
European Journal of Operational Research 250 (2016) 412–426

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

An enhanced branch-and-bound algorithm for the talent scheduling

problem

Hu Qin a, Zizhen Zhang b,∗, Andrew Lim c, Xiaocong Liang d

a School of Management, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan, China
b School of Mobile Information Engineering, Sun Yat-sen University, Guangzhou, China
c Department of Industrial & Systems Engineering National University of Singapore 1, Engineering Drive 2, Singapore 117576
d Department of Computer Science, Sun Yat-Sen University, Guangzhou, China

a r t i c l e i n f o

Article history:

Received 8 November 2014

Accepted 1 October 2015

Available online 22 October 2015

Keywords:

scheduling

Talent scheduling

Branch-and-bound

Dynamic programming

Dominance rules

a b s t r a c t

The talent scheduling problem is a simplified version of the real-world film shooting problem, which aims

to determine a shooting sequence so as to minimize the total cost of the actors involved. In this article, we

first formulate the problem as an integer linear programming model. Next, we devise a branch-and-bound

algorithm to solve the problem. The branch-and-bound algorithm is enhanced by several accelerating tech-

niques, including preprocessing, dominance rules and caching search states. Extensive experiments over two

sets of benchmark instances suggest that our algorithm is superior to the current best exact algorithm. Finally,

the impacts of different parameter settings, algorithm components and instance generation distributions are

disclosed by some additional experiments.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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1. Introduction

The scenes of a film are not generally shot in the same sequence

as they appear in the final version. Finding an optimal sequence in

which the scenes are shot motivates the investigation of the tal-

ent scheduling problem, which is formally described as follows. Let

S = {s1, s2, . . . , sn} be a set of n scenes and A = {a1, a2, . . . , am} be a

set of m actors. All scenes are assumed to be shot on a given location.

Each scene sj ∈ S requires a subset a(sj) ⊆ A of actors and has a dura-

tion d(sj) that commonly consists of one or several days. Each actor ai

is required by a subset s(ai)⊆S of scenes. We denote by � the permu-

tation set of the n scenes and define ei(π ) (respectively, li(π )) as the

earliest day (respectively, the latest day) in which actor i is required

to be present on location in the permutation π ∈ �. Each actor ai ∈
A has a daily wage c(ai) and is paid for each day from ei(π ) to li(π )

regardless of whether he (or she) is required in the scenes. The objec-

tive of the talent scheduling problem is to find a shooting sequence

(i.e., a permutation π ∈ �) of all scenes that minimizes the total paid

wages.

Table 1 presents an example of the talent scheduling problem,

which is reproduced from de la Banda, Stuckey, and Chu (2011). The
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nformation of a(sj) and s(ai) is determined by the m × n matrix M

hown in Table 1(a), where cell Mi, j is filled with an “X” if actor ai

articipates in scene sj and with a “ · ” otherwise. Obviously, we can

btain a(sj) and s(ai) by a(s j) = {ai|Mi, j = X} and s(ai) = {s j|Mi, j =
}, respectively. The last row gives the duration of each scene and

he rightmost column gives the daily cost of each actor. If the shoot-

ng sequence is π = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12}, we can

et a matrix M(π ) shown in Table 1(b), where in cell Mi, j(π ) a sign “X”

ndicates that actor ai participates in scene sj and a sign “–” indicates

hat actor ai is waiting at the filming location. The cost of each scene

s presented in the second-to-last row and the total cost is 604. The

ost incurred by the waiting status of the actors is called holding cost,

hich is shown in the last row of Table 1(b). The optimal solution of

his instance is π ∗ = {s5, s2, s7, s1, s6, s8, s4, s9, s3, s11, s10, s12} whose

otal cost and holding cost are 434 and 53, respectively.

The talent scheduling problem was originated from Adelson,

orman, and Laporte (1976) and Cheng, Diamond, and Lin (1993).

delson et al. (1976) introduced an orchestra rehearsal scheduling

roblem, which can be viewed as a restricted version of the talent

cheduling problem with all actors having the same daily wage. They

roposed a simple dynamic programming algorithm to solve their

roblem. Cheng et al. (1993) studied a film scheduling problem in

which all scenes have identical duration. They first showed that the

problem is NP-hard even if each actor is required by two scenes and

the daily wage of each actor is one. Next, they devised a branch-and-

bound algorithm and a simple greedy hill climbing heuristic to solve
EURO) within the International Federation of Operational Research Societies (IFORS).
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Table 1

An example of the talent scheduling problem reproduced from de la Banda et al. (2011).

(a) The matrix M for an instance of the talent scheduling problem.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 c(ai)

a1 X · X · · X · X X X X X 20

a2 X X X X X · X · X · X · 5

a3 · X · · · · X X · · · · 4

a4 X X · · X X · · · · · · 10

a5 · · · X · · · X X · · · 4

a6 · · · · · · · · · X · · 7

d(sj) 1 1 2 1 3 1 1 2 1 2 1 1

(b) The matrix M(π ) corresponding to a solution π of the instance.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 c(ai)

a1 X – X – – X – X X X X X 20

a2 X X X X X – X – X – X · 5

a3 · X – – – – X X · · · · 4

a4 X X – – X X · · · · · · 10

a5 · · · X – – – X X · · · 4

a6 · · · · · · · · · X · · 7

Cost 35 39 78 43 129 43 33 66 29 64 25 20 604

Holding cost 0 20 28 34 84 13 24 10 0 10 0 0 223
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heir problem. Later, Smith (2003) applied constraint programming

o solve both the problems introduced by Adelson et al. (1976) and

heng et al. (1993). In her subsequent work, namely Smith (2005),

he accelerated her constraint programming approach by caching

earch states.

The talent scheduling problem we study in this article was first

ormally described by de la Banda et al. (2011). This problem is a gen-

ralization of the problems introduced by Adelson et al. (1976) and

heng et al. (1993), where scenes may have different durations and

ctors may have different wages. However, it is a simplified version of

he movie shoot scheduling problem (MSSP) introduced by Bomsdorf

nd Derigs (2008). In the MSSP, we need to deal with a couple of prac-

ical constraints, such as the precedence relations among scenes, the

ime windows of each scene, the resource availability, and the work-

ng time windows of actors and other film crew members. Recently,

iang, Zhang, Qin, Guo, and Lim (2014) proposed a branch-and-bound

lgorithm to solve the talent scheduling problem and achieved better

esults than de la Banda et al. (2011).

In literature, there exist several meta-heuristics developed for the

roblem introduced by Cheng et al. (1993). Nordström and Tufekci

1994) provided several hybrid genetic algorithms for this problem

nd showed that their algorithms outperform the heuristic approach

n Cheng et al. (1993) in terms of both solution quality and com-

utation speed. Fink and Voß (1999) treated this problem as a spe-

ial application of the general pattern sequencing problem, and im-

lemented a simulated annealing algorithm and several tabu search

euristics to solve it.

The talent scheduling problem is a very challenging combinato-

ial optimization problem. The current best exact approach by de la

anda et al. (2011) can only optimally solve small- and medium-size

nstances. In this paper, we propose an enhanced branch-and-bound

lgorithm for the talent scheduling problem, which uses the follow-

ng two main techniques:

• Dominance rules. When a partial solution represented by a node in

the search tree can be dominated by another partial solution, this

node need not be further explored and can be safely discarded.
• Caching search states. The talent scheduling problem can be solved

by dynamic programming algorithm (see de la Banda et al. (2011)).

It is beneficial to incorporate the dynamic programming states

into the branch-and-bound framework by a memoization tech-

nique. In the branch-and-bound tree, each node is related to a dy-

namic programming state. If the search process explores a certain

node whose already confirmed cost is not smaller than the value

of its corresponding cached state, this node can be pruned.
 v
There are three main contributions in this paper. Firstly, we for-

ulate the talent scheduling problem as a mixed integer linear

rogramming model so that commercial mathematical programming

olvers can be applied to the problem. Secondly, we propose an en-

anced branch-and-bound algorithm whose novelties include a new

ower bound, caching search states and two problem-specific dom-

nance rules. Thirdly, we achieved the optimal solutions for more

enchmark instances by our algorithm. The experimental results

how that our branch-and-bound algorithm is superior to the current

est exact approach by de la Banda et al. (2011).

The remainder of this paper is organized as follows. In Section 2,

e present the mixed integer linear programming model for the tal-

nt scheduling problem. Next, we describe our branch-and-bound al-

orithm in Section 3, including the details on a double-ended search

trategy, the computation of the lower bound, a preprocessing step,

he state caching process and the dominance rules. The computa-

ional results are reported in Section 4, where we used our algorithm

o solve over 200,000 benchmark instances. Finally, we conclude our

tudy in Section 5 with some closing remarks.

. Mathematical formulation

The talent scheduling problem is essentially a permutation

roblem. It tries to find a permutation (i.e., a schedule) π =
π(1), . . . , π(n)) ∈ �, where π (k) is the kth scene in permutation

, such that the total cost C(π ) is minimized. The value of C(π ) is

omputed as:

(π) =
m∑

i=1

c(ai) ×
(
li(π) − ei(π) + 1

)

We set the parameter mi, j = 1 if Mi, j = X and mi, j = 0 otherwise.

he total holding cost can be easily derived as:

(π) =
m∑

i=1

c(ai) ×
(

li(π) − ei(π) + 1 −
n∑

j=1

mi, jd(s j)

)

Apparently, for this problem minimizing the total cost is equiva-

ent to minimizing the total holding cost (de la Banda et al., 2011).

We create two dummy scenes s0 and sn+1 to represent the first and

he last scenes to be shot, namely, π(0) = s0 and π(n + 1) = sn+1.

he starting days for shooting s0 and sn+1 are equal to zero and
n
j=1 d(s j) + 1, respectively. The durations of s0 and sn+1 are both

qual to zero. The talent scheduling problem can be formulated into

n integer linear programming model using the following decision

ariables:
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xk, j: a binary variable that equals 1 if scene sj is scheduled imme-

diately after scene sk, and 0 otherwise.

tj: the starting day for shooting scene sj.

ei: the earliest shooting day that requires actor ai.

li: the latest shooting day that requires actor ai.

