the fifth instance in each
of the instance groups with 50 shipments using the MA1 imple-
mentation (jPIj = jPOj for all configurations). In this phase, we solved
each instance 27 times, recorded its lowest cost and calculated a
gap for each run by: (cost of the run – the lowest cost)/the lowest
cost. After considering the tradeoff between the average gap and
average computation time, we selected the following parameter
values: NmaxGen = 100, jPIj = jPOj = 20 and b = 40. In phase two, we
conducted another 33 full factorial design to determine the values
of a = 0.01, q1 = 0.01 and q2 = 0.01.

5.3. Results and analysis

Our results are summarized in two tables: Table 2 summarizes
the computational results for the instance groups with small items,
Table 1
Parameters for MA approach.

Symbol Description

NmaxGen The number of generations of MA
jPIj = jPOj The sizes of the population and offspring sets
b The maximum number of consecutive non-improving tries
a The value of a in the chromosome fitness function
q1 The probability of Type 1 mutation
q2 The probability of Type 2 mutation

http://www.computational-logistics.org/orlib/fccp
http://www.computational-logistics.org/orlib/fccp
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Table 2
Summarized results for instance groups with small items.

Group CPLEX Greedy MA1 MA2

Gap (%) Time Gap (%) Best gap (%) Worse gap (%) Avg. gap (%) Time Best gap (%) Worse gap (%) Avg. gap (%) Time

20-5-0.08-1 0.00 226.0 30.99 0.00 0.05 0.01 14.5 0.00 0.05 0.01 89.2
20-5-0.16-1 0.00 37.1 46.01 0.00 0.00 0.00 13.9 0.00 0.00 0.00 84.2
20-5-0.32-1 0.00 2.0 52.63 0.00 0.00 0.00 15.1 0.00 0.00 0.00 75.3
20-10-0.08-1 0.00 990.3 58.36 0.09 0.15 0.12 16.7 0.09 0.15 0.12 92.3
20-10-0.16-1 0.00 56.7 51.42 0.00 0.44 0.16 17.4 0.00 0.44 0.16 83.3
20-10-0.32-1 0.00 7.0 59.19 0.00 0.46 0.26 18.2 0.00 0.46 0.26 79.9
50-5-0.08-1 2.71 3600.0 52.28 0.17 1.11 0.55 90.1 0.25 0.93 0.56 727.3
50-5-0.16-1 1.15 1554.6 57.81 �0.06 1.37 0.50 94.8 �0.07 1.48 0.59 631.8
50-5-0.32-1 0.89 2219.4 61.79 0.38 0.83 0.63 97.2 0.32 0.86 0.68 671.1
50-10-0.08-1 3.90 3600.0 67.07 �0.58 1.40 0.22 108.0 �0.64 1.07 0.28 760.0
50-10-0.16-1 0.49 2979.3 78.94 0.47 4.67 2.39 108.6 0.87 7.11 3.61 650.5
50-10-0.32-1 0.73 1973.4 78.46 0.59 2.62 1.44 112.5 0.33 2.31 1.06 630.4
80-5-0.08-1 7.87 3600.0 44.86 �4.00 �2.71 �3.42 250.0 �4.19 �2.36 �3.52 1952.7
80-5-0.16-1 4.32 3600.0 42.50 �1.79 �0.61 �1.29 244.8 �1.80 �0.95 �1.37 1878.4
80-5-0.32-1 3.73 3600.0 62.46 �1.62 �0.27 �1.06 248.7 �1.71 �0.43 �1.04 1881.2
80-10-0.08-1 42.08 3600.0 46.91 �14.60 �10.20 �12.23 284.0 �13.26 �10.64 �12.08 1999.1
80-10-0.16-1 17.67 3600.0 59.77 �7.44 �2.54 �5.26 294.4 �7.19 �1.37 �4.97 1930.7
80-10-0.32-1 8.16 3600.0 75.39 �2.83 �0.72 �1.81 300.4 �2.86 �0.79 �1.94 1809.1

Average 5.20 2158.1 57.05 �1.74 �0.22 �1.04 129.4 �1.66 �0.09 �0.98 890.4

Table 3
Summarized results for instance groups with big items.

