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Abstract—When dealing with many-objective optimization
problems, Pareto-based approaches suffer from the loss of selec-
tion pressure toward Pareto front. In this study, a general cooper-
ative evolutionary framework with focused search is proposed to
make Pareto-based approaches perform better for many-objective
optimization problems. The proposed framework has two evo-
lutionary populations, a focused evolutionary population and a
Pareto-based evolutionary population, and these two populations
work collaboratively. The focused evolutionary population focuses
on searching for the corner solutions that are important for con-
vergence and spread (focused search), guiding the Pareto-based
evolutionary population to evolve toward the Pareto front, and
promoting Pareto-based evolutionary population to spread along
the Pareto front. Pareto-based evolutionary population aims to
obtain the solutions with well convergence and diversity (global
search), providing some undeveloped but potentially promising
solutions to focused evolutionary population. As a general frame-
work, any Pareto-based approaches can be adapted to the proposed
framework. As a case study, four representative Pareto-based ap-
proaches are selected to instantiate the framework. Experimental
results show that Pareto-based algorithms with a focused evolu-
tionary population can be appropriate for many-objective opti-
mization problems, and thus the proposed framework paves a new
way to improve the performance of Pareto-based approaches for
many-objective optimization problems.

Index Terms—Many-objective optimization, Pareto dominance,
cooperative evolutionary framework, focused search.

I. INTRODUCTION

IN THE real world, many problems can be expressed as mul-
tiobjective optimization problems (MOPs), which have two

or more conflicting objectives to be optimized simultaneously
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[1]–[3]. Unlike a single-objective optimization problem having a
single optimal solution, there is a set of alternative optimal solu-
tions for an MOP because of the nature of conflicting objectives.
Evolutionary algorithms are well suited for solving MOPs due
to their ability in obtaining a set of possible solutions in a single
run. Over the past decades, many Pareto-based multiobjective
evolutionary algorithms (MOEAs), such as the nondominated
sorting algorithm II (NSGA-II) [4] and the strength Pareto evo-
lutionary algorithm 2 (SPEA2) [5], have been proposed. These
MOEAs have been successfully used in MOPs with two or three
objectives.

However, for the problems with four or more objectives,
which are commonly referred to as many-objective optimiza-
tion problems (MaOPs), most of Pareto-based MOEAs perform
poorly due to the loss of selection pressure [1]–[3]. The propor-
tion of nondominated individuals in a population increases ex-
ponentially as the number of objectives increases, leading to the
problem that Pareto dominance relation cannot effectively dif-
ferentiate individuals. Consequently, the diversity maintenance
plays a leading rule during the evolutionary process. As a result,
almost all the solutions in the obtained set are far away from
Pareto front, leading to the failure of Pareto-based MOEAs.

Since Pareto-based MOEAs suffer from poor performance
for MaOPs, another two promising categories of MOEAs,
decomposition-based MOEAs [6], [7] and indicator-based
MOEAs [8], [9], were proposed for MaOPs. There are mainly
two types of decomposition-based MOEAs. For the first
type, an MOP is decomposed into a group of single-objective
problems using a scalarization method. Multiobjective evolu-
tionary algorithm based on decomposition (MOEA/D) [6] is
a representative of this type, and more variants of MOEA/D
can be found in recent review [10]. For the second type, a set
of weight vectors are used to divide an MOP into a number
of sub-problems by partitioning the entire objective space
into some subspaces (subregions), where each sub-problem
remains an MOP. This type includes MOEA/D-M2M [11],
reference-inspired MOEA [12], NSGA-III [13], inverse model
based MOEA [14]. Indicator-based MOEAs, such as HypE
[8], usually use a special performance indicator to guide the
evolutionary process. Unlike Pareto-based MOEAs suffering
from slow convergence for MaOPs, decomposition-based and
indicator-based MOEAs have good convergence capability for
MaOPs. However, they still have their own drawbacks. For
example, the performance of decomposition-based MOEAs
heavily depends on the shapes of Pareto fronts [15] and
the adopted aggregation functions [7]. It is also difficult for
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decomposition-based MOEAs to produce appropriate weight
vectors. For the hypervolume-based MOEAs, the computational
cost of the hypervolume indicator grows rapidly as the number
of objectives increases [16]. It is also a very difficult task to
define a common single performance indicator, which is used
to balance the convergence and diversity for MaOPs.

Recently, a new class of MOEAs was proposed for MaOPs
[17]–[19]. These MOEAs adopted two separate indicators or
populations for convergence and diversity, respectively. In [17]
and [18], the nondominated solutions are separated into two
archives focusing on the convergence and diversity, respectively,
during the evolutionary process. Li et al. [19] proposed a meta-
objective optimization approach, bi-goal evolution (BiGE). Bi-
goal evolution transforms an MaOP into a bi-goal optimization
problem with two objectives corresponding to convergence and
diversity, respectively, and then solves the bi-goal optimization
problem by a Pareto-based algorithm.

This study presents a novel cooperative evolutionary frame-
work (CEF) with focused search to make Pareto-based MOEAs
perform better for MaOPs. The proposed framework manipu-
lates two evolutionary populations, called focused evolutionary
population and Pareto-based evolutionary population. These two
populations work collaboratively. Focused evolutionary popula-
tion focuses on searching for the corner solutions of the Pareto
front (focused search) instead of searching for the complete
Pareto front. Thus, its evolution will have high selection pres-
sure, leading to the individuals with good convergence, and then
guides Pareto-based evolutionary population to evolve toward
the Pareto front. Focused evolutionary population can also pro-
mote Pareto-based evolutionary population to spread along the
Pareto front. The Pareto-based evolutionary population tries to
obtain the solutions with well convergence and diversity (global
search), and provides some undeveloped but potentially promis-
ing solutions to the focused evolutionary population. Recently,
cooperative evolutionary frameworks have also been used in
[20] as a general way to aid human decision making, and in [21]
to improve vaccination strategies.

The main contributions of this study are threefold.
1) This study presents a general CEF framework to improve

the performance of Pareto-based MOEAs for MaOPs.
2) Four instantiations of CEF framework are implemented.

In these instantiations, four representative Pareto-based
MOEAs are adopted.

3) This study provides a comprehensive comparison to show
the effectiveness of CEF.

In Section II, background is introduced. CEF is detailed in
Section III. Section IV presents four instantiations of CEF.
Section V gives experimental results. Section VI gives the per-
formance of CEF on problems with irregular Pareto front. Fi-
nally, conclusions are drawn in Section VII.

II. BACKGROUND

A. Related Work on Pareto-Based Approaches for MaOPs

To improve the performance of Pareto-based MOEAs for
MaOPs, a number of appreciative efforts have been made over
the past few years as follows.

A straightforward way is to modify the Pareto dominance
relation to enhance selection pressure. There exist a large num-
ber of modifications of Pareto dominance relation, such as fuzzy
Pareto dominance [22], grid dominance [23], ε-dominance [24],
θ-dominance [25], α-dominance [26], [27], preference order
ranking [28] and ranking dominance [29]. However, these mod-
ified Pareto dominance relations may lead the population to
converge into a subregion of Pareto front because of the lack of
appropriate diversity maintenance mechanism [30]. For some
modified Pareto dominance relations, such as ε-dominance, it is
difficult to determine a proper value for their parameters.

The second way is to improve the diversity maintenance
mechanisms of Pareto-based MOEAs to balance the conver-
gence and diversity. Koppen and Yoshida [31] considered
four distance assignments to replace the crowding distance in
NSGA-II. Adra and Fleming [32] introduced two diversity man-
agement mechanisms to address the conflict between the con-
vergence requirement and the diversity requirement. Li et al.
[33] presented the shift-based density estimation strategy, which
considers both diversity and convergence information, and
thus makes the Pareto-based MOEAs competent to deal with
MaOPs.

The third way is to hybridize Pareto-based MOEAs with non-
Pareto-based approaches, which makes use of the strengths of
Pareto-based and non-Pareto-based approaches. Li et al. [34]
proposed a bi-cirterion evolution framework using Pareto and
non-Pareto criterion.

The fourth way is to utilize available information of key points
of Pareto front, such as knee points and extreme points to en-
hance selection pressure of Pareto-based approach for MaOPs.
Since a bias toward the knee points in the nondomiated solutions
usually results in a bias toward a large hypervolume, Zhang et al.
[35] suggested that knee points are most preferred than other
solutions among nondominated solutions, and then proposed a
knee point-driven evolutionary algorithm (KnEA). Singh et al.
[36] used the corner solutions to extract information about the
dimensionality of the Pareto front and identification of redun-
dant objectives through a heuristic technique. Freire et al. [37]
inserted the corner solutions into the population at different evo-
lutionary stages. Hu et al. [38] proposed a two-stage strategy for
MaOPs, and emphasized the convergence of the population at
the first stage by searching for extreme solutions. Wang and Yao
[39] used corner solutions to ignore the solutions in population
dominated by them to reduce comparisons when obtaining non-
dominated solutions. Talukder et al. [40] injected extreme points
into the population to expedite evolutionary multiobjective op-
timization, thereby achieving an extremely fast convergence.