The integer programming model is given by:

(IP) min

m∑
i=1

c(ai)(li − ei + 1) (1)

s.t.

n∑
j=1

x0, j = 1 (2)

n∑
k=1

xk,n+1 = 1 (3)

n+1∑
j=1,k �= j

xk, j = 1, ∀ 1 ≤ k ≤ n (4)

n∑
k=0,k �= j

xk, j = 1, ∀ 1 ≤ j ≤ n (5)

n∑
j=1,k �= j

t jxk, j = tk + d(sk), ∀ 0 ≤ k ≤ n (6)

0 = 0, tn+1 =
n∑

j=1

d(s j) + 1 (7)

ei ≤ t j, ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n, mi, j = 1 (8)

j + d(s j) − 1 ≤ li, ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n, mi, j = 1 (9)

xk, j ∈ {0, 1}, ∀ 0 ≤ k ≤ n, 1 ≤ j ≤ n + 1 (10)

ei, li, t j ≥ 0 and integer, ∀ 1 ≤ i ≤ m, 0 ≤ j ≤ n + 1 (11)

The objective (1) is to minimize the total cost, where li − ei + 1

is the number of days in which actor ai is present on location. Con-

straints (2) and (3) ensure that the first and the last scenes are s0 and

sn+1, respectively. Constraints (4) and (5) guarantee that every scene

has exactly one immediate successor and one immediate predeces-

sor, respectively. Constraints (6) state that the starting day of scene sj

is determined by the starting day of its predecessor scene sk. More-

over, these constraints prevent sub-tours from occurring. Constraints

(8) and (9) ensure that the earliest and the latest shooting days that

require actor ai are determined by the starting days of scenes in which

he (or she) is involved.

Observe that Constraints (6) are nonlinear. To linearize them, we

introduce a set of additional variables zk, j(0 ≤ k ≤ n, 1 ≤ j ≤ n, k �=
j), and set zk, j = t jxk, j . We know that zk, j = t j if xk, j = 1 and zk, j =
0 otherwise. Thus, zk, j can be restricted by the following four linear

constraints:

zk, j ≥ 0 (12)

zk, j ≤ t j (13)

zk, j ≥ t j + L(xk, j − 1) (14)

zk, j ≤ Lxk, j (15)

where L is a sufficiently large positive number. Accordingly, Con-

straints (6) can be rewritten as:

n∑
j=1,k �= j

zk, j = tk + d(sk), ∀ 0 ≤ k ≤ n (16)
(

he objective (1) and Constraints (2)–(5), (7)–(16) constitute an inte-

er linear programming model (ILP) for the talent scheduling prob-

em. This ILP is quite difficult to be optimally solved by commercial

nteger programming solvers, e.g., ILOG CPLEX. Preliminary experi-

ents revealed that only very small-scale instances, e.g., n = 10 and

= 5, can be optimally solved by CPLEX 12.1. This is mainly because

he linear relaxation of the ILP model cannot provide a high-quality

ower bound for the problem.

. An enhanced branch-and-bound approach

Branch-and-bound is a general technique for optimally solving

arious combinatorial optimization problems. The basic idea of the

ranch-and-bound algorithm is to systematically and implicitly enu-

erate all candidate solutions, where large subsets of fruitless can-

idates are discarded by using upper and lower bounds, and domi-

ance rules. In this section, we describe the main components of our

roposed branch-and-bound algorithm, including a double-ended

earch strategy, a novel lower bound, the preprocessing stage, the

tate caching strategy and two dominance rules. For the rest of this

iscussion, we choose minimizing the total holding cost as the objec-

ive of the talent scheduling problem.

.1. Double-ended search

The solutions of the talent scheduling problem can be easily pre-

ented in a branch-and-bound search tree. Suppose we aim to find

n optimal permutation π ∗ = (π ∗(1), π ∗(2), . . . , π ∗(n)). A typical

ranch-and-bound process first determines the first k scenes to be

hot, denoted by a partial permutation (π̂(1), . . . , π̂ (k)), at level

of the search tree. Then, it generates n − k branches, each try-

ng to explore a node by assigning a scene to π(k + 1). At some

ree node at level k + 1, there is a known partial permutation

π̂(1), π̂(2), . . . , π̂ (k + 1)) and a set of n − k − 1 unscheduled scenes.

f the lower bound LB to the value of the solutions that contain the

artial permutation (π̂(1), π̂(2), . . . , π̂ (k + 1)) is not less than the

urrent best solution value (i.e., an upper bound UB), then the branch

o the node associated with π̂(k + 1) can be safely discarded. Once

he search process reaches a node at level n of the tree, a feasible

olution is obtained and the current best solution may be updated

ccordingly.

The above search methodology can be called the single-ended

earch strategy. As did by Cheng et al. (1993) and de la Banda et al.

2011), we can employ a double-ended search strategy that alterna-

ively fixes the first and the last undetermined positions in the per-

utation. That is to say, the double-ended search determines a scene

ermutation following the order π(1), π(n), π(2), π(n − 1) and so

n. When using the double-ended search strategy, a node in some

evel of the search tree corresponds to a partially determined per-

utation with the form (π̂(1), . . . , π̂ (k − 1), π(k), . . . , π(l), π̂(l +
), . . . , π̂ (n)), where 1 ≤ k ≤ l ≤ n and the value of π (h) (k ≤ h ≤

) is undetermined. We denote by B the set of scenes scheduled at the

eginning of the permutation, namely B = {π̂(1), π̂(2), . . . , π̂ (k −
)}, and by E the set of scenes scheduled at the end, namely E =
π̂(l + 1), π̂(l + 2), . . . , π̂ (n)}. The remaining scenes are put in a set

, namely Q = S − B − E. Moreover, for convenience, we denote by
� and �E the partially determined scene sequences at the beginning

nd at the end of a permutation, i.e., �B = (π̂(1), . . . , π̂ (k − 1)) and
� = (π̂(l + 1), . . . , π̂ (n)).

The double-ended search strategy is beneficial to solving the tal-

nt scheduling problem. As pointed out by de la Banda et al. (2011),

ore accurate lower bounds can be obtained by increasing the num-

er of fixed actors. The actor required by the scenes in both B and E

s labeled fixed since the total number of his/her on-location days is

xed and his/her cost in the final schedule already becomes known

Cheng et al., 1993). We do not need to consider any fixed actor in the
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ater stages of the search process, which certainly reduces the size of

he problem. Let a(Q) = ∪s∈Q a(s) be the set of actors required by at

east one scene in Q⊆S. The set of all fixed actors can be defined by

= a(B) ∩ a(E).

A generic double-ended branch-and-bound framework is given

n Algorithm 1. The operator “◦” in lines 3, 11 and 15 indicates

lgorithm 1 A generic double-ended branch-and-bound search

ramework.

1: Function: search(�B, Q, �E)
2: if Q = ∅ then
3: current_solution = �B ◦ �E;
4: z = evaluate(current_solution);
5: if z < UB then
6: UB = z;
7: best_solution = current_solution;
8: end if
9: else

10: for all s ∈ Q do
11: LB = lower_bound(�B ◦ s, Q − {s}, �E);
12: if LB ≥ UB then
13: continue;
14: end if
15: Invoke search(R(�E), Q − {s}, s ◦ R(�B)).
16: end for
17: end if

oncatenating two partially determined scene sequences. The func-

ion search(�B, Q, �E) returns the optimal solution to the talent

cheduling problem with known �B and �E; we denote this problem

y P(�B, Q, �E). The optimal solution of the talent scheduling prob-

em can be achieved by invoking search(�B, Q, �E) with B = E = ∅ and

= S. The function evaluate(solution) returns the objective value

f solution. The function lower_bound(�B ◦ s, Q − {s}, �E) provides a

alid lower bound to problem P(�B ◦ s, Q − {s}, �E), where the set B of

cenes is scheduled before scene s and the set S − B − {s} of scenes is

cheduled after scene s. If the lower bound (LB) at some branch-and-

ound tree node is greater than the upper bound (UB), we discard

his node (see lines 12–14, Algorithm 1). Note that UB is a global vari-

ble. The branch-and-bound search tries to schedule each remain-

ng scene s immediately after �B, and then swaps the roles of �B and
� to continue building the search tree (see line 15, Algorithm 1).

ote that we use R(�B) to denote the reverse sequence of �B. For ex-

mple, if P(�B, Q, �E) = P((1, 2), {3, 4}, (5, 6)), then P(R(�E), Q, R(�B)) =
((6, 5), {3, 4}, (2, 1)).

.2. Lower bound to P(�B, Q, �E)

The problem P(�B, Q, �E) corresponds to a node in the search tree.

ts lower bound lower_bound(�B, Q, �E) can be expressed as:

ower_bound(�B, Q, �E) = cost(�B, �E) + lower(B, Q, E),

here cost(�B, �E), called past cost, is the cost incurred by the path

rom the root node to the current node, and lower(B, Q, E) provides
Table 2

An example for computing cost(�B, �E) and cost(s, B, E).

�B Q �E

s1 s2 {s3, s4} s5 s6

a1 X . {X, · } X X

a2 X . {X, · } . .

a3 . . {X, · } . X

a4 . X {X, · } . .

a5 . . {X, · } . .
lower bound to future cost, i.e., the holding cost to be incurred by

cheduling the scenes in Q. We discuss the past cost cost(�B, �E) in this

ection and leave the description of lower(B, Q, E) in Section 3.4.

When �B and �E have been fixed, a portion of holding cost, namely

ost(�B, �E), is determined regardless of the schedule of the scenes in

. The past cost cost(�B, �E) is incurred by the holding days that can be

onfirmed by the following three ways:

1. For the actor ai ∈ a(B) ∩ a(E), the number of his/her holding days

in any complete schedule can be fixed (Cheng et al., 1993).

