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The Quay Crane Scheduling Problem With
Stability Constraints

Zizhen Zhang , Ming Liu, Chung-Yee Lee, and Jiahai Wang, Member, IEEE

Abstract— The quay crane scheduling problem (QCSP) is one
of the most important problems for the operations at container
ports. The QCSP aims to decide a QC schedule for loading and
unloading containers so as to minimize the vessel turnaround
time. The QCSP is subject to various kinds of constraints, e.g.,
task precedence constraints and QC noninterference constraints.
This paper extends the QCSP by taking into consideration the
stability constraints, which are crucial for the safety reason but
often omitted in the existing literature. We provide a mathemat-
ical model for the QCSP with stability constraints (QCSPSCs).
A bicriteria evolutionary algorithm is proposed to solve the
QCSPSC. The algorithm consists of a sliding-window heuristic to
fix the schedule, which violates the stability constraints. Extensive
experiments are conducted to demonstrate the effectiveness of the
algorithm. The computational results of the traditional QCSP and
the QCSPSC are also compared and analyzed.

Note to Practitioners—Stability is a vital factor for the safety
of the ship and the goods inside. At a terminal, when a berthed
container ship receives loading and unloading operations per-
formed by quay cranes (QCs), it is required that the ship stability
criterion does not exceed a certain threshold. In practice, ship
operation managers are keen in minimizing the ship’s turnaround
time via an efficient QC schedule for loading and unloading
containers without leaning the ship to one side. The schedule is
then implemented by automatic scheduling systems or simulation
tools in the terminal routines. This paper presents some practical
stability constraints and integrates them into the traditional
QC scheduling model. The results show that by considering the
stability constraints, the ship will become more stable, but the
turnaround time will not be affected significantly. We believe
that the introduction of ship stability constraints can not only
fill in the gap between the research on QC scheduling and the
real-world ship handling practices but also enrich the studies on
logistics planning and port operations.
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I. INTRODUCTION

CONTAINER ports play crucial roles in global maritime
logistics industries. According to UNCTAD [1], world

container port throughput has increased by an estimate of 5.1%
to 684.4 million Twenty-foot Equivalent Unit (TEUs) in 2014.
The world fleet has more than doubled since 2001, reaching
1.75 billion deadweight tons in 2014. The key factors for the
effective utilization of container ports are primarily determined
by the efficiency of the stacking and the transportation of
import/export containers to/from the ship’s side [2]. To boost
the productivity and enhance the port’s competitive advantage,
many automatic planning systems have been developed to
provide customized solutions (e.g., [3]–[5]). Then, the next
step is to introduce optimization techniques to improve the
solution quality.

In general, container ports have different types of equip-
ments and various kinds of resources in the daily operations.
One of the most expensive and important equipment is the
quay crane (QC), which performs the loading and unloading
operations between ships and the wharf apron. This paper
studies an extension of the so-called QC scheduling prob-
lem (QCSP), which aims at deciding a QC movement sequence
for loading and unloading containers so as to minimize the
operational cost or turnaround time. Fig. 1 illustrates a scenario
of QCs scheduling. Upon a ship’s arrival, it is first assigned to
a berth for container loading and unloading. Because container
ships are commonly large, the port may launch more than one
QC working simultaneously. The ship is divided longitudinally
into bays. Each QC serves one or several bays. Each bay is
exclusively served by only one QC. A QC can perform the
gantry travel moving between bays. It is commonly assumed
that: 1) QCs are on the same track and thus cannot cross
each other and 2) two QCs should not work too closely
for safety reasons. The above two requirements are known
as the noninterference constraints. A bay consists of several
containers in slots indexed by their row numbers and tier
numbers. A stowage plan designates the loading plan for
export containers and unloading plan for import containers.
For the sake of efficiency in loading and unloading, a bunch
of export containers, which are adjacent to each other and have
the same destination port, are grouped as a cluster. Likewise,
a collection of adjacent import containers with the same origin
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Fig. 1. Scenario of the QC scheduling.

port are also clustered. In the QCSP, a task is often defined
as a loading or unloading operation for a cluster rather than
a single container. Note that unloading tasks should always
precede loading tasks in the same stack, which are known as
the precedence constraints. In a nutshell, the scheduling of
QCs is equivalent to finding an arrangement of tasks to QCs
subject to the specified constraints.