For the existing studies using corner solutions or extreme
points, they are all based on sequential mode, where they find
the corner solutions at first, and then use the corner solutions
to improve their performance for MaOPs. This may make their
performance strongly depend on the first stage. An important
difference between the proposed CEF and existing algorithms
using sequential mode is that CEF is based on concurrent mode,
which takes advantage of the information contrast and shar-
ing between the focused search and global search population.
Another clear difference is that CEF is a general framework
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Fig. 1. Examples of corner solutions. (a) 3-objective DTLZ1 has three corner
solutions (A, B, and C ), and they lie on f1 , f2 , and f3 axis, respectively.
(b) 3-objective IDTLZ1 also has three corner solutions (A, B , and C ), and they
locate on the plane f1 = 0, f2 = 0, and f3 = 0, respectively.

rather than a specific algorithm, and it can be adapted to any
Pareto-based MOEAs for MaOPs.

B. Corner Solutions

Intuitively, the corner solutions are the solutions of Pareto
front where the boundaries intersect. A strict definition of cor-
ner solutions is given in [36]. For an MOP with M minimization
objectives, if minimizing any k objectives (k < M ) simultane-
ously results in a single solution in the M -objective space, then
this solution is called the corner solution.

According to this definition, there are 2M − 1 possible corner
solutions to an M -objective optimization problem because k can
take value from 1 to M . Since the number of possible corner so-
lutions increases exponentially with the number of objectives, it
is impractical to search all the possible corner solutions. In fact,
the number of corner solutions of most benchmark test prob-
lems, such as the walking fish group (WFG) [41] and scalable
test problems DTLZ [42], is no more than the number of objec-
tives. Hence, instead of obtaining the 2M − 1 possible corner
solutions, this study only considers the corner solutions in two
extreme cases with k = 1 and k = M − 1. In Fig. 1, there are
two examples of corner solutions, corresponding to DTLZ1 and
inverted DTLZ1 (IDTLZ1) problems [13] with three objectives,
respectively. Fig. 1(a) shows that Pareto front of DTLZ1 only
has three corner solutions corresponding to the extreme case
with k = M − 1. Fig. 1(b) shows that Pareto front of IDTLZ1
also has three corner solutions corresponding to the extreme
case with k = 1, and they locate on the planes f1 = 0, f2 = 0
and f3 = 0, respectively.

In literature, several algorithms have been proposed to find
corner solutions [36]–[38], [43], [44]. However, these ap-
proaches have their own drawbacks. For example, worst-crowed
NSGA-II approach [43] over-emphasized the solutions with
maximal objective, causing the loss of diversity and deteriorat-
ing the convergence. In [36], a corner-sorting was used to focus
on corner solutions, but its performance was deteriorated for the
problems with different objective value scales and non-concave
Pareto front because the corner-sorting minimizes the square L2
norm of all-but-one objective values [45]. In [37] and [38], they

Fig. 2. Corner solutions improve the performance in terms of convergence and
spread. (a) Convergence: corner solutions A and B can dominate individuals
C and G, respectively. (b) Spread: corner solutions A and B can make the
population spread over the entire Pareto front.

used multiple populations to search the corner solutions, which
would cause the waste of computing resource. Hence, in this
study, a novel approach is introduced to find corner solutions in
one population, called focused evolutionary population.

III. PROPOSED COOPERATIVE EVOLUTIONARY FRAMEWORK

WITH FOCUSED SEARCH

A. Motivation and General Framework

The proposed CEF is motivated by two aspects as follows.
Firstly, when Pareto-based MOEAs are applied to MaOPs, they
usually suffer from slow convergence to the Pareto front, and
thus result in poor performance for MaOPs. Since Pareto dom-
inance is the most popular strategy to design MOEAs, it is sig-
nificant to improve the performance of Pareto-based MOEAs
for MaOPs. Secondly, corner solutions, as the intersections of
the boundaries of Pareto front, can be used to make the popu-
lation converge toward Pareto front and spread along the entire
Pareto front. This is shown in Fig. 2. In Fig. 2(a), although in-
dividuals C and G are not dominated by the other individuals
in population, they are dominated by the corner solutions A
and B respectively. This can drive the population to discard the
individuals C and G, leading well convergence of the popula-
tion. In Fig. 2(b), the population only covers a small part of the
Pareto front. If corner solutions A and B are introduced into the
population, the population will spread along the whole Pareto
front. The discussions above inspire us to use corner solutions to
improve the performance of Pareto-based MOEAs for MaOPs.

To better make use of corner solutions, this study proposes a
novel cooperative evolutionary framework (CEF) with focused
search. Fig. 3 shows the flow chart of one generation of CEF.
CEF has two populations, focused evolutionary (FE) popula-
tion and Pareto-based evolutionary (PE) population, working
collaboratively. These two populations have their own evolu-
tionary process. Focused evolutionary population focuses on
searching the corner solutions (focused search), and Pareto-
based evolutionary population tries to obtain the solutions with
well convergence and diversity (global search). CEF is flexi-
ble in implementing the evolution for Pareto-based evolution-
ary population, thus any Pareto-based MOEAs is applicable for
Pareto-based evolutionary population in principle.
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Fig. 3. The framework of CEF. In CEF, two populations work collaboratively,
and they have their own evolutionary process. Focused evolutionary (FE) popu-
lation focuses on searching the corner solutions, and Pareto-based evolutionary
(PE) population tries to obtain the solutions with well convergence and diversity.

Algorithm 1 gives the main procedure of CEF. In the initial-
ization, Pareto-based evolutionary population P1 and focused
evolutionary population P2 are initialized, respectively. When
the termination condition is satisfied, the Pareto-based evolu-
tionary population P1 is considered as the final output.

In CEF, although these two populations have their own evolu-
tionary process, they share and exchange the information during
both the mating selection and environmental selection. After the
environmental selection, a newly introduced operation, called
Spread Ehancement, is used to make Pareto-based evolutionary
population spread along the whole Pareto front as diverse as
possible.

B. Focused Evolutionary Population for Focused Search

The goal of the evolution of focused evolutionary population
is to search for corner solutions (focused search). However, as
mentioned in Section II-B, it is impractical to search every pos-
sible 2M − 1 corner solutions for an MOP with M objectives.
This study only considers the possible corner solutions in two
extreme cases, optimizing either one objective or all-but-one
(M − 1) objectives simultaneously. A novel approach is pro-
posed for the evolution of focused evolutionary population. It
adopts a simple aggregation method, the achievement scalar-

izing function (ASF), with 2M predefined weight vectors. In
this way, the evolution of focused evolutionary population has
high selection pressure, and thus makes focused evolutionary
population quickly converge toward Pareto front.

These 2M predefined weight vectors can be classified into
two types, each corresponding to optimizing either one objective
or optimizing all-but-one (M − 1) objectives simultaneously.
These weight vectors are defined as follows,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

...

wM

wM +1

...

w2M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ε . . . ε

...
...

. . .
...

ε . . . ε 1
ε 1

M −1 . . . 1
M −1

...
...

. . .
...

1
M −1 . . . 1

M −1 ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where ε approaches to zero, and is set to 10−6 in our implemen-
tation. Thus, for each solution X in the focused evolutionary
population, it has 2M ASF values corresponding to 2M direc-
tions, respectively. ASF is given by

ASF i(X) = max
k=1:M

{|fk (X) − z∗k |/wi
k}, (2)

where i = 1, 2, . . . , 2M and z∗ = (z∗1 , . . . , z
∗
M ) is the ideal

point. For each direction wi , the solutions with smaller ASF i

values in population are more preferred, and the solution with
the smallest ASF i value in population will be considered as
the corner solution that we are trying to find in this particular
direction. Thus, any solution with the smallest ASF value in any
direction should be emphasized.

For each direction wi , the solutions in population are first
sorted by ASF i values from minimum to maximum. Then, it
can obtain 2M sorted lists corresponding to 2M directions, re-
spectively. For the ith sorted list associated with direction wi ,
each solution X in population has a position value Ri(X). This
means that a solution X with the smallest ASF i value in di-
rection wi will get smallest position value Ri(X) = 1. Each
solution in population has 2M position values, corresponding
to 2M sorted lists, respectively. After obtaining 2M position
values, a final rank value Rank(X) of the solution X in popu-
lation is decided by the minimum one of all 2M position values,

Rank(X) = min{R1(X), R2(X), . . . , R2M (X)}. (3)

The solution with the minimum ASF value in any direction will
obtain the smallest rank value.

