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Multi-Objective Optimization for the Vehicle
Routing Problem With Outsourcing

and Profit Balancing
Zizhen Zhang , Hu Qin, and Yanzhi Li

Abstract— An importer in Hong Kong employs vehicles, all
from external transport companies, to deliver products to its
customers geographically scattered in different locations. The
delivery plan needs to simultaneously minimize the total traveling
cost and balance the profits among all transport companies. This
transportation practice engenders a new variant of vehicle rout-
ing problems, called the vehicle routing problem with outsourcing
and profit balancing (VRPOPB). The profits are balanced by
maximizing the minimum unit profit of all transport companies,
which can effectively avoid the occurrence of distorted solutions.
We develop two multi-objective local search (MOLS) algorithms
for the problem, where the second one enhances the first one
by incorporating several additional techniques. To evaluate our
algorithms, we conduct extensive experiments on 57 generated
instances and a real case obtained from a food importer in
Hong Kong. The computational results clearly demonstrate that
our enhanced MOLS algorithm is able to achieve satisfactory
solutions.

Index Terms— Multi-objective optimization, vehicle routing
problem, outsourcing, fairness, profit balancing.

I. INTRODUCTION

VEHICLE routing is one of the most important fields in
transportation systems. This paper studies an extension

of vehicle routing problems in which the customer demand
is fully outsourced to one of multiple transport companies.
We call it the vehicle routing problem with outsourcing and
profit balancing (VRPOPB). The background is from a large-
scale importer in Hong Kong that supplies and distributes
assorted products from its warehouse to hundreds of stores.
Every day each store places a restock order with the importer
to replenish its inventory. The logistics department of the
importer outsources all delivery tasks to external transport
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Fig. 1. An illustration of order outsourcing and vehicle scheduling.

companies through long-term contracts. Outsourcing is a better
choice than keeping a large fleet of in-house vehicles for the
importer that has both economic and management advantages.
On one hand, since Hong Kong is one of the most competitive
economics in the world, the transportation rates for common
products have been fairly low, stable and predictable. Thus,
the importer can concentrate more on its core business rather
than being involved in peripheral logistics activities. On the
other hand, outsourcing can help the importer convert fixed
costs (e.g., labor costs, the cost of buying vehicles) into
variable costs and avoid large expenditure on fixed assets.

There is an interesting phenomenon that more than 80% of
the transport companies in Hong Kong are of small-scale and
nearly half of them are self-employed. Each of these transport
companies only owns a small number (e.g., two or three) of
trucks and vans. According to the assigned orders, the trans-
port companies dispatch their vehicles to the warehouse to
collect products, and then deliver them to the corresponding
stores. Since the stores are located in different geographically
scattered points, each vehicle should be carefully scheduled
to execute an efficient and economic delivery plan. Figure 1
illustrates a scheme of the order outsourcing and vehicle
scheduling in the VRPOPB.

When only one transport company is considered, the prob-
lem becomes a centralized version. Although centralization is
efficient with regard to business decisions, the importer will
suffer from the negative effect of “putting all eggs in one
basket”. If the importer uses multiple transport companies,
i.e., decentralized delivery strategy, it can gain benefit from the
competition of the transport companies and can easily find an
alternative when some transport company is unable to provide
satisfied service. However, decentralization may bring fairness
issue among multiple transport companies.
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Many vehicle routing problems (VRPs) in existing litera-
ture only consider centralized delivery strategy and focus on
minimizing the total traveling cost, which accounts not just
for the travel distance, but also for the amount of greenhouse
emissions, fuel and traveling times. In the VRPOPB, besides
traveling cost minimization, we also need to consider the
fairness issue by making the profits of every transport com-
panies as close as possible, which is called profit balancing.
The profit of a transport company is the difference of the
rewards obtained by fulfilling the assigned orders and the total
transportation cost. In practice, two transport companies with
similar conditions (e.g., scale, qualification, etc.) are supposed
to gain comparable profits. Otherwise, the transport company
with less profit will complain and tend to raise the quotation in
later cooperation, thereby impairing the benefit of the importer
in the long run.

Based on the above discussions, we can identify two objec-
tives in the VRPOPB, namely traveling cost minimization and
profit balancing. Minimizing traveling cost is important not
only to reduce transport companies’ cost and also to reduce
pollution, especially to metropolises like Hong Kong. These
two objectives are equally important but sometimes in conflict
with each other. For example, balancing the profit may require
the reassignment of orders to transport companies and lead to
vehicle routes with larger traveling costs. Hence, the VRPOPB
is essentially a bi-objective optimization problem. A general
approach for the multi-objective optimization problem is to
generate a representative subset of Pareto-optimal solutions.
A solution is called Pareto-optimal if it is impossible to
make any one objective value better off without making at
least one objective value worse off [1]. The decision maker
can make trade-off between different objectives and select
the most appropriate Pareto-optimal solution based on its
experience or preference.

The goal of this study is to help the importer automatically
assign orders to different transport companies and design
routes for vehicles such that the total traveling cost is mini-
mized and the profits of all transport companies are balanced.
It is worth noting that the scheduling of vehicles in real
practice is very complicated. The solution of the VRPOPB
actually acts as a simplified plan under certain limitations.
The transport companies are allowed to make appropriate
adjustments on the vehicle routes in the real operations.

In addition to making methodological contributions, this
paper primarily intends to present a practically motivated
problem and design a comprehensive, customized approach to
the problem by deliberately combining a variety of techniques
from the literature. Extensive numerical studies on both exist-
ing and generated test instances demonstrate that the proposed
approach is very effective.

The remainder of the paper is structured as follows.
Section II gives an overview of the relevant research in existing
literature. In Section III, we present a formal definition, for-
mulation and some properties of the VRPOPB. In Section IV,
two multi-objective optimization algorithms are designed for
the problem. In Sections V and VI, we conduct a series of
experiments to prove the performance of our algorithms and
provide a case study. Finally, in Section VII we conclude our

article with some closing remarks and suggest some possible
directions for future research.

II. RELATED WORK

Outsourcing has been implicitly considered in many VRPs.
For example, in the team orienteering problems [2], [3] and
the VRP with profits [4]–[6], a fixed number of vehicles
are dispatched to collect as many profits from the customers
as possible and the unserved customers are assumed to be
outsourced to external service providers. However, the previ-
ous articles that highlight “outsourcing” in VRPs are scarce.
Moon et al. [7] incorporate overtime and outsourcing in the
VRP with time windows (VRPTW), where a third party
logistics company has a limited number of vehicles, the drivers
are allowed to work overtime, and customer demands may be
outsourced to external vehicles. In this problem, the decision
maker has to consider the tradeoff between the overtime and
outsourcing costs. They developed a mixed integer program-
ming model, a genetic algorithm and a hybrid algorithm for
their problem. Lee et al. [8] studied a container transportation
problem for a logistics company in Singapore who cannot
handle all jobs due to the insufficient number of vehicles and
has to outsource some jobs to other transport companies. They
built a vehicle capacity planning system, which includes a
tabu search procedure, to generate high-quality solutions for
the problem. Zäpfel and Bögl [9] investigated a very complex
vehicle routing and crew scheduling problem that takes into
consideration variable vehicle capacities, time windows, multi-
period and personnel planning, and allows some tours and
drivers to be outsourced to subcontractors for lower total cost.
Li et al. [10] investigated a transportation service subcontract-
ing problem, which is based on an outsourcing practice in a
large limousine fleet company. When the company has demand
exceeding its capacity, it subcontracts some of its currently
booked rides to other smaller affiliated fleets.