The QCSP is a well-studied problem that attracts much
academic attention. However, most of the existing studies on
the QCSP only consider the attributes of tasks (e.g., task types,
task durations, and precedence relation of tasks) or QCs (e.g.,
QC interference, initial positions of QCs, and QC travel
times) [6]. Seldom considers the attributes of ships, partic-
ularly the stability of ships. The stability is the ability to keep
the ships in the upright position. It is vital for the safety of
ships no matter in voyage or in port. When a ship is served
by QCs in port, loading or unloading a container will arise
a heeling moment. Then, the ship will tend to roll toward
a new stabilized state. This motion can badly interfere with
other concurrent loading or unloading operations. What is
worse, a dissatisfactory QC schedule may lead to a temporary
condition that the ship leans to one side, potentially increasing
the risk of capsizing.

In this paper, we take the stability of ships into consideration
and investigate a QCSP with stability constraints (QCSPSC).
The contributions of our works are threefold. First, we system-
atically introduce the stability constraints, which narrow the
gap between the research on QCSP and the real-world practice.
Second, we show that the proposed bicriteria framework
with sliding-window heuristic produces promising solutions.
Moreover, these techniques can be generalized to handling
other versions of QCSPSC. Third, we conducted extensive
experiments on the modified benchmark instances to evaluate
our algorithm. The data set and comprehensive experimental
results can serve as a baseline for future studies.

The remainder of this paper is organized as follows.
Section II briefly reviews the relevant literature on the QCSP
and the QCSPSC. In Section III, we provide a formal definition
and a mathematical model of the QCSPSC. For solving
this problem, a bicriteria evolutionary algorithm (BiEA) is
devised and described in Section IV. To evaluate the proposed

approach, Section V reports a series of experiments that
we conducted based on the modified benchmark instances.
As a comparison, the results of the QCSP without stability
constraints are also provided. Finally, we conclude this paper
in Section VI.

II. LITERATURE REVIEW

The logistics management of containers mainly consists
of container terminal management (e.g., [7]–[11]) and con-
tainer ship routing and scheduling (e.g., [12]–[16]). As the
QCSP, which falls in the scope of container terminal man-
agement, has been studied for about two decades, we just
briefly review the most relevant results in the following.
The interested reader may refer to some excellent survey
papers (e.g., [2], [6], [17], and [18]).

Daganzo [19] first studied static and dynamic QC work
schedules with the objective of minimizing the total weighted
departure time of vessels. To assign QCs to ship bays of
multiple vessels, they proposed an exact branch-and-bound
algorithm for the small instances and a heuristic approach for
the practical large instances. An improved branch-and-bound
algorithm was developed in a following paper [20]. However,
some practical constraints, e.g., the interference of QCs, were
simplified in these pioneering works.

Lim et al. [21] studied the QCSP with spatial con-
straints. The spatial constraints include the noncrossing con-
straint, the neighborhood constraint (or called the safety
margin constraint), and the job-separation constraint. They
proposed dynamic programming algorithms, a probabilistic
tabu search, and a squeaky wheel optimization heuristic for
finding solutions of the problem with different spatial con-
straints. Lee et al. [22] focused on the QCSP with interference
constraints. They proved the NP-completeness of the problem
by reducing it to the PARTITION problem. Genetic algorithms
were proposed for finding near-optimal solutions. The inter-
ference constraints are also considered in some yard crane
scheduling problems, when two or more yard cranes sharing
the same traveling lane take place [23].