The procedure of ranking assignment is illustrated by using a
sample population of 12 solutions of DTLZ1 problem with three
objectives, shown in the first four columns of Table I. Firstly,
2 × 3 = 6 directions are defined according to Equation (1), and
ASF i (i = 1, 2, . . . , 6) values of solutions in population are
calculated, shown in columns 5–10 of Table I. Secondly, for
each direction wi (i = 1, 2, . . . , 6), solutions in population are
sorted based on the increase of ASF i (i = 1, 2, . . . , 6) values,
and their position values Ri (i = 1, 2, . . . , 6) are assigned, seen
in columns 5–10 of Table I. Lastly, final rank values of solutions
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TABLE I
RANK ASSIGNMENT FOR A SAMPLE POPULATION OF 12 SOLUTIONS OF DTLZ1 WITH THREE OBJECTIVES

are assigned according to Equation (3), shown in the last column
of Table I.

Since the evolution of focused evolutionary population fo-
cuses on searching corner solutions of Pareto front, the progress
of population converging toward Pareto front may be slow down
due to the lack of diversity. This may result in solutions of fo-
cused evolutionary population located far away from the corner
solutions of Pareto front. To overcome this issue, focused evo-
lutionary population makes use of the evolutionary information
of Pareto-based evolutionary population during its mating se-
lection and environmental selection.

The detailed procedure of generating offspring for focused
evolutionary population is shown in Algorithm 2. In the focused
evolutionary population P2 , binary tournament selects a parent
solution with small rank value between two candidates (Line
4). In Line 5, if the other parent is selected from the focused
evolutionary population P2 , then binary tournament of focused
evolutionary population P2 is used, otherwise binary tourna-
ment of Pareto-based evolutionary population P1 is used. In
Line 6, the genetic operators (crossover and mutation opera-
tors) are the same as those used in NSGA-II [4], e.g., simulated
binary crossover and polynomial mutation.

Algorithm 3 gives the main procedure of environmental se-
lection for focused evolutionary population P2 . The goal is to
obtain a new focused evolutionary population P2

′, where solu-
tions are closely located around the corner solutions of Pareto
front. During the environmental selection, the solutions with the
smallest rank values in the mixed set R, are selected to gener-

ate a new focused evolutionary population P2
′. A solution is

selected randomly in the case of ties.

C. Pareto-Based Evolutionary Population for Global Search

Unlike the focused evolutionary population used to find the
corner solutions of Pareto front (focused search), Pareto-based
evolutionary population is used to obtain the solutions with well
convergence and diversity (global search).

Algorithm 4 gives the main procedure of generating offspring
for Pareto-based evolutionary population. It is similar to Algo-
rithm 2. During the mating selection, it considers not only the
solutions of Pareto-based evolutionary population P1 , but also
the solutions of focused evolutionary population P2 . It can se-
lect some solutions with good convergence as parents during
the mating selection because the solutions in the focused evo-
lutionary population P2 have good convergence. Thus, more
promising Pareto-based offspring Q1 may be generated.

Algorithm 5 describes the main procedure of the environmen-
tal selection for Pareto-based evolutionary population. In the
environmental selection, the solutions with well convergence
and diversity in the mix set R are selected into the resulting
Pareto-based evolutionary population P1

′.

D. Spread Enhancement

In order to promote the Pareto-based evolutionary population
to spread along the whole Pareto front, Spread Enhancement is
introduced into CEF after the environmental selection. Its main
procedure is shown in Algorithm 6. This procedure attempts to
replace some individuals in Pareto-based evolutionary popula-
tion P1 by some promising solutions of focused evolutionary
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population P2 in term of spread. This replacement is based
on the objective comparison between the Pareto-based evolu-
tionary population P1 and focused evolutionary population P2 .
For each objective, if the maximum (minimum) objective value
in the focused evolutionary population P2 is greater (smaller)
than that in Pareto-based evolutionary population P1 , the solu-
tion with maximum (minimum) objective value in Pareto-based
evolutionary population P1 is replaced by the solution with
maximum (minimum) objective value in focused evolutionary
population P2 .

E. Characteristics of CEF Framework

CEF can be characterized by the following features.
1) Unlike the existing approaches which find the corner so-

lutions at first and then use them in a sequential mode
to improve their performance, CEF is a general concur-
rent framework to improve the Pareto-based MOEAs for
MaOPs, where the corner solutions are searched in fo-
cused evolutionary population and used to enhance the
convergence and spread of Pareto-based evolutionary pop-
ulation, and any Pareto-based MOEAs can be adopted for
the Pareto-based evolutionary population.

2) CEF consists of two populations working collaboratively,
one focusing on searching for the corner solutions (fo-
cused search) and the other one searching for the complete
Pareto front (global search). These two populations share
and exchange information with each other as follows.
� During the mating selection, Pareto-based evolutionary

population P1 and focused evolutionary population P2
share their evolutionary information with each other
(Algorithm 2 and Algorithm 4).

� During the environmental selections of Pareto-based
evolutionary population P1 and focused evolutionary
population P2 , these two populations communicate
with each other in order to use the search information
of their companion (Algorithm 3 and Algorithm 5).

� During the spread enhancement, Pareto-based evolu-
tionary population P1 and focused evolutionary popu-
lation P2 share their search information (Algorithm 6).

F. Complexity Analysis

In one generation, the computational cost of CEF comes from
three parts, the evolution of focused evolutionary population, the
evolution of Pareto-based evolutionary population and spread
enhancement operation. For simplicity, let Pareto-based evolu-
tionary population size N1 be equal to focused evolutionary
population size N2 , denoted as N . The evolution of Pareto-
based evolutionary population has the same time complexity as
the Pareto-based approach which is adopted for Pareto-based
evolutionary population, denoted as C in convenience.

The time complexity of the evolution of focused evolution-
ary population mainly depends on its ranking assignment. In
ranking assignment, 2M ASF values of each individual in the
population is first calculated, which requires O(M 2N) compu-
tations. Then, obtaining 2M sorted lists needs O(MN log N)
comparisons. Thereafter, determining 2M position values needs
O(MN) because determining the position of an individual in a
sorted list needs O(N) comparisons. Finally, determining which
position value in these 2M position values to be the final rank
value for each individual in the population requires O(MN)
comparisons. Therefore, for the evolution of focused evolution-
ary population, the total time complexity of ranking assignment
is O(M 2N + MN log N).

The newly introduced spread enhancement operation re-
quires only O(MN) computations. Hence, the overall com-
putational complexity of one generation of CEF is determined
by max(C, O(M 2N + MN log N)).
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IV. FOUR INSTANTIATIONS OF THE FRAMEWORK

Four representative Pareto-based MOEAs, SPEA2,
SPEA2+SDE [33], SPEA/R [46] and NSGA-II, are se-
lected to instantiate the framework. The resultant algorithms
are denoted as CEF-SPEA2, CEF-SPEA2+SDE, CEF-SPEA/R,
and CEF-NSGA-II, respectively. The reasons that we consider
these algorithms are as follows.

1) In SPEA2, the fitness of a solution is the sum of its strength
raw fitness plus a density estimation, which quantifies the
convergence and diversity of a solution in a compact form.
If CEF-SPEA2 can extend SPEA2 to deal with MaOPs
well, it can be shown that CEF makes Pareto-based algo-
rithms suitable for MaOPs.

2) SPEA2+SDE is an improved SPEA2 for MaOPs.
SPEA2+SDE introduces an SDE strategy to develop a
very simple modification of the density estimation in
SPEA2 for MaOPs. SPEA2+SDE refutes the common be-
lief that the Pareto-based algorithm framework performs
worse than the aggregation-based or indicator-based al-
gorithm frameworks in dealing with MaOPs [33]. The ef-
fectiveness of CEF can be shown if CEF-SPEA2+SDE
further improves the performance of SPEA2+SDE for
MaOPs.

3) SPEA/R is a recent advanced SPEA2 for MaOPs. It
revives SPEA2 by introducing an efficient reference
direction based density estimator, a new fitness as-
signment scheme, and a diversity-first-and-convergence-
second environmental selection strategy for MaOPs. If
CEF-SPEA/R performs better for MaOPs, the effective-
ness of CEF can be further confirmed.

4) NSGA-II is also a representative of Pareto-based MOEAs.
It is well-known for its nondominated sorting and crowd-
ing distance-based fitness assignment strategies. Though
the density estimation in NSGA-II is not appropriate for
more than two objectives [33], [47], the discussion on
the performance differences between CEF-NSGA-II and
NSGA-II would be interesting.

