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Abstract—Periodic vehicle routing problem with time windows
(PVRPTWs) is an important combinatorial optimization problem
that can be applied in different fields. It is essentially a
multiobjective optimization problem due to the problem nature.
In this paper, a typical multiobjective PVRPTW with five
objectives is first defined and new nonsymmetric real-world
multiobjective PVRPTW instances are generated. Then, a
hybrid multiobjective memetic algorithm is proposed for solving
multiobjective PVRPTW. In the proposed algorithm, a two-phase
strategy is devised to improve the comprehensive performance
in terms of the convergence and diversity. In this strategy, sev-
eral extreme solutions near an approximate Pareto front (PF) are
identified at Phase I, and then the approximate PF is extended
at Phase II. The proposed algorithm is extensively tested on both
real-world instances and traditional instances. Experiment results
show that the proposed algorithm outperforms two representative
competitor algorithms on most of the instances. The effectiveness
of the two-phase strategy is also confirmed.

Index Terms—Extreme solutions (ESs), hybrid local search,
multiobjective optimization, periodic vehicle routing problem
with time windows (PVRPTWs), two-phase strategy.

I. INTRODUCTION

VEHICLE routing problem (VRP) is one of the most
studied combinatorial optimization problems since it

can be widely applied in different fields, including trans-
portation, supply chain management, production planning,
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telecommunications, and others [1], [2]. VRPs include many
variants with different constraints [3]–[5]. Periodic VRP
(PVRP) can be regarded as a multiday VRP with pattern [6].
In this paper, a PVRP with time windows (PVRPTWs) is
studied. PVRPTW also has many practical applications, includ-
ing courier services, elevator maintenance and repair, vending
machine replenishment, the collection of waste and the delivery
of interlibrary loan material, and so on [6]. For new-developing
applications, PVRPTW can model the last-mile deliveries of
unmanned aerial vehicles or drones [7]. The wide applicability
and versatility of PVRPTW has led to a vast body of literature
addressing both novel applications and solution methods [8].

PVRPTW is NP-hard. Therefore, it is hardly possible
to solve large size instances by exact methodologies. Most
researchers have focused on metaheuristic. In previous studies,
different methods [9]–[19] were proposed for single-objective
PVRPTW, where the total travel distance is considered as
a sole objective. In real-world situations, more objectives
(sources of cost), including the number of vehicles, total
travel distance, makespan, total waiting time, and total delay
time, should be considered in PVRPTW [20]–[22]. Due to
the constraints and the problem structure of PVRPTW, the
optimization of one objective may lead to the deteriora-
tion of other objectives. Hence, PVRPTW is essentially a
multiobjective optimization problem (MOP) [4], [20], [23].
To the best of our knowledge, no previous work utilizes
the multiobjective optimization methods for PVRPTW, which
motivates this paper.

This paper first defines a multiobjective PVRPTW
(MOPVRPTW) with five objectives. These objectives are the
number of vehicles, total travel distance, makespan, total wait-
ing time, and total delay time. Then real-world instances are
generated based on the data from a distribution company in
Tenerife, Spain [23]. Finally, a hybrid multiobjective memetic
algorithm (HMOMA) is proposed to solve MOPVRPTW.
HMOMA consists of two phases to improve the convergence
and the diversity, respectively. In Phase I, several extreme
solutions (ESs) are generated by extremized crowded NSGA-
II (EC-NSGA-II) [24]. In Phase II, the approximate Pareto
front (PF) is extended by SPEA2 with shift-based density
estimation (SPEA2+SDE) [25]. The parallel cell coordinate
system (PCCS) [26] is adopted to manage the diversity of the
approximate PF.

The contributions of this paper are threefold: 1) formulating
a five-objective version of MOPVRPTW and introducing a set
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TABLE I
OBJECTIVES

of realistic benchmark instances; 2) proposing an HMOMA to
solve MOPVRPTW; and 3) designing a hybrid neighborhood
structure for MOPVRPTW.

The remaining sections are organized as follows. Section II
presents the formulation of MOPVRPTW, benchmark
instances, and background. Section III introduces the proposed
algorithm, HMOMA. Section IV presents the experimental
results and Section V gives the conclusion.

II. FORMULATION, INSTANCE, AND BACKGROUND

A. MOPVRPTW Formulation

In MOPVRPTW, a group of customers are to be serviced
by vehicles within their given time windows during the plan-
ning horizon. Each vehicle has a maximum capacity and each
customer has a demand of goods, a service time, a fixed num-
ber of visiting time, and a given pattern set (containing several
allowable combinations of visiting days). Soft time windows
are considered here [21], [27]–[29]. Hence, each customer has
a maximum delay time. Five objectives (f1–f5) are considered
in this paper [20]–[22], and shown in Table I.

Formally, MOPVRPTW can be defined as an optimization
problem in a complete and directed graph, G = (V, E), given
as follows.

1) Customer Set V = {v0, v1, . . . , vn}: Vertex v0 represents
the depot, and each vertex in Vc = V − {v0} represents
a customer.

2) Edge Set E = {(vi, vj) : vi, vj ∈ V, i �= j}: Each edge
(vi, vj) has an associated travel time and travel distance.

To serve all customers in V , the following constraints
(C1–C4) should be satisfied.

1) Pattern Constraint (C1): The customers’ patterns should
belong to their given pattern set.

2) Vehicle Capacity Constraint (C2): The total demand of
each route should not exceed the vehicle capacity.

3) Maximum Delay Time Constraint (C3): Delay time
should not exceed the maximum allowed delay time.

4) Return Time Constraint (C4): Vehicles should return to
the depot before the closing time.

The solution of MOPVRPTW is characterized by patterns
and routes. It can be encoded into two chromosomes.

1) The pattern chromosome P = {p1, . . . , pn} represents
pattern-to-customer assignments, where pi corresponds
to ith customer’s pattern for T days in the planning hori-
zon. P is a binary vector of n × T bits. Staring from
the left, the ith sequence of T bits encodes the pattern
assigned to the corresponding customer i.

2) The route chromosome R = {R1, . . . , Rd, . . . , RT }
encodes the routes designed for T days based on P ,

(a)

(b)

(c)

Fig. 1. Solution and its representation. (a) Solution with sequences of
customers served on three days. (b) Pattern chromosome P . (c) Route
chromosome R.

where Rd = {r1,d, . . . , rj,d, . . . , rJ,d} contains all routes
on the dth day, and rj,d is the jth route on dth day.

An example solution is given in Fig. 1(a) for the problem
with eight customers on three days. Fig. 1(b) illustrates the
pattern chromosome of the solution, where the first customer
is serviced according to pattern p1 = 110, i.e., on day 1 and 2
(days are numbered from left to right). Fig. 1(c) shows the
corresponding route chromosome. For each day in the planning
horizon, a group of routes services customers on that day. A
route is an ordered sequence of customers on one day.

The goal of MOPVRPTW is to find solutions with route
set R and pattern P to serve all customers in V for T days,
satisfying the constraints (C1–C4) and minimizing the five
objectives (f1–f5) defined as follows.

1) Number of Vehicles (f1):

f1 =
T∑

d=1

|Rd| (1)

where |Rd| is the number of routes in dth day.
2) Total Travel Distance (f2):

f2 =
T∑

d=1

|Rd |∑

j=1

Distj,d (2)

where Distj,d means the travel distance of rj,d.
3) Makespan (f3):

f3 = max
{
Tj,d|j = 1 . . .|Rd|, d = 1 . . . T

}
(3)

where Tj,d denotes the travel time of rj,d. Tj,d is the sum
of waiting time, service time, and travel time.
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4) Total waiting time (f4):

f4 =
T∑

d=1

|Rd |∑

j=1

Wj,d (4)

where Wj,d represents the waiting time of rj,d. Arriving
at a customer earlier than its time windows will cause
waiting time. Hence, Wj,d can be calculated as the sum
of waiting time of all customers in rj,d.