Group CPLEX Greedy MA1 MA2

Gap (%) Time Gap (%) Best gap (%) Worse gap (%) Avg. gap (%) Time Best gap (%) Worse gap (%) Avg. gap (%) Time

20-5-0.08-2 3.88 3342.1 36.80 �0.47 �0.06 �0.29 19.4 �0.48 0.00 �0.33 66.7
20-5-0.16-2 1.05 2607.2 52.69 �0.07 0.07 �0.04 21.3 �0.08 0.17 0.01 64.1
20-5-0.32-2 0.44 1705.4 48.33 �0.05 �0.01 �0.03 20.7 �0.05 0.00 �0.01 61.0
20-10-0.08-2 6.52 3600.0 50.00 �0.61 1.92 0.53 21.0 �0.88 1.84 0.24 64.2
20-10-0.16-2 1.99 3600.0 49.10 0.37 1.47 0.98 23.4 0.27 2.69 1.00 64.8
20-10-0.32-2 0.47 1324.4 75.27 0.11 0.69 0.33 23.6 0.00 0.35 0.16 59.3
50-5-0.08-2 5.57 3600.0 34.35 �1.93 1.58 �0.28 142.2 �2.10 0.76 �0.71 416.0
50-5-0.16-2 4.02 3600.0 42.75 �1.71 �1.01 �1.40 135.9 �1.92 �1.32 �1.69 397.0
50-5-0.32-2 2.80 3600.0 64.59 �0.93 �0.77 �0.86 135.6 �0.94 �0.88 �0.91 397.4
50-10-0.08-2 36.95 3600.0 27.49 �8.32 �4.70 �6.70 155.6 �8.74 �5.25 �7.16 432.1
50-10-0.16-2 31.93 3600.0 52.23 �10.21 �7.09 �8.95 147.4 �9.98 �7.64 �8.71 395.9
50-10-0.32-2 7.12 3600.0 87.97 �4.04 �2.83 �3.41 146.2 �4.03 �3.00 �3.61 371.8
80-5-0.08-2 65.63 3600.0 8.60 �19.78 �19.00 �19.38 401.3 �19.85 �19.11 �19.48 1083.1
80-5-0.16-2 22.17 3600.0 20.50 �11.85 �11.20 �11.60 385.4 �11.76 �11.23 �11.52 1045.0
80-5-0.32-2 5.61 3600.0 51.89 �4.17 �3.86 �4.02 387.4 �4.09 �3.86 �3.99 1067.4
80-10-0.08-2 194.89 3600.0 �8.10 �33.40 �30.55 �32.05 465.7 �33.48 �30.57 �32.13 1133.6
80-10-0.16-2 75.15 3600.0 16.77 �28.82 �27.39 �28.17 408.4 �28.78 �27.67 �28.20 1049.6
80-10-0.32-2 29.78 3600.0 63.76 �13.93 �12.93 �13.42 404.2 �13.97 �12.55 �13.45 1026.4

Average 27.55 3298.8 43.06 �7.77 �6.43 �7.15 191.4 �7.82 �6.51 �7.25 510.9
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while Table 3 provides the results for big items. All columns except
the first one in each table give the average values of corresponding
gaps or computation times of all instances of the same group. We
calculated the gap between the solution and the lower bound
found by CPLEX after 1 h of computation for each instance as:
(CPLEX � Lower bound)/Lower bound and present the average
gap of all instances in each group in the column ‘‘Gap (%)’’ under
the block ‘‘CPLEX’’. The other gaps were derived using the
solutions of CPLEX as baseline, e.g., the gap for the average
solution of 10 MA1 runs for some instance is calculated by:
(MA1 average � CPLEX)/CPLEX, where MA1 average is the average
cost of executing MA1 10 times. The column ‘‘Gap (%)’’ under the
block ‘‘Greedy’’ gives the average cost of the initial solutions found
using the greedy heuristic described in Section 4.2, which provides
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Fig. 10. The impact of c.
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Fig. 11. The impact of the number of shipments.
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an indication of the quality of the human-generated solutions by
the decision makers at the 3PL. This is followed by the results
obtained by the two MA implementations. It is reasonable to
assume that the values in the column ‘‘Gap (%)’’ under the block
‘‘CPLEX’’ reflect the difficulty of instance groups. Consequently,
we sorted all instance groups by increasing value of ‘‘Gap (%)’’ of
CPLEX and plotted the results in Fig. 9. The detailed results for all
instances can be found in the Appendix B.

From the gaps of CPLEX in both Tables 2 and 3, we find that the
instances with big items are more difficult to be solved by CPLEX
than their counterparts with small items. We can also see that
for the groups with jSj = 20 and small items, CPLEX is able to find
the optimal solutions within the time limit. The instances with
jRj = 10 shipping routes require more computation times to be
solved and have larger CPLEX gaps (and are therefore more
difficult) than their counterparts with jRj = 5. Fig. 10 plots the
CPLEX gaps for each instance group and is derived from these
two tables; we observe an inverse relationship between the diffi-
culty of the instances and the value of c (the only exceptions are
‘‘50-10-0.16-1’’ and ‘‘50-10-0.32-1’’). This implies that the problem
becomes more difficult as the cost of delivery decreases relative to
the container cost. Furthermore, the difficulty of instances in-
creases with the number of shipments, which is illustrated by
Fig. 11.