The resultant four instantiations are briefly described as
follows.

1) In CEF-SPEA2, CEF-SPEA2+SDE and CEF-SPEA/R,
SPEA2, SPEA2+SDE and SPEA/R are applied to Pareto-
based evolutionary population, respectively. Their mating
and environmental selections are modified according to
Algorithm 4 and Algorithm 5, respectively, by consider-
ing the information sharing between focused evolution-
ary population and Pareto-based evolutionary population.
There are two additional modifications of CEF-SPEA2
and CEF-SPEA2+SDE as follows: (1) Each objective of
an individual is normalized before the fitness assignment.
(2) Both of their original versions use a regular population
and an archive (external set), but in CEF versions, there are
only two regular populations without any archives. In fact,
the procedure of CEF-SPEA2+SDE is similar to CEF-
SPEA2. The only difference is that, in CEF-SPEA2+SDE,
a shift-based density estimation (SDE) strategy [33] is in-
troduced into CEF-SPEA2 for the density estimation to

maintain the diversity of Pareto-based evolutionary pop-
ulation.

2) In CEF-NSGA-II, NSGA-II is embedded into CEF, and
thus its mating and environmental selections are modi-
fied according to Algorithms 4 and Algorithm 5, respec-
tively, taken into account the information sharing between
Pareto-based evolutionary population and focused evolu-
tionary population.

V. EXPERIMENTAL RESULTS

In this section, we first verify the effectiveness of CEF by
comparing the aforementioned four instantiations of CEF with
their counterpart algorithms, respectively. Then, CEF is further
investigated for a deeper understanding of its behavior. Finally,
four instantiations of CEF are compared with six state-of-the-art
MOEAs.

A. Experimental Setting

1) Test Problems: Two test suites for many-objective op-
timization, DTLZ1-4 [42] and WFG1-9 [41], are used in the
experiments. These problems have different characteristics of
Pareto front, such as convex, concave, mixed, multimodal or
disconnected. Thus, these problems are challenging and can
evaluate different abilities of MOEAs. In addition, all these
problems can be scaled to any number of objectives (M ) or de-
cision variables (D) by setting parameters k or l. The parameter
k is set to 5 for DTLZ1 and 10 for DTLZ2-4 according to the
suggestion in [42]. As recommended in [41], the parameters k
and l in WFG1-9 are set to 2 × (M − 1) and 20, respectively.
Table S1 (of the supplement) summarizes the characteristics
and settings of these problems. More details about these test
problems are described in [41] and [42]. In the experiments,
these problems with five, eight, and ten objectives are consid-
ered, respectively.

2) Performance Metrics and Statistics: To compare the per-
formance among different algorithms, two popular indicators,
the inverted generational distance (IGD) and the hypervolume
(HV), are considered in this study. They assign quality value to
an obtained set of non-dominated solutions combining informa-
tion about convergence and diversity [48]. Higher (lower) value
of HV (IGD) corresponds to better set of solutions approximat-
ing the true Pareto front from the convergence and diversity
viewpoints. In this study, to calculate IGD, the method in [49] is
used to generate reference Pareto-optimal points. To calculate
HV, we first normalize the objective space by using the ideal
point and nadir point, and then specify the reference point as
(1.2, 1.2, . . . , 1.2).

Single-problem Wilcoxon rank-sum test [50], [51] at 5% sig-
nificance level is carried out to indicate the significant dif-
ferences between two algorithms on a single problem. The
statistical result is summarized as w/t/l, which means that
one algorithm significantly performs better than, similar to and
worse than its competitor on w, t and l problems, respectively.
In addition, multi-problem Wilcoxon signed-rank test [50], [51]
at 5% and 15% significance levels is used to indicate the dif-
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TABLE II
A SUMMARY OF THE WILCOXON TESTS BETWEEN FOUR INSTANTIATIONS AND

THEIR CORRESPONDING ORIGINAL ALGORITHMS AT SIGNIFICANT LEVEL 5%

TABLE III
THE RANKING OF CEF-SPEA2, CEF-SPEA2+SDE, CEF-SPEA/R,

CEF-NSGA-II AND CEF-INSGA-II BY FRIEDMAN TEST ON HV AND IGD

TABLE IV
A SUMMARY OF WILCOXON TESTS BETWEEN CEF-SPEA2+SDE AND SIX

STATE-OF-THE-ART ALGORITHMS AT SIGNIFICANT LEVELS 5% AND 15%

ferences between a pair of algorithms on all problems. Final
rankings of all the algorithms on sets of instances are given
using Friedman test [50], [51].

Due to limited space, numerical values of performance in-
dicators (HV and IGD) are presented in Tables S2–S7 (of the
supplement). Statistics of those numerical values, including
w/t/l and ranking values, are shown in Tables II–V in this
paper.

3) Parameter Setting: CEF introduces only one additional
parameter, that is, the focused evolutionary population size
N2 . In CEF-SPEA2, CEF-SPEA2+SDE, CEF-SPEA/R and
CEF-NSGA-II, the focused evolutionary population sizes N2
are all set to 100. The embedded Pareto-based algorithms in
CEF use the same setting of parameters as their original versions
for a fair comparison. Specifically, in SPEA2, SPEA2+SDE
and NSGA-II, the population size is set to 200, respectively. In
SPEA/R, the population size is set to 176, 220 and 244 for the 5-,
8- and 10-objectives according to its original reference [46], re-
spectively. In SPEA2 and SPEA2-SDE, the size of archive is the
same as their original paper. In addition, the crossover probabil-
ity is pc = 1.0 and distribution index is ηc = 20 for the simulated
binary crossover. The mutation probability pm = 1/D, where

TABLE V
THE RANKING OF ALL ALGORITHMS BY FRIEDMAN TEST ON HV AND IGD

D denotes the number of decision variables, and distribution
index is ηm = 20 for the polynomial mutation.

The number of independent runs for each algorithm on each
test problem is fixed to 30. Each algorithm is terminated after
400000 function evaluations.

B. Comparisons With Original Pareto-Based MOEAs

We first separately compare the instantiations of CEF with
their corresponding original versions. Then, we put them to-
gether to further make comparisons among them. Table S2
presents the HV and IGD values (MEAN and STD) for the three
groups of paired algorithms, i.e. CEF-SPEA2 vs SPEA2, CEF-
SPEA2+SDE vs SPEA2+SDE, and CEF-SPEA/R vs SPEA/R.
Table S3 presents the HV and IGD values (MEAN and STD)
for one group of paired algorithms, CEF-NSGA-II vs NSGA-II.
Table II shows the statistical results of all performance compar-
isons.

1) CEF-SPEA2 vs. SPEA2: From Table II, CEF-SPEA2
shows a significant advantage over its competitor SPEA2. In
the terms of HV and IGD, CEF-SPEA2 obtains better values
on 38 and 39 out of 39 test instances compared with SPEA2,
respectively. For the multiproblem Wilcoxon signed-rank test,
CEF-SPEA2 obtains higher R+ values than R− values in all
cases. This means that CEF-SPEA2 is better than SPEA2 con-
sidering all instances. Additionally, for CEF-SPEA2 vs SPEA2,
the p values are less than 0.05 in all cases, which show that
CEF-SPEA2 is significantly better than SPEA2.

Fig. 4 shows the final solutions of CEF-SPEA2 and SPEA2
on the 10-objective DTLZ1 problem by parallel coordinates in
a single run. This particular run, along with others for visual
demonstration in this study, is associated with the result that
is the closest to the mean IGD value, as in [33], [34]. The
solutions obtained by CEF-SPEA2 has smaller objective values
(ranging from 0 to 0.5) than the objective values of solutions
obtained by SPEA2 (ranging from 0 to 600), which means that
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Fig. 4. The final solution set obtained by CEF-SPEA2 and SPEA2 on the
10-objective DTLZ1. (a) The objective values of solutions obtained by CEF-
SPEA2 ranging from 0 to 0.5. (b) The objective values of solutions obtained by
SPEA2 ranging from 0 to 600. Hence, the convergence of CEF-SPEA2 is much
better than that of SPEA2.

Fig. 5. The final solution set obtained by CEF-SPEA2+SDE and SPEA2+SDE
on the 10-objective DTLZ1. (a) The objective values of solutions obtained by
CEF-SPEA2+SDE ranging from 0 to 0.5, which are same as the Pareto front.
(b) For the solutions obtained by SPEA2+SDE, the maximum value of each
objective is less than 0.5, which means SPEA2+SDE fails to cover the entire
Pareto front.

the convergence of CEF-SPEA2 is much better than that of
SPEA2.