5) Total Delay Time (f5):

f5 =
T∑

d=1

|Rd |∑

j=1

Dtj,d (5)

where Dtj,d denotes the delay time of rj,d. Arriving at
a customer later than its time windows will cause delay
time. Hence, Dtj,d can be calculated as the sum of delay
time of all customers in rj,d.

B. Real-World Instances

Traditional PVRPTW instances are symmetric and show
weak correlations between different objectives, and thus are
not suitable for conducting a proper multiobjective study [23].
Hence, new nonsymmetric MOPVRPTW instances are needed.
Since real-world MOVRPTW instances show strong correla-
tion between objectives [23], we derive new MOPVRPTW
instances from the real-world MOVRPTW instances.

Specifically, real-world MOPVRPTW instances are gener-
ated from MOVRPTW instances provided in [23] according to
the generation method described in [15]–[17]. The generation
procedure is described as follows. First, the planning hori-
zon is extended to four, six, and eight days, denoted as d4,
d6, and d8, respectively. Then, the number of visiting time of
customers is assigned. For d4, the customers need to be visited
either 1, 2, or 4 times, for d6, either 1, 2, 3, or 6 times, and for
d8, either 1, 2, 3, 4, or 8 times. Finally, the possible visiting
patterns are evenly assigned to the customers at random.

C. Background of Multiobjective Optimization

An MOP can be stated as follows:

Minimize F(x) = {f1(x), . . . , fm(x)} (6)

where x = {x1, x2, . . . , xD} ∈ � is a decision vector in the
D-dimension decision space and F = {f1, f2, . . . , fM} ∈ RM is
an image in the M-dimension objective space. There are some
concepts of MOP as follows.

Definition 1 (Pareto Domination): Let x, y ∈ �, y is said
to Pareto dominate x iff ∀i ∈ {1, . . . , m} fi(y) ≤ fi(x) and
∃j ∈ {1, . . . , m} fj(y) < fj(x), denoted as y ≺ x.

Definition 2 (Pareto Optimal): A solution x′ is Pareto
optimal if there is no solution x ∈ � such that x ≺ x′.

Definition 3 (Pareto Set): The set of the whole Pareto
optimal solutions is called Pareto set (PS), denoted as PS =
{x ∈ � ∧ x is Parto optimal}.

Definition 4 (Pareto Front): The image set of PS is called
Pareto front (PF), denoted as PF = {F(x) ∧ x ∈ PS}.

Since the objectives in (6) often conflict with each other,
there exists no single solution, which minimizes all objectives

simultaneously. Hence, the goal of an algorithm for an MOP
is to seek a representative set of Pareto optimal solutions that
perform well in terms of convergence and diversity.

Recently, a number of metaheuristics have been proposed to
solve MOPs. Multiobjective evolutionary algorithms (MOEAs)
strive to obtain a well-distributed approximated of the true
PF [30]. Popular MOEAs mainly contain nondominated sort-
ing genetic algorithm (NSGA-II) [31], strength Pareto evo-
lutionary Algorithm 2 (SPEA2) [32], and MOEA based
on decomposition (MOEA/D) [33]. Besides, local search-
based algorithms are promising alternative approaches to
solve multiobjective combinational optimization problems,
such as multidirectional local search [34]. The merit of local
search-based algorithm is that problem-specific knowledge
can be directly used to guide the search toward PF. Local
search is usually embedded within MOEAs, composing a
new kind of algorithms called multiobjective memetic algo-
rithm [35]. This kind of algorithms achieves good performance
on multiobjective combinatorial optimization.

MOPs with more than three objectives are named as many-
objective optimization problems. There are a number of
challenges that must be addressed for solving many-objective
optimization problems, like the dominance resistance phe-
nomenon, the limited solution set size, the visualization of
solution set in the objective space, and so on [36]. These
challenges highlight the need for new algorithms that can
efficiently handle the growing number of objectives.

III. HMOMA FOR MOPVRPTW

A. Motivation and Overview of HMOMA

An MOEA concentrates on achieving two basic and conflict-
ing goals, convergence and diversity [37]. Such conflict has a
detrimental impact on the optimization process of algorithm
and can be aggravated in many-objective optimization [38].
Thus it is necessary to handle the balance of convergence
and diversity during the process of an MOEA [37], [39], [40].
However, the performance in terms of convergence and
diversity of a many-objective optimization algorithm is very
difficult to reconcile, and it is still far from meeting the
requirements of real-world many-objective optimization prob-
lems [36]. Most of existing MOEAs focus on convergence and
diversity simultaneously at each generation, however, most of
the efforts on diversity and uniformity spent at early genera-
tions in existing MOEAs are not very meaningful [37], [39].

In order to handle the balance well, a two-phase HMOMA,
as shown in Fig. 2, is proposed to solve MOPVRPTW.
In the proposed two-phase strategy, the convergence and
diversity are separately emphasized at different phases by
EC-NSGA-II [24] and a many-objective optimization algo-
rithm, respectively. Specifically, several ESs near an approx-
imate PF of MOPVRPTW are identified at Phase I by using
EC-NSGA-II [24]. These ESs are well-converged and widely
spreaded solutions of MOPVRPTW (not necessary to be the
whole approximate PF), and form a coarse PF. The approxi-
mate PF of MOPVRPTW is then extended at Phase II from
those ESs obtained at Phase I by using a many-objective
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(a) (b)

Fig. 2. (a) HMOMA framework. (b) Solution distributions of two phases.

optimization algorithm, SPEA2+SDE [25]. Then more solu-
tions with a good diversity and uniformity can be extended at
Phase II. Thus, the convergence and diversity of an approxi-
mate PF can be emphasized in different phases, respectively, in
HMOMA. The proposed two-phase strategy is a novel method
to improve the comprehensive performance in terms of the
convergence and diversity.

Note that EC-NSGA-II is used at Phase I to form a coarse
PF with good convergence and spread, while SPEA2+SDE
is used at Phase II to refine whole approximate PF with
good diversity and uniformity. That is, at the very begin-
ning, search is only conducted along ESs to achieve fast
convergence, followed by the many-objective optimization
algorithm for approximating a more complete PF. Thus,
EC-NSGA-II and SPEA2+SDE cannot be exchanged between
two phases since they play different roles at different
phases.

B. Phase I: EC-NSGA-II With Local Search for Generating
Extreme Solutions

The goal of Phase I is to generate ESs by EC-NSGA-II [24].
Compared with NSGA-II, EC-NSGA-II alters crowding dis-
tance to emphasize objective-wise best and worse Pareto
solutions, i.e., ESs. The procedure of Phase I is shown in
Algorithm 1.

In EC-NSGA-II, the extremized crowding distance is
proposed to emphasize the worse and the best solutions on
every objective. In the extremized crowding distance, solutions
on a particular front are first sorted based on each objec-
tive. A solution closer to either extreme objective (minimum
or maximum objective values) gets a higher rank compared
to that of an intermediate solution. Hence, the two ESs for
each objective get a rank equal to Ns (number of solutions
in the front), and the solutions next to these ESs get the
rank Ns − 1 and so on. Furthermore, Fig. 3(a) shows extrem-
ized crowding distance calculation. For a solution, the ranks
are assigned on each objective and the maximum value of
assigned ranks is declared as extremized crowding distance,
shown within brackets in Fig. 3(a). Fig. 3(b) shows an example
of extremized crowding distance in a three-objective problem.
The extremized distance will not only emphasize the ESs
A, B, C, and D, but also solutions on edges AB and AD
(respectively, having the smallest f1 and f2 values) and solu-
tions near them. This approach can effectively find out the ESs

Algorithm 1: Phase I: EC-NSGA-II + Local Search
Input: population size (NI ) and max generation (GI )
Output: population PI and archive A

1 A = ∅ ;
2 randomly generate an initial population PI of NI individuals;
3 generate two types of weight vectors �1, . . . , �2M ;
4 for gen = 1 to GI do
5 Q = ∅;
6 while |Q| < |PI | do
7 choose p, q from PI using binary tournament;
8 x1 = PatternCr(p, q); /* Pattern crossover */
9 x2 = RouteCr(p, q); /* Route crossover */

10 Q = Q
⋃{x1, x2};

11 end while
12 Q′ = ∅;
13 while |Q| > 0 do
14 for i = 1 to 2M do
15 x = argminx∈Q g(x|�i);
16 Q = Q − {x};
17 x′ = LS�i (x); /* Local search */
18 update A with x′;
19 Q′ = Q′ ⋃{x′};
20 end for
21 end while
22 PI = environmental selection from PI

⋃
Q′ by fast nondominated

sorting and extremized crowding distance;
23 end for
24 return PI and A;

(a) (b)

Fig. 3. Extremized crowding distance. (a) Extremized crowding distance
calculation. (b) Extremized crowding distance in a three-objective problem.

and approximately draw the contour of PF in many-objective
problem.