The greedy heuristic performed better than CPLEX for only
group ‘‘80-10-0.08-2’’. For the rest of the groups, it produced much
poorer solutions than CPLEX, which is demonstrated by the large
positive values under the block ‘‘Greedy’’. We can clearly see that
our MA implementations are far superior to the greedy heuristic
employed by human decision makers, producing solutions that
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Fig. 12. The best gaps of two MA implementations plotted with the same group order in Fig. 9.
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cost less than half as much in certain cases. This represents a sub-
stantial cost saving, which provides dramatic evidence of the
importance of having an effective solution to the FCCP. A demon-
stration of this fact was one of the decisive factors when the man-
ufacturer eventually awarded the contract to the 3PL in question.

Just like CPLEX, both MA1 and MA2 also generated optimal
solutions for all instances with jRj = 20 and small items. The posi-
tive numbers (marked in bold) in the column ‘‘Best gap (%)’’ under
the block ‘‘MA1’’ or ‘‘MA2’’ indicate that CPLEX was superior to
MA1 or MA2 for those groups, which are all ‘‘easier’’ groups accord-
ing to Fig. 9. For the harder groups, our MA implementations
exhibited their superiority and achieved better solutions than
CPLEX. Moreover, our MA implementations are more likely to out-
perform CPLEX as the difficulty of the instance increases; this is
illustrated in Fig. 12, where the order of instance groups is the
same as that in Fig. 9.

Table 3 shows that the superiority of our MA implementations
over CPLEX is even greater for the instances with big items than
with small items. This is because more containers are needed when
the items are relatively large, which significantly increases the
number of variables in the IP formulation and reduces the effec-
tiveness of the branch-and-cut approach utilized by CPLEX. Note
that our big items were randomly generated to have volumes be-
tween 2 and 6 cubic meters, and these types of items are com-
monly encountered by the 3PL in question.

An inspection of the columns under the blocks ‘‘MA1’’ and
‘‘MA2’’ reveals that there is not much difference in the quality of
the solutions found by these two MA implementations. However,
MA2 requires between approximately 2.4 and 8.1 times the
amount of computation time employed by MA1 to complete.

6. Conclusions and future work

In this article, we introduced a new freight allocation and con-
solidation problem that involves choosing shipping routes for ship-
ments and loading items into containers with varying sizes and
costs. It models the task faced by a third-party logistics company
under contract with the major children’s textiles manufacturer,
where different shipments of textiles are to be consolidated so that
the total cost (consisting of container and delivery costs) is mini-
mized. Since this problem is NP-hard, we designed and imple-
mented a memetic algorithm approach to solve it under practical
settings. Extensive experimental results show that compared to
CPLEX 11.1, our two MA implementations (MA1 and MA2)
outperform CPLEX in terms of both solution quality and computa-
tion time when solving medium- and large-sized instances. On
average, MA1 and MA2 improved on the CPLEX solutions for in-
stances with small items by 1.04% and 0.98%, respectively. These
two MA implementations showed more advantages on solving
the instances with big items since the corresponding average
improvements are as much as 7.15% and 7.25%. By experiments,
we also compared the performance of MA1 and MA2, and find that
MA1 is more time-saving while providing equivalent solution
quality.

Major business enterprises looking to expand into the emerging
Chinese market often require the services of 3PLs for their trans-
portation needs. However, many companies are hesitant to venture
into the region due to a prevailing impression that local 3PLs are
ill-equipped to provide cost-effective logistical support. There is a
need to assure foreign investors that local 3PLs can handle complex
practical problems; the project upon which this study is based is a
prime example.

The FCCP represents an initial investigation into a common
logistical problem where the consolidation of different shipments
and the packing of items into containers are simultaneously taken
into account. We modeled the packing of items as a one-dimen-
sional bin-packing problem, which is justified since the customer
of the 3PL is a textile manufacturer. An obvious extension would
be to consider two-dimensional or three-dimensional packing,
which may be more appropriate for customers dealing in other
types of products. Our MA approach can be customized for these
cases by replacing our dynamic programming based VSBPPS algo-
rithm with an appropriate sequence-based algorithm for 2D or 3D
packing.
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