2) CEF-SPEA2+SDE vs. SPEA2+SDE: As can be seen
from Tables S2 and II, CEF-SPEA2+SDE generally outper-
forms SPEA2+SDE. Specifically, in the terms of HV and IGD,
CEF-SPEA2+SDE obtains better values on 24 and 27 out of the
39 test instances compared with SPEA2+SDE, respectively, as
shown in column w/t/l of Table II. CEF-SPEAII+SDE obtains
higher R+ values than R− values on all cases, indicating that
CEF-SPEA2+SDE is better than SPEA2+SDE for all problems.
Besides, the results of p values in Table II show that CEF-
SPEA2+SDE significantly performs better than SPEA2+SDE.

To visually demonstrate the performance of CEF-
SPEA2+SDE and SPEA2+SDE, the final solutions of CEF-
SPEA2+SDE and SPEA2+SDE on the 10-objective DTLZ1
problem are plotted in Fig. 5. CEF-SPEA2+SDE can obtain
solutions which spread over the entire range of Pareto front
(fi ∈ [0, 0.5], for all i), indicating better convergence as well as
diversity. However, its competitor SPEA2+SDE fails to cover
the entire Pareto front.

3) CEF-SPEA/R vs. SPEA/R: The comparative results of
HV and IGD values for the two algorithms are shown in Ta-
ble S2 and the statistical summary is given in Table II. Clearly,
CEF-SPEA/R significantly outperforms the original SPEA/R
on 34 test instances in terms of HV. For IGD, CEF-SPEA/R
achieves better values on 26 out of 39 test instances.

Fig. 6. The final solution set obtained by CEF-SPEA/R and SPEA/R on the
10-objective DTLZ1. (a) The objective values of solutions obtained by CEF-
SPEA/R ranging from 0 to 0.5. (b) The objective values of solutions obtained
by SPEA/R range from 0 to 113.0. Hence, the convergence of CEF-SPEA/R is
much better than that of SPEA/R.

Fig. 6 plots the final solutions of CEF-SPEA/R and SPEA/R
on the 10-objective DTLZ1. The solutions obtained by CEF-
SPEA/R has smaller objective values (within the range of 0 to
0.5) than the objective values of solutions obtained by SPEA/R
(within the range of 0 to 113.0), which means that the conver-
gence of CEF-SPEA/R is much better than that of SPEA/R.

4) CEF-NSGA-II vs. NSGA-II: From Table S3, CEF-NSGA-
II outperforms NSGA-II in the terms of HV and IGD. As can
be seen from Table II, CEF-NSGA-II obtains higher R+ val-
ues than R−. This means the performance of CEF-NSGA-II
is better than NSGA-II. In addition, p value is less than 0.05,
which indicates that CEF-NSGA-II significantly outperforms
its competitor.

To visually demonstrate the performance of CEF-NSGA-
II and its competitor, Fig. S1 shows their final solutions on
the 10-objective DTLZ1. From Fig. S1, the solutions of CEF-
NSGA-II have smaller objective values than the solutions of
NSGA-II, indicating that the solutions of CEF-NSGA-II are
closer to Pareto front than the solutions of NSGA-II. In other
words, CEF-NSGA-II has stronger selection pressure than
NSGA-II during the evolutionary process.

5) Comparison Among Four Instantiations: Table III gives
the final ranking of four instantiations, by the Friedman test
on all problems. Overall, CEF-SPEA2+SDE gets the first rank,
followed by CEF-SPEA2 in the terms of HV and IGD. CEF-
NSGA-II and CEF-SPEA/R get the last rank in the terms of HV
and IGD, respectively. For CEF-NSGA-II, the crowding dis-
tance of its original algorithm NSGA-II has some disadvantages
with respect to diversity, and is not quite valid for more than two
objectives [33], [47]. For CEF-SPEA/R, the original algorithm
SPEA/R adopts a diversity-first-and-convergence-second envi-
ronmental selection strategy for MaOPs. This environmental se-
lection strategy, however, may fail on DTLZ problems, as shown
in Fig. 6(b), because DTLZ problems prefer convergence-first-
and-diversity-second strategy.

C. Further Investigations and Discussions on CEF
After showing its performance on various test problems

above, CEF is further investigated for a deeper understanding
of its behavior. Due to the space limit and similar comparative
results obtained by all instantiations on all test problems, we
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Fig. 7. Evolutionary trajectories of IGD of CEF-SPEA/R and SPEA/R on three 10-objective problems. (a) After a certain generation, CEF-SPEA/R always
performs better than SPEA/R on 10-objective WFG7. (b) For 10-objective WFG9, although SPEA/R converges faster than CEF-SPEA/R during the beginning of
evolutionary process, CEF-SPEA/R always performs better than SPEA/R after a certain generation. (c) For 10-objective DTLZ1, CEF-SPEA/R converges better
and faster than SPEA/R.

Fig. 8. Solutions of focused evolutionary population obtained CEF-SPEA/R at different search stages on 10-objective DTLZ1. 10-objective DTLZ1 has ten
corner solutions with one objective value 0.5 and the other objective values 0.0. (a) At the first generation, individuals of focused evolutionary population are far
away from corner solutions. (b) At 200th generation, focused evolutionary population is close to corner solutions. (c) At final generation, the approximated corner
solutions are found.

present only selected instantiations on selected benchmarks to
investigate the evolutionary behavior, the influence of spread
enhancement, and the influence of focused evolutionary popu-
lation size.

1) Evolutionary Behavior of CEF: Fig. 7 plots the evolu-
tionary trajectories of IGD of CEF-SPEA/R and its correspond-
ing original algorithm SPEA/R on three 10-objective problems,
WFG7, WFG9 and DTLZ1, in a single run. From Fig. 7(a) and
7(b), it can be observed that SPEA/R converges faster than
CEF-SPEA/R during the beginning of evolutionary process,
since CEF-SPEA/R has two populations and focused evolu-
tionary population consumes additional computing resources
for searching corner solutions. However, after a certain gen-
eration, CEF-SPEA/R always performs better than SPEA/R
on 10-objective WFG7 and WFG9 because focused evolution-
ary population with corner solutions can guide Pareto-based
evolutionary population evolving toward the Pareto front. As
shown in Fig. 7(c), CEF-SPEA/R converges better and faster
than SPEA/R on 10-objectives DTZL1 during the whole evo-
lutionary process. CEF can enhance the selection pressure of
SPEA/R on the DTLZ1 because SPEA/R uses a diversity-first-
and-convergence-second environmental selection and loses the
selection pressure on DTLZ1.

Since focused evolutionary population aims to search for cor-
ner solutions of the Pareto front, the search behaviour of focused
evolutionary population is also visually studied and demon-
strated. We graphically plot the parallel coordinates of solutions

of focused evolutionary population obtained by CEF-SPEA/R
at different search stages on 10-objective DTLZ1, as shown in
Fig. 8. There are ten corner solutions with the worst objective
value, 0.5, within Pareto front. As shown in Fig. 8(a), the ini-
tial individuals of focused evolutionary population are far away
from corner solutions of Pareto front. Fig. 8(b) shows that fo-
cused evolutionary population has found the individuals located
near the true corner solutions at the 200th generation. Fig. 8(c)
shows that focused evolutionary population has found the ap-
proximated corner solutions at the final generation.

2) Influence of Spread Enhancement: In CEF, Spread En-
hancement operation is designed to promote Pareto-based evo-
lutionary population to spread along the whole Pareto front. To
investigate the effectiveness of Spread Enhancement, we com-
pare CEF-SPEA2 with its variant, CEF-SPEA2 without Spread
Enhancement (denoted as CEF-SPEA2v). Fig. 9 plots the final
solutions obtained by CEF-SPEA2 and CEF-SPEA2v on 10-
objective WFG4 (the lower and upper bounds of objective fi

in Pareto front are 0 and 2 × i, respectively). As shown, the
solutions obtained by CEF-SPEA2v cannot cover the problem’s
boundary on some objectives, i.e., f3 , f7 and f9 , while the solu-
tions obtained by CEF-SPEA2 with Spread Enhancement show
good coverage over the entire Pareto front.

During the Spread Enhancement process, some individuals of
focused evolutionary population are selected into Pareto-based
evolutionary population to promote the spread of Pareto-based
evolutionary population along the Pareto front. We consider
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Fig. 9. The final solutions obtained by CEF-SPEA2 and its variant on 10-
objective WFG4. (a) The solutions obtained by CEF-SPEA2 have the same
objective value range as the Pareto front. (b) The solutions of CEF-SPEA2v
fails to cover the problem’s boundary on f3 , f7 , and f9 objective.