2. For the actor ai ∈ a(B) ∩ a(Q) − a(E), the number of his/her hold-

ing days in the time period for completing scenes in B can be fixed.

3. For the actor ai ∈ a(E) ∩ a(Q) − a(B), the number of his/her hold-

ing days in the time period for completing scenes in E can be fixed.

Furthermore, we use cost(s, B, E) to represent the newly confirmed

olding cost incurred by placing scene s ∈ Q at the first unsched-

led position, namely the position after any scene in B and before

ny scene in S − B − {s}. Note that cost(s, B, E) is irrelevant to the

rders of scenes in B and E. Obviously, we have cost(�B ◦ {s}, �E) =
ost(�B, �E) + cost(s, B, E), which implies that the past cost of a tree

ode is the sum of the past cost of its father node and the newly

onfirmed holding cost incurred by branching. As a result, the lower

ound function can be rewritten as:

lower_bound(�B ◦ s, Q − {s}, �E)

= cost(�B, �E) + cost(s, B, E) + lower(B ∪ {s}, Q − {s}, E).

The value of cost(s, B, E) is incurred by the following two types of

ctors:

Type 1. If actor ai is included in neither a(B) ∩ a(E) nor a(s) but

s still present on location during the days of shooting scene s (i.e.,

i �∈ a(B) ∩ a(E), ai �∈ a(s) and ai ∈ a(B) ∩ a(Q − {s})), he/she must be

eld during the shooting days of scene s.

Type 2. If actor ai is not included in a(B) ∩ a(E) but is included in

(E), and scene s is his/her first involved scene (i.e., ai �∈ a(B) and ai ∈
(s) and ai ∈ a(E)), the shooting days of those scenes in Q − {s} that

o not require actor ai can be confirmed as his/her holding days.

To demonstrate the computation of cost(�B, �E) and cost(s, B, E),

et us consider a partial schedule presented in Table 2, where
� = (s1, s2), �E = (s5, s6) and Q = S − B − E = {s3, s4}. In the columns

cost(�B, �E)”, “cost(s3, B, E)” and “cost(s4, B, E)”, we present the corre-

ponding holding cost associated with each actor. For example, the

alue of cost(�B, �E) can be obtained by summing up the values in all

ells of the column “cost(�B, �E)”. Since actor a1 is a fixed actor, his/her

olding cost must be c(a1)(d(s2) + d(s4)) no matter how the scenes

n Q are scheduled. Actor a2 is involved in B and Q but is not in-

olved in E, so we can only say that the holding cost of this actor

s at least c(a2)d(s2). Similarly, actor a3 has an already incurred hold-

ng cost c(a3)d(s5). For actors a4 and a5, we cannot get any clue on

heir holding costs from this partial schedule and thus we say their

lready confirmed holding costs are both zero. Suppose scene s4 is

laced at the first unscheduled position. Since actors a2 and a4 must

e present on location during the period of shooting scene s4, the

ewly confirmed holding cost is cost(s4, B, E) = (c(a2) + c(a4))d(s4).

f we suppose scene s is placed at the first unscheduled position,
3

cost(�B, �E) cost(s3, B, E) cost(s4, B, E)

c(a1)(d(s2) + d(s4)) 0 0

c(a2)d(s2) 0 c(a2)d(s4)

c(a3)d(s5) c(a3)d(s4) 0

0 0 c(a4)d(s4)

0 0 0



416 H. Qin et al. / European Journal of Operational Research 250 (2016) 412–426

Table 3

The table for explaining Expression (17).

Actor pattern B {s} Q − {s} E o(B) o(E) a(s) o(B) − o(E) o(B) − o(E) − a(s) a(s) − o(B) (a(s) − o(B)) ∩ o(E)

1 X X X X 1 1 1 0 0 0 0

2 · X X X 0 1 1 0 0 1 1

3 X X X · 1 0 1 1 0 0 0

4 · X X · 0 0 1 0 0 1 0

5 X X · X 1 1 1 0 0 0 0

6 · X · X 0 1 1 0 0 1 1

7 X X · · 1 0 1 1 0 0 0

8 · X · · 0 0 1 0 0 1 0

9 X · X X 1 1 0 0 0 0 0

10 · · X X 0 1 0 0 0 0 0

11 X · X · 1 0 0 1 1 0 0

12 · · X · 0 0 0 0 0 0 0

13 X · · X 1 1 0 0 0 0 0

14 · · · X 0 0 0 0 0 0 0

15 X · · · 0 0 0 0 0 0 0

16 · · · · 0 0 0 0 0 0 0

Table 4

An example to illustrate preprocessing steps.

(a) Before preprocessing. (b) After preprocessing.

B Q E B Q E

s1 s2 s3 s4 s1 s′2 s4

a1 X X X X X · a1 X X X X ·
a2 X · X X X · a2 X · X X ·
a3 · X X X · X a3 · X X · X

a4 X · X · · X

a5 · · · · · X
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the newly confirmed holding cost is only related to actor a3, namely,

cost(s3, B, E) = c(a3)d(s4).

Define o(Q) = a(S − Q) ∩ a(Q) as the set of actors required by

scenes in both Q and S − Q (de la Banda et al., 2011). Then, cost(s, B, E)

can be mathematically computed by:

cost(s, B, E) = d(s) × c(o(B) − o(E) − a(s))

+
∑

s′∈Q−{s}
d(s′) × (c((a(s) − o(B)) ∩ o(E))

− c((a(s) − o(B)) ∩ o(E) ∩ a(s′))), (17)

where c(G) is the total daily cost of all actors in G⊆A, i.e., c(G) =∑
a∈G c(a).

We use Table 3 to explain Expression (17). All actors can be clas-

sified into 16 patterns according to whether they are required by the

scenes in sets B, {s}, Q − {s} and E. If an actor is required by at least one

scene in some set, the corresponding cell in columns 2–5 is filled with

a sign “X”; otherwise it is filled with a sign “ · ”. In columns 6–12, if

an actor is included in some actor set, the corresponding cell is filled

with “1”; otherwise, it is filled with “0”. For example, for pattern 2

actors that has (B, {s}, Q − {s}, E) = (·, X, X, X), we can derive that all

actors of this pattern must be included in sets o(E), a(s), a(s) − o(B)
and (a(s) − o(B)) ∩ o(E) and cannot exist in sets o(B), o(B) − o(E) and

o(B) − o(E) − a(s).

From Table 3, we can observe that set o(B) − o(E) − a(s) only con-

tains type 1 actors that have pattern (B, {s}, Q − {s}, E) = (X, ·, X, ·).

Thus, the first component of Expression (17) corresponds to type

1 actors. Set
(
a(s) − o(B)

)
∩ o(E) contains type 2 actors that have

either pattern (B, {s}, Q − {s}, E) = (·, X, X, X) or pattern (B, {s}, Q −
{s}, E) = (·, X, ·, X). The second component of Expression (17) is the

holding cost of type 2 actors during the shooting days for the scenes

in Q − {s}.

3.3. Preprocessing

The holding costs of all fixed actors will not change in the later

stages of the search. We use set AN to contain all non-fixed ac-

tors, namely AN = {ai ∈ A : ai /∈ a(B) ∩ a(E)}. When solving problem

P(�B, Q, �E), we only need to consider the actors in AN. As did by de la

Banda et al. (2011), the problem P(�B, Q, �E) can be further simplified

as:

• We remove from AN all actors that are required by only one scene.

This is because such actors will not bring about extra holding cost.
• We exclude from AN all non-fixed actors that are not required by

the scenes in Q.
• If scenes s1 and s2 satisfy a(s1) ∩ AN = a(s2) ∩ AN, then we replace

them with a single scene with duration d(s) = d(s1) + d(s2) since

they can be regarded as duplicate scenes. The correctness of merg-

ing duplicate scenes has been proved by de la Banda et al. (2011).

The example shown in Table 4 illustrates the preprocessing steps.

n the problem given by Table 4(a), actor a4 is fixed and actor a5 is

ot required by the scenes in Q = {s1, s2, s3, s4}. Therefore, we can

emove actors a4 and a5 to make AN = {a1, a2, a3}. Now since a(s2) ∩
N = a(s3) ∩ AN = {a1, a2, a3}, we can merge scenes s2 and s3. After

hese preprocessing steps, we get a simplified problem as shown in

able 4(b), where s′
2

is the scene created by merging scenes s2 and s3.

.4. Lower bound to future cost

In de la Banda et al. (2011), the authors proposed a lower bound

o the future cost. They generated two lower bounds using (o(B) − F,

) and (o(E) − F, Q) as input information, and claimed that the sum

f these two lower bounds is still a lower bound (denoted by L0) to

he future cost. The reader is encouraged to refer to de la Banda et al.

2011) for the details of this lower bound.

In this section, we present a new implementation of lower(B, Q, E).

uppose σ is an arbitrary permutation of the scenes in Q. We define

i as the holding cost of actor ai during the period of shooting the

cenes in Q with the order specified by permutation σ . If lower(B,

, E) = minσ {∑i∈AN
xi}, we get the minimum possible future cost.

owever, it is impossible to get the value of minσ {∑i∈AN
xi} unless

ll σ are checked. Instead, we propose a method to produce a lower

ound to minσ {∑i∈AN
xi}.

If an actor ai satisfies ai �∈ a(B), ai �∈ a(E) and ai ∈ a(Q), the low-

st possible holding cost of this actor during the period of shooting

he scenes in Q may be zero. Therefore, we only consider the actors

n set A′
N

= (o(B) − F) ∪ (o(E) − F) ⊆ AN . For any two different actors

i, a j ∈ A′
N, we can derive a constraint xi + x j ≥ ci, j, where ci, j is a con-

tant computed based on the following four cases:
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Table 5

Two schedules in Case 1.

(a) The first schedule. (b) The second schedule.

B Q E B Q E

s1 s2 s3 s4 s5 s6 s7 s8 s1 s2 s5 s6 s3 s4 s7 s8

ai X X X X X · · · · · ai X X X · · X X · · ·
aj X X X · · X X · · · aj X X X X X · · · · ·

Table 6

Two schedules in Case 3.