The literature related to balancing workloads or profits in
VRPs is briefed as follows. Lee and Ueng [11] introduced
the VRP with load-balancing that aims to minimize the total
traveling distance and balance the workloads among employ-
ees as much as possible. The balancing objective requires that
the sum of the working time difference between each vehicle
and the vehicle with the smallest working time is as small
as possible. Nikolakopoulou et al. [12] tried to balance the
time utilization of the vehicles used in distribution networks.
They devised a heuristic to minimize the gap between the
maximum and minimum completion times among all vehicles.
Jozefowiez et al. [13] modeled the VRP with route balanc-
ing into a bi-objective optimization problem, where the first
objective is to minimize the total length of all routes and
the second one is to minimize the difference between the max-
imum and minimum route lengths. Kritikos and Ioannou [14]
studied a VRPTW variant that takes into account balancing
the loads carried by active members of the vehicle fleet. The
objective function of this problem is the weighted sum of
route costs, vehicle costs and the imbalance of the vehicle
loading. They proposed a new approach that is based on
the free disposal hull method of data envelopment analy-
sis to produce very promising solutions for the problem.
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Huang et al. [15] studied a humanitarian relief routing prob-
lem, which considers the decisions on vehicle routing and
supply allocation. Other than minimizing cost, the objectives
also include efficacy and equity. The equity issue is measured
by deviations between recipients in efficacy. They analyzed the
structure of vehicle routes and the distribution of resources
and proposed routing principles for humanitarian relief.
Pacheco et al. [16] conducted research on bus routing problem
and formulated it as a bi-objective optimization model. The
goal is to minimize both the longest route length and the total
route length. Tabu search within a Multiobjective Adaptive
Memory Programming framework was proposed to solve the
problem. Motivated by a real world problem in Tenerife, Spain,
Melián-Batista et al. [17] addressed a bi-objective VRPTW
which minimizes the total traveling costs and the difference
between the length of the longest route and the shortest one.
They developed a scatter search algorithm to identify the
Pareto-optimal solutions of the problem.

As can be seen from the aforementioned literature,
the multi-objective VRPs have been receiving more and more
attention in recent years. The cost and fairness are usually two
objectives that need to be considered simultaneously. Minimiz-
ing cost is important to both reduce vehicles’ transportation
cost and to reduce vehicles emissions. Fairness is critical to
ensures satisfaction among drivers, employees, and/or 3PLs
(as in our case). For more knowledge on the multi-objective
VRPs, we refer the reader to Jozefowiez et al. [18]–[20]. There
are two main features that distinguish our VRPOPB from other
VRPs in the literature. First, the orders are completely out-
sourced and the transport company attains profit by fulfilling
the assigned orders. Second, the fairness objective requires
balancing the profits among transport companies rather than
individual vehicles. To the best of our knowledge, there is no
existing literature addressing the VRPOPB.

III. PROBLEM DEFINITION, FORMULATION

AND PROPERTIES

The VRPOPB is defined on a complete and undirected graph
G = (N, E), where N = {0, 1, . . . , n} is the node set and
E = {(i, j) | i, j ∈ N} is the edge set. The set N consists of
depot 0 and n stores (or called customers). The transportation
cost on each edge (i, j) ∈ E is denoted by ci j . Each customer
i ∈ N \ {0} corresponds to an order that has a demand di and
a reward wi . The demand of an order cannot be split and the
reward is collected once the order is fulfilled. For notational
convenience, we assume that d0 = 0 and w0 = 0. A collection
of m vehicles (denoted by set V ) with capacities C1, . . . , Cm

from all transport companies are initiated at the depot and to
be dispatched to fulfill orders. The vehicles must return to the
depot after completing all assigned orders. Let T be the set of
transport companies and V (t) be the set of vehicles owned by
the transport company t ∈ T . Since each vehicle is managed
by exactly one transport company, we have V (t1)∩V (t2) = ∅
if t1 �= t2 and V =⋃

t∈T V (t).
Define a binary decision variable yik that is equal to 1 if

customer i is served by vehicle k, and 0 otherwise. Let a
binary decision variable xi jk be the number of times that
vehicle k traverses edge (i, j) and a continuous variable uik

be the remaining capacity of vehicle k before visiting cus-
tomer i . We introduce a bi-objective optimization model
for the VRPOPB by extending the arc-flow model of the
capacitated VRP (CVRP) as follows:

(Model M1)
(

opt f1(x, y), opt f2(x, y)
)

(1)

s.t.
∑

k∈V

yik = 1, ∀ i ∈ N \ {0} (2)

∑

k∈V

y0k = m (3)

∑

j∈N

xi jk =
∑

j∈N

x j ik = yik , ∀ i ∈ N, k ∈ V (4)

∑

i∈N

di yik ≤ Ck, ∀ k ∈ V (5)

uik − u jk + Ck xi jk ≤ Ck − d j ,

∀ i, j ∈ N \ {0}, i �= j, k ∈ V , di + d j ≤ Ck (6)

di ≤ uik ≤ Ck, ∀ i ∈ N \ {0}, k ∈ V (7)

yik ∈ {0, 1}, ∀ i ∈ N, k ∈ V (8)

xi jk ∈ {0, 1}, ∀ i, j ∈ N, k ∈ V (9)

The sign opt can be either max or min. Functions f1(x, y) and
f2(x, y) are associated with traveling cost minimization and
profit balancing, respectively. Constraints (2) state that each
customer must be served by exactly one vehicle. Constraints
(3) guarantee that all vehicles must start from the depot.
Constraints (4) are flow conservation constraints. Constraints
(5) ensure that vehicle capacity must be respected. Constraints
(6) and (7) are subtour elimination constraints, which were
originally proposed for the traveling salesman problem (TSP)
by Miller et al. [21]. The first objective function can be written
as:

f1(x, y) =
∑

k∈V

∑

i∈N

∑

j∈N

ci j xi j k (10)

To present the second objective function, we denote by pk

the profit gained by vehicle k. As shown in Expression (11),
pk is the difference between the collected rewards and the
traveling cost of vehicle k.

pk =
∑

i∈N

wi yik −
∑

i∈N

∑

j∈N

ci j xi j k (11)