Kim and Park [24] considered the QCSP with interfer-
ence constraints and precedence constraints. They proposed a
branch-and-bound method and a greedy randomized adaptive
search procedure (GRASP). They showed that the branch-
and-bound method performs better in terms of the solution
quality, but the GRASP yields less computational times.
Moccia et al. [25] strengthened the model of [24]. They
developed a branch-and-cut algorithm incorporating several
families of valid inequalities. Their algorithm significantly
improved the solutions for a set of QCSP benchmark data.
Later, Sammarra et al. [26] presented a tabu search for the
same QCSP model. The neighborhood of the tabu search
is defined by performing the swapping move and the inser-
tion move. The results showed that the tabu search can
outperform the GRASP. Compared with the branch-and-cut
algorithm, the tabu search can provide a good compromise
between solution quality and computational times. For the
same problem, Bierwirth and Meisel [27] employed a branch-
and-bound algorithm to search a best solution within the



ZHANG et al.: QCSP WITH STABILITY CONSTRAINTS 1401

scope of unidirectional schedules, which only allow QCs move
along the same direction. Chung and Choy [28] adopted a
modified genetic algorithm with problem-specific crossover
and mutation operators. They showed that their algorithm is
very efficient, while the solution qualities are comparable with
other existing approaches. A genetic algorithm is also used by
Tavakkoli-Moghaddam et al. [29] for solving the QCSP and
QC assignment problem. Recently, following [27], Legato and
Trunfio [30] developed a local branching-based algorithm for
the QCSP under unidirectional schedules.

Liu et al. [31] considered a complicated version of the tra-
ditional QCSP, which includes initial crane positions, moving
speed, and interference condition for the cranes. They devised
a heuristic decomposition approach to break down the problem
into two interrelated smaller models, i.e., the vessel-level and
the berth-level models. Later, Legato et al. [32] constructed
a richer model for the QCSP based on [31]. They explicitly
considered the speed and the time windows of different QCs.
They focused on the unidirectional schedules. They developed
a branch-and-bound algorithm for small instances and a timed
Petri net approach for large problems. Meisel [33] also studied
the QCSP by taking the crane time windows into account.
The time windows may restrict the availability of cranes at a
vessel. This paper provided a mathematical formulation and
a tree-search-based heuristic solution method for solving the
problem. Meisel and Bierwirth [34] used a unified approach
for evaluating the performance of different QCSP models and
solution procedures. They provided a QCSP data generator
along with computational results, which can serve as a bench-
mark for the related research.

Goodchild and Daganzo [35] initiated the study of the stack-
based QCSP model. Their work considers one QC to process
the container stacks within one bay. According to the vessel
physical structure, precedence-related tasks are defined for
each container stack. Zhang and Kim [36] further explored
the cases where deck covers are involved, which make the
problem complicated. They developed a fast heuristic method.
Recently, the computational difficulty of stack-based QCSP
with deck covers was overcome by Lee et al. [9]. Meisel
and Matthias [37] considered the QCSP on the basis of single
containers. They provided an idea allowing reposition of con-
tainers in the bay instead of temporarily unloading them, and
developed an efficient GRASP approach. Liu et al. [10] further
studied this container-based QCSP model. They presented a
mixed integer linear programming formulation and a very
fast constructive heuristic method to solve the instances with
practical sizes.

The stability of ships is very important in port operations.
There are several works on the stowage planning problem
considering ship stability constraints (e.g., [38]–[42]). The
stowage planning decides the containers to be placed to what
locations in the ship. For the stowage planning problem,
the stability constraints are applied to ensuring the balance
of the ship after it departs the port. In contrast, the QCSP
requires that ship stability constraints must be satisfied during
the whole process of QC operations.

To the best of our knowledge, there are relatively few works
on the QCSP under the concern of stability. Wang et al. [43]

first considered the stability of ships in the QCSP, but their
approach was not extensively tested to demonstrate its effec-
tiveness. Al-Dhaheri et al. [44] proposed an mixed integer
programming model for the QCSP that takes into account
the preemption, noncrossing, safety margin, QC traveling
time, QC initial position, and vessel stability. In their paper,
the stability is measured by the shift of the vessel’s center
of gravity, while horizontal and longitudinal stabilities are
not considered. This paper is further extended by Al-Dhaheri
and Diabat [45], which developed a Lagrangian relaxation-
based algorithm to obtain satisfactory solutions for large-scale
instances within acceptable times. Ursavas [46] presented a
decision support system for the complex crane scheduling
problem, in which the noncrossing restrictions, dynamic crane
assignment policy, and vessel stability issues are considered.