(a) The first schedule. (b) The second schedule.

B Q E B Q E

s1 s2 s3 s4 s5 s6 s7 s8 s1 s2 s5 s6 s3 s4 s7 s8

ai X X X X X · · · · · ai X X X · · X X · · ·
aj · · · X X · · X X X aj · · · · · X X X X X

s

a

X

a

d

a

s

a

m

c

a

Q

d

a

A

X

p

i

w

a

t

b

c

o

C

Q

m

(

s

x

T

d

x

i

v

n

F

n

t

L

t

E

l

L

t

s

T

p

2

f

x

W

c

a

3

s

w

t

e

B

b

w

w

s

m

c

w

a

o

t

i

c

Case 1: ai, a j ∈ o(B) − F . Let ai(s) = “X” if actor ai is required by

cene s and ai(s) = “ · ” otherwise. For any scene s ∈ Q, the tuple (ai(s),

j(s)) must have one of the following four patterns: (X, X), (X, · ), ( ·,
), ( ·, · ). First, we schedule all scenes with pattern (X, X) immediately

fter the scenes in B and schedule all scenes with pattern ( ·, ·) imme-

iately before the scenes in E. Second, we group the scenes with (X, · )

nd the scenes with ( ·, X) into two sets. Third, we schedule these two

et of scenes in the middle of the permutation, creating two schedules

s shown in Table 5. If only actors ai and aj are considered, the opti-

al schedule must be either one of these two schedules. The value of

i, j is set to the holding cost of the optimal schedule related to only

ctors ai and aj. For the schedule in Table 5(a), if we define S1 = {s ∈
|(ai(s), a j(s)) = (X, ·)}, then the holding cost is c(aj) × d(S1), where

(S1) = ∑
s∈S1

d(s). Similarly, for the schedule in Table 5(b), we have

holding cost c(ai) × d(S2), where S2 = {s ∈ Q|(ai(s), a j(s)) = (·, X)}.

ccordingly, we set ci, j = min{c(a j) × d(S1), c(ai) × d(S2)}.

Case 2: ai, a j ∈ o(E) − F . We schedule all scenes with pattern (X,

) immediately before the scenes in E and schedule all scenes with

attern ( ·, ·) immediately after the scenes in B. The remaining analysis

s similar to that in Case 1.

Case 3: ai ∈ o(B) − F and a j ∈ o(E) − F . We schedule all scenes

ith pattern (X, · ) immediately after the scenes in B and schedule

ll scenes with pattern ( ·, X) immediately before the scenes in E. If

here does not exist a scene with pattern (X, X), the holding cost may

e zero and thus ci, j is set to zero; otherwise ci, j is set to min {c(ai),

(aj)} × d(S0), where S0 = {s ∈ Q|(ai(s), a j(s)) = ( ·, · ) }, which can be

bserved from Table 6.

Case 4: ai ∈ o(E) − F and a j ∈ o(B) − F . This case is the same as

ase 3.

A valid lower bound to the future cost (i.e., the value of lower(B,

, E)) can be obtained by solving the following linear programming

odel:

LB) zLB = min
∑

ai∈A′
N

xi (18)

.t. xi + x j ≥ ci, j, ∀ ai, aj ∈ A′
N, i �= j (19)

i ≥ 0, ∀ ai ∈ A′
N (20)

he value of zLB must be a valid lower bound to minσ {∑i∈AN
xi}. If the

aily holding cost of actor ai is an integral number, decision variable

i should be integer. When all variables xi are integers, the model (LB)

s an NP-hard problem since it can be easily reduced to the minimum

ertex cover problem (Karp, 1972). If all variables xi are treated as real

umbers, this model can be solved by a liner programming solver.

or some instances, the (LB) model needs to be solved a very large

umber of times. To save computation time, we apply the following
wo heuristic approaches to rapidly produce two lower bounds, i.e.,

1 and L2, to zLB. Obviously, L1 and L2 are also valid lower bounds to

he future cost.

Approach 1: Sum up the left-hand-side and righ-hand-side of

q. (19), generating (|A′
N
| − 1)

∑
ai∈A′

N
xi ≥ ∑

ai,a j∈A′
N

,i �= j ci, j . The valid

ower bound L1 is defined as:

1 =
∑

ai,aj∈A′
N
,i �= j

ci, j/(|A′
N| − 1).

Approach 2: Sort ci, j in descending order. If we select a ci, j, we call

he corresponding xi and xj marked. Beginning from the largest ci, j, we

elect all ci, j whose xi and xj are not marked until all xi are marked.

he valid lower bound L2 equals the sum of all selected ci, j. This ap-

roach was termed the greedy matching algorithm (Drake & Hougardy,

003). To demonstrate the process of computing L2, we consider the

ollowing six constraints:

x1 + x2 ≥ 2, x1 + x3 ≥ 7, x1 + x4 ≥ 6,

2 + x3 ≥ 12, x2 + x4 ≥ 8, x3 + x4 ≥ 5.

e first select c2,3 = 12 and mark x2 and x3. Then, we can only select

1,4 = 6 since x1 and x4 have not been marked. Now all xi are marked

nd the value of L2 equals 18.

In our algorithm, we set lower(B, Q, E) = max {L0, L1, L2}.

.5. Caching search states

In de la Banda et al. (2011), the talent scheduling problem was

olved by a double-ended dynamic programming (DP) algorithm,

here a DP state is represented by 〈B, E〉. The DP algorithm stores

he best value of each examined state, denoted by 〈B, E〉.value, which

quals the minimum past cost of all search paths associated with sets

and E.

We embed this DP process in our branch-and-bound framework

y use of memoization technique (Michie, 1968). More precisely,

hen the search process reaches a tree node P(�B, Q, �E), it first checks

hether the value of cost(�B, �E) is less than the current 〈B, E〉.value. If

o, it updates 〈B, E〉.value by cost(�B, �E); otherwise, the current node

ust be dominated by some node and therefore can be safely dis-

arded.

A better state representation for the DP algorithm is 〈o(B), o(E), Q〉,

here Q = S − B − E; this was discussed by de la Banda et al. (2011)

s follows. The cost of scheduling the scenes in Q = S − B − E depends

n o(B) and o(E) rather than B and E. Suppose �B �Q�E and �B′ �Q �E′ are

wo permutations of S, where B, Q, E, B′ and E′ are the correspond-

ng sets of scenes. If o(B) = o(B′) and o(E) = o(E′), then the holding

osts incurred by �Q in these two permutations are equal. Moreover,
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if there are two states 〈o(B), o(E), Q〉 and 〈o(B′), o(E′), Q〉 that have

o(B) = o(E′) and o(E) = o(B′), they are equivalent due to the symmet-

ric property of the problem. Thus, we only need to memoize the state

〈o(B), o(E), Q〉 that satisfies o(B) ≤ o(E). We compare o(B) with o(E)

based on the lexicographical order of the actor indices. For example,

given o(B) = {a1, a2, a4, a5} and o(E) = {a1, a3, a6, a7}, we have o(B)

≤ o(E) since the index of a2 is less than that of a3.

We also use the memoization technique to prune the search tree

node. The process of checking whether a given node associated with

problem P(�B, Q, �E) can be pruned is depicted in Algorithm 2. All states

Algorithm 2 The process of checking whether a given search node

can be pruned.

1: Function: check(�B, Q, �E);

2: pc = cost(�B, �E);

3: index = hash(o(B), o(E), Q);

4: if hashTable[index].state ∼ 〈o(B), o(E), Q〉 and

hashTable[index].value ≤ pc then

5: return true;

6: end if

7: for all s ∈ Q do

8: index2 = hash(o(B), o(E), Q − {s});

9: if hashTable[index2].state ∼ 〈o(B), o(E), Q − {s}〉 and

hashTable[index2].value ≤ pc then

10: return true;

11: end if

12: end for

13: if replace(index, pc) = true then

14: hashTable[index].state = 〈o(B), o(E), Q〉; {// If we decide to re-

place the information in the storage place index, then store the

state and its value.}

15: hashTable[index].value = pc;

16: end if

17: return false.

are stored in a hash table hashTable. This algorithm first designates

a storage slot in the hash table for state 〈o(B), o(E), Q〉 using func-

tion hash(o(B), o(E), Q). This hash function is used to map the search

key to an index; the index gives the place in the hash table where

the corresponding record should be stored. First, we transform our

state to a search key. Let us consider an example with four actors

and five scenes. If (o(B), o(E), Q) = ({1, 3, 4}, {2, 4}, {1, 2, 3, 4}), its

binary code (i.e., search key) is 1011010111110, where {1, 3, 4}, {2, 4}

and {1, 2, 3, 4} correspond to 1011, 0101 and 11110, respectively. Note

that o(B) and o(E) are two sets of actors and Q is a set of scenes. Sec-

ond, we get the corresponding decimal number of the binary code.

Third, we calculate “the decimal number mod C”, where C is the num-

ber of storage slots, to obtain the index of the storage space. In each

storage space, a value is stored.

If the storage slot contains the state and the current value of the

state is less than or equal to cost(�B, �E), the algorithm returns true, im-

plying that the given node can be pruned (see lines 4–5, Algorithm 2).

Next, it checks whether the state 〈o(B), o(E), Q − {s}〉 (s ∈ Q) exists in

the hash table and has a value less than or equal to cost(�B, �E) (see

lines 7–12, Algorithm 2). If such state exists, the given node can also

be pruned. The correctness of this pruning condition is guaranteed

by Property 1, which was derived from the second theorem in de la

Banda et al. (2011).