However, it is hard to converge to ESs by genetic
operator of EC-NSGA-II since MOPVRPTW is a com-
plicated combinational optimization problem. Hence, local
search is adopted to speed up convergence. Here, the
weighted sum approach [35] is used to transfer MOPVRPTW
into a single-objective optimization problem during local
search procedure. The weighted sum function is defined as
follows:

min g
(
x|�i) =

M∑

k=1

λi
kfk(x) (7)

where �i = (λi
1, . . . , λ

i
M) is the weight vector. Since five

objectives are of different scales, normalization is required.
Two types of weight vectors are designed to cooperate with

EC-NSGA-II for converging to ESs. One is to optimize one
objective while the other is to deteriorate one objective. The
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weight vectors are listed as follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1

...

�M

�M+1

...

�2M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ε . . . ε

ε 1 . . . ε
...

...
. . .

...

ε ε . . . 1
ε 1−ε

M−1 . . . 1−ε
M−1

1−ε
M−1 ε . . . 1−ε

M−1
...

...
. . .

...
1−ε
M−1

1−ε
M−1 . . . ε

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where ε = 1e − 6, approaching to zero. The details of local
search would be introduced later.

C. Phase II: SPEA2 + SDE With Local Search for
Extending to Approximate Pareto Front

The goal of Phase II is to obtain an approximate PF as
accurately and uniformly as possible by SPEA2+SDE [25].
The procedure of Phase II is presented in Algorithm 2.

Experiments in [25] show that SPEA2+SDE is very
competitive against other state-of-the-art MOEAs for many-
objective optimization problems. In SPEA2, the fitness of
solution is the sum of its strength raw fitness plus a den-
sity estimation [35]. Since MOPVRPTW is a many-objective
problem, Pareto dominance relation-based primary selection
criterion cannot effectively distinguish solutions. SDE [25]
can maintain the distribution characteristic of solutions in the
population and reflect the convergence of different solutions.
SDE assigns high density to the poorly converged solutions by
shifting the location of solutions. Therefore, these poorly con-
verged solutions can be filtered by the density-based second
selection criterion [41].

Local search is also embedded at Phase II. Since the goal
of Phase II is to obtain an approximate PF, the weight vec-
tors should be uniformly distributed, which is different from
Phase I.

D. Solution Initialization

In Phase I, a solution is generated as follows. Randomly
select a pattern from a given pattern set for each customer
c ∈ Vc to construct P and then construct R based on
assigned customers on each day. For constructing routes on
each day, customers are first sorted in increasing order of
the angle they make with the depot, attaining a sequence
of customers 1, . . . , dn, where dn is the number of cus-
tomers in dth day. Then, a customer j is chosen randomly
and the sequence 1, . . . , dn is adjusted to the sequence
j, j + 1, . . . , dn, 1, . . . , j − 1. Finally, we make an empty route
and customers are inserted into the route with the first feasi-
ble position sequentially. If a customer cannot be inserted into
any existing route, a new route is created. This step is repeated
until all customers are inserted.

The initial population of Phase II is the population in the
last generation of Phase I.

Algorithm 2: Phase II: SPEA2 + SDE + Local Search
Input: population size (NII) and max generation (GII)
Output: archive A

1 PII = PI ;
2 generate uniformly distributed weight vectors

�1, . . . , �W ;
3 for gen = 1 to GII do
4 evaluate the fitness of individuals in the population

PII ;
5 Q = ∅;
6 while |Q| < |PII | do
7 choose p, q from PII using binary tournament;
8 x1 = PatternCr(p, q); /* Pattern

crossover */
9 x2 = RouteCr(p, q); /* Route crossover

*/
10 randomly choose �i,�j from weight vectors;
11 x1

′ = LS�i(x1); /* Local search */
12 x2

′ = LS�j(x2);
13 update A with x1

′, x2
′;

14 Q = Q
⋃{x1

′, x2
′};

15 end while
16 PII = environmental selection from PII

⋃
Q by

SPEA2+SDE;
17 end for
18 return A;

E. Crossover Operators

Based on the solution representation, two crossover oper-
ators are designed, which are pattern crossover operator
(PatternCr) and route crossover operator (RouteCr). PatternCr
aims at exploring different visit-day assignment while RouteCr
combines existing route from different days.

PatternCr follows pattern-first-route-second scheme.
Patterns for each customer are randomly selected from
parents and then routes are constructed as in initialization for
exploration.

RouteCr follows route-first-pattern-second scheme. Routes
of children are randomly selected from their parents for each
day and then the customers with infeasible pattern are repaired.
For each infeasible customer, it is removed from routes on each
day. Then, each pattern in the given pattern set is tried and
customer is inserted into the best position based on weighted
sum function. Finally, the best solution is saved.

PatternCr aims at exploring different visit-day assignments,
which is the crossover operator for exploration. While RouteCr
aims at combining existing routes from different days, which
is the crossover operator for exploitation. Applied to the
same pair of parents and generating two offspring, the for-
mer crossover creates new visit-day assignments, sometimes
destroying useful information contained in the parents, while
the latter crossover helps intensify the search by preserving
routes or route components in the parents. These two crossover
operators cooperate to balance exploration and exploitation,
and thus to improve the search efficiency of the algorithm [19].
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F. Archive Updating Scheme

An archive is used to collect nondominated solutions. As
more and more nondominated solutions will be found during
the search process, it is necessary to control the size of the
archive. In this paper, PCCS [26] is used to estimate the den-
sity of nondominated solutions. The solution with the largest
density will be removed when the size of archive exceeds its
upper bound.

In PCCS, each solution xi in the archive is assigned an
identification array Bi = {Bi,1, . . . , Bi,M}, that is,

Bi,m =
⌈
|A| · fm(xi) − f min

m

f max
m − f min

m

⌉
(9)

where f max
m is the maximum value on mth objective in the

archive and f min
m is the minimum value. Specially, Bi,m is set

to 1 if f max
m = f min

m .
The distance between two identification arrays is the sum of

differences of cell coordinate over all objectives, called paral-
lel cell distance (PCD). The PCD between two nondominated
solutions xi and xj, PCD(xi, xj), can be calculated as

PCD
(
xi, xj

) =
⎧
⎨

⎩

0.5, if ∀m Bi,m = Bj,m
M∑

m=1

∣∣Bi,m − Bj,m
∣∣, otherwise.

(10)

With the PCD between each pair of solutions, the density of
solution xi can be defined as

Density(xi) =
|A|∑

j=1,j�=i

1

PCD
(
xi, xj

)2
. (11)

G. Local Search

Local search can effectively speed up the convergence of
algorithm. Single neighborhood operator is easy to trap in local
optima, while multiple neighborhood operators have more pos-
sibilities to escape from local optima. Therefore, multiple
neighborhood operators are adopted and stored in the neigh-
borhood pool, that is, NPool = {N1, N2, . . . , Nn}, where Ni
represents the ith neighborhood operator. Specially, objective
f1 is the number of vehicles and it is difficult to reduce the
number of vehicles by using regular neighborhood operators.
Therefore, two well-designed neighborhood operators, LSR1
and LSP1, are applied to optimize objective f1. Algorithm 3
shows local search procedure, with I depths on weight vector
�i = (λi

1, . . . , λ
i
M).