Since different transport companies may have different scales
and maintain different numbers of vehicles, it is more rational
to balance the unit profit than the total profit. Let Wt be the
scale of transport company t and p̄t be the unit profit of
transport company t ∈ T . We have

p̄t = 1

Wt

∑

k∈V (t)

pk (12)

A commonly used indicator for profit balancing is the differ-
ence between the maximum and minimum unit profits of trans-
port companies, namely, maxt∈T p̄t − mint∈T p̄t . However,
minimizing this indicator may result in distorted solutions,
which is illustrated in Figure 2. A solution s is called distorted,
if s is Pareto-optimal and some route(s) is not optimal in
terms of the traveling cost. Figure 2 shows two vehicle
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Fig. 2. An example of the distorted solution.

routes marked in solid lines, where the square and circles
represent the depot and customers, respectively. Suppose that
the reward of each customer is 10 and there are two transport
companies with the same scale. Routes 1 and 2 have the same
traveling cost and profit, which are 11 and 29, respectively.
Thus, the difference between the maximum and minimum
unit profits is 0. The objective values of this solution can be
represented by (22, 0). If we replace Route 2 with a route
indicated by the dash lines, the traveling cost and profit of
this vehicle become 8 and 32, respectively. Then the objective
values of the resultant solution is (19, 3). Although both of
these two solutions are Pareto-optimal, the previous one is
distorted because Route 2 takes a detour with a larger traveling
cost. Obviously, if we take this indicator, the Pareto-optimal
solutions found by our approaches may include many distorted
solutions, which will make the decision process inefficient.

It is noteworthy that Jozefowiez et al. [13] have studied
the VRP with route balancing and mentioned the artificially
balanced solutions, which essentially are distorted solutions.
They used a TSP improvement procedure to optimize the
route length. However, their approaches cannot fundamentally
eliminate the distorted solutions as the TSP itself is an
NP-complete problem.

To prevent distorted solutions, we introduce the max_min
fairness, which defines f2(x, y) as:

f2(x, y) = min
t∈T

p̄t

= min
t∈T

1

Wt

∑

k∈V (t)

(
∑

i∈N

wi yik −
∑

i∈N

∑

j∈N

ci j xi j k) (13)

The profit balancing is achieved by maximizing f2(x, y).
According to Theorem 1, the max_min fairness will not
distort the Pareto-optimal solutions. For example, in Figure 2,
whether Route 2 is marked in the solid lines or the dash lines,
the corresponding solutions have the same value of f2(x, y),
which is equal to 29. Therefore, (19, 29) is the only Pareto-
optimal solution of the example in Figure 2.

Theorem 1: For a Pareto-optimal solution s = (x, y) with
two objectives f1(s) and f2(s) defined by Expressions (10)
and (13), each route of s must be an optimal TSP tour.

Proof: Proof by contradiction. Assume that s is Pareto-
optimal with some route r which is not TSP optimal. Then,
route r can be improved into a TSP optimal route r ′, and
therefore a solution s′ can be obtained by replacing r with r ′
in solution s.

We have f1(s′) < f1(s), since r ′ is better than r in
terms of traveling cost. We have f2(s′) ≥ f2(s), because the
collected rewards by each transport company do not change

and the traveling cost of route r reduces. Therefore, s is dom-
inated by s′, which contradicts with the assumption that s is
Pareto-optimal. �

Therefore, the model of the VRPOPB can be written as:
(

min f1(x, y), max f2(x, y)
)

(14)

or

min
(

f1(x, y), − f2(x, y)
)

(15)

subject to Constraints (2) – (9). We can integrate these two
objectives f1(x, y) and f2(x, y) into a single objective by
introducing weights α1 and α2. When α1 = 1 and α2 = 0,
the VRPOPB becomes the traditional CVRP. When α1 = 0,
α2 = 1 and |V (t)| = 1 for every t ∈ T , the VRPOPB reduces
to the bottleneck generalized assignment problem [22]. Both
of these two special cases are NP-hard and intractable.

IV. SOLUTION APPROACHES

We develop multi-objective evolutionary algorithms
(MOEAs) to handle the problem. By evolving a population
of solutions, MOEAs are able to find an approximate
Pareto-optimal set [23]. Popular MOEAs include NSGA-II
(Non-dominated Sorting Genetic Algorithm II) [24] and
MOEA/D (Multiobjective Evolutionary Algorithm based on
Decomposition) [25]. The MOEAs have been successfully
applied to various multi-objective optimization problems;
examples can be found in Tan et al. [26], Liu et al. [27].
Since the VRPOPB is a discrete optimization problem,
we employ problem-specific heuristics, such as local search
refinements, as the main ingredients in our MOEAs. In this
section, we first introduce some preliminaries and then
devise a standard multi-objective local search (MOLS)
algorithm Tricoire [28], which is one type of MOEAs.
Finally, we enhance MOLS to MOLS+ by adding several
useful techniques.

A. Preliminaries

Let S be the set of feasible solutions of the VRPOPB and
O = {o ∈ R2 : o = ( f1(s), f2(s)), ∀ s ∈ S} be the set of
number pairs, where the functions f1(s) and f2(s) are given
in Equation (10) and (13), respectively. Some basic concepts
are given as follows.

Definition 1: A feasible solution s1 ∈ S is said to strictly
dominate another feasible solution s2 ∈ S (denoted by
s1 ≺ s2), if and only if both of the following conditions hold:

1) f1(s1) ≤ f1(s2) and − f2(s1) ≤ − f2(s2),
2) f1(s1) < f1(s2) or − f2(s1) < − f2(s2).
Definition 2: Given a set of feasible solutions P , the non-

dominated set P ′ contains the solutions that are not dominated
by any member in P . The non-dominated set of the feasible
search space S is called the Pareto-optimal set. The image of
the Pareto-optimal solutions in the objective space is called
the Pareto front.

Note that the solution space of the VRPOPB is the same as
that of the capacitated VRP. Thus, finding all Pareto-optimal
solutions is also very difficult and even may be impossible due
to the intractability of the problem. Alternatively, it is more
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Algorithm 1 The Multi-Objective Local Search Algorithm
1: Generate an initial population P;
2: while the number of generations does not exceed Ngen do
3: P ′ ← ∅;
4: for l ← 1 to I ter do
5: Randomly generate values for weights ω = (ω1, ω2);

6: s ← select_a_solution(P, ω);
7: for k ← 1 to K do
8: P ′ ← P ′∪ {LSk(s)};
9: end for

10: end for
11: P ← update(P ,P ′);
12: end while
13: return P .

reasonable to find a set of non-dominated solutions that are as
close to the Pareto-optimal set as possible and as diverse as
possible [29].

