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a b s t r a c t 

This paper addresses the container pre-marshalling problem (CPMP) which rearranges containers inside a 

storage bay to a desired layout. By far, target-driven algorithms have relatively good performance among 

all algorithms; they have two key components: first, containers are rearranged to their desired slots 

one by one in a certain order; and second, rearranging one container is completed by a sequence of 

movements. Our paper improves the performance of the target-driven algorithm from both aspects. The 

proposed heuristic determines the order of container rearrangements by the concepts of state feasibil- 

ity, container stability, dead-end avoidance and tier-protection proposed in this paper. In addition, we 

improve the efficiency of performing container rearrangements by discriminating different task types. 

Computational experiments showcase that the performance of the proposed heuristic is considerable. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Since the commencement of containerization, the global use

of standardized containers has dramatically improved international

trade. Containers enable the smooth flow of goods between mul-

tiple transportation modes without directly handling the freight.

Over the years, stringent requirements from consignors such as

just-in-time operations have created challenges for the container

transportation industry. 

Container yards – the space dedicated to the transshipment,

handover, loading, consolidation, maintenance, and storage of con-

tainers – are key components of maritime container terminals.

Some yards act as exchange venues for container transfers between

different transportation modes while others are used as caches for

temporary storage or as warehouses for long-term storage. 

Generally speaking, a container yard is divided into several yard

blocks, each of which consists of several parallel bays. A bay is

formed by a row of stacks. Usually the containers stored in the

same bay have the same dimensions. Equipments such as rubber

tyre gantry cranes, rail-mounted gantry cranes, and reach stackers

are frequently used in container yards. Fig. 1 illustrates an example

of a yard block. 
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Containers in the same stack are operated in a last-in-first-out

anner. To retrieve containers placed in lower tiers, containers on

op of them must be relocated to other slots first. Such forced

ovements are known as container reshuffles or relocations. Con-

ainer pre-marshalling addresses the reorganization of containers

nside a storage area such that no reshuffle is further required

hen containers are retrieved. Hence, the aim of pre-marshalling

s to improve terminals’ performance level, including throughput

ate per berth and turnaround time of vessels or road trucks ( Kim

 Lee, 2015 ). 

The container pre-marshalling problem (CPMP) can be formally

efined as follows. Containers are categorized into various groups,

nd each group is assigned with a group value. Given an initial

ayout of containers in a single bay, the CPMP aims at rearranging

ontainers within the bay, such that containers in each stack are

laced in a descending order of group values from the bottom up.

he objective of the CPMP is to find the best container rearrange-

ent plan with the fewest number of container movements. It is

ssumed that the future retrieval order of containers is known be-

orehand and no container arrives at or leaves from the bay during

re-marshalling. 

This paper designs a constructive heuristic which can be

mbedded later into frameworks such as beam search, large

eighborhood search (LNS) and the greedy randomized adaptive

earch procedure (GRASP). Our work makes three main contribu-

ions to the literature. The first contribution is the concept of state

easibility. A set of rules are proposed for checking the feasibility

f the states during the pre-marshalling process. The feasibility

http://dx.doi.org/10.1016/j.ejor.2016.05.061
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Bay Stack

Crane

Fig. 1. Yard block. 
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f rearranging a certain container is checked before we actually

onduct the rearrangement, which guarantees search efficiency.

he time complexity of checking the feasibility is only O(G ) ;

ere G is the number of groups. Our paper is the first work that

pplies feasibility to prune branches in CPMP algorithms. The sec-

nd contribution lies in the new techniques proposed: container

tability, dead-end avoidance and tier-protection indicator, which

oster better heuristic decisions. The third contribution is the

mprovement of single container rearrangement which is achieved

ased on the relationship between the number of available slots

nd that of the blocking containers. This improvement avoids

nnecessary container movements in certain situations. 

The remainder of this paper is structured as follows.

ection 2 reviews existing approaches in the literature.

ection 3 formally describes the problem and lists the nota-

ion used throughout this paper. The concepts of state, state

easibility and container stability are introduced in Section 4 . The

roposed heuristic and the associated techniques are explained

n Section 5 . Section 6 illustrates the experimental results for

enchmark instances, and Section 7 concludes this paper and

dentifies future research directions. 

. Recent work 

According to recent reviews ( Carlo, Vis, & Roodbergen, 2014;

ehnfeld & Knust, 2014 ), problems related to or caused by con-

ainer reshuffles at terminals include three major types of decision

roblems. The first problem is the container relocation problem

 Jin, Zhu, & Lim, 2015; Jovanovic & Voß, 2014 ) which minimizes

he total operational cost in the container retrieval process. The

perational cost is commonly measured by the number of reloca-

ions conducted or the total operational time. The second is the

ontainer pre-marshalling problem that is addressed in this paper.

he third problem is the container stacking problem which decides

he storage locations or crane operations for arriving containers

 Dayama, Krishnamoorthy, Ernst, Narayanan, & Rangaraj, 2014 ). All

f the three problems are closely related and the solution method-

logies have some common merits. 

To the best of our knowledge, works that study the solutions to

he CPMP are rather limited compared to other problems related to

erminals. For example, berth allocation problems and quay crane

cheduling problems have been studied by more than 120 publica-

ions just since 2009 ( Bierwirth & Meisel, 2015 ). One reason of lim-

ted works is that the variants of the CPMP by far are few. Known

PMP variants were studied by Wang, Jin, and Lim (2015) who con-

idered truck lanes, Rendl and Prandtstetter (2013) who allowed

or group ranges rather than group values, and Huang and Lin

2012) who required that containers of different groups be sepa-

ately located in the final layout. 

Lee and Hsu (2007) developed an integer programming model

or the CPMP. In their work, the problem was formulated as the

ulti-commodity network flow problem. The overall network

s divided into several subnetworks, with each subnetwork rep-
esenting an intermediate layout. The nodes in a subnetwork

orrespond to the slots that accommodate containers, and the

ommodities correspond to the containers stored in the bay. Every

alid flow in the network represents a solution to the CPMP.

he model provides an innovative viewpoint to see the problem,

owever, its performance is not good because the network is too

arge even for a small instance. 

A neighborhood search was proposed by Lee and Chao (2009) ,

hich repeatedly modifies the current solution until some termi-

ation condition is met. Unlike other existing solution-construction

pproaches, the neighborhood search is required to start with a

re-generated initial solution. A feasible solution is further im-

roved by a four-step procedure, and the diversity of the neighbor-

ood is raised by multiple subroutines. The main drawback of the

pproach is the unreliability of random solution modifications, i.e.,

he feasibility of the new resultant solution is not always ensured. 

Bortfeldt and Forster (2012) described a tree search procedure

or solving the problem. In the tree search procedure, solutions are

onstructed by compound moves instead of single moves. Moves

re classified into four types, and only the most promising ones

re adopted in the branching scheme. Tierney, Pacino, and Voß

2014) realized an A ∗ algorithm with symmetry breaking rules, and

an Brink and van der Zwaan (2014) presented an exact algorithm

ased on the branch and bound algorithm. 

Caserta and Voß (2009) provided a greedy heuristic named

he corridor method for solving the problem. The heuristic selects

he direction of movements in a randomized manner according

o the attractiveness of available successors confined by the cor-

idor. A local improvement procedure was also conducted to ac-

elerate the heuristic process. Expósito-Izquierdo, Melián-Batista,

nd Moreno-Vega (2012) provided the first group-oriented heuris-

ic for the CPMP. Their method iteratively handles containers in

 descending order of group values. After handling all containers

ith a specific group value, a stack filling process was applied to

educe the number of disorderly containers in the bay. Jovanovic,

uba, and Voß (2014) developed a new method which designs dif-

erent heuristics for each of the four stages of Expósito-Izquierdo

t al. (2012) . Wang et al. (2015) proposed a target-guided heuris-

ic and two beam search algorithms. The processes of determining

ontainer handling sequence and handling particular containers are

oth improved. This work can solve instances of different densi-

ies well, especially dense instances with very few empty slots.

heith, Eltawil, and Harraz (2014) proposed a rule-based heuristic

rocedure for solving the problem, and then developed a variable

hromosome length genetic algorithm ( Gheith, Eltawil, & Harraz,

015 ). 