H. Neighborhood Operators

Neighborhood operators can be divided into inter-route
operators and intraroute operators, as shown in Fig. 4.
All neighborhood operators involve two basic functions:
selectRoute and bestPosition. Function selectRoute randomly
selects a route. Note that, the route with the longest trave time
is selected when the weight vector is only to optimize objec-
tive f3. Function bestPosition defines the best position when
inserting a customer based on weighted sum function. The
acceptance criterion is the best improvement strategy. Since
PVRPTW involves T days, the neighborhood operator is used

Algorithm 3: Local Search

Input: The weight vector �i, solution x and archive A
Output: Solution x

1 if λi
1 == 1 then
/* Local search for objective 1 */

2 x′ = LSR1(x);
3 update A with x′;
4 x′′ = LSP1(x′);
5 update A with x′′;
6 x = x′′;
7 else

/* Local search for other situations

*/
8 for depth = 1 to I do
9 randomly choose Nj from NPool;

10 x′ =Nj(x,�i);
11 update A with x′;
12 if g(x′|�i) < g(x|�i) then
13 x = x′
14 end if
15 end for
16 end if
17 return x;

Fig. 4. Neighborhood operators.

for each day. If there are no improvement on one day, the
operator will be undone in that day.

N1 randomly removes a customer from a selected route,
and then reinserts it into the best position among all possible
positions of all possible routes.

N2 removes a random number of customers from a selected
route. Then, these customers are reinserted into their best posi-
tions, respectively. As is shown in Fig. 5. Two customers,
customer 2 and customer 3, are selected and then reinserted
in Route 2 and Route 3 (a new route), respectively.

N3 exchanges a sequence of customers between two routes.
A sequence of customers in one route, including all cus-
tomers after a selected customer, is exchanged with all possible
sequences on the other route. More details about N3 can be
referred in [21] and [29].

N4 selects a random number of customers from the selected
route, and then changes their patterns to new patterns randomly
if there is any. The customers are removed and reinserted into
their best positions based on new pattern.

N5 moves a customer segment from one selected route to
another one. In Fig. 6, segment 〈2, 8〉 of Route 1 is moved to
Route 2.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: HMOMA FOR MULTIOBJECTIVE PVRPTW 7

(a)

(b)

Fig. 5. N2 operator. (a) Initial route. (b) Route after N2.

(a)

(b)

Fig. 6. N5 operator. (a) Initial route. (b) Route after N5.

(a)

(b)

Fig. 7. N6 operator. (a) Initial route. (b) Route after N6.

N6 exchanges a customer segment from the selected two
routes. In Fig. 7, segment 〈2, 8〉 and segment 〈1〉 are exchanged
between Route 1 and Route 2.

N7 removes a customer segment and inserts into its best
position in the same route.

N8 swaps two customers in the selected route.
N9 selects a segment of customers and reverses it.
The neighborhood operators above cannot directly reduce

the number of vehicles. Hence, two specific neighborhood
operators, LSR1 and LSP1, are designed to optimize objec-
tive f1, based on route and pattern, respectively. LSR1
changes the customers’ locations to reduce the number of
vehicles in one day while LSP1 changes the patterns of
customers.

LSR1 selects the route which has the fewest customers first.
All customers in the selected route are tried to insert into other
routes with the first feasible location. If one vehicle is success-
fully reduced, LSR1 proceeds to reduce one more vehicle. LSR1
ends when a customer cannot be properly inserted into other
routes.

LSP1 also selects the route which has the fewest customers
first. The patterns of all customers in the selected route are
changed. The customers are deleted and inserted into the first
feasible position.

I. Feasibility Checking

During search process, only feasible solutions are consid-
ered. Pattern constraint and capacity constraint are easy to

check in time complexity of O(T ) and O(1), respectively. For
time constraint, the slack time is proposed in [42] and [43].
The slack time Sc(i,j,d) indicates the maximum time allowed
to be late for the ith customer in jth route on dth day, which
can be denoted as follows:

Sc(i,j,d) =

⎧
⎪⎪⎨

⎪⎪⎩

lc(i,j,d) − ac(i,j,d) i = Nk+1
d = 1, . . . ,T

min(lc(i,j,d) + md − ac(i,j,d), i = Nk, . . . , 1
wc(i,j,d) + Sc(i+1,j,d)) d = 1, . . . , T .

(12)

When a customer is inserted between (i − 1)th and ith
vertices in jth route on dth day, the insertion is feasible if
increment in ac(i,j,d) does not exceed Sc(i,j,d). Hence, the time
complexity can be reduced from O(N) to O(1). Furthermore,
the route does not need to be reevaluated until it is changed.

J. Complexity Analysis

The running time of proposed algorithm mainly depends on
local search. Local search consists of optimizing procedure
and updating archive both with I depths for T days. Among
all neighborhood operators, the maximum complexity one is
N6, with a complexity of O(T · I · N4). The complexity of
updating archive is O(T · I · M · K2), where K is the upper
bound of archive. Hence, the complexity of local search is
max(O(T · I · N4), O(T · I · M · K2)).

IV. EXPERIMENTAL RESULTS

A. Parameter Settings

HMOMA is implemented in C++. The weight vectors
of Phase II are uniformly distributed. Hence, the number of
weight vectors W = CM−1

H+M−1 is controlled by a parameter
H [33]. Since M is 5 and H is set to 8, W = 495. The capac-
ity of the archive is set to 200. In local search, the depth I of
local search is set to 10.

Because the instances are of difference scale, the stopping
criterion should be different [19]. All instances can be classi-
fied into three cases: 1) small instances; 2) median instances;
and 3) large instances based on the number of customers,
whose customers’ number is in (0,100), [100, 200), and [200,
288], respectively. For three cases, the population size is set
to 70, 100, and 100, respectively, and the maximum num-
ber of generations is set to 500, 1500, and 2000, respectively.
The population sizes of two phases are the same, that is
NI = NII . Besides, there is a parameter, GI/GII , to determine
the ratio of computing resources of two phases in HMOMA.
GI/GII = 1/3 is set in this paper.

B. Benchmark Instances

The main aim of this paper is to propose a new algo-
rithm framework, HMOMA, for the real-world five-objective
MOPVRPTW instances generated in this paper. As pointed out
in [23], traditional instances are not suitable for conducting a
proper multiobjective study. Real-world instances simulate the
conflicting nature of real life scenario and are more suitable
for testing multiobjective optimization algorithms. In order to
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test the stability and robustness of HMOMA across data sets,
it is also tested on the traditional instances.

1) Real-World Instances: There are 45 real-world
MOVRPTW instances [23] with three sizes of customers,
three types of the vehicle capacities and five time window
profiles. By combining each instance with three kinds of the
planning horizon (four, six, and eight days), we can generate
135 real-world MOPVRPTW instances. Each instance is
named as c-q-t-d, where c ∈ {50, 150, 250} indicates customer
size, q ∈ {0, 1, 2} represents three kinds (large, median, and
small) of vehicle capacities, t ∈ {0, 1, 2, 3, 4} represents five
types of time windows, and d ∈ {4, 6, 8} indicates the visit
days. In this paper, a maximum delay of 30 min is allowed
for each customer [23].

2) Traditional Instances: The dataset provided by Cordeau
et al. [9] includes 20 instances, named as pr01–pr20. The max-
imum delay allowed for each customer i is set to 30% of the
length of its time windows [44].

C. Competitor Algorithms

Since there is no existing algorithm for solving
MOPVRPTW directly, we adapt two other algorithms
as the competitor algorithms to investigate the performance
of the proposed HMOMA, which are described as follows.