Property 1. Suppose �B �Q�E and �B′ �Q ′ �E′ are two permutations of S,

where B, Q, E, B′, Q′ and E′ are the corresponding sets of scenes. If

o(B) = o(B′), o(E) = o(E′), Q⊆Q′ and the scenes in �Q follow the order

in which they appear in �Q ′, then the holding cost incurred by �Q is not

greater than that incurred by �Q ′.
Ideally, the hash function should assign each state to a unique stor-

ge slot, i.e., no hash collisions happen. However, this ideal situation

s rarely achievable due to the huge number of states and the inade-

uate storage space. When solving the talent scheduling problem, we

o not have sufficient storage space to store the exponential num-

er of search states and therefore different states may be assigned by

he hash function to the same storage slot, leading to hash collisions.

o resolve this issue, we employ a mechanism called direct mapped

aching scheme. Assume the direct mapped cache consists of C slots,

ach of which can only store one item. If an item is to be stored in a

lot that already contains another item (i.e., a hash collision occurs),

t may either replace the existing item or be discarded, which is de-

ided by function replace(index, pc). Several previous articles, such

s Hilden (1976) and Pugh (1988), have discussed the replacement

trategies implemented in replace(index, pc). In this work, we tried

atest and greedy caching strategies. The first strategy deals with the

ash collisions by simply overwriting the cache slot while the sec-

nd one stores in the cache slot the item that has smaller value. If we

hoose the latest caching strategy, replace(index, pc) always returns

rue. If the greedy caching strategy is selected and the new state has

value less than that of the existing state, replace(index, pc) returns

rue.

The direct mapped caching scheme can effectively prune the

earch nodes using limited storage space. When a state is revisited

gain but it has been removed from the cache during the previous

tages, the search can still continue to explore its corresponding sub-

ree. In Section 4, we experimentally analyze the impact of different

alues of C and the two replacement strategies on the performance of

ur branch-and-bound algorithm.

.6. Dominance rules

Dominance rules were widely used in branch-and-bound al-

orithms (Braune, Zäpfel, & Affenzeller, 2012; Kellegöz & Toklu,

012; Ranjbar, Davari, & Leus, 2012; Zhang, Qin, Zhu, & Lim, 2012)

nd dynamic programming algorithms (Dumas, Desrosiers, Gelinas,

Solomon, 1995; Mingozzi, Bianco, & Ricciardelli, 1997; Rong &

igueira, 2013) for eliminating search states. The purpose of domi-

ance rules is to identify the partial solution represented by a node

n the search tree that is dominated by another partial solution. The

ominated partial solution need not be further explored and can be

afely pruned. In our branch-and-bound algorithm, two new domi-

ance rules are introduced to reduce the search space.

.6.1. Dominance Rule 1

At a branch-and-bound tree node associated with problem

(�B, Q, �E), we suppose that scene s1 is the scene to be scheduled im-

ediately after B and scene s2 belongs to Q − {s1}. If a(s1) ∪ o(B) ⊇
(s2) ∪ o(B) and a(s1) ∪ o(E) ⊆ a(s2) ∪ o(E), then the branch associated

ith scene s1 can be ignored.

Tables 7 and 8 are used to explain this dominance rule. In Table 7,

= {s1, s2} ∪ �1 ∪ �2, where �1 and �2 are two arbitrary subsets

f Q − {s1, s2} and �1 ∩ �2 = ∅. Actors in AN can be classified into

welve patterns according to whether they are required by the scenes

n sets B, E, {s1} and {s2}. Since we do not need the information re-

ated to �1 and �2, all cells in columns 4 and 6 remain empty. Similar

o Table 3, the numbers 1 and 0 in the right part of Table 7 indicate

hether an actor is included in the corresponding actor set.

In the absence of the information in columns 4 and 6, we can-

ot directly judge whether pattern 4 actors are included in o(B) and

hether pattern 8 actors are included in o(E). However, we know

hat all remaining actors are non-fixed and must be required by the

cenes in Q. In other words, if some pattern 4 and 8 actors are kept in

N, then they must be required by some scene in �1 ∪�2. Therefore,

e fill the corresponding cells with “1” (see the numbers in bold in

able 7).
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Table 7

The table for explaining dominance rules.

Actor pattern B {s1} �1 {s2} �2 E o(B) o(E) a(s1) ∪ o(E) a(s1) ∪ o(B) a(s2) ∪ o(E) a(s2) ∪ o(B) (a(s1) ∪ o(B)) ∩
(a(s2) ∪ o(E))

1 X X X · 1 0 1 1 1 1 1

2 X X · · 1 0 1 1 0 1 0

3 X · X · 1 0 0 1 1 1 1

4 X · · · 1 0 0 1 0 1 0

5 · X X X 0 1 1 1 1 1 1

6 · X · X 0 1 1 1 1 0 1

7 · · X X 0 1 1 0 1 1 0

8 · · · X 0 1 1 0 1 0 0

9 · X X · 0 0 1 1 1 1 1

10 · X · · 0 0 1 1 0 0 0

11 · · X · 0 0 0 0 1 1 0

12 · · · · 0 0 0 0 0 0 0

Table 8

Actor patterns before and after exchanging scenes s1 and s2.

Actor pattern B {s1} �1 {s2} �2 E Actor pattern B {s2} �1 {s1} �2 E

1 X X X · 1 X X X ·
3 X · X · 3 X X · ·
4 X · · · 4 X · · ·
5 · X X X 5 · X X X

6 · X · X 6 · · X X

8 · · · X 8 · · · X

9 · X X · 9 · X X ·
12 · · · · 12 · · · ·

Table 9

Actor patterns before and after shifting scene s2 immediately before scene s1.

Actor pattern B {s1} �1 {s2} �2 E Actor pattern B {s2} {s1} �1 �2 E

1 X X X · 1 X X X ·
2 X X · · 2 X · X ·
3 X · X · 3 X X · ·
4 X · · · 4 X · · ·
5 · X X X 5 · X X X

6 · X · X 6 · · X X

8 · · · X 8 · · · X

9 · X X · 9 · X X ·
10 · X · · 10 · · X ·
12 · · · · 12 · · · ·
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We list in the left part of Table 8 all actor patterns that satisfy

he conditions a(s1) ∪ o(B)⊇a(s2) ∪ o(B) and a(s1) ∪ o(E)⊆a(s2) ∪ o(E).

able 8 shows that branching to scene s1 is dominated by branch-

ng to scene s2. After exchanging the positions of scenes s1 and s2, the

olding costs for pattern 1, 4–5, 8–9 and 12 actors remain unchanged

hile the holding costs for pattern 3 and 6 actors are probably re-

uced. Thus, scheduling scene s2 immediately after B must result in

ess or equal holding cost than scheduling scene s1 at that position.

.6.2. Dominance Rule 2

At a branch-and-bound tree node associated with problem

(�B, Q, �E), we suppose that s1 is the scene to be scheduled imme-

iately after B and s2 belongs to Q − {s1}. If a(s1) ∪ o(B)⊇a(s2) ∪ o(B)

nd c((a(s1) ∪ o(B)) ∩ (a(s2) ∪ o(E))) − c(a(s2) ∪ o(B)) > 0, then the

ranch associated with scene s1 can be ignored.

We list in the left part of Table 9 all actor patterns that satisfy

he conditions a(s1) ∪ o(B)⊇a(s2) ∪ o(B). The right part of Table 9 is

he result of shifting scene s2 immediately before scene s1 and im-

ediately after B. From Table 9, we can get the following four obser-

ations: (1) the holding costs for pattern 5 actors remain unchanged;

2) the holding costs for pattern 1, 3, 8–10 and 12 actors are proba-

ly reduced; (3) the holding cost of each actor ai with pattern 2 or 4

s probably increased by c(ai)d(s2); (4) the holding cost of each pat-

ern 6 actor a is definitely decreased by c(a )d(s ). If the decreased
i i 2
mount (related to pattern 6 actors) is greater than the increased

mount (related to pattern 2 and 4 actors), then shifting scene s2 im-

ediately before scene s1 must lead to a cost reduction. Given that

(s1) ∪ o(B)⊇a(s2) ∪ o(B) is satisfied, the set a(s1) ∪ o(B)) ∩ (a(s2) ∪ o(E)

ncludes pattern 1, 3, 5–6 and 9 actors and the set a(s2) ∪ o(B) includes

atterns 1–5, and 9 actors. This means both a(s1) ∪ o(B)) ∩ (a(s2) ∪ o(E)

nd a(s2) ∪ o(B) include pattern 1, 3, 5, 9 actors. So we can de-

ive that c((a(s1) ∪ o(B)) ∩ (a(s2) ∪ o(E))) − c(a(s2) ∪ o(B)) is equal

o the cost of all pattern 6 actors minus the cost of all pattern 2

nd 4 actors. Thus, if a(s1) ∪ o(B)⊇a(s2) ∪ o(B) and c((a(s1) ∪ o(B)) ∩
a(s2) ∪ o(E))) − c(a(s2) ∪ o(B)) > 0, scheduling scene s2 immedi-

tely after B must result in less or equal holding cost than scheduling

cene s1 at that position.

.7. The enhanced branch-and-bound algorithm

Our enhanced branch-and-bound algorithm for the talent

cheduling problem is given by Algorithm 3, where the value of past

ost z is initialized to zero at the root node. The preprocessing stage is

ealized by function preprocess(Q, AN) (see line 9, Algorithm 3). The

tate caching technique is adopted through function check(�B, Q, �E)
see line 10, Algorithm 3), where the details of this function is de-

cribed in Algorithm 2. The function isDominated(�B, Q, �E, AN, z, s)
mploys the proposed two dominance rules to check whether
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Table 10

Computational results for Type 1 Data Set.

Instance m n Smith (2005) de la Banda et al. (2011) Enhanced branch-and-bound Total cost Holding cost

Time (s) Subproblems Time (s) Subproblems Time (s) Subproblems

MobStory 8 28 64.71 136,765 0.11 6605 0.05 849 871 146

film103 8 19 76.69 180,133 0.06 4103 0.02 828 1031 187

film105 8 18 16.07 40,511 0.02 1108 0.02 215 849 110

film114 8 19 127 267,526 0.08 4957 0.03 2027 867 143

film116 8 19 125.8 225,314 0.16 13,576 0.03 1937 541 110

film117 8 19 76.86 174,100 0.10 7227 0.02 987 913 197

film118 8 19 93.1 205,190 0.04 1980 0.02 537 853 156

film119 8 18 70.8 144,226 0.08 7105 0.02 580 790 159

Algorithm 3 The enhanced double-ended branch-and-bound algo-

rithm for the talent scheduling problem.