. Problem description and notation 

The CPMP is restricted to the bay size, or more precisely, the

imensions of the operating cranes. A problem instance (problem

nput) includes an initial layout of N containers, which are dis-

ributed in a single bay with S stacks ( S ≥ 3) and H tiers ( H ≥
) with E empty slots ( E = SH − N, E ≥ 2) left. 

Every container is labeled a group value g ∈ { 1 , . . . , G } . A con-

ainer is orderly if it is supported directly by the ground or another

rderly container with equal or larger group value; otherwise, it

s disorderly . Other phrases in the recent literature that have the

ame meaning of “orderly/disorderly” include “well/badly placed”

 Bortfeldt & Forster, 2012 ), “well-/non-located” ( Expósito-Izquierdo

t al., 2012 ), and “clean/dirty” ( Wang et al., 2015 ). 

Fig. 2 gives an example of a bay with S = 5 , H = 4 , and N = 13 .

ontainers are represented by boxes with their group values

arked inside. Specially, disorderly containers are highlighted

ith gray backgrounds. The objective of the CPMP is to find an

ptimized sequence with the fewest container movements. By
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Fig. 2. A container bay. 

Fig. 3. State, fixed vector and skyline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Computation of the surplus vector. 

State a State b 

g d ( g ) D ( g ) r ( g ) R ( g ) �( g ) g d ( g ) D ( g ) r ( g ) R ( g ) �( g ) 

1 0 5 6 9 3 1 1 6 2 10 4 

2 0 5 3 3 −2 2 0 5 3 8 3 

3 1 5 0 0 −5 3 1 5 0 5 0 

4 2 4 0 0 −4 4 2 4 0 5 1 

5 2 2 0 0 −2 5 2 2 5 5 3 
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applying the obtained movement sequence to the initial layout, all

the containers could be rearranged to be orderly. 

To better describe the solution to the CPMP, layout-related no-

tation is introduced first. Stacks and tiers of the bay are labeled

from left to right and bottom to top, respectively. Let S = { 1 , . . . , S}
be the set of stacks. Hereafter, for simplification of description,

when a stack s is mentioned without declaring its domain, it is

assumed that s ∈ S . The height of stack s is denoted by h ( s ) and

e (s ) = H − h (s ) denotes the number of empty slots in stack s . Note

that the height of stacks should not exceed H . The orderly height

(number of orderly containers) of stack s is denoted by o ( s ). The

slot positioned at the t th tier of stack s is denoted by ( s , t ). The

group value of a container c is denoted by g ( c ). Moreover, the

group value of a container located in slot ( s , t ) is denoted by g ( s , t ).

4. State and state feasibility 

Definition 1 (Fixed containers) . A fixed container is an orderly

container which has been locked to a certain slot. Fixed contain-

ers are not allowed to be moved in subsequent movements. 

According to the definition of fixed containers, fixed containers

in the same stack are contiguous from the bottom up. 

Definition 2 (State) . A state (L , f ) is a two-tuple composed of a

layout L and a fix vector f . 

The fix vector f indicates the fixed height (number of fixed con-

tainers) of each stack of the layout L . The s -th element of f is de-

noted by f ( s ). 

Fig. 3 (a) illustrates two examples of state, where fixed and un-

fixed containers are separated by skylines (bold lines). In Fig. 3 (a),

f = (2 , 3 , 1) ; in Fig. 3 (b), f = (2 , 3 , 0) . 

It is noteworthy that if two states have the same layout but

different fix vectors, then they are two different states, just like

Fig. 3 (a) and (b). 
efinition 3 (Feasibility of a state) . A state (L , f ) is feasible if

here exists a movement sequence that can convert L to an orderly

ayout without moving fixed containers indicated by f . 

The necessary condition for state feasibility has been talked

bout in Wang (2014) . To make the content self-contained, we

riefly explain it in this paper. Containers above the skyline can be

oved, therefore slots and containers above the skyline are sepa-

ately considered. 

For a stack s in state (L , f ) , suppose that the smallest group

alue under the skyline is g , then there are H − f (s ) slots above

he skyline which can only be filled with containers c such that

 ( c ) ≤ g . In such a situation, we say stack s has H − f (s ) slots with

apability g . If the skyline of stack s coincides with the ground,

hen stack s has H slots with capability G . For example, in Fig. 3 (b),

tack 1, 2 and 3 have 3, 2 and 5 slots with capabilities 2, 1 and

, respectively. The total number of slots with capability g in the

hole bay is denoted by r ( g ) (resource for group g ). Similarly, the

umber of unfixed containers with group value g is denoted by

 ( g ) (demand of group g ). 

In a feasible state, the slots available for group g (i.e., slots with

apabilities no smaller than g ) must meet the demand of group g .

hat is, 

G ∑ 

 = g+1 

r(i ) −
G ∑ 

i = g+1 

d(i ) + r(g) ≥ d(g) , 

hich is equivalent to 

G 
 

i = g 
r(i ) ≥

G ∑ 

i = g 
d(i ) . 

Denote R (g) = 

∑ G 
i = g r(i ) and D (g) = 

∑ G 
i = g d(i ) , then R and D are

he two G -dimensional vectors with elements R ( g ) and D ( g ), re-

pectively. The above condition can be hence expressed as � =
 − D ≥ 0 . Here, � is called the surplus vector . 

roposition 1 (Necessary condition for state feasibility) . � = R −
 ≥ 0 is a necessary condition for a feasible state (L , f ) . 

Take the two states in Fig. 3 (a) and (b) as examples. Table 1

hows the surplus vectors for both states. State a is infeasible since

( g ) < 0 for g = 2 , . . . , 5 . It is intuitively seen that none of the

tacks in Fig. 3 (a) can accommodate containers with group value

, and this is the reason why state a is infeasible. The feasibility of

tate b is not sure yet because � ≥ 0 is only a necessary condition.

ote that the time complexity of checking � ≥ 0 is O(G ) . 

efinition 4 (Container stability) . Consider a given feasible state.

isorderly containers are unstable. For any orderly container c in

lot ( s , t ), try to fix container c and those underneath. If the resul-

ant state has � ≥ 0, then c is stable; otherwise, c is unstable. 

According to the definition, an unstable container is not allowed

o be fixed in the current slot even if it is orderly, because the

esultant state would be infeasible. Unstable containers must be

oved in the future. Denote the stable height (number of stable
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Fig. 4. Stability of containers. 
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Fig. 5. Existence of dead-end states. 
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ontainers) of stack s by sh ( s ), then we have f ≤ sh ≤ o ≤ h . If a

ontainer c could become stable by moving it onto stack s , we say

hat stack s can stabilize c . 

Fig. 4 gives another example of a state. Fixed containers are la-

eled with solid squares and unstable containers are highlighted

ith gray backgrounds. Notice that the container in slot (2, 1) with

roup value 6 is orderly but unstable. 

An orderly but unstable container indicates that its orderliness

s valueless because it definitely requires at least one movement.

sing the concept of container stability instead of container or-

erliness is more precise in evaluating the movements of blocking

ontainers during the pre-marshalling process. For example, when

eciding the next movement of a blocking container, if the con-

ainer becomes orderly but unstable after being moved to a new

tack, the attractiveness of such a movement should be reconsid-

red. The stability of containers should be recomputed after any

ontainer is fixed. 

efinition 5 (Extreme state) . A state (L , f ) is called an extreme

tate if |{ s ∈ S : f (s ) = H}| = S − 2 . 

The definition of extreme state is to emphasize the special case

here S − 2 stacks are fully fixed. In such a case, unfixed contain-

rs can only be moved between the other two stacks, say a and

 . An extreme state is feasible if and only if one of the following

onditions is satisfied: 

1. Both stacks a and b are orderly; 

2. Stack a is orderly, and stack b is disorderly. Stack a is still or-

derly after all the disorderly containers from stack b are moved

to stack a . 

efinition 6 (Dead-end state) . A state is called a dead-end state if

t is an infeasible extreme state. 

We have the following proposition. 

roposition 2 (Existence of dead-end states) . In extremely dense

nstances such that E < 2(H − 1) , there exist possibilities of generat-

ng a dead-end state, while in instances with E ≥ 2(H − 1) , dead-end

tates will never be generated. 

When E ≥ 2(H − 1) , it has N ≤ SH − 2 H + 2 . When fewer than

 − 2 stacks are fully occupied, the state is not a dead-end state;

hen S − 2 stacks are fully occupied, there are at most two extra

ontainers in the remaining two stacks. The state is not a dead-

nd state, either. Fig. 5 (a) gives an example of an instance with

 ≥ 2(H − 1) , which has no chance to generate any dead-end state.