B. Multi-Objective Local Search Algorithm

The MOLS algorithm employs different local search oper-
ators in the multi-objective evolutionary process. Each oper-
ator is applied to improve a solution in a certain direction.
A population is used to preserve a set of promising solutions.
Algorithm 1 presents the framework of MOLS. The block
within the inner loop can be executed Iter times in each outer
iteration. At the beginning of the inner loop, we randomly
generate a weight vector ω = (ω1, ω2), where ω1 + ω2 = 1,
and then select a solution from P based on ω by invoking func-
tion select_a_solution(P, ω) (see lines 5 – 6, Algorithm 1).
We generate K Pareto-optimal solutions by applying each of
K local search operators to the selected solution and then
add them in P ′ (see lines 7 – 8, Algorithm 1). The function
LSk(s) realizes the local search procedure with regard to
the k-th local search operator and outputs the resultant local
optimal solution. The algorithm terminates when the number
of generations exceeds Ngen . As the solution structure of
the VRPOPB is the same as that of the CVRP, most of the
local search operators for the CVRP can be employed. In the
following context of this subsection, we will detail the process
of generating the initial population, the local search operators,
the selection strategy in function select_a_solution(P, ω) and
the population updating strategy in function update(P ,P ′).

1) Initial Population: The initial population is composed
of a set of solutions, which are constructed using a two-stage
procedure. The first stage is inspired by the cluster-first-route-
second method [30], which divides customers into groups
using the sweep algorithm [31], [32]. The sweep algorithm
works as follows. Assume that the depot is the pole (i.e., the
origin of a Cartesian system) and all customers have Cartesian
coordinates corresponding to their locations. We use (θi , ρi )
to represent the polar coordinate of customer i , where θi is
the angle and ρi is the ray length. All customers are sorted
in ascending order of θi , and then in ascending order of ρi if
ties are encountered. Suppose that n customers are rearranged

to form a permutation π = (π1, π2, . . . , πn), where πi is the
index of a customer. We invoke a greedy procedure to divide π
into m groups. The greedy procedure first employs an empty
vehicle. Next, it sequentially selects an unserved customer
from π and tries to assign it to one of the used vehicles.
If no used vehicle has enough capacity to serve the customer,
a new vehicle is employed. After assigning all customers to the
vehicles, we optimize each vehicle route using a TSP solver.

After the first stage, we are able to identify the profit pk of
each vehicle k (i.e., the collected rewards minus the traveling
cost). The second phase is to balance the unit profit among
transport companies using an integer programming model.
To construct this model, let ztk be the binary decision variable
indicating whether vehicle route k is assigned to transport
company t , and p̄min be the decision variable representing the
minimum unit profit. The following model is able to balance
the unit profits among all transport companies.

(Model M2) max p̄min (16)

s.t.
∑

k∈V

ztk = |Vt |, ∀ t ∈ T (17)

∑

t∈T

ztk = 1, ∀ k ∈ V (18)

p̄min ≤ 1

Wt

∑

k∈V

pkztk, ∀ t ∈ T (19)

ztk ∈ {0, 1}, ∀ t ∈ T, k ∈ V (20)

p̄min ≥ 0 (21)

The objective (16) is to maximize the minimum unit
profit p̄min . Constraints (17) and (18) ensure that each trans-
port company t possesses exactly |Vt | vehicles and each
vehicle route must be assigned to exactly one transport
company. Constraints (19) guarantee that the unit profit of
transport company t must be greater than or equal to p̄min .
The problem (16)–(21) can be proved to be NP-complete by
reducing it to the so-called Linear Partition Problem: given
a set of non-negative numbers and an integer k, partition the
set into k ranges so as to minimize the maximum sum over
all the ranges. However, in practice the cardinalities of T and
V are relatively small, so the model can be easily solved to
optimality by general IP solvers (e.g., ILOG CPLEX).

One execution of the above two-stage procedure generates
only one feasible VRPOPB solution. To obtain more feasible
solutions, we can rotate the polar coordinate system and then
get different customer permutations. This is equivalent to
setting π = (π(1+i) mod n+1, . . . , π(n+i) mod n+1), where i is
a randomly generated integer from 0 to n − 1. The remaining
steps are the same as the aforementioned.

2) Local Search Operators: The neighborhoods of a given
solution are defined by the following four local search oper-
ators (i.e., K = 4), which are widely used in the approaches
for many existing VRPs. These neighborhoods only consider
the feasible solutions. After each operation, the objectives of
the new solution will be updated.

1) exchange(i , j ). This operator exchanges the positions of
customers i and j to generate a new solution.
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2) relocate(i , j ). This operator removes customer i from its
current position and then inserts it to the position before
node j (node j can be either depot or customer node).

3) 2-opt(i , j ). This operator is applied to two different
vehicle routes. Suppose that the two routes associated
with customers i and j are (0, . . . , i, i + 1, . . . , 0)
and (0, . . . , j, j + 1, . . . , 0), respectively. The operator
replaces the edges (i, i + 1) and ( j, j + 1) with
(i, j + 1) and ( j, i + 1), generating two new routes
(0, . . . , i, j + 1, . . . , 0) and (0, . . . , j, i + 1, . . . , 0).

4) reverse(i , j ). This operator is applied to one vehicle
route and reverses the segment (i, j) of the route
(0, . . . , i, i+1, . . . , j−1, j, . . . , 0) to make a new route
(0, . . . , j, j − 1, . . . , i + 1, i, . . . , 0).

The size of each local search neighborhood is O(n2), which
is a relatively small number. We denote by s′ the resultant
solution after applying some operator to s. The local search
operator in MOLS tries to improve the solution according to
the following guiding function:

f (s, ω) = ω1
f1(s)− f min

1

f max
1 − f min

1

− ω2
f2(s)− f min

2

f max
2 − f min

2

, (22)

where f min
k and f max

k (k = 1, 2) are the minimum and
maximum values for the k-th objective of the solutions in
the population. The second term on the right-hand-side of the
equation has a negative sign because f2(s) is to be maximized.
With this guiding function, we accept s′ if f (s′, ω) < f (s, ω).

3) Solution Selection and Population Updating: A solution
s is selected from the population P using the tournament
selection strategy [33] (see line 6, Algorithm 1), which
involves running several “tournaments” among individuals
chosen at random from the population and selects the winner.
Specifically, it first chooses τ ·|P| solutions from P at random,
where τ ∈ (0, 1) is a user-defined parameter. The solution
with the smallest value of f (s, ω) is finally chosen from the
tournament.

The new population P is updated by producing a set of
solutions from P∪P ′ (see line 11, Algorithm 1). We invoke the
non-dominated sorting approach and the crowded-comparison
approach, which were proposed in NSGA-II, to preserve a set
of high-quality and diverse solutions. Readers are referred to
Deb et al. [24] for more details of the updating procedure.