Fig. 10. The number of individuals of focused evolutionary population en-
tering Pareto-based evolutionary population during the spread enhancement for
CEF-SPEA2 on 10-objective WFG4. On average, the number of individuals of
Pareto-based evolutionary population entering Pareto-based evolutionary pop-
ulation is 5.6722 per generation.

the number of individuals of focused evolutionary population
selected into Pareto-based evolutionary population as the con-
tribution of focused evolutionary population. Fig. 10 plots the
contribution values of each generation of CEF-SPEA2 on 10-
objective WFG4 in a single run. It is observed that, for most
of generations, individuals of focused evolutionary population
indeed enter Pareto-based evolutionary population. On average,
the number of individuals of Pareto-based evolutionary popula-
tion entering Pareto-based evolutionary population is 5.6722 per
generation. All these observations clearly confirm that Spread
Enhancement does make contribution to the spread of Pareto-
based evolutionary population.

3) Population Size for Focused Evolutionary Population: To
investigate the influence of focused evolutionary population size
on the performance of CEF, focused evolutionary population
size is set to 20, 50, 100, 150, 200, 300, and 400, respectively.
The investigations are conducted by CEF-SPEA2+SDE on 8-
objective WFG3, 5-objective WFG4, 10-objective DTLZ1 and
10-objective DTLZ3.

Fig. 11 shows the mean values of 30 independent runs for
IGD. As shown, the performance of CEF-SPEA2+SDE on 5-
objective WFG4 is not sensitive to the focused evolutionary
population size. As focused evolutionary population size in-
creases from 20 to 100, CEF-SPEA2+SDE performs better
on 8-objective WFG3, 10-objective DTLZ1, and 10-objective
DTLZ3, because increasing size can enhance the diversity of

Fig. 11. The mean IGD values of 30 independent runs of CEF-SPEA2+SDE
with different focused evolutionary population sizes, on WFG3, WFG4, DTLZ1,
and DTLZ3. Focused evolutionary population size has different effects on dif-
ferent problems.

focused evolutionary population, and therefore provide a bet-
ter guidance to Pareto-based evolutionary population. When
focused evolutionary population size increases from 100 to
400, the performances of CEF-SPEA2+SDE on 8-objective
WFG3 and 10-objective DTLZ1 are stable. However, CEF-
SPEA2+SDE performs worse on 10-objective DTLZ3 as fo-
cused evolutionary population size increases from 100 and 400.
This may be due to the fact that a larger focused evolutionary
population consumes more computing resources in each gener-
ation, and thus may reduce the computing resources of Pareto-
based evolutionary population and weaken the performance of
original SPEA2+SDE given the fixed maximal number of fit-
ness evaluations. Thus, to balance the computational resources
between focused evolutionary and Pareto-based evolutionary
populations, focused evolutionary population size is set to 100
in this study.

D. Comparisons With State-of-the-Art Algorithms

The previous experimental results have demonstrated the ef-
fectiveness of the CEF framework in improving four Pareto-
based algorithms. In this section, we further investigate the
competitiveness of the CEF framework by comparing it with six
state-of-the-art algorithms, i.e, MOEA/D [6],Two Arch2 [18],
KnEA [35], BiGE [19], HypE [8] and NSGA-III [13].

The population sizes of HypE, Two Arch2, KnEA and BiGE,
are all set to 200 for a fair comparision. In MOEA/D and NSGA-
III, however, their population sizes cannot be arbitrarily spec-
ified. For a fair comparison, the population sizes of MOEA/D
and NSGAIII are set to around 200, that is, 210, 156 and 220
for 5-, 8- and 10-objective problems, respectively, as suggested
in [33], [48], [52], [53]. The other settings for these compared
algorithms are the same as in their original papers.

Detailed numerical results are shown in Tables S4–S7.
Table IV gives the statistical summary of comparison results
between CEF-SPEA2+SDE and six state-of-the-art algorithms.
As shown in column w/t/l, CEF-SPEA2+SDE significantly
outperforms the competitors on most problems in the terms of
HV and IGD. Additionally, it is obvious that CEF-SPEA2+SDE
obtains higher R+ values than R− values in all cases. This
means that CEF-SPEA2+SDE performs better than the com-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

petitors for all problems. In terms of IGD, p values are less
than 0.15 for all comparisons. For HV, p values are also less
than 0.15 except for comparing with BiGE. These results indi-
cate that CEF-SPEA2+SDE is indeed better than its competi-
tors. The comparison results of CEF-SPEA2, CEF-SPEA/R and
CEF-NSGA-II with competitors are shown in Tables S8–S10
(of the supplement), respectively. The results also show that
our algorithms obtain promising performance.

Table V shows the rankings of all algorithms by Friedman test
on all instances. As can be seen, CEF-SPEA2+SDE gets the first
rank in terms of both HV and IGD. For SPEA2+SDE, however,
it just gets the fifth and sixth ranks in terms of HV and IGD, re-
spectively. This means that CEF can improve the performance
of SPEA2+SDE and increase the ranking of SPEA2+SDE in
comparison with other state-of-the-art algorithms. Similarly,
CEF-SPEA2, CEF-SPEA/R and CEF-NSGA-II also show good
performance and have a significant performance improvement
compared with their corresponding original algorithms. In com-
parison, the performance of HypE is in some sense unsatis-
factory. This may be due to the error caused by the Monte
Carlo simulation [54] and the negative influence of the setting of
reference point [55].

In order to visually demonstrate the comparison result, Fig. S2
(of the supplement) plots the final solutions of one run on 10-
objective WFG9 by parallel coordinates. As shown, fourteen
algorithms perform differently on 10-objectives WFG9. The
solutions obtained by MOEA/D and HypE lose diversity, while
the solutions obtained by SPEA2, SPEA2+SDE, CEF-NSGA-II,
and NSGA-III, fail to cover the whole Pareto front. The solutions
of NSGA-II and Two Arch2 seem to fail to converge to the
Pareto front because the f1 values of some solutions are larger
than its upper bound (2.0) in Pareto front of 10-objective WFG9.
SPEA/R, BiGE, KnEA, and the remaining three instantiations
of CEF (CEF-SPEA2, CEF-SPEA2+SDE and CEF-SPEA/R)
perform comparatively. Their solutions appear to converge into
the Pareto front (the lower and upper bounds of objective fi of
Pareto front of WFG9 are 0 and 2 × i, respectively) with good
diversity.

From the results above, Pareto-based MOEAs with a focused
evolutionary population can be appropriate for MaOPs, and
paves a new way to improve the performance of Pareto-based
MOEAs for MaOPs.

VI. PERFORMANCE ON PROBLEMS WITH IRREGULAR

PARETO FRONT

In the literature, regular MOPs are generally referred to prob-
lems with smooth, continuous and well spread Pareto fronts,
while irregular problems are those with disconnected, degener-
ate, inverted or other complex Pareto fronts. Most of the tested
problems above have regular Pareto front, except that WFG1-3
problems have irregular Pareto front. The Pareto front of WFG1
has a mix of convex and concave shape, while the Pareto front
of WFG3 is a straight line plus a nondegenerate part. WFG2 is
a disconnected problem with convex Pareto front.

In this section, three additional irregular problems, IDTLZ1,
IDTLZ2 and DTLZ7, are selected to further show the

performance of the proposed algorithms on irregular Pareto
fronts, especially the inverted simplex-like Pareto front. IDTLZ1
and IDTLZ2 denote the problems of inverted DTLZ1 and
DTLZ2, respectively, where the regular simplex-like Pareto
fronts of DTLZ1 and DTLZ2 are inverted and thus become
irregular [15]. DTLZ7 has an irregular and disconnected Pareto
front. In order to more visually demonstrate the performance of
CEF on these irregular problems, the experiments also consider
these problems with three objectives. For 3-objective problems,
the population size is set to 190, 190 and 196 in MOEA/D,
NSGA-III and SPEA/R, respectively, and Pareto-based evolu-
tionary population size is set to 196 in CEF-SPEA/R. Tables
S11–S22 (of the supplement) present the comparative results.

Firstly, we compare the performance of four instantiations of
CEF with their corresponding original versions on these three
irregular problems. Tables S11 and S12 show the detailed results
of HV and IGD (MEAN and STD) of these algorithms. As
can be seen in the rows w/t/l of Tables S11 and S12, CEF-
SPEA2, CEF-SPEA2+SDE, CEF-SPEA/R and CEF-NSGA-II
all achieve better results on most of the instances in the terms of
HV and IGD, respectively. Additionally, Table S13 summaries
the result of the Wilcoxon tests between four instantiations of
CEF and their corresponding original algorithms, and this table
shows that CEF can achieve good results on IDTLZ1, IDTLZ2
and DTLZ7 problems.