For instances with E < 2(H − 1) , there exist possibilities of gen-

rating a dead-end state. Fig. 5 (b) gives an example with E <

(H − 1) ; when f = (0 , 0 , 5 , 5) , the corresponding state is a dead-

nd state. 
. Feasibility-based heuristic 

In this section, a feasibility-based heuristic (FBH) is developed

or solving the CPMP. The proposed heuristic is a target-driven al-

orithm. Target-driven algorithms ( Expósito-Izquierdo et al., 2012;

ang et al., 2015 ) are efficient among all existing algorithms. Gen-

rally speaking, containers (targets) are rearranged to certain slots

ne by one, and each rearrangement is achieved by a sequence of

ovements. The heuristic can be implemented independently as a

reedy algorithm, or be a major component embedded in meta-

euristic frameworks. In this paper, we optimize the order of con-

ainer rearrangements as well as the sequence of movements in

ne rearrangement. 

The optimization is partially due to the concept of state feasibil-

ty. This is also the reason why our algorithm is called a feasibility-

ased heuristic. Before a certain container is rearranged, the feasi-

ility of the resultant state is always ensured. In other words, any

earrangement that leads to an infeasible state is eliminated. Due

o the state feasibility check, we can explore larger space without

acrificing efficiency. The order of container rearrangements is dy-

amically determined as the algorithm goes on. 

.1. Heuristic framework 

According to Wang (2014) , in dense instances with E < H , only

he top �i � = s e ( i ) containers of a stack s can be moved. The immov-

ble number of containers (unreachable tiers) in any stack is H − E,

.e., containers in the lowest H − E tiers of the bay are unreachable.

n loose instances such that E ≥ H , all the containers are movable.

e define U = max { H − E, 0 } as the number of unreachable tiers

or any instance. 

The feasibility-based heuristic firstly constructs the initial state

ccording to the unreachable tiers. In the initial state, L 0 is the ini-

ial layout and containers in unreachable tiers are naturally fixed,

.e., the initial state is (L 0 , U · 1 ) , where 1 is an S -dimensional all-

nes vector. 

Starting from the initial state, the heuristic repeatedly fixes a

arget container c ∗ to an aim stack s ∗. Since stack s ∗ already has

 ( s ∗) fixed containers, c ∗ will be fixed at tier f (s ∗) + 1 . The algo-

ithm continues until all the containers are fixed. The procedure of

he proposed heuristic is concisely described in Algorithm 1 . 

Algorithm 1: Feasibility-based heuristic. 

1 begin 

2 (L , f ) := (L 0 , U · 1 ) ; 

3 repeat N − SU times do 

4 (c ∗ → s ∗) := the selected valid task ; 

5 L := resultant layout after rearranging c ∗ to stack s ∗; 

6 f (s ∗) := f (s ∗) + 1 ; 
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Fig. 6. Pre-extreme state. 
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The procedures of selecting the next task c ∗ → s ∗ and rearrang-

ing c ∗ to stack s ∗ will be explained in Sections 5.2 and 5.3 , respec-

tively. 

The advantage of fixing containers one by one lies in twofold. 

1. Movements are more target-oriented. Some works such as

Bortfeldt and Forster (2012) move a container each time, but

they don’t have a clear aim. Hence, it is difficult to measure the

benefit of movements. Moreover, movements are blind: a con-

tainer can be unnecessarily moved from stack a to b and then

moved from b to a in later movements. 

2. Unfixed containers are allowed to be moved, but fixed ones are

not. The “fixed/unfixed” status can distinguish fixed containers

and unfixed containers, especially unfixed orderly containers.

In works that do not distinguish fixed and unfixed containers,

containers that have been rearranged (“fixed” in our context)

still get involved in later movements. 

5.2. Task selection 

5.2.1. Valid task 

At every step of the heuristic, an unfixed container and a des-

tination stack are determined as the target container and the aim

stack, respectively. Most target-driven algorithms select target con-

tainers according to a predetermined order, such as the descending

order of group values ( Expósito-Izquierdo et al., 2012 ). In this re-

search, the order to rearrange containers is not fixed beforehand,

but rather dynamically decided as the algorithm goes on. This in-

novation undoubtedly enables the algorithm to explore larger so-

lution space, but one may say that the search efficiency is reduced.

To this end, the concept of state feasibility is applied to avoid use-

less solution space. Our paper is the first work that applies state

feasibility to prune branches in existing CPMP algorithms. 

A container–stack pair c → s is a valid task for the current state

(L , f ) only if 

• c is unfixed, 
• f ( s ) < H , 
• g ( c ) ≤ g ( s , f ( s )), and 

• �(ϕ) ≥ H − f (s ) , for ϕ ∈ ( g ( c ), g ( s , f ( s ))]. 

The first condition is easy to understand. The second condi-

tion ensures that stack s has at least one slot to accommodate c .

The third condition makes sure that the group value of c is not

larger than g ( s , f ( s )). The last condition ensures the non-negativity

of the resultant surplus vector. If c is moved to stack s , then d ( g ( c ))

(i.e., the demand of group g ( c )) decreases by 1, that is, the de-

mand of group g ( c ) in the resultant layout is d ′ (g(c)) = d(g(c)) −
1 , while other elements of the demand vector are not changed.

Meanwhile, for the resource vector, r ′ (g(s, f (s ))) = r(g(s, f (s ))) −
(H − f (s )) , r ′ (g(c)) = r(g(c)) + H − f (s ) − 1 , and other elements

are not changed. Then for ϕ ∈ ( g ( c ), g ( s , f ( s ))], the feasibility

condition in the resultant layout is D 

′ (ϕ) = 

∑ 

g≥ϕ d 
′ (g) = D (ϕ) ≤

R ′ (ϕ) = 

∑ 

g≥ϕ r 
′ (g) = R (ϕ) − (H − f (s )) , which can be further sim-

plified to �(ϕ) ≥ H − f (s ) . 

Container–stack pairs that satisfy the above conditions compose

a set T . However, the above conditions are only necessary condi-

tions. The feasibility of the resultant state is still not ensured, due

to the possibility of dead-end states. 

There are three methods for resolving the issue of dead-end

states. 

1. Prevent from entering an extreme state when deciding the next

task; 

2. Design an ideal task accomplishment procedure that guarantees

the feasibility of resultant states; 

3. Allow entering a dead-end state and relabel a fixed container
as unfixed to escape from the dead-end state. 
Our previous work ( Wang et al., 2015 ) adopts the last method

isted above. When the algorithm enters a dead-end state, the al-

orithm relabels a fixed container as unfixed and moves it to a

emporary slot. After taking a sequence of movements, the rela-

eled container returns to the slot where it is originally fixed. The

isadvantage of such a method is that escaping from the current

ead-end state causes unnecessary movements. A better choice is

o avoid resulting in dead-end states in advance when choosing

alid tasks. 

efinition 7 (Pre-extreme state) . A feasible state is a pre-extreme

tate if |{ i ∈ S : f (i ) = H}| = S − 3 , |{ i ∈ S : f (i ) = H − 1 }| ≥ 1 and
 

i ∈ S f (i ) < N − 2 . 

The proposed heuristic only explores states (L , f ) which satisfy

≥ 0 . When S − 3 stacks are fully fixed ( | i ∈ S : f (i ) = H| = S − 3 ),

nd at least one stack has only one available slot left ( | i ∈ S : f (i ) =
 − 1 | ≥ 1 ), let us investigate the validity of performing a task c

 s with f (s ) = H − 1 based on the number of remaining unfixed

ontainers. 

1. If 
∑ 

i ∈ S f (i ) = N, all the containers are fixed. The algorithm ter-

minates with an orderly layout. 

2. If 
∑ 

i ∈ S f (i ) = N − 1 , it means that only one container c remains

unfixed. As � ≥ 0 , and D (g(c)) = d(g(c)) = 1 , we have R ( g ( c ))

≥ 1, that is, there is at least one slot which can make c orderly.

At most one movement is needed to convert the layout to an

orderly layout. 