C. Enhancement of MOLS

The MOLS algorithm is easy to be implemented, but it does
not fully utilize the characteristics of the VRPOPB. In order
to further improve the solution quality, we enhance MOLS
by introducing the giant-tour representation, the recombina-
tion operator and the large neighborhood search procedure.
Algorithm 2 shows the enhanced multi-objective local search
algorithm (called MOLS+ for short). This algorithm is moti-
vated by the memetic algorithm [34], which is a population-
based approach with separate individual local improvement
procedures. Function recombination(P) produces a new pop-
ulation P ′ using a crossover operator, which combines the
information of two parents to generate new offsprings. A large

Algorithm 2 The Enhanced Multi-Objective Local Search
Algorithm
1: Generate a set P of non-dominated solutions;
2: while the number of generations does not exceed Ngen do
3: P ′ ←recombination(P);
4: P ′′ ← ∅;
5: for l ← 1 to I ter do
6: s ← select_a_solution(P ∪ P ′);
7: s ← LNS(s);
8: for k ← 1 to K do
9: P ′′ ← P ′′ ∪ {LSk(s)};

10: end for
11: end for
12: P ← update(P ,P ′′);
13: end while
14: return P;

neighborhood search procedure is implemented in function
LNS(s) to further improve the solution s.

1) Giant-Tour Representation: The giant-tour representa-
tion [35] is a compact encoding mode for the VRPs, and
can be converted into an optimal VRP solution (subject to
the visiting order) using a splitting procedure. The design of
the recombination process becomes easy with the help of the
giant-tour representation.

Given a solution consisting of m vehicle routes, suppose
that the j -th route is r j = (r1

j , r2
j , . . . , r R( j )

j ), where R( j)
is the number of customers visited and r i

j is the index of
the customer in the i -th position of the route. Note that we
omit the depot in this route representation. Denote by “⊕”
the concatenation operator that connects the last customer in
one route and the first customer in the other route, namely,
ri ⊕ r j = (r1

i , . . . , r R(i)
i , r1

j , . . . , r R( j )
j ). The giant tour is

the concatenation of all vehicle routes as shown by Expres-
sion (23). Since each customer can be visited exactly once,
the giant tour is essentially a permutation of customers.

r = r1 ⊕ r2 ⊕ . . .⊕ rm (23)

With the giant-tour representation, the solution space of the
VRPOPB includes all customer permutations. On the other
hand, given a giant tour r , we need to find a way to split r
into multiple feasible vehicle routes. As the VRPOPB has two
objectives, two splitting methods, which are actually dynamic
programming algorithms, are proposed in Sections IV-C2
and IV-C3.

2) Splitting Method for Traveling Cost Minimization: Given
a giant tour r represented by a permutation (π1, π2, . . . , πn),
our goal is to split r into m consecutive segments, where
each segment corresponds to a feasible vehicle route. The first
splitting method aims at finding a splitting that minimizes the
total route length. We denote by a state L[k][i ] the minimum
total traveling cost obtained by using k vehicles to visit
(π1, π2, . . . , πi ). The dynamic programming recursion is:

L[k][i ] = min
0≤ j≤i and cap( j+1,i)≤C

{
L[k − 1][ j ] + cost ( j + 1, i)

}
, (24)
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where cost ( j, i) and cap( j, i) correspond to the traveling
cost and the required capacity of route (0, π j , . . . , πi , 0),
respectively (see Expressions (25) and (26)). Expression (24)
states that the value of L[k][i ] depends on each L[k−1][ j ] and
the traveling cost of vehicle k visiting (0, π j+1, . . . , πi , 0).

cost ( j, i) =
⎧
⎨

⎩

c0,π j + cπi ,0 +
∑i−1

j ′= j
cπ j ′ ,π j ′+1

, if j ≤ i ;
0, otherwise.

(25)

cap( j, i) =
⎧
⎨

⎩

∑i

j ′= j
dπ j ′ , if j ≤ i ;

0, otherwise.
(26)

The boundary condition of the dynamic programming is
L[0][0] = 0 and we need to obtain the value of L[m][n],
i.e., the minimum total traveling cost achieved by dispatching
m vehicles to serve all customers. This dynamic programming
that has a time complexity of O(mn2) is essentially the
Bellman’s method for the shortest path problem with at most
m arcs. We refer the reader to Prins et al. [36] for more details.

It is worth noting that a certain giant tour may be infeasible,
i.e., we cannot find a valid splitting such that each of the
associated routes satisfies the capacity constraint. In such
situation, we try to find the biggest n′ that satisfies n′ < n
and calculate the value of L[m][n′]. The remaining customers
{πn′+1, . . . , πn} are unserved and thus penalty costs can be
added.

3) Splitting Method for Profit Balancing: Directly finding
a splitting to maximize the minimum unit profit is difficult,
as different transport companies are very likely to have dif-
ferent numbers of vehicles. We instead seek a splitting that
makes the overall minimum route profit (namely, minm

k=1 pk ,
MRP for short) maximal.

Let F[k][i ] be the maximum value of the MRP obtained by
using k vehicles to serve (π1, . . . , πi ) in order. The dynamic
programming recursion is given as:

F[k][i ] = max
0≤ j≤i and cap( j+1,i)≤C

{
min{F[k − 1][ j ], pro( j + 1, i)}

}
, (27)

The term pro( j, i) is the profit of the route (0, π j , . . . , πi , 0)
that is calculated by:

pro( j, i) =
⎧
⎨

⎩

∑i

j ′= j
wπ j ′ − cost ( j, i), if j ≤ i ;

0, otherwise.
(28)

F[0][0] = 0 is the boundary condition and we need to compute
F[m][n]. By tracing back the optimal substructures, we are
able to identify m vehicle routes and the profit pk for each
vehicle k. Note that pk ≥ F[m][n],∀ k ∈ V and the MRP is
maximized. We then apply the model M2 in Section IV-B1 to
reassign vehicle routes to transport companies.

4) Recombination: The recombination process produces a
new set P ′ of solutions by mating two individual solutions
in P . It iteratively selects two solutions that has not been
selected from P and mates them with a probability of pm ,
which is a user-defined parameter. First, each of the selected
solutions is converted to a giant tour. Subsequently, two giant

Algorithm 3 The Large Neighborhood Search Procedure
1: non_impr ← 0;
2: repeat
3: s′ ← destroy_repair(s);
4: if s′ ≺ s then
5: s ← s′;
6: non_impr ← 0;
7: else if s � s′ then
8: non_impr ← non_impr + 1;
9: else

10: // s and s′ are not comparable, nothing to do here;
11: end if
12: until non_impr reaches a predefined value λ.

tours are recombined to generate two new giant tours. Since
the giant tour is a permutation of distinct elements, any order-
based crossover operator can be adopted for recombination.
In our implementation, we use the Partially Mapped Crossover
(PMX) operator [37]. Next, two splitting methods are respec-
tively applied to each of the new giant tours, generating a total
of four solutions. Finally, the solution that is not dominated
by the other three is added in the population set P ′.

5) Large Neighborhood Search: The large neighborhood
search (LNS) heuristic was proposed by Shaw [38]. The
neighborhood is defined by a destroy and repair method.
A destroy method destructs part of the current solution to a
partial solution while a repair method rebuilds the destroyed
solution to a complete one. Therefore, the neighborhood of a
solution is the set of solutions that can be reached by a destroy
operation and a repair operation.