1) MOLS: MOLS is shown to be much competitive in solv-
ing variants of multiobjective VRP [21], [29]. When MOLS is
adapted for MOPVRPTW, local search proposed in this paper
are also applied to optimize different objectives. The same
archive strategy, PCCS, is adopted in MOLS. Hence, MOLS
can be seen as an existing state-of-the-art algorithm for com-
parison. The stop criterion of MOLS is the number of local
search, where MOLS and HMOMA have the same number of
local search for each instance.

2) SPEA2+SDE: When SPEA2+SDE is adapted for
MOPVRPTW, the whole procedure is almost the same as
the Phase II of HMOMA, except that the initial popu-
lation of SPEA2+SDE is randomly generated. Comparing
SPEA2+SDE with HMOMA, the effectiveness of two-phase
strategy can be studied. For SPEA2+SDE, the population size
and the maximum number of generations are set to the same
values as HMOMA.

As a matter of fact, MOLS obtains better results
than MOEA/D and NSGA-II for multiobjective VRP
in [21] and [29]. SPEA2+SDE obtains better results than
other state-of-the-art MOEAs including MOEA/D for many-
objective optimization problems in [25]. Thus, MOLS and
SPEA2+SDE can be seen as representatives of state-of-the-art
algorithms for comparison.

D. Performance Indicators and Statistics

1) Performance Indicators: The convergence and diversity
are the important standards for MOP algorithms. Two popular
unary equality indicators, inverted generational distance (IGD)
and hypervolume (HV), are used as performance indicators to
evaluate them. A smaller value of IGD and a larger value of
HV can be considered as a better set of solutions approximat-
ing the true PF from the convergence and diversity viewpoints.

From the analysis of multiple runs, the unary quality indica-
tors of each individual run are computed, and then the mean
and the standard deviation of IGD and HV are reported. Since
the true PF of MOPVRPTW is unknown, the final nondomi-
nated solutions obtained by all the algorithms in 30 runs are
regarded as the true PF.

In order to further infer whether one nondominated set
is actually better than another, a binary epsilon indicator,
Iε+ [45], is used. Assume that Iε+ for the nondominated sets
of A and B are denoted as IA = Iε+(A, B) and IB = Iε+(B, A),
respectively. A pair of numbers (IA < 0 and IB > 0) indicates
that A is strictly better than B. A pair of numbers (IA > 0 and
IB > 0) indicates that A and B are incomparable. However,
if IA < IB, A could be interpreted to be better than B in a
weaker sense [46]. To summarize the results of the multiple
runs, Iε+ for each pair of runs is computed in turn, and then
the median and interquartile range (IQR) values of IA and IB

are reported. The median and IQR, instead of the mean and
standard deviation, are adopted [46].

2) Statistics by Wilcoxon and Friedman Test [47]–[49]: For
IGD and HV, the Wilcoxon rank-sum test at 5% significance
level is conducted to show the significant differences between
the two algorithms on a single problem. The result of the test
is also summarized as w/t/l, which means that HMOMA is
significantly better than, equal to, and worse than the cor-
responding competitor on w, t, and l problems, respectively.
The best mean values among HMOMA and its competitors
are highlighted in boldface. To identify differences between a
pair of algorithms on all problems, the multiproblem Wilcoxon
signed-rank test is carried out. The Friedman test is used to
obtain the rankings of multiple algorithms on all problems.

For Iε+, the Wilcoxon rank-sum test at 5% significance
level is also conducted to decide whether the distribution of
IA values is significantly different from the distribution of IB

values. The result of the test is also summarized as w/t/l. To
identify differences between IA and IB on all problems, the
multiproblem Wilcoxon signed-rank test is also carried out.

Due to limited space, numerical values of performance
indicators (HV, IGD, and Iε+) over 30 independent runs
are presented in Tables S1–S4 of the supplementary mate-
rial. Statistics summarizing those numerical values, including
w/t/l and ranking values, are shown in Tables II–V in this
paper.

E. Performance on Real-World Instances

Table II provides the statistics summarizing all performance
comparisons. In terms of IGD, HMOMA significantly out-
performs MOLS in 73 instances and is outperformed by
MOLS in 41 instances. HMOMA significantly outperforms
SPEA2+SDE in 85 instances and is outperformed by
SPEA2+SDE in 1 instances. In terms of HV, HMOMA
significantly outperforms MOLS in 71 instances and is out-
performed by MOLS in 32 instances. HMOMA significantly
outperforms SPEA2+SDE in 74 instances and is outperformed
by SPEA2+SDE in 19 instances. In terms of Iε+, HMOMA
significantly outperforms MOLS in 66 instances and is out-
performed by MOLS in 40 instances. HMOMA significantly
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TABLE II
STATISTICS OF PERFORMANCE COMPARISONS OF HMOMA WITH MOLS

AND SPEA2+SDE ON REAL-WORLD INSTANCES

TABLE III
AVERAGE RANKING OF HMOMA, MOLS, AND SPEA2+SDE BY

FRIEDMAN TEST FOR REAL-WORLD INSTANCES ACCORDING TO

IGD AND HV

outperforms SPEA2+SDE in 94 instances and is outperformed
by SPEA2+SDE in 1 instances.

From the multiproblem Wilcoxon signed-rank test in
Table II, it is clear that HMOMA obtains higher R+ values
than R− values in all cases. It means that HMOMA is better
than the competitors for all problems.

The final rankings of all algorithms by the Friedman
test for all real-world instances are shown in Table III.
Overall, HMOMA gets the first rank, followed by MOLS and
SPEA2+SDE in terms of IGD and HV.

To visually demonstrate the performance of HMOMA, the
projection of the final nondominated solutions obtained by
three algorithms on a selected instance 150-2-1-6 in 30 runs at
the f1–f3 and f2–f4 (approximated PF is in blue while true PF
is in red) are shown in Fig. 8. It is very clear that HMOMA
is the best in terms of both convergence and diversity on
the selected problem, since the distribution of solutions in
HMOMA spreads much wider and is nearer to the final PF
than those in SPEA2+SDE and MOLS.

To further demonstrate the effectiveness of the two-phase
strategy, the online search behavior of the algorithm on the
selected instance 150-2-1-6 at f1–f3, and f2–f4 planes during
a run is analyzed. The population distributions of HMOMA
after initialization, Phase I, and Phase II are shown in Fig. 9.
For comparison, the population distributions of SPEA2+SDE
after corresponding generation are also shown in Fig. 9. In
Fig. 9(a), populations of HMOMA and SPEA2+SDE have
the same distributions at f1–f3 since the same initial popula-
tions are used. After Phase I, the distribution of solutions in
HMOMA spreads much wider than that in SPEA2+SDE, as
shown in Fig. 9(c). After Phase II, the distribution of solu-
tions in HMOMA spreads much wider and is nearer to the
final PF than that in SPEA2+SDE, as shown in Fig. 9(e). A
similar observation can also be made at f2–f4 plane, as shown
in Fig. 9(b), (d), and (f).

From the numeric and visual comparisons, we can conclude
that HMOMA performs better than the other two algo-
rithms in terms of both convergence and diversity. Comparing
SPEA2+SDE with HMOMA, the effectiveness of two-phase
strategy is also confirmed.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Plots of nondominated solutions of the instance 150-2-1-6 by all
the algorithms in the 30 runs. (a) SPEA2+SDE at f1–f3. (b) SPEA2+SDE
at f2–f4. (c) MOLS at f1–f3. (d) MOLS at f2–f4. (e) HMOMA at f1–f3.
(f) HMOMA at f2–f4.

F. Performance on Traditional Instances

Table IV provides the statistics summarizing all
performance comparisons. In terms of IGD, HMOMA
significantly outperforms MOLS in 20 instances (the whole
instances). HMOMA significantly outperforms SPEA2+SDE
in 11 instances and is outperformed by SPEA2+SDE in 2
instances. In terms of HV, HMOMA significantly outper-
forms MOLS in 18 instances and is not outperformed by
MOLS. HMOMA significantly outperforms SPEA2+SDE
in 5 instances and is outperformed by SPEA2+SDE in 7
instances. In terms of Iε+, HMOMA significantly outperforms
MOLS in 16 instances and is outperformed by MOLS in 1
instances. HMOMA significantly outperforms SPEA2+SDE
in 6 instances and is outperformed by SPEA2+SDE in 8
instances.