3. If 
∑ 

i ∈ S f (i ) = N − 2 , two containers remain unfixed. Suppose

the last two unfixed containers are a and b , and the valid task

is a → s with f (s ) = H − 1 . Because a → s is a valid task, so

the fourth condition ( �(ϕ) ≥ H − f (s ) , for ϕ ∈ ( g ( c ), g ( s , f ( s ))])

is satisfied. Therefore, the resultant layout satisfies �′ ≥ 0 and

only b remains unfixed in the resultant layout. Hence, perform-

ing task a → s does not result in a dead-end state. 

4. If 
∑ 

i ∈ S f (i ) ≤ N − 3 , at least 3 containers remain unfixed. If the

next task is to fix a container to a stack s with f (s ) = H − 1 , the

resultant layout might be a dead-end state. Taking Fig. 6 as an

example. Boxes with a solid square represent fixed containers.

The task 1 → 3 is valid since the surplus vector of the resultant

state is non-negative, however, the resultant state is a dead-end

state. 

Based on the above discussion, we can see that when
 

i ∈ S f (i ) < N − 2 , there is danger to enter a dead-end state. 

When the current state is a pre-extreme state, we immediately

liminate those container–stack pairs c → s with f (s ) = H − 1 from

 , so that the algorithm is able to avoid dead-end states. This

echnique is called “dead-end avoidance”. 

.2.2. Task evaluation 

Every valid task c → s in T is evaluated by a tuple with six

lements: 

1. the tier-protection indicator; 
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Algorithm 2: Accomplish an internal task. 

target container : c ∗(s + , t + ) 
aim slot : (s + , f (s + ) + 1) 
slot supply : a = E − e (s + ) − min { e (s ) : 

e (s ) > 0 , s � = s + } 
blocking above : b 1 = h (s + ) − t + 

blocking below : b 2 = t + − f (s + ) − 1 

1 case I1: a ≥ b 2 

2 repeat b 1 times do 

3 R := { s � = s + : h (s ) < H, α(s + , s ) ≥ b 2 } ; 
4 Relocate( s + , 1 , R ) ; 

5 I := { s � = s + : h (s ) < H, E − e (s + ) − e (s ) ≥ b 2 } ; 
6 s tmp := Interim( I ) ; 
7 Move( s + , 1 , s ′ ) ; 
8 Relocate( s + , b 2 , S \ { s + , s tmp } ) ; 
9 Move( s tmp , 1 , s + ) ; 

// I1: h (s + ) − f (s + ) + 1 movements 

10 case I2: a < b 2 & |{ s � = s + : h (s ) < H}| > 1 

11 Relocate( s + , b 1 , S \ { s + } ) ; 
12 s tmp 

1 
:= Interim( S \ { s + } ) ; 

13 Move( s + , 1 , s tmp 
1 

) ; 

14 k 2 := E − e (s + ) − e (s tmp 
1 

) − 1 ; 

15 Relocate( s + , k 2 , S \ { s + , s tmp 
1 

} ) ; 
16 Find s tmp 

2 
s.t. s tmp 

2 
�∈ { s + , s tmp 

1 
} & h (s tmp 

2 
) < H; 

17 Move( s tmp 
1 

, 1 , s tmp 
2 

) ; 

18 Move( s + , b 2 − k 2 , s 
tmp 
1 

) ; 

19 Move( s tmp 
2 

, 1 , s + ) ; 
// I2: h (s + ) − f (s + ) + 2 movements 

20 case I3: a < b 2 & |{ s � = s + : h (s ) < H}| = 1 

21 Find s ′ s.t. s ′ � = s + & h (s ′ ) < H; 
22 s tmp := InterimFull( S \ { s + , s ′ } ) ; 
23 BiSender( s tmp , 1 , s + , b 1 , { s ′ } ) ; 
24 Move( s + , 1 , s tmp ) ; 
25 Move( s + , b 2 , s 

′ ) ; 
26 Move( s tmp , 1 , s + ) ; 

// I3: h (s + ) − f (s + ) + 2 movements 
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2. the number of movements required by the speedy task accom-

plishment procedure; 

3. the number of stable containers that need to be moved from

the aim stack; 

4. the affected demand; 

5. the fixed height of aim stack; 

6. the negative of g ( c ). 

The tuples of valid tasks are compared lexicographically, and

he task with the minimum tuple is selected as the next task. The

ix elements in the tuple will be explained in the following. 

The tier-protection indicator is to balance the trade-off between

he freedom of task selection and the surplus loss. In principle, a

ontainer can be moved to any valid stack. However, if a container

ith small group value occupies a relatively empty stack, then the

oss of surplus vector is large: after the target container c is fixed

o the aim slot (s, f (s ) + 1) , the surplus �( ϕ) is reduced by H −
f (s ) , for ϕ ∈ ( g ( c ), g ( s , f ( s ))]. The larger the gap between g ( c ) and

 ( s , f ( s )) is, the more the surplus vector will lose. If a task c → s

atisfies f ( s ) ≤ P 1 and the affected demand 

∑ g(s, f (s )) 
ϕ= g(c)+1 

d(ϕ) ≥ P 2 ,

he task is then deleted from T . As two customizable parameters,

he number of tiers protected P 1 and the threshold value P 2 can

e adjusted optionally. 

The number of moves required by the speedy task accomplish-

ent procedure can be precisely computed in the proposed speedy

ask accomplishment procedure, which is an improvement of the

stimation in Wang et al. (2015) . The process to compute the num-

er of needed movements is introduced in Section 5.3 . 

The number of stable containers that need to be moved

rom the aim stack is sh (s ) − f (s ) . The affected demand is
 g(s, f (s )) 
ϕ= g(c)+1 

d(ϕ) . The fixed height of aim stack f ( s ) favors low tiers,

hich makes the fixed height of stacks even. The last element

g(c) prefers a target container with a larger group value. 

.3. Speedy task accomplishment procedure 

After a task is selected, a speedy task accomplishment proce-

ure (STAP) is carried out to accomplish the task, resulting in a
ew state. The movement sequence of the STAP is based on task

ypes. 

Let c ∗ denote the target container located in (s + , t + ) and s ∗ de-

ote the aim stack. The task is immediate if c ∗ is already on the

ighest fixed container of stack s ∗, i.e., s + = s ∗ and t + = f (s ∗) + 1 ;

he task is internal if c ∗ is above but not directly on the highest

xed container of stack s ∗, i.e., s + = s ∗ and t + > f (s ∗) + 1 ; and the

ask is external if c ∗ is not in stack s ∗ currently, i.e., s + � = s ∗. 

.3.1. Immediate task 

An immediate task does not require any move because the tar-

et container is already located in the aim slot. 

.3.2. Internal task 

For an internal task, let a denote the number of empty slots ex-

ept those in stack s + and one highest non-full stack; that is, a =
 − e (s + ) − min { e (s ) : e (s ) > 0 , s � = s + } . Let B 1 ( b 1 = | B 1 | ) and B 2
 b 2 = | B 2 | ) denote the sets (numbers) of blocking containers above

nd below c ∗, respectively. Blocking containers refer to containers

hich blocks the target container or the aim slot. The accomplish-

ent procedure for an internal task is given in Algorithm 2 . 

The accomplishment procedure is carried out based on the re-

ationship between a and b 2 , which determines how containers are

elocated. 

• I1: a ≥ b 2 ; 
• I2: a < b 2 & |{ s � = s + : h (s ) < H}| > 1 ; 
• I3: a < b 2 & |{ s � = s + : h (s ) < H}| = 1 . 

In case I1, b 1 containers above c ∗ are relocated one by one. R

epresents the set of available destination stacks for the top con-

ainer of stack s + . When relocating containers from B 1 , reserving

lots for containers from B 2 should be considered beforehand. Be-

ause c ∗ is above B 2 , so c ∗ is relocated before containers of B 2 . If

ome movements put c ∗ and B 2 in the same stack, then c ∗ needs

dditional movements to be retrieved. 

When deciding whether a stack s dst can be the destination of a

ontainer c from B 1 , function α is used to compute how many slots

ill be left for B after c is placed to stack s dst . If the left slots are
2 
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not enough for B 2 , c cannot be moved to s dst . The pseudo-code of

function α is given in Algorithm 3 . 

Algorithm 3: Function α. 