1: Function: search(�B, Q, �E, AN , z);
2: if Q = ∅ then
3: if z < UB then
4: UB = z;
5: best_solution = �B ◦ �E;
6: end if
7: return ;
8: end if
9: (Q, AN) = preprocess(Q, AN);

10: if check(�B, Q, �E) = true then
11: return ; {// Terminate the algorithm since this state can

be pruned.}
12: end if
13: for all s ∈ Q do
14: if isDominated(�B, Q, �E, AN, z, s) = true then
15: continue; {// Terminate the current iteration and con-

sider the next scene.}
16: end if
17: LB = z + cost(s, B, E) + lower(B ∪ {s}, Q − {s}, E);
18: if LB ≥ UB then
19: continue; {// Terminate the current iteration and con-

sider the next scene.}
20: end if
21: Invoke search(R(�E), Q − {s}, {s} ◦ R(�B), AN, z +

cost(s, B, E)).
22: end for

Table 11

The number of optimally solved instances in each Type 2 instance group.

n m

8 10 12 14 16 18 20 22

16 100 100 100 100 100 100 100 100

18 100 100 100 100 100 100 100 100

20 100 100 100 100 100 100 100 100

22 100 100 100 100 100 100 100 100

24 100 100 100 100 100 100 100 100

26 100 100 100 100 100 100 100 100

28 100 100 100 100 100 100 100 100*

30 100 100 100 100 100 100* 100* 100*

32 100 100 100 100 100* 100* 100* 100*

34 100 100 100 100* 100* 100* 100* 99*

36 100 100 100 100* 100* 100* 99* 98*

38 100 100 100* 100* 100* 99* 99* 98*

40 100 100 100* 99* 100* 98* 97* 98*

42 100 100 100* 100* 100* 96* 97* 94*

44 100 100* 100* 100* 97* 99* 93* 79

46 100 100* 100* 100* 97* 97* 88* 71

48 100 100* 100* 100* 99* 96* 88* 64

50 100 100* 100* 99* 96* 94* 84* 59

52 100 100* 100* 98* 99* 87* 70 52

54 100 100* 98* 96* 89* 75 63 41

56 100 100* 99* 98* 93* 85* 61 44

58 100 100* 100* 97* 82* 77 54 37

60 100 100* 99* 89* 87* 72 53 34

62 100 100* 96* 96* 75 62 50 43

64 100* 100* 98* 95* 74 51 43 23
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branching to some scene s is dominated by other branches. In func-

tion isDominated(�B, Q, �E, AN, z, s), we check in turn whether s can

be dominated by the scene in Q − {s}. If scene s can be dominated,

then this function returns true and thus the corresponding node can

be eliminated. The function lower(B ∪ {s}, Q − {s}, E) returns a valid

lower bound to the future cost of the problem at some search node.

4. Computational experiments

Our algorithm was coded in C++ and compiled using the g++ com-

piler. All experiments were run on a Linux server equipped with an

Intel Xeon E5430 CPU clocked at 2.66 gigahertz and 8 gigabytes RAM.

The algorithm only has two parameters, namely the number (C) of

cached states and the caching strategy used. After some prelimi-

nary experiments, we set C = 225 and chose the greedy caching strat-

egy when solving the benchmark instances. In this section, we first

present our results for the benchmark instances and then compare

them with the results obtained by the best two existing approaches.

Finally, we exhibit by experiments the impacts of the parameters

on the overall performance of the algorithm. All computation times
eported here are in CPU seconds on this server. All instances and de-

ailed results are available in the online supplement to this paper at:

ttp://www.tigerqin.com/publicatoins/talent-scheduling-problem.

.1. Results for benchmark instances

In order to evaluate our algorithm, we conducted experiments

sing two benchmark data sets (Types 1 and 2), downloaded from

ttp://people.eng.unimelb.edu.au/pstuckey/talent/. The Type 1 data

et was introduced by Cheng et al. (1993) and Smith (2005), in-

luding seven instances, namely MobStory, film103, film105, film114,

lm117, film118 and film119. Since these instances have small sizes,

anging from 18 × 8 (18 scenes by 8 actors) to 28 × 8, they were eas-

ly solved to optimality. Table 10 shows the results obtained by our

ranch-and-bound algorithm, the constraint programming approach

n Smith (2005) and the dynamic programming algorithm in de la

anda et al. (2011). From this table, we can see that our algorithm

educed the number of subproblems significantly for each instance

ith much less computational efforts. In our branch-and-bound al-

orithm, a subproblem corresponds to a search tree node. Note that

he results taken from Smith (2005) were produced on a PC with 1.7

igahertz Pentium M processor, and the results from de la Banda et al.

2011) were produced on a machine with Xeon Pro 2.4 gigahertz pro-

essors and 2 gigabytes RAM.

http://www.tigerqin.com/publicatoins/talent-scheduling-problem
http://people.eng.unimelb.edu.au/pstuckey/talent/
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The Type 2 data set was provided by de la Banda et al. (2011). Fol-

owing a manner almost identical to that used by Cheng et al. (1993),

e la Banda et al. (2011) randomly generated 100 instances for each

ombination of n ∈ {16, 18, 20, . . . , 64} and m ∈ {8, 10, 12, . . . , 22},
or a total of 200 instance groups and 20,000 instances. They tried

o solve these instances using their dynamic programming algorithm

ith a memory bound of 2 gigabytes. For each instance, if the execu-

ion did not run out of memory, they recorded the running time and

he number of subproblems generated. They reported the average

unning time and the average number of subproblems for each Type
Table 12

The average running time (in seconds) for each Type 2 inst

n m

8 10 12 14

16 0.004 0.003 0.006 0.012

18 0.006 0.009 0.011 0.020

20 0.013 0.015 0.020 0.032

22 0.018 0.021 0.030 0.048

24 0.022 0.033 0.047 0.065

26 0.032 0.043 0.068 0.101

28 0.038 0.068 0.146 0.235

30 0.055 0.083 0.155 0.333

32 0.069 0.097 0.219 0.566

34 0.085 0.160 0.281 1.063

36 0.107 0.202 0.898 2.254

38 0.108 0.401 0.619 3.153

40 0.154 0.374 0.915 2.197

42 0.198 0.490 1.323 4.602

44 0.825 0.826 2.525 7.661

46 0.935 2.986 2.604 9.393

48 0.892 1.404 6.162 11.908

50 0.953 1.791 10.579 20.588

52 0.995 3.819 13.127 37.832

54 1.525 3.380 19.269 22.891

56 1.393 3.770 15.025 49.464

58 1.867 6.014 30.280 37.760

60 2.156 7.378 22.250 70.460

62 1.626 10.162 27.478 64.337

64 3.918 12.140 43.397 55.849

Table 13

The average number of search nodes for each Type 2 instance group.

n m

n 8 10 12 14

16 92 132 262 305

18 173 288 381 579

20 278 464 797 1248

22 416 673 1116 2439

24 480 1300 2104 3521

26 950 1685 3526 5860

28 1014 3504 8916 15,068

30 2052 4472 9943 21,104

32 3415 4779 15,232 36,176

34 4022 10,115 18,945 71,387

36 4974 12,923 61,748 140,081

38 3993 29,039 43,450 196,504

40 7703 25,478 64,107 141,726

42 11,143 32,937 89,721 286,598

44 16,423 59,929 135,760 448,782

46 22,400 147,524 145,857 529,693

48 25,743 74,511 364,220 659,308

50 29,874 85,712 567,577 1,088,311

52 31,840 210,741 716,255 1,979,313

54 64,838 192,700 1,130,890 1,208,212

56 58,341 218,177 867,317 2,644,071

58 87,367 346,222 1,711,089 1,950,019

60 100,968 402,869 1,245,312 3,676,459

62 64,903 546,580 1,530,491 3,163,571

64 166,009 655,791 2,308,876 2,718,102
instance group with more than 80 optimally solved instances; these

wo average values were computed based on the optimally solved in-

tances.

We tried to solve all Type 2 instances using our branch-and-bound

lgorithm with a time limit of 10 minutes and a memory of 2 giga-

ytes. Our algorithm requires some memory to store the informa-

ion of the search tree and a limited number of states. The amount

f memory available can fully satisfy this requirement and thus the

ut-of-memory exception did not occur. Table 11 gives the number of

nstances optimally solved in each Type 2 instance group, where an
ance group.