III. PROBLEM DEFINITION

In this section, we first introduce some basic assumptions of
the QCSP. Subsequently, a mixed integer linear programming
model of the QCSP is provided. We then discuss the ship
stability constraints and also include them in the model to
formulate the QCSPSC.

A. Assumptions of the QCSP

As described in Section I, the scheduling of QCs is a
very complex process in practice. To simplify the problem,
the following assumptions are proposed by Kim and Park [24],
and they are also made in this paper.

1) The objective of the problem is to minimize the
makespan, i.e., the last completion time among all the
tasks.

2) A task must be continuously served by only one QC
during the whole process. The transport equipments on
the yard are always ready for delivering/providing the
containers.

3) The task is bay-based and is classified according to their
positions (on the deck or in the hold), and their operation
types (loading or unloading). The precedence constraints
define the following priority levels in a bay: 1) unloading
operations on the deck; 2) unloading operations in the
hold; 3) loading operations in the hold; and 4) loading
operations on the deck.

4) The noninterference constraints are considered, and the
minimum safety margin between QCs is denoted as g
bays, where g is a small and fixed integer.

5) The movement speed of QCs between two adjacent bays
is the same.

Fig. 2 illustrates an example instance of the QCSP. In this
example, there are six tasks located in different locations of
the ship. For a task, the first element in the parentheses is
the processing time and the last element is the operation type,
where the symbol “↑” indicates an unloading operation and the
symbol “↓” indicates a loading operation. The initial positions
of QC1 and QC2 are at Bays 1 and 2, respectively. The
traveling time of a QC between two adjacent bays is assumed
to be one time unit. The safety margin is g = 1.
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Fig. 2. Example instance of the QCSP.

An optimal solution of the problem is shown in Fig. 3,
where QC1 sequentially processes tasks 5 and 3, and
QC2 processes task 1, 2, 6, and 4. The optimal makespan
is 24.

B. Mathematical Formulation of the QCSP
The QCSP has previously been formulated as mixed integer

linear programming models (see [24] and [25] for more
details). These models can be regarded as three-index for-
mulations of the problem, as they introduce a set of binary
variables xi jk to indicate the order relations between task i
and j on QC k. In this section, we reformulate the problem
by a two-index model as follows.

Input Parameters:

pik Processing time of task i by QC k.
li Location of task i .
qk Initial position of QC k.
ti j Traveling time of the QC between the locations

of task i and task j .
t �ik Traveling time of QC k moving from its initial

position to the location of task i .
g Minimum safety margin between QCs.

Sets:

N Set of tasks, also interchangeably referred to as
the number of tasks.

Q Set of quay cranes, also interchangeably referred
to as the number of quay cranes.

� Set of precedence relations, i.e., � = { (i, j) | li =
l j and task i precedes task j}.

� Set of combinations of two task i, j and two
QCs k, l which can potentially effect a conflict if i is
assigned to k and j is assigned to l, i.e., � =
{ (i, j, k, l) | i �= j, k �= l, li ≤ l j , qk ≥ ql}.

Indices:

i, j Index of tasks, i, j ∈ N .
k, h Index of quay cranes, k, h ∈ Q.

Decision Variables:

Cmax Makespan, i.e., the last completion time of all
tasks.

si Starting time of task i .
ci Completion time of task i .
xik Binary variable which is equal to 1 if task i is

assigned to QC k, and 0 otherwise.
yi j Binary variable which is equal to 1 if task j

starts after the completion of task i , i.e., si ≥ c j ,
and 0 otherwise.