1 function α(s + , s dst ) 
// s + � = s dst 

2 e min := min { e (s ) > 0 : 
s � = s + } ; 

3 e sec := min { e (s ) > 

e min : s � = s + } ; 
4 k 

min := |{ s � = s + : 

e (s ) = e min }| ; 
5 if e (s dst ) > e min then 

6 return E − e (s + ) −
e min − 1 ; 

7 else if e min ≥ 2 then 

8 return 

E − e (s + ) − e min ; 

9 else if k 

min = 1 then 

10 return 

E − e (s + ) − e sec − 1 ; 

11 else 

12 return 

E − e (s + ) − 2 ; 

If e ( s dst ) > e min , that is, stack s dst is not the highest non-full

stack, e min is reserved for c ∗. If c is moved to stack s dst , the number

of left slots for B 2 is E − e (s + ) − e min − 1 . 

If e (s dst ) = e min ≥ 2 , that is, stack s dst is the highest non-full

stack and it has at least two empty slots. If c is moved to stack

s dst , the stack can also accommodate c ∗, hence, the number of left

slots for B 2 is E − e (s + ) − e min . 

If e (s dst ) = e min = 1 and k min = 1 , that is, stack s dst is the unique

highest stack with only one empty slot. If c is moved to stack s dst ,

the stack with the second highest height will be reserved for c ∗

in the next round. The number of slots left for B 2 becomes E −
e (s + ) − e sec − 1 . 

If e (s dst ) = e min = 1 and k min ≥ 2, at least one stack with only

one empty slot can accommodate c ∗ in the future. If c is moved to

stack s dst , the number of slots left for B 2 becomes E − e (s + ) − 2 . 

Algorithm 4: Relocate containers. 

1 function 

Relocate( s src , k, R ) 
2 repeat k times do 

3 R 

′ := { s ∈ R : 
h (s ) < H} ; 

4 s dst := 

arg min s ∈ R ′ EvalMove( s src , s ) ; 

5 Move( s src , 1 , s dst ) ; 

Function Relocate s src , k, R is illustrated in Algorithm 4 , which

relocates k containers from a sender stack s src to R . For each of

the top k containers of the sender, the destination stack s dst is
roperly selected from R according to the evaluation by function

valMove s src , s for s ∈ R . Function Move s src , k , s dst simply moves

he top k containers from s src to s dst . 

EvalMove s src , s returns a tuple, the first element indicates

he type of the penalty and the second element indicates the

cale of the penalty of moving from stack s src to stack s (refer to

lgorithm 5 ). 

Algorithm 5: Evaluate movements. 

1 function 

EvalMove( s src , s ) 
2 c := the top container 

of stack s src ; 
3 case sh (s ) = h (s ) & s 

can stabilize c 
4 return 

〈 1 , 
∑ q (s,h (s )) 

ϕ= g(c)+1 
d(ϕ) 〉 ; 

5 case sh (s ) < h (s ) & 

g(c) ≥ m (s ) 
6 return 

〈 2 , g(c) − m (s ) 〉 ; 
7 case sh (s ) < h (s ) & 

g(c) < m (s ) 
8 return 

〈 3 , m (s ) − g(c) 〉 ; 
9 case sh (s ) = h (s ) & s 

cannot stabilize c 
10 return 

〈 4 , q (s, h (s )) 〉 ; 

Let us define the capability of an occupied slot ( s , t ) by q (s, t) =
(s, t) if the container inside is orderly, otherwise q (s, t) = 0 ;

pecifically, the ground is regarded as an occupied slot at tier 0

ith group value G . Define the messiness of stack s by m (s ) =
ax sh (s ) <t≤h (s ) g(s, t) , that is, the largest group value among the

nstable containers in stack s . 

As s dst = arg min s ∈ R ′ EvalMove s src , s , the preference of select-

ng s dst for a blocking container c can be summarized as follows. 

1. If stack s is entirely stable and can stabilize c , the stack with

the minimum affected demand is preferred; 

2. If stack s is not entirely stable and g ( c ) ≥ m ( s ), the stack with

the minimum gap between m ( s ) and g ( c ) is preferred; 

3. If stack s is not entirely stable and g ( c ) < m ( s ), the stack with

the minimum gap between g ( c ) and m ( s ) is preferred; 

4. If stack s is entirely stable but cannot stabilize c , the stack with

the minimum q ( s , h ( s )) is preferred. 

The first preference indicates that stabilizing a blocking con-

ainer reduces the total number of unstable containers in the

ay. The second and third preferences consider the messiness of

he destination stack. Larger messiness implies a higher urgency

f reshuffles. The last preference indicates that an entirely stable

tack should be protected from being ruined. 

In cases I1 and I2, an interim stack is selected by function

nterim I to temporarily store the target container. The selection

refers stacks that are not entirely stable with the largest messi-

ess, then entirely stable stacks with the smallest group value of

rderly containers. The most unattractive stack for receiving block-

ng containers is selected as the interim stack. In cases I3 and E4

in Section 5.3.3 ), the interim stack is selected by the minimum
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Algorithm 6: Interim and InterimFull functions. 

1 function Interim( I ) 
2 I 1 := { s ∈ I : sh (s ) < h (s ) < H} ; 
3 I 2 := { s ∈ I : sh (s ) = h (s ) < H} ; 
4 if I 1 � = ∅ then 

5 return arg max s ∈ I 1 m (s ) ; 
6 else 

7 return arg min s ∈ I 2 q (s, h (s )) ; 

8 function InterimFull( F ) 
9 F 1 := { s ∈ F : f (s ) ≤ sh (s ) < h (s ) = H} ; 

10 F 2 := { s ∈ F : f (s ) < sh (s ) = h (s ) = H} ; 
11 if F 1 � = ∅ then 

12 return arg min s ∈ F 1 g(s, H) ; 
13 else 

14 return arg min s ∈ F 2 g(s, H) ; 

Algorithm 7: BiSender and BiReceiver functions. 

1 function BiSender( s src 
1 , k 1 , s 

src 
2 , k 2 , R ) 

2 while k 1 + k 2 > 0 do 

3 if k 1 = 0 then 

4 Relocate( s src 
2 , k 2 , R ) ; 

5 k 2 := 0 ; 

6 else if k 2 = 0 then 

7 Relocate( s src 
1 , k 1 , R ) ; 

8 k 1 := 0 ; 

9 else 

10 R 

′ := { s ∈ R : h (s ) < H} ; 
11 s dst 

1 := arg min s ∈ R ′ EvalMove( s src 
1 , s ) ; 

12 �
 v 1 := EvalMove( s src 

1 , s dst 
1 ) ; 

13 s dst 
2 := arg min s ∈ R ′ EvalMove( s src 

2 , s ) ; 

14 �
 v 2 := EvalMove( s src 

2 , s dst 
2 ) ; 

15 if � v 1 ≤lex �
 v 2 then 

16 Move( s src 
1 , 1 , s dst 

1 ) ; 
17 k 1 := k 1 − 1 ; 

18 else 

19 Move( s src 
2 , 1 , s dst 

2 ) ; 
20 k 2 := k 2 − 1 ; 

21 function BiReceiver( s src , k 1 , R 1 , k 2 , R 2 ) 
22 while k 1 + k 2 > 0 do 

23 if k 1 = 0 then 

24 Relocate( s src , k 2 , R 2 ) ; 
25 k 2 := 0 ; 

26 else if k 2 = 0 then 

27 Relocate( s src , k 1 , R 1 ) ; 
28 k 1 := 0 ; 

29 else 

30 R 

′ 
1 := { s ∈ R 1 : h (s ) < H} ; 

31 R 

′ 
2 := { s ∈ R 2 : h (s ) < H} ; 

32 s dst 
1 := arg min s ∈ R ′ 

1 
EvalMove( s src , s ) ; 

33 �
 v 1 := EvalMove( s src , s dst 

1 ) ; 

34 s dst 
2 := arg min s ∈ R ′ 

2 
EvalMove( s src , s ) ; 

35 �
 v 2 := EvalMove( s src , s dst 

2 ) ; 

36 if � v 1 ≤lex �
 v 2 then 

37 Move( s src , 1 , s dst 
1 ) ; 

38 k 1 := k 1 − 1 ; 

39 else 

40 Move( s src , 1 , s dst 
2 ) ; 

41 k 2 := k 2 − 1 ; 
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roup value of the top containers of full stacks, which is function

nterimFull F . 