Pseudocode for the LNS heuristic is shown in Algorithm 3.
non_impr is a parameter recording the number of consecutive
iterations that cannot improve on the current best solution.
The destroy-and-repair operator is applied to generate a new
solution s′ (see line 3, Algorithm 3). Different from the
local search procedure that a solution is accepted if the
k-th objective gets improved, the LNS procedure only
accepts s′ when s′ ≺ s (see lines 4 – 5, Algorithm 3). The
LNS heuristic can generate a large number of solutions that
are not comparable with s but are very likely to be dominated
by other solutions in P ∪ P ′. If s′ is dominated by or equal
to s, non_impr is increased by 1 (see line 8, Algorithm 3).
If s and s′ cannot dominate each other, the algorithm does
nothing (see line 10, Algorithm 3). The LNS heuristic termi-
nates when non_impr reaches a predefined value λ.

The destroy method removes a percentage of customers
from s. Although several adaptive LNS heuristics were pro-
posed [39], we employ a simple destroy method that ran-
domly removes each customer with a probability of pr . Then,
the removed customers are inserted in the partial solution using
a repair method, which works as follows. First, the removed
customers are sorted by descending demands. Next, these
customers are sequentially inserted into the partial solution.
Since there are two objectives, we introduce two insertion
criteria, namely Cost-oriented insertion and Fairness-oriented
insertion. Note that the insertion that respects the vehicle
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TABLE I

PARAMETER SETTINGS

capacity constraint is allowed. The destroy-and-repair process
randomly chooses these two insertion criteria whose details
are as follows:

1) Cost-oriented insertion. Let 	g1(k, j) be the change of
the total traveling cost resulted by inserting the customer
at position j in route k. Perform the insertion associated
with (k, j) that is determined by:

(k, j) := arg min
k∈V , j∈rk

	g1(k, j) (29)

2) Fairness-oriented insertion. Let g2(t) be the unit profit
of transport company t and 	g2(t, k, j) be the change
of unit profit of transport company t if the customer
is inserted at position j in route k. Therefore, g2(t) +
	g2(t, k, j) is the resultant unit profit of transport
company t . Expression (30) finds a (t, k, j)-tuple that
makes the minimum unit profit maximal. The customer
is then inserted at position j in route k.

(t, k, j) := arg max
t,k, j

{
min

t∈T ,k∈V (t), j∈rk
g2(t)+	g2(t, k, j)

}
. (30)

V. COMPUTATIONAL RESULTS

Our algorithms were coded in GNU C++ with the
“-O2” option. All experiments were conducted on a Linux
server equipped with an Intel Xeon E5-1603 CPU clocked
at 2.80 gigahertz and 8 gigabytes RAM. The parameters
in MOLS and MOLS+ were carefully calibrated based on
some preliminary experiments. The final parameter settings
are presented in Table I. For each instance, we executed each
algorithm 10 independent runs with different random seeds.
All computation times reported here are in CPU seconds on
this server. All instances and detailed results are available upon
request.

The first experiment was to compare MOLS+ with an
existing algorithm. As the VRPOPB is a new problem, there
are not existing benchmark instances. We find in the literature
that the VRP with routing balancing (VRPRB) introduced
by Jozefowiez et al. [13] is very similar to the VRPOPB.
The VRPRB has two objectives, namely, minimizing the total
traveling distance and minimizing the difference between the
longest and the shortest route lengths (note that this objec-
tive may lead to distorted solutions). Jozefowiez et al. [13]
proposed a meta-heuristic method based on a parallel evo-
lutionary algorithm and used seven instances obtained from
Christofides and Eilon [40] to evaluate their method. For each

Fig. 3. The approximate Pareto-optimal set containing 91 solutions produced
by MOLS+ for instance E51-05e.

of these instances, they reported the best-known value for
the total traveling distance, the best found value for the total
traveling distance as well as the associated route balance,
and the best found route balance as well as the associated
total length. To compare with this method, we modified our
MOLS+ to solve the VRPRB by simply changing the second
objective of the VRPOPB into minimizing the difference
between the longest and the shortest route lengths.

The results of the first experiment are shown in Table II.
The name of each instance has the form Ei − jk, where
E indicates that the distance metric is Euclidean, i is the
number of customers, j is the number of vehicles and k is
an identifier. As can be seen, the numbers of customers and
vehicles range from 51 to 200 and from 5 to 17, respectively.
The column “Best-known” gives the optimal total traveling
distance found by existing VRP approaches. Each of these two
approaches can generate a set of non-dominated solutions, but
only two extreme solutions with respect to different primary
objectives are presented in this table. Under the block “Solely
minimizing the total traveling distance”, we mark in bold
the best found value that is equal to the best-known value.
After comparing columns 3 and 6, we can see that MOLS+
produced the total traveling distance shorter or equal to that
found by Jozefowiez et al. [13]’s method for every instances.
Columns 5 and 8 give the running times of two algorithms.
Columns 9 and 11 show that MOLS+ generated much more
balanced solutions than Jozefowiez et al. [13]’s method. The
numbers under “Best found” columns indicate the route differ-
ence, i.e., the difference between the longest and shortest route.
Moreover, under the block “Solely minimizing the difference”,
MOLS+ obtained solutions which dominate those produced
by Jozefowiez et al. [13]’s method for instances E101-08e and
E101-10c completely and significantly. We can judge from this
table that MOLS+ is able to produce high quality solutions
for the VRPRB.

We also draw in Figure 3 the approximate Pareto-optimal
set containing 91 solutions produced by MOLS+ for instance
E51-05e. However, after taking a close look at those balanced
solutions (e.g., see Figure 4(b)), many routes take detours, and
thus the solutions are actually distorted.

The second experiment was conducted on 57 restricted
VRPOPB instances in which each transport company
only owns one vehicle. We generated these restricted
VRPOPB instances based on 7 VRPRB instances from
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TABLE II

PERFORMANCE COMPARISON BETWEEN JOZEFOWIEZ et al. [13]’S METHOD AND MOLS+ ON VRPRB INSTANCES

Fig. 4. (a) The solution for instance E51-05e with the minimum traveling
distance. (b) the solution for instance E51-05e with the smallest difference
between the longest and the shortest route lengths.

Jozefowiez et al. [13] and 50 VRP instances from
Augerat et al. [41] as follows. The reward wi is set to 0 for
each i ∈ N . Each transport company t ∈ T has only one vehi-
cle. The traveling cost is set according to the distance matrix.
Other inputs (e.g., the number of vehicles, customer demands)
are the same as those of the original instances. Therefore,
the second objective becomes minimizing the maximum route
length among m routes. In order to evaluate the performance
of MOLS and MOLS+, the following two indicators are
employed.