Fig. S3–S6 (of the supplement) show the final solutions
obtained by CEF-SPEA2, CEF-SPEA2+SDE, CEF-SPEA/R,
CEF-NSGA-II and their original algorithms on 8-objective
DTLZ7 problem. From these figures, observations can be found
as follows.

1) The f8 values of solutions of CEF-SPEA2 are within the
range of 0.0 to 16.0, which is the same as the range of
f8 values of Pareto front and is smaller than the range of
f8 values of solutions obtained by SPEA2 (Fig. S3). This
indicates that CEF-SPEA2 has stronger selection pres-
sure than its competitor SPEA2 on 8-objective DTLZ7
problems. Similarly, Fig. S6 shows that CEF-NSGA-II
has better convergence than its competitor NSGA-II on
8-objective DTLZ7 problem.

2) For the objectives from f1 to f7 , CEF-SPEA2+SDE can
obtaine solutions which spread over the entire range of
these objectives (from 0.0 to 0.86), whereas SPEA2+SDE
fails to obtained solutions to cover the entire range for
these objectives (Fig. S4). This means CEF-SPEA2+SDE
can achieve better distribution than SPEA2+SDE.

3) For the objective f8 , the solutions obtained by CEF-
SPEA/R cover the region between 4.1 and 16.0, but the
solutions of SPEA/R only cover the region from 11.1 to
16.0 (Fig. S5), indicating that CEF improves the coverage
of SPEA/R over the Pareto front.

Secondly, we compare the performance of CEF-SPEA2,
CEF-SPEA2+SDE, CEF-SPEA/R and CEF-NSGA-II with six
state-of-the-art algorithms on the three irregular problems.
Tables S14–S17 show the detailed results of HV and IGD
(MEAN and STD), and Tables S18–S21 summarize the com-
parison results of the Wilcoxon tests. Table S22 shows the rank-
ings of all algorithms by Friedman test on these irregular prob-
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lems. The comparison results clearly show that CEF-SPEA2 and
CEF-SPEA2+SDE have good performance on these irregular
problems. This is because the focused evolutionary population
in CEF is used to enhance the selection pressure of Pareto-
based evolutionary population and promote the Pareto-based
evolutionary population to spread over the entire Pareto front.
CEF-SPEA/R and CEF-NSGA-II, however, cannot solve these
irregular problems effectively, which may be attributed to the
shortcomings of their original algorithms, SPEA/R and NSGA-
II, respectively. SPEA/R adopts a reference direction-based den-
sity estimator, thus its performance is deteriorated for the prob-
lems with irregular Pareto front [15]. The crowding distance of
NSGA-II has some disadvantages with respect to diversity, and
is not quite valid for MOPs with more than two objectives [33].

Fig. S7 (of the supplement) shows the final solutions ob-
tained by all algorithms on 10-objective IDTLZ2 problem.
As shown, in SPEA2 (Fig. S7(a)), NSGA-II (Fig. S7(d)),
Two Arch2 (Fig. S7(i)), CEF-SPEA2 (Fig. S7(k)) and CEF-
NSGA-II (Fig. S7(n)), their solutions fail to converge to the
Pareto front. For SPEA2+SDE (Fig. S7(b)), SPEA/R (Fig.
S7(c)), NSGA-III (Fig. S7(e)), MOEA/D (Fig. S7(f)), BiGE
(Fig. S7(g)), KnEA (Fig. S7(h)), HypE (Fig. S7(j)) and CEF-
SPEA/R (Fig. S7(m)), their solutions cannot fully cover the
entire Pareto front. In Fig. S7(l), CEF-SPEA2+SDE obtains the
solutions with well convergence and diversity.

Finally, we also investigate the evolution of focused evo-
lutionary population on these irregular problems. We visually
plot the individuals of focused evolutionary population obtained
by CEF-SPEA2, CEF-SPEA2+SDE, CEF-SPEA/R and CEF-
NSGA-II on 3-objective IDTLZ1 and 10-objective IDTLZ2, as
shown in Fig. S8, S9 and S10 (of the supplement), respectively.
From these figures, observations can be found as follows.

1) For 3-objective IDTLZ1, the focused evolutionary pop-
ulations of CEF-SPEA2 (Fig. S8(a)), CEF-SPEA2+SDE
(Fig. S8(b)), CEF-SPEA/R (Fig S8(c)) and CEF-NSGA-
II (Fig. S8(d)) contain the solutions which are located on
the planes f1 = 0, f2 = 0 and f3 = 0, respectively. This
means that CEF still has the ability to search for the corner
solutions on 3-objective IDTLZ1.

2) Fig. S9 shows that CEF-SPEA2, CEF-SPEA2+SDE,
CEF-SPEA/R and CEF-NSGA-II can find the solutions
which are close to the corner solutions on 8-objective
DTLZ7.

3) For CEF-SPEA2, CEF-SPEA2+SDE, CEF-SPEA/R and
CEF-NSGA-II in Fig. S10, their focused evolutionary
populations contain the solutions in which one objective
value is 0.0 and the other objective values are 0.5. In other
words, fouced evolutionary population in CEF can find
the solutions close to the corner solutions on 10-objective
IDTLZ2.

From the above observations, we can draw the conclusion
that CEF still has the ability to find the approximate corner
solutions in focused evolutionary population on both inverted
simplex-like and disconnected Pareto fronts. Then these solu-
tions are used to enhance the selection pressure of Pareto-based
evolutionary population and promote Pareto-based evolutionary
population to spread over the whole Pareto front. However, it

is worth noting that this study only considers the corner solu-
tions of two extreme cases and adopts an aggregation method to
search the corner solutions of these two cases. If the shape of the
Pareto front is totally different from the shape of the distribution
of the weight vectors in an aggregation method, then the ability
of CEF in searching the corner solutions may be impaired, and
then its performance may be deteriorated to some extent. To fur-
ther improve the versatility on problems with different shapes
of Pareto fronts, reference point adaption [56] or weight (ref-
erence vector) adaption [57]–[59] techniques proposed recently
for any Pareto front shape can be easily introduced into the CEF
framework.

VII. CONCLUSION

This study presents a novel cooperative evolutionary frame-
work (CEF) with focused search to make Pareto-based MOEAs
perform better for MaOPs. CEF manipulates two evolutionary
populations including a focused evolutionary population and
a Pareto-based evolutionary population. Focused evolutionary
population focuses on searching for the corner solutions of the
Pareto front, and then it guides the Pareto-based evolutionary
population to evolve toward the Pareto front and promotes the
Pareto-based evolutionary population to spread along the Pareto
front. Pareto-based evolutionary population tries to obtain the
solutions with well convergence and diversity, and provides
some undeveloped but potentially promising solutions to the
focused evolutionary population. Four instantiations of CEF
framework are implemented, where four representative Pareto-
based MOEAs are adopted. A comprehensive comparison and
deep study of search behavior of CFE framework are carried out
to show the effectiveness of CEF. Experiments further comfirm
that Pareto-based MOEAs can be appropriate for MaOPs with
a focused population, and thus paves a new way to improve the
performance of Pareto-based MOEAs for MaOPs.

In the future, this work can be extended in several ways as
follows. Firstly, CEF framework can be applied to constrained
MaOPs by introducing constraint handling techniques [60]. Sec-
ondly, CEF can be applied to more real-world MaOPs [1]–[3],
[61], [62].

REFERENCES

[1] R. Cheng et al., “Evolutionary many-objective optimization of hybrid
electric vehicle control: From general optimization to preference articula-
tion,” IEEE Trans. Emerg. Topics Comput. Intell., vol. 1, no. 2, pp. 97–111,
Apr. 2017.

[2] J. Ding et al., “Dynamic evolutionary multiobjective optimization for raw
ore allocation in mineral processing,” IEEE Trans. Emerg. Topics Comput.
Intell., to be published.

[3] J. Wang, T. Weng, and Q. Zhang, “A two-stage multiobjective evolutionary
algorithm for multiobjective multi-depot vehicle routing problem with
time windows,” IEEE Trans. Cybern., to be published.

[4] K. Deb et al., “A fast and elitist multiobjective genetic algorithm:
NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr.
2002.

[5] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” in Proc. Evol. Methods Des., Optim. Con-
trol Appl. Ind. Problems, K. Giannakoglou, D. T. Tsahalis, J. Periaux, K.
D. Papailiou, and T. Fogarty, Eds., 2002, pp. 95–100.

[6] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

[7] Y. Yuan et al., “Balancing convergence and diversity in decomposition-
based many-objective optimizers,” IEEE Trans. Evol. Comput., vol. 20,
no. 2, pp. 180–198, Apr. 2016.