Function BiSender s src 
1 

, k 1 , s 
src 
2 

, k 2 , R performs relocations from

wo senders s src 
1 

and s src 
2 

to a receiver set R , and the respective

elocation quantities are k 1 and k 2 (refer to Algorithm 7 ). The two

op containers from two senders are compared and the one with

 smaller tuple is moved first. In Algorithm 7 , � v 1 and 

�
 v 2 are tuple

esults of function EvalMove . 
Likewise, function BiReceiver s src , k 1 , R 1 , k 2 , R 2 in the exter-

al case relocates k 1 and k 2 containers from one sender s src to two

eceiver sets R 1 and R 2 , respectively. 

The total number of movements needed in case I1 is h (s + ) −
f (s + ) + 1 , and the numbers of movements in case I2 and case

3 are h (s + ) − f (s + ) + 2 . All are noted in the comments of

lgorithm 2 . 

Note that in case I2, the target container c ∗ is moved to the

ew interim stack s 
tmp 
2 

from the first interim stack s 
tmp 
1 

when there

s only one empty slot in S \ { s + , s tmp 
1 

} . This can be modified so

hat c ∗ is moved to a new interim stack s 
tmp 
2 

earlier as long as the

mpty slots in S \ { s + , s tmp 
2 

} are enough for containers in B 2 . More-

ver, if there is a full stack in S \ { s + } in case I2, the task can also
e completed in a similar way as that used in case I3 with the

ame operational cost. 

.3.3. External task 

For an external task, the number of empty slots in S \ { s + , s ∗}
s denoted by a ; that is, a = E − e (s + ) − e (s ∗) . Let B 1 (b 1 = | B 1 | )
nd B 2 (b 2 = | B 2 | ) denote the sets (numbers) of blocking contain-

rs above the target container c ∗ and the aim slot ( s ∗, f ( s ∗)), respec-

ively. The pseudo-code describing the accomplishment procedure

or an external task is given in Algorithm 8 . Four situations are

onsidered. 

• E1: a ≥ b 1 + b 2 ; 
• E2: b 1 + 1 ≤ a < b 1 + b 2 ; 
• E3: 1 ≤ a < b 1 + min { 1 , b 2 } ; 
• E4: a = 0 . 

. Computational results 

In this section, the proposed FBH is compared to four bench-

ark approaches. Three of them are heuristics. They are: the

arget-guided heuristic (TGH) proposed in our previous work
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Algorithm 8: Accomplish an external task. 

target container : c ∗(s + , t + ) 
aim slot : (s ∗, f (s ∗) + 1) 
blocking above target container : b 1 = h (s + ) − t + 

blocking in aim stack : b 2 = h (s ∗) − f (s ∗) 
slot supply : a = E − e (s + ) − e (s ∗) 

1 case E1: a ≥ b 1 + b 2 

2 BiSender( s + , b 1 , s 
∗, b 2 , S \ { s + , s ∗} ) ; 

3 Move( s + , 1 , s ∗) ; 
// E1: b 1 + b 2 + 1 movements 

4 case E2: b 1 + 1 ≤ a < b 1 + b 2 

5 k 2 := a − 1 − b 1 ; 
6 BiSender( s + , b 1 , s 

∗, k 2 , S \ { s + , s ∗} ) ; 
7 Find s tmp s.t. s tmp �∈ { s + , s ∗} & h (s tmp ) < H; 
8 Move( s + , 1 , s tmp ) ; 
9 Move( s ∗, b 2 − k 2 , s 

+ ) ; 
10 Move( s tmp , 1 , s ∗) ; 

// E2: b 1 + b 2 + 2 movements 

11 case E3: 1 ≤ a < b 1 + min { 1 , b 2 } 
12 k 1 := a − 1 ; 
13 BiReceiver( s + , k 1 , S \ { s + , s ∗} , b 1 − k 1 , { s ∗} ) ; 
14 Find s tmp s.t. s tmp �∈ { s + , s ∗} & h (s tmp ) < H; 
15 Move( s + , 1 , s tmp ) ; 
16 Move( s ∗, b 1 − k 1 + b 2 , s 

+ ) ; 
17 Move( s tmp , 1 , s ∗) ; 

// E3: 2 b 1 + b 2 − a + 3 movements 

18 case E4: a = 0 

19 s tmp := InterimFull( S \ { s + , s ∗} ) ; 
20 BiSender( s tmp , 1 , s + , b 1 , { s ∗} ) ; 
21 Move( s + , 1 , s tmp ) ; 
22 Move( s ∗, b 1 + b 2 + 1 , s + ) ; 
23 Move( s tmp , 1 , s ∗) ; 

// E4: 2 b 1 + b 2 + 4 movements 
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( Wang et al., 2015 ), an implementation of the largest priority first

heuristic (LPFH) proposed by Expósito-Izquierdo et al. (2012) , and

an implementation of the multi-heuristic proposed by Jovanovic

et al. (2014) . The last benchmark approach is called BS-B, that is a

beam search framework consolidating TGH as a component ( Wang

et al., 2015 ). By far, BS-B has the best performance on the CPMP.

It is necessary to evaluate the quality level of FBH with the best

known values. 

Our algorithm is tested on the CVS data set and the BF data

set, which are initially presented by Caserta, Voß, and Sniedovich

(2011) and Bortfeldt and Forster (2012) , respectively. Since LPFH

and the multi-heuristic approach do not report results on the BF

data set, we reimplemented LPFH and the multi-heuristic approach

to compute results for the CVS and BF. 

The original LPFH involves randomness. We developed a de-

terministic version instead, referred to as the largest group value

first heuristic (LGVFH). The LGVFH selects the next target container

from unfixed ones with the largest group value, and then accom-

plish it by the STAP. The pseudo-code for the LGVFH is given in

Algorithm 9 . 

Here, function MoveNeed c , s is the actual number of moves

needed by the STAP to accomplish the task c → s . Function Fill s
is achieved by fulfilling stack s with unstable containers in other

stacks which can be stabilized by s . 

Experiments were conducted on a computer with Intel Core i7

CPU clocked at 3.40 gigahertz and Windows 7 operating system.

All the algorithms were written in Java. 

6.1. Configuration of P1 and P2 

This section shows the effect of the tier-protection indicator.

We tested six settings of parameters ( P 1, P 2): (0, N ), ( 1 4 H, 1 2 N) ,

( 1 3 H, 1 4 N) , ( 1 2 H, 1 6 N) , ( 2 3 H, 1 8 N) , and (H, 1 
10 N) . We made P 1 and P 2

proportional to H and N , respectively, because f ( s ) and the affected

demand are related to the maximum height and the number of

containers, respectively. 

The six settings are in a loose-intermediate-tight order; algo-

rithms using latter settings will filter out more tasks when select-

ing the next task. The computational results are shown in Table 2 .

The first column indicates the particular values of ( P 1, P 2). The

second and third columns give the average movements for the

CVS and BF data sets, respectively. Parameter (0, N ) means that
here is no tier-protection indicator so no task is filtered out. As

he setting becomes tighter, the performance on both CVS and BF

s improved, until a peak is achieved. When the setting becomes

xtremely tight, the performance decreases. When the setting is

(H, 1 
10 N) , the algorithm even fails to find solutions to some CVS

nstances, so that we mark the corresponding cell with “Nil”. Be-

ause the BF instances are relatively loose (the empty slots are suf-

cient), solutions can still be found under the last setting, but the

erformance decreases dramatically. 

.2. Results for the CVS instances 

Caserta et al. (2011) present the complete CVS data set (named

fter the authors’ surnames, Caserta, Voß and Sniedovich) origi-

ally for the container relocation problem. The CVS instances are

lassified into 21 groups, each consisting of 40 instances. For any

nstance, the heights of piled containers in each stack are the same,

enoted by K , hence N = SK. It is worth noting that the height

imitation of each stack is not specified in the original data. Re-

earchers add two extra tiers above the initial layout in order to

ake the data suit for the CPMP; that is, H = K + 2 . 

The CVS instances can be considered as typical dense CPMP in-

tances. Table 3 illustrates the computational results for the CVS

nstances by the TGH, the LGVFH, the multi-heuristic approach,

he FBH, and the BS-B. The values under the “moves” heading

epresent the average numbers of moves for every CVS group,

hereas the values under the “time (millisecond)” heading are the

verage runtime in milliseconds. The values under the “improve-

ent” heading are the improvements of the FBH compared to the

GH, the LGVFH, and the multi-heuristic in percentage. The re-

ults showcase that the FBH surpasses the TGH and the LGVFH.

he improvement gets larger as N increases. Compared to the

ulti-heuristic approach, generally speaking, the FBH is better

hen N is large while the multi-heuristic is better when N is small.