Two-Index Formulation for the QCSP:
(QCSP) min Cmax (1)

s.t. Cmax ≥ ci , i ∈ N (2)∑

k∈Q

xik = 1, i ∈ N (3)

si +
∑

k∈Q

pik xik = ci , i ∈ N (4)

yi j + y j i ≤ 1, i, j ∈ N, i �= j (5)

t �ik xik ≤ si , i ∈ N, k ∈ Q (6)

ci ≤ s j , (i, j) ∈ � (7)

yi j = 1, (i, j) ∈ � (8)

y j i = 0, (i, j) ∈ � (9)

(ci + ti j )− s j ≤M (2 + y j i − xik − x jk),

i, j ∈ N, i �= j, k ∈ Q (10)

(c j + t j i )− si ≤M (2+ yi j − xik − x jk),

i, j ∈ N, i �= j, k ∈ Q (11)

(ci + g)− s j ≤M (2 + y j i − xik − x jl),

(i, j, k, l) ∈ � (12)

(c j + g)− si ≤M (2 + yi j − xik − x jk),

(i, j, k, l) ∈ � (13)

ci − s j ≤M (2 + y j i − xik − x jl),

i, j ∈ N, i �= j, k, l∈Q, k �= l, |li − l j |≤g

(14)

c j − si ≤M (2 + yi j − xik − x jl),

i, j ∈ N, i �= j, k, l ∈ Q, k �= l, |li − l j |≤g

(15)

xik ∈ {0, 1}, i ∈ N, k ∈ Q (16)

yi j ∈ {0, 1}, i, j ∈ N (17)

si , ci ≥ 0, i ∈ N. (18)

In the above model, M is a sufficiently large number. The
objective function (1) is to minimize the makespan of QCs,
which is defined by Constraint (2). Constraint (3) ensures
that each task is assigned to only one QC. Constraint (4)
defines a time window [si , ci ) (left-closed and right-open)
for each task i . Constraint (5) limits the relative relation of
time windows of two tasks. Constraint (6) restricts the earliest
starting times of QCs. Constraints (7)–(9) are precedence
constraints. If task i precedes task j , the completion of task
i should be earlier than the beginning of task j , and the
variables yi j and y j i can be determined. Constraints (10)
and (11) guarantee that a QC cannot process two tasks
simultaneously and have enough time to move from one task
location to another task location. Constraints (12) and (13) are
noncross constraints (a part of noninterference constraints).
If (i, j, k, l) ∈ � (which means that a crossing between
QC k and QC l takes place), then these constraints can
help to avoid QC collisions by imposing a safety interval
between task i and task j . Constraints (14) and (15) are
safety margin constraints (another part of noninterference con-
straints). Two tasks, which locate too closely, should not have
an overlap interval. Constraints (16)–(18) are variable range
constraints.
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Fig. 3. Optimal solution to the QCSP instance.

The two-index formulation introduces less binary vari-
ables than the three-index formulation. It performs slightly
faster than the three-index formulation by commercial IP
solvers (e.g., ILOG Cplex). However, it is still difficult to solve
on those middle and large size QCSP instances.

C. Stability Constraints

In practice, an important issue of the QCSP is to keep the
ship stabilized during the unloading and/or loading process.
Note that in contrast to stowage planning problems, the ship
stability requirement should be satisfied during the whole
process, not merely applied to the final layout of the ship.

Generally, ship stability consists of vertical stability, traverse
stability, and longitudinal stability [47]. Important factors for
measuring vertical stability and traverse stability are metacen-
tric height (the distance between the center of gravity of a ship
and its metacenter) and angle of list (the degree to which a
ship is leaning to one side). Because the task is bay-based, it is
implicitly assumed that vertical stability and traverse stability
can be optimized during the process of a single task, e.g.,
loading from bottom to top, from middle to two sides in each
bay. In this paper, we only focus on the longitudinal stability
of the ship.