From the multiproblem Wilcoxon signed-rank test in
Table IV, HMOMA obtains higher R+ values than R− values
compared to MOLS. Compared to SPEA2+SDE, HMOMA
obtains higher R+ values than R− values in terms of IGD, but
obtains lower R+ values than R− values in terms of HV and
Iε+. Note that since p value is more than 0.2 in terms of HV
and Iε+, there is no significant difference between HMOMA
and SPEA2+SDE.

The final rankings of all algorithms by the Friedman test
for all traditional instances are shown in Table V. Overall,
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Plots of populations at different phases on instance 150-2-1-6 during a
run with the same initial populations. (a) Initial populations at f1–f3. (b) Initial
populations at f2–f4. (c) Populations after Phase I at f1–f3. (d) Populations
after Phase I at f2–f4. (e) Populations after Phase II at f1–f3. (f) Populations
after Phase II at f2–f4.

HMOMA gets the first rank, followed by SPEA2+SDE and
MOLS in terms of IGD. In terms of HV, SPEA2+SDE gets
the first rank, followed by HMOMA and MOLS.

To visually demonstrate the performance of HMOMA, the
projection of the final nondominated solutions obtained by
three algorithms on a selected instance pr09 in 30 runs at
f1–f3 and f2–f4 (approximated PF is in blue while true PF is
in red) are shown in Fig. 10. HMOMA is better than MOLS
in terms of both convergence and diversity on the selected
problem. HMOMA is a little better than SPEA2+SDE in terms
of diversity and convergence.

To further demonstrate the effectiveness of the two-phase
strategy, populations of HMOMA and SPEA2+SDE on the
selected instance pr09 at three different phases are also shown
and compared. In Fig. 11(a), solutions of two populations
have the same distributions at the f1–f3 since the same ini-
tial populations are adopted. After Phase I, the distribution
of solutions in HMOMA spreads a little wider than those in
SPEA2+SDE, as shown in Fig. 11(c). After Phase II, the dis-
tribution of solutions in HMOMA spreads much wider, but
is further away from final PF than those in SPEA2+SDE as
shown in Fig. 11(e). A similar observation can also be made
at f2–f4 plane, as shown in Fig. 11(b), (d), and (f). Since
traditional instances show weak correlation between different

TABLE IV
STATISTICS OF PERFORMANCE COMPARISONS OF HMOMA WITH MOLS

AND SPEA2+SDE ON TRADITIONAL INSTANCES

TABLE V
AVERAGE RANKING OF HMOMA, MOLS, AND SPEA2+SDE BY

FRIEDMAN TEST FOR TRADITIONAL INSTANCES ACCORDING TO

IGD AND HV

objectives, the distributions of the PF in traditional instances
are not so wide as those in real-world instances. HMOMA
takes a certain amount of computing resource to generating
ESs in Phase I to spread along PF, which gets little benefit
to search narrow PF of traditional instances. In the future, we
will develop adaptive resource allocation scheme for Phase
I in HMOMA according to the difficulty or characteristic of
MOPs to improve the stability and robustness of two-phase
strategy.

Note that HMOMA is obviously better than SPEA2+SDE
in terms of IGD, but is slightly worse in terms of HV. A
possible reason may be that the distribution of the reference
front (which was obtained by all nondominated solutions of
all algorithms over 30 runs) distorts the results of IGD since
IGD totally depends on the given reference points [50]. IGD is
calculated as the average distance from each reference point to
the nearest solution in the solution set, which can be viewed
as an approximate distance from the PF to the solution set
in the objective space. Thus, IGD totally depends on the
given reference points [50]. As shown in Fig. 10(c) and (d),
it is obvious that the distribution of solution set obtained
by SPEA2+SDE is different from the distribution of given
reference points (PF). Specifically, at bottom-right region of
Fig. 10(c), SPEA2+SDE obtains some solutions far from PF,
and it misses the top-left region of PF. Similarly, at top-right
region of Fig. 10(d), SPEA2+SDE obtains some solutions far
from PF, and it misses the bottom-right region of PF.

G. Summary and Discussion

1) Summary: Experiments show that HMOMA outper-
forms the competitor algorithms on real-world instances. The
effectiveness of the two-phase strategy is also confirmed.

On traditional instances, HMOMA performs better than
MOLS in terms of both convergence and diversity. HMOMA is
a little better than SPEA2+SDE in terms of diversity and con-
vergence. The superiority of HMOMA on traditional instances
is not so obvious as on real-world instances. Traditional
instances show weaker correlation between different objectives
than real-world instances do, and thus the distributions of PFs
in traditional instances are not so wide as those in real-world
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Plots of nondominated solutions of instance pr09 by all the algo-
rithms in the 30 runs. (a) MOLS at f1–f3. (b) MOLS at f2–f4. (c) SPEA2+SDE
at f1–f3. (d) SPEA2+SDE at f2–f4. (e) HMOMA at f1–f3. (f) HMOMA
at f2–f4.

instances. Although ESs can be identified at Phase I, it has lit-
tle benefit and wastes a certain amount of computing resource
comparing to SPEA2+SDE. Traditional instances are not suit-
able for conducting a proper multiobjective study, as pointed
out in [23]. Future researchers should test their algorithms on
the proposed real-world instances to show usefulness in real
life environment.

2) Effectiveness of PCCS: An advanced density estima-
tion, PCCS [26], is adopted for archive maintenance in this
paper. Unlike ε-dominance archive [29], PCCS has no addi-
tional parameter to be set and it is simpler. Crowding distance
may provide an incorrect estimation of an individual’s density
when the number of objectives is larger than two due to the
separate consideration of the neighbors on each objective [25].
The experimental results in [26] indicate that density estima-
tion by PCCS is more effective on uniformity and convergence
than that by adaptive grid and crowding distance.

Will the performance of HMOMA deteriorate if crowding
distance is used to remove extra archive members? HMOMA
with PCCS is compared with HMOMA with crowding dis-
tance, named HMOMA-CD, on 11 selected instances with
different configurations. Tables S5 and S6 in the supplemen-
tary material provide the comparison results. In terms of IGD,
HMOMA significantly outperforms HMOMA-CD in all 11

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Plots of populations at different phases on instance pr09 with the
same initial population (a) Initial populations at f1–f3. (b) Initial populations
on f2–f4. (c) Populations after Phase I on f1–f3. (d) Populations after Phase I
at f2–f4. (e) Populations after Phase II at f1–f3. (f) Populations after Phase II
at f2–f4.

instances. In terms of HV, HMOMA significantly outper-
forms HMOMA-CD in 10 instances and is not outperformed
by HMOMA-CD. In terms of Iε+, HMOMA significantly
outperforms HMOMA-CD in 9 instances and is not outper-
formed by HMOMA-CD. Thus, the performance of HMOMA
deteriorates if crowding distance is used instead of PCCS.

3) Effectiveness of Multiple Neighborhoods: The bene-
fits of using multiple neighborhoods for complex (rich)
VRPs [13], [15], [19], [51]–[53] and other complex combi-
natorial optimization problems [54]–[56] are widely studied
and well established. Different structural neighborhood meth-
ods are used in multiple neighborhood scheme to broaden
the exploration of the search space. Thus, multiple neighbor-
hood scheme can overcome the myopic behavior and local
minima problem of an approach that uses only one neigh-
borhood. Further, with an arsenal of different neighborhoods
implementing different types of perturbations, multiple neigh-
borhood scheme is able to adapt to different problem types or
different instances of a problem by flexible combination [51].