.3. Results for the BF instances 

Bortfeldt and Forster (2012) introduce 32 groups of CPMP in-

tances (referred to as the BF instances); each group consists of

0 instances. In the BF instances, the bay size is S = 16 or 20 and

 = 5 or 8. The number of containers N is either 0.6 × SH or

.8 × SH , the number of groups G is either 0.2 × N or 0.4 × N , and
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Algorithm 9: Largest group value first heuristic. 

1 begin 

2 (L , f ) := (L 

0 , U · 1 ) ; 
3 foreach g = G, . . . , 1 do 

4 C g := containers with group value g ; 
5 A g := ∅ ; // set of aim stacks 
6 while C g � = ∅ do 

7 (c ∗, s ∗) := 

arg min c∈ C g , f (s ) <H 

MoveNeed( c, s ) ; 

8 L := 

resultant layout after rearranging c ∗ to s ∗; 

9 f (s ∗) := f (s ∗) + 1 ; 
10 C g := C g \ { c ∗} ; 
11 A g := A g ∪ { s ∗} ; 
12 foreach s ∈ A g do 

13 Fill( s ) ; 

14 function Fill( s ) 
15 while h (s ) < H do 

16 S 

′ := ∅ ; 
17 foreach i ∈ { i � = s : sh (i ) < h (i ) } do 

18 c := the top container of stack i ; 
19 if s can stabilize c then 

20 S 

′ := S 

′ ∪ { i } ; 
21 if S 

′ � = ∅ then 

22 s ′ := arg max i ∈ S ′ g(i, h (i )) ; 
23 Move( s ′ , 1 , s ) ; 

24 else 

25 break˜while ; 

Table 2 

Effects of different ( P 1, P 2). 

( P 1, P 2) CVS BF 

(0, N ) 52 .15 71 .69 

( 1 
4 

H, 1 
2 

N) 50 .43 71 .21 

( 1 
3 

H, 1 
4 

N) 45 .82 69 .05 

( 1 
2 

H, 1 
6 

N) 45 .32 69 .51 

( 2 
3 

H, 1 
8 

N) 46 .33 71 .23 

(H, 1 
10 

N) Nil 73 .44 

t

N

 

s  

i

h  

s  

(  

T  

m  

h

 

s  

i  

b  

m  

d  

a  

m

7

 

t  

w  

p  

T  

w  

t  

Table 3 

Results for the CVS instances. 

CVS K-S TGH LGVFH Multi F

Moves Time Moves Time Moves Time M

(millisecond) (millisecond) (millisecond) 

CVS 3–3 12 .95 0 .43 11 .25 0 .45 10 .23 0 .50 

CVS 3–4 12 .18 0 .20 12 .23 0 .15 10 .98 0 .50 

CVS 3–5 12 .78 0 .10 13 .45 0 .20 12 .23 0 .75 

CVS 3–6 14 .38 0 .18 14 .88 0 .33 13 .98 0 .50 

CVS 3–7 16 .00 0 .13 16 .58 0 .23 15 .83 0 .50 

CVS 3–8 16 .55 0 .15 17 .08 0 .28 16 .93 1 .25 

CVS 4–4 23 .35 0 .05 21 .93 0 .08 20 .38 1 .53 

CVS 4–5 26 .73 0 .10 26 .48 0 .18 23 .78 0 .75 

CVS 4–6 27 .58 0 .08 27 .20 0 .23 25 .90 0 .75 

CVS 4–7 29 .93 0 .08 31 .23 0 .38 29 .63 0 .75 

CVS 5–4 44 .83 0 .08 35 .83 0 .18 31 .78 2 .25 

CVS 5–5 42 .40 0 .05 36 .50 0 .25 33 .63 2 .50 

CVS 5–6 50 .63 0 .13 43 .08 0 .23 40 .73 2 .75 

CVS 5–7 48 .83 0 .13 46 .95 0 .73 44 .35 3 .50 

CVS 5–8 56 .68 0 .20 51 .83 0 .63 50 .48 6 .00 

CVS 5–9 57 .50 0 .08 55 .65 1 .08 55 .28 7 .00 

CVS 5–10 62 .80 0 .53 60 .88 1 .30 59 .60 7 .00 

CVS 6–6 74 .33 0 .13 57 .85 0 .28 54 .00 4 .25 

CVS 6–10 88 .63 0 .43 79 .73 1 .88 79 .58 14 .75 

CVS 10–6 332 .25 0 .30 173 .95 1 .08 150 .28 18 .28 1

CVS 10–10 302 .90 0 .90 190 .50 5 .05 181 .58 59 .78 1

Average 64 .48 0 .21 48 .81 0 .72 45 .77 6 .47 
he number of disorderly containers B is either 0.6 × N or 0.75 ×
 in the initial layout. 

The BF instances can be considered as typical loose CPMP in-

tances. Table 4 illustrates the computational results for the BF

nstances by the five approaches. The values under the “moves”

eading represent the average numbers of moves of every BF group

olved by different algorithms, whereas the values under the “time

millisecond)” heading are the average runtime in milliseconds.

he values under the “improvement” heading are the improve-

ents of the FBH compared to the TGH, the LGVFH and the multi-

euristic approach in percentage. 

Table 5 shows the computational results based on the dimen-

ions of instance density and height limitation. It shows that the

nstance density N / SH (or bay utilization) and the height of the

ay H are key factors for the number of moves needed in pre-

arshalling. In other words, denser or higher instances are more

ifficult to solve. The computational results for the BF instances

lso prove that the performance of the FBH is considerable; in

ost instances, the FBH performs the best. 

. Conclusions 

The CPMP deals with how to rehandle containers in a bay so

hat the containers are placed in a pre-determined order. By far,

orks talking about solutions to this problem are few. In this

aper, we present a feasibility-based heuristic to solve the CPMP.

he proposed heuristic can be implemented solely or combined

ith other frameworks. The main innovation of this paper is

he concept of state feasibility, which checks the feasibility of
BH BS-B Improvement 

oves Time Moves Time TGH LGVFH Multi 

(millisecond) (millisecond) (percent) (percent) (percent) 

11 .28 0 .53 9 .35 7 .05 12 .93 −0 .22 −10 .27 

10 .80 0 .18 9 .45 7 .83 11 .29 11 .66 1 .59 

12 .08 0 .18 10 .45 12 .55 5 .48 10 .22 1 .23 

12 .98 0 .23 11 .58 19 .18 9 .74 12 .77 7 .16 

14 .75 0 .15 13 .13 31 .63 7 .81 11 .01 6 .79 

15 .65 0 .38 13 .90 46 .88 5 .44 8 .35 7 .53 

21 .88 0 .15 16 .98 61 .35 6 .32 0 .23 −7 .36 

23 .08 0 .18 18 .90 112 .08 13 .66 12 .84 2 .94 

24 .75 0 .48 20 .25 191 .50 10 .24 9 .01 4 .44 

27 .63 0 .10 23 .15 331 .18 7 .69 11 .53 6 .75 

35 .08 0 .08 26 .43 221 .13 21 .75 2 .09 −10 .39 

35 .33 0 .23 27 .38 394 .60 16 .69 3 .22 −5 .06 

39 .88 0 .23 32 .08 996 .90 21 .24 7 .43 2 .09 

41 .68 0 .28 34 .20 1507 .13 14 .64 11 .24 6 .03 

47 .50 0 .48 38 .63 3030 .35 16 .19 8 .35 5 .89 

50 .45 0 .90 42 .15 4615 .30 12 .26 9 .34 8 .73 

54 .63 0 .80 44 .85 7455 .93 13 .02 10 .27 8 .35 

55 .23 0 .50 43 .80 2511 .33 25 .70 4 .54 −2 .27 

75 .60 1 .65 60 .55 23423 .80 14 .70 5 .17 5 .00 

40 .63 0 .85 116 .18 23010 .70 57 .57 19 .16 6 .42 

79 .23 3 .65 150 .18 287920 .50 40 .83 5 .92 1 .29 

44 .29 0 .58 36 .36 16948 .04 16 .44 8 .29 2 .23 
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Table 4 

Results for the BF instances. 