16 18 20 22

0.083 0.089 0.121 0.175

0.123 0.119 0.134 0.242

0.153 0.126 0.166 0.291

0.142 0.199 0.236 0.388

0.185 0.232 0.426 0.704

0.274 0.504 0.738 1.058

0.398 0.663 1.461 2.433

0.640 1.548 2.183 5.541

1.613 2.496 4.822 16.342

1.672 4.933 10.761 17.891

3.269 7.848 24.991 29.444

5.842 18.746 36.231 48.581

12.178 12.270 38.954 53.126

14.271 31.411 46.482 100.084

18.215 57.402 64.493 85.409

19.240 35.505 84.877 104.940

39.599 61.703 90.863 107.725

48.641 71.460 111.824 120.828

40.237 97.423 108.915 130.559

67.856 97.367 134.863 163.487

50.699 100.411 134.661 149.144

61.514 117.141 158.239 173.229

97.438 146.204 105.785 207.466

128.221 158.739 167.173 172.262

96.881 161.446 156.240 182.860

16 18 20 22

511 585 959 1044

1051 1650 1920 2490

1559 2969 3763 5081

3214 5232 7791 10,174

6002 8872 16,824 26,084

10,500 23,521 33,464 42,133

18,140 33,917 66,739 103,750

34,806 79,595 105,243 226,899

93,686 130,977 235,314 665,416

95,621 247,737 503,058 767,987

183,606 392,267 1,150,811 1,266,911

313,253 928,228 1,554,085 1,984,941

618,351 616,794 1,728,150 2,221,610

754,305 1,356,438 2,120,414 4,059,816

947,224 2,620,935 2,794,299 3,453,335

1,031,659 1,684,446 3,729,016 4,316,409

1,953,064 2,823,159 3,983,337 4,556,976

2,384,690 3,159,260 4,686,411 4,891,403

1,973,444 4,318,443 4,747,867 5,172,142

3,341,742 4,504,014 5,936,410 6,539,519

2,493,294 4,467,560 5,734,008 5,948,378

2,943,275 5,249,511 6,886,448 6,844,526

4,677,957 6,569,635 4,345,421 8,538,072

5,765,984 6,796,924 7,023,583 6,804,257

4,356,074 6,882,350 6,422,940 7,377,196
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Fig. 1. (a) m = {8, 10}. (b) m = {12, 14}. (c) m = {16, 18}. (d) m = {20, 22}.
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underline sign (“_”) is added to the cell associated with the instance

group with less than 80 optimally solved instances. For an instance

group, if our algorithm optimally solved 80 or more instances while

the dynamic programming algorithm failed to achieve so, the num-

ber in its corresponding cell is marked with an asterisk (∗). From this

table, we can see that our algorithm managed to optimally solve all

instances with the number of scenes (n) not greater than 32 or the

number of actors (m) not greater than 10. However, the dynamic pro-

gramming algorithm by de la Banda et al. (2011) only optimally solved

more than 80 out of 100 instances for the instance groups with n ≤ 26.

Their approach even did not optimally solve all instances with m = 8

and n = 64. In this table, 89 out of 200 instance groups are marked

with asterisks, which clearly indicates that more Type 2 benchmark

instances were successfully solved to optimality by our branch-and-

bound algorithm. Although our machine is slightly more powerful,

this cannot account for the dramatic difference in the number of op-

timally solved instances, it is reasonable to conclude that our branch-

and-bound algorithm is more efficient than the dynamic program-

ming algorithm.

Tables 12–13 show the average running time and the average

number of search nodes, respectively, over all optimally solved
nstances for each instance group. Like in Table 11, the instance

roups with less than 80 optimally solved instances are marked with

_”. From Table 13, we can easily find that the average number of

earch nodes generated for each instance group with “_” exceeds

,000,000.

To further compare our results with those reported by de la Banda

t al. (2011), we pictorially show in Fig. 1 the ratio of the average num-

er of subproblems (i.e., search nodes) generated by our algorithm to

hat generated by the dynamic programming algorithm. Each point in

hese curves corresponds to an instance group whose average num-

er of subproblems was reported by de la Banda et al. (2011). On

verage, the number of subproblems generated by our algorithm is

ess than 22 percent of that generated by the dynamic programming

lgorithm, which should be attributed to the use of the new lower

ound and domination rules. Moreover, we can observe some trends

rom these curves. The ratio first decreases as the number of scenes

ncreases, which implies that our algorithm can eliminate more sub-

roblems. Then, the ratio increases with the number of scenes. This

s because hash collisions happened more frequently, reducing the

pportunities of pruning search nodes and therefore increasing the

umber of subproblems.
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Fig. 2. The impact of different parameter settings on the number of optimally solved instances.
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Fig. 3. (a) C = 210. (b) C = 215. (c) C = 220. (d) C = 225.
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4.2. Impacts of parameter settings

We take the value of C from {0, 25, 210, 215, 220, 225}, where C = 0

means that cache is not used. Considering the two caching strategies,

we have 12 parameter combinations in total. We tested these 12 pa-

rameter combinations using a portion of the Type 2 instances. Specif-

ically, the first 5 instances were selected from each instance group, for
Table 14

The numbers of the selected instances optimally solved by B&B1 and B&B2.

B&B1 B&

n m n

8 10 12 14 16 18 20 22

16 5 5 5 5 5 5 5 5

18 5 5 5 5 5 5 5 5

20 5 5 5 5 5 5 5 5

22 5 5 5 5 5 5 5 5

24 5 5 5 5 5 5 5 5

26 5 5 5 5 5 4 3 4

28 5 5 5 4 5 5 4 2

30 5 5 5 5 4 4 3 2

32 5 5 5 4 3 2 2 1

34 5 5 3 4 4 2 0 1

36 5 5 5 3 4 1 3 0

38 5 5 4 2 3 3 1 0

40 5 5 5 2 0 2 0 0

42 5 5 4 2 2 0 1 0

44 5 3 2 3 1 1 0 0

46 5 4 3 1 2 0 0 0

48 5 2 2 3 0 0 1 0

50 4 3 4 2 1 1 0 0

52 4 2 3 1 0 0 0 2

54 4 2 1 0 1 1 0 0

56 5 4 2 0 0 1 0 0

58 5 1 1 1 0 0 0 0

60 2 1 2 2 0 0 0 0

62 4 1 0 0 0 0 0 0

64 4 2 0 1 1 0 0 0

Sum 117 95 86 70 61 52 43 37 Su

Table 15

The numbers of the selected instances optimally solved by B&B3 and B&B4.

B&B3 B&

n m n

8 10 12 14 16 18 20 22

16 5 5 5 5 5 5 5 5

18 5 5 5 5 5 5 5 5

20 5 5 5 5 5 5 5 5 2

22 5 5 5 5 5 5 5 5 2

24 5 5 5 5 5 5 5 5

26 5 5 5 5 5 5 5 5 2

28 5 5 5 5 5 5 5 5 2

30 5 5 5 5 5 5 5 5 3

32 5 5 5 5 5 5 5 5 3

34 5 5 5 5 5 5 5 4 3

36 5 5 5 5 5 5 5 4 3

38 5 5 5 5 5 5 5 5 3

40 5 5 5 5 5 5 5 5 4

42 5 5 5 5 5 4 5 1 4

44 5 5 5 5 5 3 4 4 4

46 5 5 5 5 5 4 2 4 4

48 5 5 5 5 4 5 5 1 4

50 5 5 5 5 4 4 5 3 5

52 5 5 5 5 5 2 3 3 5

54 5 5 5 4 4 2 3 1 5

56 5 5 5 4 4 5 1 1 5

58 5 5 5 5 4 4 3 0 5

60 5 5 4 3 4 3 1 2 6

62 5 5 5 5 2 1 0 1 6

64 5 5 5 5 4 2 0 0 6

Sum 125 125 124 121 115 104 97 84 Su
total of 1000 instances. We also imposed a time limit of 10 minutes

n each execution of our algorithm. The results of those optimally

olved instances were recorded for analysis.

Fig. 2 illustrates the number of optimally solved instances un-

er each parameter setting. This figure shows that more caching

tates lead to more optimally solved instances under both caching

trategies. Under the latest caching strategy, the number of instances
B2

m

8 10 12 14 16 18 20 22

16 5 5 5 5 5 5 5 5

18 5 5 5 5 5 5 5 5

20 5 5 5 5 5 5 5 5

22 5 5 5 5 5 5 5 5

24 5 5 5 5 5 5 5 5

26 5 5 5 5 5 5 4 5

28 5 5 5 5 5 5 5 4

30 5 5 5 5 5 5 5 2

32 5 5 5 4 4 3 4 2

34 5 5 4 5 5 3 1 1

36 5 5 5 4 4 2 3 1

38 5 5 5 3 3 3 1 0

40 5 5 5 3 3 3 1 0

42 5 5 5 3 2 1 1 0

44 5 3 5 3 2 1 0 0

46 5 5 3 2 3 0 0 0

48 5 4 2 4 0 1 1 0

50 5 4 4 2 1 2 0 0

52 5 2 3 2 0 0 0 2

54 4 3 3 0 1 1 0 0

56 5 5 2 0 0 2 0 0

58 5 2 1 1 1 0 0 0

60 2 2 3 2 0 0 0 0

62 4 1 1 1 1 0 0 0

64 5 2 0 1 1 0 0 0

m 120 103 96 80 71 62 51 42

B4

m

8 10 12 14 16 18 20 22

16 5 5 5 5 5 5 5 5

18 5 5 5 5 5 5 5 5

0 5 5 5 5 5 5 5 5

2 5 5 5 5 5 5 5 5

24 5 5 5 5 5 5 5 5

6 5 5 5 5 5 5 5 5

8 5 5 5 5 5 5 5 5

0 5 5 5 5 5 5 5 5

2 5 5 5 5 5 5 5 5

4 5 5 5 5 5 5 5 5

6 5 5 5 5 5 5 5 4

8 5 5 5 5 5 5 5 5

0 5 5 5 5 5 5 5 5

2 5 5 5 5 5 5 5 3

4 5 5 5 5 5 5 4 5

6 5 5 5 5 5 5 3 5

8 5 5 5 5 5 5 5 2

0 5 5 5 5 4 5 5 3

2 5 5 5 5 5 3 4 5

4 5 5 5 5 5 4 4 2

6 5 5 5 4 5 5 2 4

8 5 5 5 5 4 4 3 1

0 5 5 5 5 5 5 1 3

2 5 5 5 5 3 2 1 3

4 5 5 5 5 5 3 0 0

m 125 125 125 124 121 116 102 100
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ptimally solved increases from 854 (C = 0) to 922 (C = 225). Under

he greedy caching strategy, this number increases from 854 to 939.

hen C is relatively small (e.g., C ≤ 215), hash collisions occur fre-

uently and the latest caching strategy leads to slightly better perfor-

ance than the greedy caching strategy. The greedy caching strategy

ay store more states associated with the subproblems at the early

evel of the search tree, which cannot be used to effectively prune

he nodes. We conjecture that since the latest caching strategy stores

he newly encountered states and a certain state is revisited in short

eriod with high probability, the pruning can occur with more oppor-

unities and then the number of subproblems is reduced. When C is

arge (e.g., C ≥ 220), the greedy caching strategy leads to more opti-

ally solved instances than the latest caching strategy. This may be

ecause a smaller state value in the caching slot is likely to eliminate

ore subproblems during the search process.