[8] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based
many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp. 45–76,
2009.

[9] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in Proc. Int. Conf. Parallel Problem Solving Nature, (LNCS,
3242), 2004, pp. 832–842.

[10] A. Trivedi et al., “A survey of multiobjective evolutionary algorithms
based on decomposition,” IEEE Trans. Evol. Comput., vol. 21, no. 3,
pp. 440–462, Jun. 2017.

[11] H. L. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective opti-
mization problem into a number of simple multiobjective subproblems,”
IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 450–455, Jun. 2014.

[12] X. Fu, J. Sun, and Q. Zhang, “A reference-inspired evolutionary algo-
rithm with subregion decomposition for many-objective optimization,”
Advances Intell. Syst. Comput., vol. 650, pp. 145–156, 2018.

[13] K. Deb and H. Jain, “An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
I: Solving problems with box constraints,” IEEE Trans. Evol. Comput.,
vol. 18, no. 4, pp. 577–601, Aug. 2014.

[14] R. Cheng et al., “A multiobjective evolutionary algorithm using gaussian
process-based inverse modeling,” IEEE Trans. Evol. Comput., vol. 19,
no. 6, pp. 838–856, Dec. 2015.

[15] H. Ishibuchi et al., “Performance of decomposition-based many-objective
algorithms strongly depends on Pareto front shapes,” IEEE Trans. Evol.
Comput., vol. 21, no. 2, pp. 169–190, Apr. 2017.

[16] K. Bringmann and T. Friedrich, “Don’t be greedy when calculating hy-
pervolume contributions,” in Proc. 10th ACM SIGEVO Workshop Found.
Genetic Algorithms, 2009, pp. 103–112.

[17] B. Li et al., “An improved two archive algorithm for many-objective
optimization,” in Proc. IEEE Congr. Evol. Comput., 2014, pp. 2869–2876.

[18] H. Wang, L. Jiao, and X. Yao, “Two Arch2: An improved two-archive
algorithm for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 19, no. 4, pp. 524–541, Jul. 2015.

[19] M. Li, S. Yang, and X. Liu, “Bi-goal evolution for many-objective opti-
mization problems,” Artif. Intell., vol. 228, pp. 45–65, 2015.

[20] D. Helbing et al., “Saving human lives: What complexity science and
information systems can contribute,” J. Statist. Phys., vol. 158, no. 3,
pp. 735–781, 2014.

[21] Z. Wang et al., “Statistical physics of vaccination,” Phys. Rep., vol. 664,
pp. 1–113, 2016.

[22] Z. He, G. G. Yen, and J. Zhang, “Fuzzy-based Pareto optimality for many-
objective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 18,
no. 2, pp. 269–285, Apr. 2014.

[23] S. Yang et al., “A grid-based evolutionary algorithm for many-objective
optimization,” IEEE Trans. Evol. Comput., vol. 17, no. 5, pp. 721–736,
Oct. 2013.

[24] K. Deb, M. Mohan, and S. Mishra, “Evaluating the ε-domination
based multi-objective evolutionary algorithm for a quick computation
of Pareto-optimal solutions,” Evol. Comput., vol. 13, no. 4, pp. 501–525,
2005.

[25] Y. Yuan et al., “A new dominance relation-based evolutionary algorithm
for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 20,
no. 1, pp. 16–37, Feb. 2016.

[26] K. Ikeda, H. Kita, and S. Kobayashi, “Failure of Pareto-based MOEAs:
Does non-dominated really mean near to optimal,” in Proc. IEEE Congr.
Evol. Comput., 2001, vol. 2, pp. 957–962.

[27] C. Dai, Y. Wang, and L. Hu, “An improved α-dominance strategy for
many-objective optimization problems,” Soft Comput., vol. 20, no. 3,
pp. 1105–1111, 2016.

[28] F. di Pierro, S. T. Khu, and D. A. Savic, “An investigation on preference
order ranking scheme for multiobjective evolutionary optimization,” IEEE
Trans. Evol. Comput., vol. 11, no. 1, pp. 17–45, Feb. 2007.

[29] S. Kukkoben and J. Lampinen, “Ranking-dominance and many-objective
optimization,” in Proc. IEEE Congr. Evol. Comput., 2007, pp. 3983–3990.

[30] A. Pez Jaimes and C. A. Coello Coello, “Study of preference relations
in many-objective optimization,” in Proc. Conf. Genetic Evol. Comput.,
2009, pp. 611–618.

[31] M. Koppen and K. Yoshida, “Substitute distance assignments in NSGA-II
for handling many-objective optimization problems,” in Proc. Int. Conf.
Evol. Multi-Criterion Optim., 2007, pp. 727–741.

[32] S. F. Adra and P. J. Fleming, “Diversity management in evolutionary
many-objective optimization,” IEEE Trans. Evol. Comput., vol. 15, no. 2,
pp. 183–195, Apr. 2011.

[33] M. Li, S. Yang, and X. Liu, “Shift-based density estimation for Pareto-
based algorithms in many-objective optimization,” IEEE Trans. Evol.
Comput., vol. 18, no. 3, pp. 348–365, Jun. 2014.

[34] M. Li, S. Yang, and X. Liu, “Pareto or non-Pareto: Bi-criterion evolution
in multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 20, no. 5,
pp. 645–665, Oct. 2016.

[35] X. Zhang, Y. Tian, and Y. Jin, “A knee point-driven evolutionary algorithm
for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 19,
no. 6, pp. 761–776, Dec. 2015.

[36] H. K. Singh, A. Issacs, and T. Ray, “A Pareto corner search evolutionary
algorithm and dimensionality reduction in many-objective optimization
problems,” IEEE Trans. Evol. Comput., vol. 15, no. 5, pp. 539–556, Aug.
2011.

[37] H. Freire et al., “Many-objective optimization with corner-based search,”
Memetic Comput., vol. 7, no. 2, pp. 105–118, 2015.

[38] W. Hu, G. G. Yen, and G. Luo, “Many-objective particle swarm optimiza-
tion using two-stage strategy and parallel cell coordinate system,” IEEE
Trans. Cybern., vol. 47, no. 6, pp. 1446–1459, Jun. 2017.

[39] H. Wang and X. Yao, “Corner sort for Pareto-based many-objective op-
timization,” IEEE Trans. Evol. Comput., vol. 44, no. 1, pp. 92–102, Jan.
2014.

[40] A. Talukder et al., “Injection of extreme points in evolutionary multiob-
jective optimization algorithms,” in Proc. Int. Conf. Evol. Multi-Criterion
Optim., (LNCS, 10173), 2017, pp. 590–605.

[41] S. Huband et al., “A review of multiobjective test problems and a scalable
test problem toolkit,” IEEE Trans. Evol. Comput., vol. 10, no. 5, pp. 477–
506, Oct. 2006.

[42] K. Deb et al., “Scalable multi-objective optimization test problems,” in
Proc. Congr. Evol. Comput., 2002, pp. 825–830.

[43] K. Deb, K. Miettinen, and S. Chaudhuri, “Toward an estimation of Nadir
objective vector using a hybrid of evolutionary and local search ap-
proaches,” IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 539–556, Dec.
2010.

[44] H. Wang, S. He, and X. Yao, “Nadir point estimation for many -objective
optimization problems based on emphasized critical regions,” Soft Com-
put., vol. 21, pp. 2283–2295, 2017.

[45] Y. Sun, G. G. Yen, and Z. Yi, “IGD indicator-based evolutionary algorithm
for many-objective optimization problems,” IEEE Trans. Evol. Comput.,
to be published.

[46] S. Jiang and S. Yang, “A strength Pareto evolutionary algorithm based on
reference direction for multiobjective and many-objective optimization,”
IEEE Trans. Evol. Comput., vol. 21, no. 3, pp. 329–346, Jun. 2017.

[47] H. Wang et al., “A memetic optimization strategy based on dimension
reduction in decision space,” Evol. Comput., vol. 23, no. 1, pp. 69–100,
2015.

[48] H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of multiobjective evo-
lutionary algorithms on many-objective knapsack problems,” IEEE Trans.
Evol. Comput., vol. 19, no. 2, pp. 264–283, Apr. 2015.

[49] Y. Xiang et al., “A vector angle-based evolutionary algorithm for un-
constrained many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 21, no. 1, pp. 131–152, Feb. 2017.

[50] J. Derrac et al., “A practical tutorial on the use of nonparametric statistical
tests as a methodology for comparing evolutionary and swarm intelligence
algorithms,” Swarm Evol. Comput., vol. 1, no. 1, pp. 3–18, 2011.
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