• Inverted generational distance. The inverted generational
distance (IGD) indicator is used to measure how “far”
an approximate Pareto front is away from the true Pareto
front [42]. Given a set A of non-dominated solutions and
a reference set P∗, I G D(A, P∗) is defined as:

I G D(A, P∗) = 1

|P∗|
∑

y∈P∗
minx∈A d(x, y) (31)

In this formula, d(x, y) corresponds to the distance
between the solutions x and y, which is calculated by:

d(x, y) =
√
√
√
√

2∑

i=1

(
fi (x)− f min

i

f max
i − f min

i

− fi (y)− f min
i

f max
i − f min

i

)2

=
√
√
√
√

2∑

i=1

(
fi (x)− fi (y)

f max
i − f min

i

)2

, (32)

where f max
i and f min

i are the maximum and minimum
values of the i -th objective among the solutions in P∗.
Since the true Pareto front is always difficult to be
obtained, in our experiment we set the reference set P∗
to the Pareto front of all solutions obtained by MOLS and
MOLS+. A small I G D(A, P∗) indicates that front A is
a good approximation for the reference set P∗.

• Hypervolume. The hypervolume (HV) indicator was first
proposed by Zitzler and Thiele [43]. We calculate the
value of the hypervolume indicator between the approxi-
mate Pareto front and a reference point. For the minimiza-
tion problem, the reference point z is composed of the
maximum values of all objectives. For a two-dimensional
objective space, each non-dominated solution covers a
rectangle, which is defined by the lower-left coordinate
( f1(s), f2(s)) and the upper-right reference point z =
(z1, z2). The HV value is given by the area of the union
of all rectangles covered by the Pareto-optimal solutions.
The HV value can reflect both the convergence and
diversity of the non-dominated solutions. The larger the
HV value is, the closer the corresponding non-dominated
solutions are to the Pareto front.

MOLS+ produced significantly better results than MOLS
according to the second experiment, where the impact of
each component of MOLS+ was also studied. The first
component of MOLS+ is the giant-tour representation with
dynamic programming splitting, and the second one is the
large neighborhood search procedure. If we disable the first
component of MOLS+, the resultant approach is referred to
as MOLS+LNS. Similarly, MOLS+GT corresponds to the
approach without the second component. Table III shows the
IGD values, the HV values and the running times achieved
by the four algorithms for 7 restricted VRPOPB instances,
where the best IGD and HV values are marked in bold. For the
IGD value, MOLS+LNS, MOLS+GT, MOLS+ improved on
MOLS by 68.1%, 79.9% and 95.0%, respectively. For the HV
value, the corresponding improvements are 40.2%, 41.4% and
46.5%, respectively. On average the running time of MOLS+
is around 3 times as much as that of MOLS.

Table IV presents the best objective value found by MOLS
and MOLS+ for each of the 57 restricted VRPOPB instances.
The total traveling costs that are equal to their corresponding
best-known values are marked in bold. Note that the rewards
of all customers are zero, so the profit of each instance must be
a negative value. For the first objective, MOLS+ reached all
best-known results except for 4 instances, namely, E151-12c,
E200-17c, A-n63-k9 and A-n64-k9. On average, MOLS (resp.
MOLS+) produced solutions with the total traveling cost
increasing from 1025.2 (resp. 994.7) to 1143.9 (resp. 1095.9)
and with the smallest profit increasing from −207.2 (resp.
−204.6) to −180.5 (resp. −178.8). As can be seen, MOLS+
produced more satisfactory results for these instances. The
running time of MOLS+ is about twice longer than that
of MOLS.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE III

THE PERFORMANCE COMPARISON OF FOUR ALGORITHMS ON 7 RESTRICTED VRPOPB INSTANCES

TABLE IV

PERFORMANCE COMPARISON BETWEEN MOLS AND MOLS+ ON 57 RESTRICTED VRPOPB INSTANCES

We also plot in Figure 5 the non-dominated solutions found
by our MOLS+ for instance E51-05e. There are 5 non-
dominated solutions in total. The best solutions corresponding
to optimizing the first and the second objectives are given
by the extreme points (524.6, −118.5) and (537.9, −111.4),
respectively. The detailed solutions related to these two
extreme points are pictorially shown in Figure 6. It is easy
to find that the routes in Figure 6(a) are the same as
those in Figure 4(b). Figure 6(b) shows a solution with
balanced profits in which each route contains no detour. The
route drawn in black has the smallest profit (i.e., −111.4).

The result is consistent with Theorem 1 that no distorted
solution is contained in the Pareto front.

The third experiment is similar to the second one. We mod-
ified 57 restricted VRPOPB instances to generate a set of
VRPOPB instances as follows. The reward wi is set to
2 · max j∈N {ci j } for i ∈ N , which ensures that the profit
gained by a vehicle must be positive. If m vehicles are
available, the number of transport companies |T | is set to
�√m�. Each of the first (m mod |T |) transport companies
has �m/|T |� vehicles and each of the remaining companies
has �m/|T |� vehicles. For example, if m = 5, then |T | = 3
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Fig. 5. The five non-dominated solutions found by MOLS+ for instance
E51-05e.

Fig. 6. (a) The solution for instance E51-05e with the minimum traveling
cost. (b) the solution for instance E51-05e with the balanced profits.

TABLE V

THE RESULTS OF MOLS AND MOLS+ ON 7 VRPOPB INSTANCES

and three transport companies have 2, 2 and 1 vehicles,
respectively.

Table V reports the number of non-dominated solutions
(NS), IGD, HV and running time obtained by MOLS and
MOLS+ for each of the 7 VRPOPB instances, where the
number in each cell is the average value over 10 runs. From
this table, we can see that the number of non-dominated
solutions found by MOLS+ is around twice as many as that
obtained by MOLS. The IGD and HV values both obviously
demonstrate the superiority of MOLS+.

Table VI gives two extreme solutions achieved by MOLS
and MOLS+ for each of 57 instance. MOLS+ reached 51 out
of 57 best-known solutions when solely considering the first
objective. From the results produced by MOLS+, we can
see that on average the total traveling cost increases from
995.4 to 1010.8 and the smallest unit profit increases from
1166.7 to 1221.4. This means that an increase of around
1.5% in traveling cost leads to a 4.5% profit increase for
the company with least gain. It may appear that such trade-
off is not significant due to the nature of the max_min

Fig. 7. The nine non-dominated solutions found by MOLS+ for instance
E51-05e.

Fig. 8. (a) The solution for instance E51-05e with the minimum traveling
cost. (b) the solution for instance E51-05e with the balanced profits.

fairness function. We then included the conventional difference
function (i.e., maximum unit profit minus minimum unit profit)
and presented the corresponding results in columns 5 and 8.
Under this fairness function, increasing 1.5% traveling cost
results in decreasing 97.7% (=(124.4-2.9)/124.4 *100%) profit
difference. This function reveals the importance of objective
trade-off between optimizing the traveling cost and profit
balancing.

Figure 7 shows 9 non-dominated solutions found by
MOLS+ for instance E51-05e. The lower-left point
(524.6,1113) and the upper-right point (543.5,1147)
correspond to the solutions in Figures 8(a) and 8(b), respec-
tively. This instance includes 5 vehicles owned by 3 transport
companies. The routes in the same color belong to the same
transport company.