To further test the impacts of different parameter settings on the

verage number of subproblems generated, we selected five Type 2

nstance groups, namely 40 × 18, 46 × 16, 52 × 14, 58 × 12 and 64

10. All instances in these five groups can be optimally solved us-

ng our branch-and-bound algorithm within 10 minutes of running

ime. We pictorially show the results associated with some parame-

er settings in Fig. 3. We can clearly observe that the average number

f subproblems generated decreases as the number of cached states

ncreases. This is in accordance with our intuition since more cache

lots store more states, which helps prune more search nodes and

herefore reduces the number of subproblems. This figure also reveals

hat the greedy caching strategy outperforms the latest caching strat-

gy in terms of the average number of subproblems generated when

= 220 or C = 225, while the latest caching strategy generally gener-

tes fewer subproblems when C is small, i.e., C = 210 or C = 215. As

result, we adopted the greedy caching strategy and C = 225 in the

nal implementation of our branch-and-bound algorithm.

.3. Impacts of algorithm components and instance generation

istributions

We studied the impacts of the new lower bounds and the domi-

ance rules by removing one type of component in turn and execut-

ng the resulting algorithm on the 1000 selected instances used in the
Table 16

An instance with 8 actors and 16 scenes generated by de la Banda et a

s1 s2 s3 s4 s5 s6 s7 s8 s9

a1 · X · X · · · X X

a2 X X X X X · · X X

a3 · X X X · · X · ·
a4 X X · X X X · X X

a5 · · X · · X · X ·
a6 X X X X · X · · X

a7 X X X X X · X X X

a8 · · · X · · · · ·
d(sj) 3 1 2 1 2 1 5 1 2

Table 17

A new instance generated from the instance in Table 16.

s1 s2 s3 s4 s5 s6 s7 s8 s9

a1 · X X X X X X X X

a2 X X X X X X X X X

a3 · X X X X X X X X

a4 X · X X X X X X X

a5 · · X X X X · X ·
a6 X X X X X X X X X

a7 X X X X X X X X X

a8 · · · X X X 0 X ·
d(sj) 3 1 2 1 2 1 5 1 2
revious section. Therefore, we have four versions of the branch-and-

ound algorithm, which are:

1. B&B1 that uses only the lower bound from de la Banda et al. (2011)

and does not include the dominance rules;

2. B&B2 that uses both the lower bound from de la Banda et al. (2011)

and our newly proposed lower bounds, but does not include the

dominance rules;

3. B&B3 that uses only the lower bound from de la Banda et al. (2011)

and includes the dominance rules;

4. B&B4 that uses the lower bound from de la Banda et al. (2011), our

newly proposed lower bounds and the dominance rules.

The computational results are presented in Tables 14–15, where

he numbers of instances optimally solved by B&B1 – B&B4 are 561,

25, 895 and 938, respectively. These results imply that the introduc-

ion of the dominance rules and the newly proposed lower bounds

ncreases the performance of the branch-and-bound algorithm

ignificantly. Obviously, compared with the new lower bounds, the

ominance rules contribute more for the better performance of the

nhanced branch-and-bound algorithm.

Finally, we generated some new instances and evaluated the im-

acts of the distributions of “X”. The instance generation procedure is

escribed as follows:

1. The first 5 instances are selected from each instance group pro-

vided by de la Banda et al. (2011), for a total of 1000 instances.

2. The values of d(sj) and c(ai) and the number (ni) of scenes that

require actor ai in each new instance are the same as those in its

corresponding instance generated by de la Banda et al. (2011).

3. We generate ni random numbers between 1 and n using Binomial

(p = 0.3) and Poisson (λ = �n�) random number generators. These

numbers indicate the set of scenes in which actor ai is in. If the

random number generator generates a number that has already

been included in the set, we discard it and generate another one

until ni different numbers are generated. That is, we generate two

new instances from each of the selected instance, for a total of

2000 new instances.

From these new instances, we observe that an actor usually par-

icipates in a set of consecutive scenes. In Tables 16–17, we present
l. (2011).

s10 s11 s12 s13 s14 s15 s16 c(ai)

· · X X X X X 48

· X 0 X · · · 23

X X X · X X · 64

X · X · · · X 41

X · · · · · X 23

· X X X · X X 73

X X X X X X X 25

· · X · X X · 25

1 1 3 2 3 2 1

s10 s11 s12 s13 s14 s15 s16 c(ai)

X · · · · · · 48

· · · · · · · 23

X · · · · · · 64

X X · · · · · 41

· · · · · · · 23

X X · · · · · 73

X X X X X X · 25

· · · · · · · 25

1 1 3 2 3 2 1
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Table 18

Average computation times of the instances generated using Binomial and Poisson random number generators.

Binomial Poisson

n m n m

8 10 12 14 16 18 20 22 8 10 12 14 16 18 20 22

16 0.67 0.89 0.83 0.99 0.77 0.98 1.08 1.12 16 0.97 0.89 0.86 0.98 0.89 0.83 1.04 1.03

18 0.68 0.90 0.91 0.76 0.87 0.81 0.94 0.90 18 0.92 0.89 1.00 0.91 0.99 1.02 1.02 0.95

20 1.01 0.91 0.85 0.93 0.89 0.90 0.91 1.00 20 0.90 0.97 1.04 0.84 1.04 1.00 1.07 1.09

22 0.92 0.96 0.90 0.91 0.88 0.97 0.93 1.05 22 0.99 0.94 0.92 0.91 0.98 1.05 1.04 1.16

24 0.99 0.98 0.95 0.98 0.90 0.89 0.91 0.94 24 0.89 0.93 0.96 0.90 0.93 1.00 0.90 1.18

26 0.99 1.01 0.99 0.86 0.98 1.01 0.95 0.97 26 0.88 0.86 0.94 0.93 0.98 1.09 1.11 1.15

28 0.85 0.88 0.84 1.02 0.96 0.97 0.93 1.07 28 1.04 1.02 0.96 1.02 0.98 1.19 1.02 0.99

30 0.93 0.94 0.98 0.98 0.98 0.95 1.04 1.05 30 0.90 1.01 0.87 0.87 1.06 1.02 1.00 1.29

32 0.97 0.94 1.01 0.90 0.84 1.07 0.94 0.96 32 0.94 1.06 1.01 0.95 0.90 1.14 1.28 1.14

34 0.88 1.02 0.83 1.01 0.96 1.07 0.84 1.05 34 0.95 0.91 0.89 0.99 0.94 1.10 1.41 1.26

36 1.00 1.04 1.01 0.95 1.03 1.10 1.10 1.05 36 0.96 0.98 1.00 0.92 1.13 1.20 0.95 3.83

38 1.04 0.86 0.94 0.96 1.04 1.07 1.06 1.01 38 0.94 1.11 1.03 0.98 1.05 1.12 1.20 1.27

40 0.95 1.16 0.93 1.03 0.94 1.13 1.18 1.02 40 0.98 0.96 1.04 1.07 1.02 0.97 1.56 1.02

42 1.06 1.04 0.98 0.91 0.88 0.95 1.11 1.09 42 1.00 1.03 0.98 0.93 1.04 1.68 1.01 1.72

44 1.01 1.02 0.98 0.96 1.08 1.06 0.94 1.04 44 1.01 1.02 1.07 1.05 1.09 1.63 1.15 1.89

46 0.93 1.00 0.94 1.03 1.04 1.06 1.04 0.90 46 0.99 1.16 0.94 1.07 1.14 1.41 1.46 2.09

48 0.99 1.13 1.00 1.00 1.09 1.09 1.11 1.02 48 1.04 0.98 1.01 0.99 1.17 1.01 1.24 3.00

50 1.04 1.03 1.03 0.98 0.91 1.01 0.94 1.30 50 0.92 1.12 1.12 1.02 1.10 1.16 1.28 8.53

52 1.03 1.00 0.99 1.09 1.12 1.02 1.06 1.20 52 1.06 0.92 0.97 1.16 1.18 1.41 1.27 1.19

54 0.94 1.08 1.07 0.93 1.12 1.12 1.14 1.24 54 1.17 1.11 1.16 0.99 1.25 1.44 1.19 1.69

56 1.07 0.99 1.05 1.07 1.12 1.06 1.16 1.27 56 0.93 1.03 1.11 1.11 1.25 1.16 1.92 1.31

58 1.06 1.15 1.08 1.11 1.00 1.12 1.06 1.33 58 1.03 1.10 1.12 1.14 0.99 1.39 1.38 2.54

60 0.97 0.95 1.09 1.02 1.13 1.21 1.14 1.17 60 1.09 1.04 1.13 1.07 1.25 1.38 1.64 2.72

62 1.11 1.15 1.10 1.17 1.25 1.18 1.10 1.21 62 1.01 1.07 1.10 1.22 1.36 1.51 1.86 1.50

64 1.13 1.10 1.09 1.23 1.30 1.22 1.26 1.36 64 1.23 1.30 1.23 1.18 1.28 1.22 4.14 2.72

B

B
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d
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M
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R
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an example generated by de la Banda et al. (2011) and a new in-

stance generated using the Binomial (p = 0.3) random number gener-

ator. Experimental results shown in Table 18 reveal that our enhanced

branch-and-bound algorithm can handle these new instances very ef-

ficiently. All these 2,000 instances have been optimally solved within

several seconds.

5. Conclusions

In this paper, we proposed an enhanced branch-and-bound algo-

rithm to solve the talent scheduling problem, which is a very chal-

lenging combinatorial optimization problem. This algorithm uses a

new lower bound and two new dominance rules to prune the search

nodes. In addition, it caches search states for the purpose of elimi-

nating search nodes. The experimental results clearly show that our

algorithm outperforms the current best approach and achieved the

optimal solutions for considerably more benchmark instances.

We present a mixed integer linear programming model for the

talent scheduling problem in Section 2. A possible future research

direction is to design mathematical programming algorithms for

the talent scheduling problem, such as branch-and-cut algorithm

and branch-and-bound coupled with Lagrangian relaxation and sub-

gradient methods.
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