Will the performance of HMOMA deteriorate if only one
neighborhood is used? HMOMA with multiple neighborhoods
is compared with HMOMA with only one neighborhood N8,
named HMOMA-N8, on 11 selected instances with differ-
ent configurations. Neighborhood N8 is selected since it is
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a mostly used neighborhood operator for VRPs [57]. Tables
S5 and S6 in the supplementary material provide the com-
parison results. For all performance indicators (IGD, HV,
and Iε+), HMOMA significantly outperforms HMOMA-N8
in all 11 instances. Obviously, the performance of HMOMA
deteriorates greatly if only one neighborhood is used.

H. Further Discussion About General Two-Phase Framework

In our previous study [58], a similar two-phase (stage)
framework, called TS-MOEA, is proposed for five-objective
multidepot VRP with time windows. In TS-MOEA, EC-
NSGA-II with local search is adopted at Phase I for
generating ESs, which is similar to HMOMA. At Phase
II, MOEA/D and SPEA2+SDE are used for extending to
approximate PF in TS-MOEA and HMOMA, respectively.
MOEA/D and SPEA2+SDE are representatives of decom-
position and Pareto-based algorithms for many-objective
optimization, respectively. Simulation results of TS-MOEA
and HMOMA show that two-phase strategy can improve the
performance of both decomposition and Pareto-based algo-
rithms, MOEA/D and SPEA2+SDE. Thus, the proposed two-
phase framework can be seen as a more general framework,
where any existing many-objective optimization algorithm,
in principle, can be freely and easily introduced into Phase
II. In the future, more existing many-objective optimization
algorithms [36], [41], [59]–[62], for example, NSGA-III, can
be incorporated into the two-phase framework for different
MOPs [63]–[66].

Note that in TS-MOEA, weighted Tchebycheff is used as a
scalarizing function, while in HMOMA, weighted sum is used.
In fact, the weighted sum, weighted Tchebycheff, and penalty-
based boundary intersection are the top three commonly used
scalarizing functions [35], [67], [68]. In the two-phase frame-
work, any existing scalarizing function, in principle, can be
freely used in decomposition or local search for transform-
ing an MOP into a number of single-objective optimization
problems. Thus, weighted Tchebycheff and weighted sum
are directly adopted in TS-MOEA and HMOMA, respec-
tively. In fact, these scalarizing functions, respectively, have
their own strengths and drawbacks [67], [68]. In view of the
advantages and disadvantages of each scalarizing function,
improved scalarizing functions [69], [70], ensemble of differ-
ent scalarizing functions [71], [72], and new and more complex
scalarizing functions [68] are proposed recently. However, the
study with respect to scalarizing functions is beyond the scope
of this paper. In the future, new scalarizing functions [68]
proposed recently can be easily adopted in the proposed
framework for possible improvement.

In the future, how to design more efficient algorithms
considering characteristics of the practical problems and algo-
rithms should be further investigated. Recent work [68]
pointed out that decomposition-based methods are less robust
than dominance-based ones using scalarizing functions, in
particular for those problems with complex (nonuniform, dis-
crete, and degenerated) PFs. The performance of different
scalarizing functions is also compared [68]. However, most
of previous studies about characteristics of algorithms are

based on multiobjective continuous benchmark problems. In
general, the PF characteristics of the continuous benchmark
problems are known, while the PF characteristics of the prac-
tical discrete problems are unknown in advance. Therefore,
characteristics of algorithms on practical many-objective com-
binatorial optimization problems, for example, MOPVRPTW,
should be further studied [73].

V. CONCLUSION

This paper has defined a multiobjective variant of PVRPTW
and generated a set of real-world benchmark instances.
HMOMA has been proposed for MOPVRPTW. In HMOMA, a
two-phase strategy is proposed to handle the balance of con-
vergence and diversity. In this strategy, several ESs near an
approximate PF are identified at Phase I and the approximate
PF is extended at Phase II. Experimental results have shown
that HMOMA outperforms the competitor algorithms on most
of the instances. The effectiveness of the two-phase strategy
is also confirmed.

In the future, this paper can be extended from
multiple directions. First, the algorithm can be further
improved by using advanced local search strategies, such
as tabu search and large neighborhood search. Second,
the proposed HMOMA, as a general framework, can be
instantiated for solving other variants of multiobjective
VRP [2], [22], scheduling problems [62], [63], and so
on. The proposed real-world instances and the source
code of HMOMA can be downloaded at https://www.
researchgate.net/profile/Jiahai_Wang3/contributions.
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[27] D. Taş, N. Dellaert, T. Van Woensel, and T. De Kok, “Vehicle routing
problem with stochastic travel times including soft time windows and
service costs,” Comput. Oper. Res., vol. 40, no. 1, pp. 214–224, 2013.

[28] H. Hashimoto, T. Ibaraki, S. Imahori, and M. Yagiura, “The vehicle
routing problem with flexible time windows and traveling times,” Discr.
Appl. Math., vol. 154, no. 16, pp. 2271–2290, 2006.

[29] J. Wang et al., “Multiobjective vehicle routing problems with simulta-
neous delivery and pickup and time windows: Formulation, instances,
and algorithms,” IEEE Trans. Cybern., vol. 46, no. 3, pp. 582–594,
Mar. 2016.

[30] A. Zhou et al., “Multiobjective evolutionary algorithms: A survey of the
state of the art,” Swarm Evol. Comput., vol. 1, no. 1, pp. 32–49, 2011.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[32] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” in Proc. Eurogen, vol. 3242, 2001,
pp. 95–100.

[33] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[34] F. Tricoire, “Multi-directional local search,” Comput. Oper. Res., vol. 39,
no. 12, pp. 3089–3101, 2012.

[35] A. Jaszkiewicz, H. Ishibuchi, and Q. Zhang, “Multiobjective memetic
algorithms,” in Handbook of Memetic Algorithms. Heidelberg, Germany:
Springer, 2012, pp. 201–217.

[36] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Comput. Surveys, vol. 48, no. 1, p. 13,
2015.

[37] M. Li, S. Yang, and X. Liu, “Bi-goal evolution for many-objective
optimization problems,” Artif. Intell., vol. 228, pp. 45–65, Nov. 2015.

[38] R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization of
many conflicting objectives,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 770–784, Dec. 2007.

[39] P. A. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 7, no. 2, pp. 174–188, Apr. 2003.

[40] Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, “Balancing conver-
gence and diversity in decomposition-based many-objective optimizers,”
IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 180–198, Apr. 2016.

[41] J. Wang, W. Zhang, and J. Zhang, “Cooperative differential evolution
with multiple populations for multiobjective optimization,” IEEE Trans.
Cybern., vol. 46, no. 12, pp. 2848–2861, Dec. 2016.

[42] G. A. Kindervater and M. W. Savelsbergh, “Vehicle routing: Handling
edge exchanges,” in Local Search in Combinatorial Optimization.
Princeton, NJ, USA: Princeton Univ. Press, 1997, pp. 337–360.

[43] N. Labadie and C. Prins, “Vehicle routing nowadays: Compact
review and emerging problems,” in Production Systems and Supply
Chain Management in Emerging Countries: Best Practices. Heidelberg,
Germany: Springer, 2012, pp. 141–166.

[44] Z. Fu, R. Eglese, and L. Y. Li, “A unified tabu search algorithm for
vehicle routing problems with soft time windows,” J. Oper. Res. Soc.,
vol. 59, no. 5, pp. 663–673, 2008.

[45] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. G. Da Fonseca, “Performance assessment of multiobjective
optimizers: An analysis and review,” IEEE Trans. Evol. Comput., vol. 7,
no. 2, pp. 117–132, Apr. 2003.

[46] J. Knowles, “ParEGO: A hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization problems,”
IEEE Trans. Evol. Comput., vol. 10, no. 1, pp. 50–66, Feb. 2006.

[47] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[48] J. Alcalá-Fdez et al., “KEEL: A software tool to assess evolutionary
algorithms for data mining problems,” Soft Comput., vol. 13, no. 3,
pp. 307–318, 2009.