BF S H N G B TGH LGVFH Multi FBH BS-B Improvement 

Moves Time Moves Time Moves Time Moves Time Moves Time TGH LGVFH Multi 

(millisecond) (millisecond) (millisecond) (millisecond) (millisecond) (percent) (percent) (percent) 

1 16 5 48 10 29 29 .10 2 .85 29 .55 5 .05 30 .20 6 .00 29 .15 4 .80 29 .10 0 .80 −0 .17 1 .35 3 .48 

2 16 5 48 10 36 36 .00 1 .35 36 .60 2 .90 37 .10 8 .50 36 .00 3 .65 36 .00 < 0 .01 0 .00 1 .64 2 .96 

3 16 5 48 20 29 29 .45 0 .85 30 .90 2 .65 31 .20 4 .50 29 .35 3 .30 29 .10 23 .45 0 .34 5 .02 5 .93 

4 16 5 48 20 36 36 .00 0 .55 37 .20 1 .55 37 .50 8 .55 36 .15 1 .60 36 .00 < 0 .01 −0 .42 2 .82 3 .60 

5 16 5 64 13 39 48 .50 1 .55 53 .00 2 .90 47 .95 9 .50 46 .30 2 .65 41 .35 4341 .50 4 .54 12 .64 3 .44 

6 16 5 64 13 48 57 .55 0 .95 62 .85 3 .45 56 .40 13 .50 55 .50 2 .65 50 .15 12658 .20 3 .56 11 .69 1 .60 

7 16 5 64 26 39 53 .55 0 .85 57 .15 3 .10 50 .95 11 .00 49 .95 2 .25 43 .05 10554 .05 6 .72 12 .60 1 .96 

8 16 5 64 26 48 60 .00 0 .80 66 .90 2 .90 58 .55 18 .00 57 .60 2 .40 51 .15 18552 .70 4 .00 13 .90 1 .62 

9 16 8 77 16 47 60 .35 1 .55 62 .15 4 .35 59 .55 18 .00 56 .30 3 .90 50 .40 7752 .60 6 .71 9 .41 5 .46 

10 16 8 77 16 58 62 .15 7 .90 69 .50 4 .65 65 .55 21 .50 61 .55 3 .85 58 .75 3353 .75 0 .97 11 .44 6 .10 

11 16 8 77 31 47 61 .25 1 .15 63 .70 4 .20 61 .50 15 .50 55 .00 3 .35 51 .15 8739 .95 10 .20 13 .66 10 .57 

12 16 8 77 31 58 63 .45 1 .10 68 .50 4 .15 68 .15 22 .00 61 .45 3 .30 58 .65 3884 .90 3 .15 10 .29 9 .83 

13 16 8 103 21 62 107 .45 1 .75 110 .85 6 .45 90 .95 34 .00 96 .50 5 .55 75 .40 204259 .90 10 .19 12 .95 −6 .10 

14 16 8 103 21 78 124 .75 2 .55 134 .90 5 .95 106 .80 44 .00 116 .05 4 .75 93 .10 3578554 .40 6 .97 13 .97 −8 .66 

15 16 8 103 42 62 110 .60 2 .90 110 .40 9 .45 96 .30 36 .00 99 .45 6 .50 78 .70 212239 .40 10 .08 9 .92 −3 .27 

16 16 8 103 42 78 133 .35 1 .55 137 .40 7 .40 112 .10 51 .50 115 .45 5 .85 93 .55 331990 .90 13 .42 15 .98 −2 .99 

17 20 5 60 12 36 36 .50 0 .90 37 .35 2 .30 39 .00 9 .50 36 .50 2 .15 36 .25 9 .40 0 .00 2 .28 6 .41 

18 20 5 60 12 45 45 .00 0 .80 45 .00 2 .15 46 .35 15 .00 45 .20 1 .90 45 .00 < 0 .01 −0 .44 −0 .44 2 .48 

19 20 5 60 24 36 36 .80 0 .75 38 .50 2 .90 39 .90 7 .50 36 .75 1 .95 36 .45 5 .45 0 .14 4 .55 7 .89 

20 20 5 60 24 45 45 .00 2 .00 45 .70 3 .00 47 .00 13 .10 45 .10 2 .80 45 .00 0 .75 −0 .22 1 .31 4 .04 

21 20 5 80 16 48 61 .65 1 .65 65 .65 4 .10 60 .35 18 .60 56 .55 3 .25 51 .55 24430 .10 8 .27 13 .86 6 .30 

22 20 5 80 16 60 67 .90 1 .30 74 .50 4 .10 70 .50 25 .55 65 .55 3 .25 61 .80 16871 .30 3 .46 12 .01 7 .02 

23 20 5 80 32 48 61 .10 1 .40 65 .75 4 .75 61 .65 18 .00 55 .25 4 .05 50 .95 16706 .40 9 .57 15 .97 10 .38 

24 20 5 80 32 60 70 .95 1 .95 76 .65 5 .80 72 .65 27 .00 68 .00 4 .25 62 .05 28704 .25 4 .16 11 .29 6 .40 

25 20 8 96 20 58 69 .80 3 .90 73 .60 8 .60 73 .30 28 .00 66 .00 6 .75 61 .50 14390 .80 5 .44 10 .33 9 .96 

26 20 8 96 20 72 74 .35 3 .60 81 .75 7 .55 81 .10 36 .50 75 .75 7 .15 72 .35 2737 .45 −1 .88 7 .34 6 .60 

27 20 8 96 39 58 71 .85 2 .95 73 .65 8 .50 73 .35 26 .00 65 .65 6 .70 61 .85 18240 .95 8 .63 10 .86 10 .50 

28 20 8 96 39 72 76 .30 2 .10 83 .55 8 .35 83 .55 38 .50 76 .50 6 .25 72 .65 6564 .95 −0 .26 8 .44 8 .44 

29 20 8 128 26 77 118 .65 3 .60 128 .65 11 .15 113 .20 59 .00 115 .85 8 .80 92 .05 477551 .30 2 .36 9 .95 −2 .34 

30 20 8 128 26 96 143 .05 3 .60 155 .15 11 .05 128 .75 88 .50 129 .60 9 .75 110 .25 713773 .30 9 .40 16 .47 −0 .66 

31 20 8 128 52 77 128 .15 3 .30 128 .80 15 .15 116 .90 54 .50 115 .85 10 .85 93 .95 529949 .50 9 .60 10 .05 0 .90 

32 20 8 128 52 96 147 .30 2 .70 157 .00 13 .60 133 .20 89 .00 134 .10 10 .45 111 .80 778493 .80 8 .96 14 .59 −0 .68 

Average 72 .75 2 .08 76 .96 5 .75 70 .36 27 .38 68 .44 4 .71 60 .66 118894 .88 5 .92 11 .08 3 .72 

Table 5 

Summary on the BF instances. 

TGH LGVFH Multi FBH BS-B 

Density H = 5 8 5 8 5 8 5 8 5 8 

0 .6 36 .73 67 .44 37 .60 72 .05 38 .53 70 .76 36 .78 64 .78 36 .61 60 .91 

0 .8 60 .15 126 .66 65 .31 132 .89 59 .88 112 .28 56 .84 115 .36 51 .51 93 .60 
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states before really searching these states. Due to this concept, the

algorithm is able to search larger solution space compared with

the existing methods. In the meanwhile, the search efficiency is

guaranteed. Other techniques such as the container stability, dead-

end avoidance and tier-protection indicator are also proposed.

Numerical experiments on two commonly used data sets show

that the proposed method performs well. 

Our algorithm can be inserted into meta-heuristic frameworks

such as beam search, the LNS, and the GRASP. How these combi-

nations work and to what extent they work are worthy of study in

the future. A major challenge raised in the feasibility-based heuris-

tic is the trade-off between the freedom of selecting target con-

tainers and the waste of available slots. In this paper, the low-tier

protection technique is proposed to balance the trade-off. In future

works, more efforts should be dedicated to balance the trade-off

better. 

In this paper, we assume that the containers in a bay are de-

terministic and no container comes in or goes out during the pre-

marshalling process. In the future work, it is interesting to discuss

how to handle dynamic yards in which containers come in or go

out from time to time. To some extent, the new problem setting is

similar to the container stacking problem. The relationship of the
PMP and the container stacking problem is rather close, so the

ethods proposed for the CPMP may provide a new perspective

or the container stacking problem. 
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