VI. CASE STUDY

We study a real case from a food importer in Hong Kong
distributing assorted food products (e.g., rice and flour) to
stores. We have collected a large number of historical orders
placed in a month. For each day in this month, the vehicle
schedule has already been made and implemented to fulfill
the corresponding orders. We arbitrarily chose the orders of
one day for this case study. After a basic data cleaning
phase, we have a total of 472 orders, each of which can be
simply characterized by its address and demand. The average
demand of these orders is 6.8 basic transportation units
(BTUs). The locations of these orders are shown in Figure 9,
where the warehouse of the food importer is located in Yuen
Long Industrial Estate (see the marker in green at the upper-
left corner of the map). The food importer has employed
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TABLE VI

PERFORMANCE COMPARISON BETWEEN MOLS AND MOLS+ ON 57 VRPOPB INSTANCES

TABLE VII

INFORMATION OF THE REAL CASE

20 vehicles each with a capacity of less than 250 BTUs from
9 transport companies to deliver food products. The scale of a
transport company is set to the number of vehicle it maintains.
We summarize the above information in Table VII.

Currently, a seasoned scheduler of the food importer is in
charge of assigning orders to vehicles and planning the vehicle
routes. The manual planning basically adopts the clustering
strategy. Hong Kong has three main regions, namely, New Ter-
ritories (in the north), Kowloon (in the middle) and Hong Kong
Island (in the south). A vehicle is dispatched to carry out
the orders whose locations are adjacent to each other in a
particular region. Figure 10 illustrates the vehicle assignment
made by the scheduler for the orders in New Territories and
Hong Kong Island. The number inside the marker indicates
the vehicle to which the corresponding order is assigned.

Fig. 9. Distribution of orders across Hong Kong.

The clustering strategy is easy to be implemented, but it
leads to large traveling cost and profit unbalancing. Some
clusters may contain only a few number of orders, result-
ing in vehicle routes with light loads and low rewards.
We applied our MOLS+ to this real case and obtained a set
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TABLE VIII

THE COMPARISON BETWEEN THE MOST BALANCED SOLUTION GENERATED BY MOLS+ AND THE MANUALLY GENERATED SOLUTION

Fig. 10. Assignment of orders to vehicles by the scheduler. (a) New
Territories. (b) Hong Kong Island.

of 26 non-dominated solutions. Two extreme solutions are
(313.6, 67.3) and (393.9, 140.3), where the latter one is the
most balanced solution. We have analyzed the structures of the
most balanced solution and the manually generated solution.
The comparison between these two solutions is presented
in Table VIII, where T Cx and V y represent transport company
x and vehicle y, respectively, and the row (marked in bold)

associated with the transport company presents the average
values over all its vehicles.

Table VIII shows that the balanced solution only uses
16 vehicles with the total traveling cost of 393.9. Roughly
speaking, for most of the VRPs, fewer vehicles usually cor-
respond to less total traveling cost. In the balanced solution
found by MOLS+, the unit profit for each transport company
lies in interval [140.3, 142.3], which is a small range and
demonstrates that this solution treats all transport companies
fairly. We further plot in Figure 11 the order assignment of
several vehicles according to our solution. This figure reveals
that the orders fulfilled by the same vehicle form a fan-shaped
sector rather than a cluster. Such delivery pattern can reduce
the traveling cost because “near-by” orders can be fulfilled in a
convenient way when serving the orders with distant locations.
In addition, it is much easier to ensure the fairness by adjusting
the orders lied in adjacent fan-shaped sectors rather than those
lied in adjacent clusters.

To sum up, our solution clearly dominates the manually
generated solution in terms of both the total traveling cost
and profit balancing. Our managerial suggestions to the food
importer are as follows:

1) Improving the utilization of vehicles. Although our
model does not consider the fixed costs of vehicles (e.g.,
the manpower cost), it is sufficient to conclude that
cutting off extra vehicles can help reduce not only the
traveling cost but also other fixed costs.

2) Optimizing the vehicle routes. Currently the food
importer only concerns about the assignment of orders
and lacks enough attention to vehicle routing. This case
study shows that the traveling cost could be improved
around 20%.
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Fig. 11. Assignment of orders to vehicles. (a) Vehicle 1. (b) Vehicle 2.
(c) Vehicle 10.

3) Considering fan-shaped delivery pattern. Although the
clustering strategy may have some benefits for the man-
agement, it is not suitable for the optimization of both
the traveling cost and profit balancing. The structure of
our solution can be used for reference and guide the
scheduling in practice.

VII. CONCLUSION

This paper introduces a new variant of the vehicle routing
problem (VRPOPB) in which customer orders are outsourced
to multiple transport companies. Two objectives, namely, mini-
mizing the total traveling cost and balancing the profit among
all transport companies, must be simultaneously considered.

The first objective is important, since it relates to operational
cost saving as well as pollution reduction, which has been
emphasized by the governments of Hong Kong and other
big cities. The second objective is also considerable for the
importer in its long-run business. To balance the profits among
transport companies, we chose maximizing the minimum
unit profit rather than minimizing the difference between the
maximum and minimum unit profits, because the latter way
may lead to many distorted solutions.

In order to find an approximate Pareto-optimal set for
the problem, we developed two multi-objective evolutionary
algorithms, where the first one (called MOLS) is a stan-
dard multi-objective local search algorithm that uses four
local search operators and the second one (called MOLS+)
enhances the first one by incorporating the giant-tour represen-
tation, the recombination operator and the large neighborhood
search procedure. The effectiveness of our algorithms are
demonstrated using three experiments and one case study.
In the first experiment, we adapted MOLS+ to solve
the vehicle routing problem with route balance (VRPRB)
and then compared its results with those reported in
Jozefowiez et al. [13]. This comparison indicates that MOLS+
is capable of producing high-quality solutions for the VRPRB.
The second and third experiments were used to compare the
performance between MOLS and MOLS+ on the 57 instances
derived from 7 VRPRB instances and 50 VRP instances.
Moreover, the second experiment also studied the impacts of
the giant-tour representation, the recombination operator and
the large neighborhood search procedure. The computational
results clearly show that these components can enhance the
performance of the algorithm and MOLS+ is superior to
MOLS. In the case study, we compared the plan produced
by MOLS+ with the one made by a seasoned scheduler, and
find that our solution dominates the manually generated one,
i.e., our solution has smaller total traveling cost and the unit
profits of all transport companies lie in a narrow interval.
The results of this paper can serve as a baseline for future
researchers working on related topics.

The VRPOPB is a very complex problem in transportation
systems and our algorithms can produce near Pareto-optimal
solutions. Future research directions may focus on designing
more sophisticated heuristics for better solutions. Furthermore,
our study can certainly be extended to deal with other practical
situations; for example, multiple depots, time windows and
multiple periods may be taken into account in the extended
problems.
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