[49] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3–18, 2011.

[50] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, “Difficulties in
specifying reference points to calculate the inverted generational dis-
tance for many-objective optimization problems,” in Proc. IEEE Symp.
Comput. Intell. Multi Criteria Decis. Making, 2014, pp. 170–177.

[51] U. Derigs and M. Pullmann, “A computational study comparing differ-
ent multiple neighbourhood strategies for solving rich vehicle routing
problems,” IMA J. Manag. Math., vol. 27, no. 1, pp. 3–23, Jan. 2016.

[52] A. S. Azad, M. M. Islam, and S. Chakraborty, “A heuristic initial-
ized stochastic memetic algorithm for MDPVRP with interdependent
depot operations,” IEEE Trans. Cybern., vol. 47, no. 12, pp. 4302–4315,
Dec. 2017.

[53] J. Li, P. Pardalos, H. Sun, J. Pei, and Y. Zhang, “Iterated local search
embedded adaptive neighborhood selection approach for the multi-depot
vehicle routing problem with simultaneous deliveries and pickups,” Exp.
Syst. Appl., vol. 42, no. 7, pp. 3551–3561, 2015.

[54] S. Abdullah and H. Turabieh, “On the use of multi neighbourhood struc-
tures within a Tabu-based memetic approach to university timetabling
problems,” Inf. Sci., vol. 191, pp. 146–168, May 2012.

[55] H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima,
Use of Heuristic Local Search for Single-Objective Optimization
in Multiobjective Memetic Algorithms (Lecture Notes in Computer
Science), vol. 5199. Heidelberg, Germany: Springer, 2008, pp. 743–752.

[56] S.-Y. Wang and L. Wang, “An estimation of distribution algorithm-based
memetic algorithm for the distributed assembly permutation flow-shop
scheduling problem,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 46,
no. 1, pp. 139–149, Jan. 2016.

[57] O. Bräysy and M. Gendreau, “Vehicle routing problem with time win-
dows, part I: Route construction and local search algorithms,” Transp.
Sci., vol. 39, no. 1, pp. 104–118, 2005.

[58] J. Wang, T. Weng, and Q. Zhang, “A two-stage multiobjective evo-
lutionary algorithm for multiobjective multi-depot vehicle routing
problem with time windows,” IEEE Trans. Cybern., to be published,
doi: 10.1109/TCYB.2018.2821180.

http://dx.doi.org/10.1109/TCYB.2018.2821180


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[59] M. Elarbi, S. Bechikh, A. Gupta, L. B. Said, and Y. S. Ong, “A
new decomposition-based NSGA-II for many-objective optimization,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 7, pp. 1191–1210,
Jul. 2018.

[60] Y. R. Naidu and A. K. Ojha, “Solving multiobjective optimization prob-
lems using hybrid cooperative invasive weed optimization with multiple
populations,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 6,
pp. 820–832, Jun. 2018.

[61] W. Yuan, Y. Liu, H. Wang, and Y. Cao, “A geometric structure-based
particle swarm optimization algorithm for multiobjective problems,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 9, pp. 2516–2537,
Sep. 2017.

[62] X.-L. Zheng and L. Wang, “A collaborative multiobjective fruit fly
optimization algorithm for the resource constrained unrelated parallel
machine green scheduling problem,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 48, no. 5, pp. 790–800, May 2018.

[63] X. Yu et al., “Set-based discrete particle swarm optimization based
on decomposition for permutation-based multiobjective combinato-
rial optimization problems,” IEEE Trans. Cybern., vol. 48, no. 7,
pp. 2139–2153, Jul. 2018.

[64] C.-H. Chen and J.-H. Chou, “Multiobjective optimization of airline
crew roster recovery problems under disruption conditions,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 47, no. 1, pp. 133–144, Jan. 2017.

[65] Y. Hou, N. Wu, M. Zhou, and Z. Li, “Pareto-optimization for scheduling
of crude oil operations in refinery via genetic algorithm,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 47, no. 3, pp. 517–530, Mar. 2017.

[66] L. Ma et al., “Two-level master–slave RFID networks planning via
hybrid multiobjective artificial bee colony optimizer,” IEEE Trans. Syst.,
Man, Cybern., Syst., to be published, doi: 10.1109/TSMC.2017.2723483.

[67] R. Wang, J. Xiong, H. Ishibuchi, G. Wu, and T. Zhang, “On the effect
of reference point in MOEA/D for multi-objective optimization,” Appl.
Soft Comput., vol. 58, pp. 25–34, Sep. 2017.

[68] S. Jiang, S. Yang, Y. Wang, and X. Liu, “Scalarizing functions
in decomposition-based multiobjective evolutionary algorithms,” IEEE
Trans. Evol. Comput., vol. 22, no. 2, pp. 296–313, Apr. 2018.

[69] R. Wang, Z. Zhou, H. Ishibuchi, T. Liao, and T. Zhang, “Localized
weighted sum method for many-objective optimization,” IEEE Trans.
Evol. Comput., vol. 22, no. 1, pp. 3–18, Feb. 2018.

[70] X. Ma, Q. Zhang, J. Yang, and Z. Zhu, “On tchebycheff decomposition
approaches for multiobjective evolutionary optimization,” IEEE Trans.
Evol. Comput., vol. 22, no. 2, pp. 226–244, Apr. 2018.

[71] H. Ishibuchi, N. Akedo, and Y. Nojima, A Study on the Specification
of a Scalarizing Function in MOEA/D for Many-Objective Knapsack
Problems (Lecture Notes in Computer Science), vol. 7997. Heidelberg,
Germany: Springer, 2013, pp. 231–246.

[72] R. Wang, Q. Zhang, and T. Zhang, “Decomposition-based algorithms
using Pareto adaptive scalarizing methods,” IEEE Trans. Evol. Comput.,
vol. 20, no. 6, pp. 821–837, Dec. 2016.

[73] H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of multiobjective
evolutionary algorithms on many-objective knapsack problems,” IEEE
Trans. Evol. Comput., vol. 19, no. 2, pp. 264–283, Apr. 2015.

Jiahai Wang (M’07) received the Ph.D. degree in
computer science from the University of Toyama,
Toyama, Japan, in 2005.

In 2005, he joined Sun Yat-sen University,
Guangzhou, China, where he is currently a Professor
with the Department of Computer Science. His cur-
rent research interest includes computational intelli-
gence and its applications.

Wenbin Ren received the M.S. degree in computer
science from Sun Yet-sen University, Guangzhou,
China, in 2017.

His current research interest includes
multiobjective optimization for vehicle routing
problems.

Zizhen Zhang received the B.S. and M.S. degrees in
computer science from the Department of Computer
Science, Sun Yat-sen University, Guangzhou, China,
in 2007 and 2009, respectively, and the Ph.D. degree
in management science from the City University of
Hong Kong, Hong Kong, in 2014.

He is currently an Associate Professor with
Sun Yat-sen University. His current research interest
includes computational intelligence and its applica-
tions in production, transportation, and logistics.

Han Huang (M’15) received the B.Man. degree in
applied mathematics and the Ph.D. degree in com-
puter science from the South China University of
Technology (SCUT), Guangzhou, China, in 2002
and 2008, respectively.

He is currently a Professor with the School of
Software Engineering, SCUT. His current research
interests include evolutionary computation, swarm
intelligence, and their application.

Dr. Huang is a Senior Member of CCF.

Yuren Zhou received the B.Sc. degree in mathemat-
ics from Peking University, Beijing, China, in 1988
and the M.Sc. degree in mathematics and the Ph.D.
degree in computer science from Wuhan University,
Wuhan, China, in 1991 and 2003, respectively.

He is currently a Professor with the School of
Data and Computer Science, Sun Yat-sen University,
Guangzhou, China. His current research interests
include design and analysis of algorithms, evolution-
ary computation, and social networks.

http://dx.doi.org/10.1109/TSMC.2017.2723483