The longitudinal stability (see Fig. 4) is related to the trim
value, which is defined as the difference between the drafts
forward and aft. The trim value, denoted by t , is given in (19),
where W is the weight of the empty ship, l is the length of the
ship, wi is the weight of container i , xi − x0 is the horizontal
distance between the container i and the center of gravity,
and GML is the distance between the center of gravity G and
the longitudinal metacenter ML . The approximated equation is
obtained from GML 	 B ML = ((W · l3)/(12(W +∑

i wi )))
when the box-shaped ship is considered

t = l
∑

i wi (xi − x0)(
W +∑

i wi
) ·GML

	 12

W · l2

∑

i

wi (xi − x0). (19)

Trim by the stern is conventionally defined as positive.
Thus, unloading near the stem or loading near the stern will
increase the trim value. On the other hand, loading near the
stem or unloading near the stern will decrease the trim value.

Based on the above discussion, we can incorporate the fol-
lowing constraints into the QCSP model to form the QCSPSC
model.

Fig. 4. Ship longitudinal stability factor (trim).

Notations:
Input Parameters:

di Contribution of trim value (per unit time) of task i .
H Stability threshold.
T0 Upper bound on the scheduling horizon.

Sets:

T Set of the time horizon, i.e., T = {0, . . . , T0}.

Indices:

h, t Index of time horizon, h, t ∈ T .

Decision Variables:

uit Binary variable which is equal to 1 if task i is
being processed at time t , and 0 otherwise.

Constraints:

si ≤ tuit +M (1− uit ), i ∈ N, t ∈ T (20)

tuit ≤ ci − 1, i ∈ N, t ∈ T (21)∑

t∈T

uit =
∑

k∈Q

pik xik, i ∈ N (22)

|
t∑

h=0

∑

i∈N

di uih | ≤ H, t ∈ T (23)

uit ∈ {0, 1}, i ∈ N, t ∈ T . (24)

Constraints (20)–(24) assure the ship stability within the
threshold H during the whole scheduling process. A trivial
upper bound T0 can be set to maxi∈N,k∈Q {t �ik} + (N −
1) maxi, j∈N {ti j } +∑

i∈N (maxk∈Q pik), which approximates
the longest time for one QC processing all the tasks. Con-
straints (20) and (21) state that if time t outsides the window
[si , ci ), then the variable uit must equal 0. Otherwise, uit is
forced to equal 1 by Constraint (22). Constraint (23) is the sta-
bility constraint, where

∑t
h=0

∑
i∈N di uih corresponds to the

trim of the ship at time t . Because Constraint (23) is nonlinear,
we linearize them by the following two constraint sets:

t∑

h=0

∑

i∈N

di uih ≤ H, t ∈ T (25)

t∑

h=0

∑

i∈N

di uih ≥ −H, t ∈ T . (26)
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Fig. 5. Optimal solution to the QCSPSC instance.

Fig. 6. Stability–time plot for the optimal solution of the QCSP with/without
stability constraints.

We also take the instance given in Fig. 2 as a QCSPSC
example. Assume that: 1) the ship is on even keel in initial;
2) the weight of containers in a task is proportional to the
task processing time; 3) the horizontal positions of the six
bays are set to (−5,−3,−1,+1,+3,+5); and 4) the constant
coefficient in (19) is neglected. Then, the contribution of
trim values of the six tasks is (−12,−9,−8,+50,+6,−9),
and thus, the increment of trim is +18 in the final layout.
If we require that the stability threshold H is also 18, then
the optimal solution of the QCSPSC is 25 (see Fig. 5 for
the detailed solution), which is 1 unit time larger than the
optimal solution of the QCSP. The stability–time plot is
illustrated in Fig. 6. It can be seen from the optimal solution
of the QCSP without stability constraints that the ship is
trimming by the stem severely in the early stage [the maximum
absolute trim (MAT) value is 26], while the ship maintains
much stabilized conditions from the optimal solution of the
QCSPSC.

IV. SOLUTION APPROACH

The QCSPSC is an NP-hard problem [27] and is gener-
ally much more difficult to solve than the QCSP. Moreover,
the QCSPSC may even have no feasible solutions when the
stability threshold is relatively small. Preliminary experiments
show that the QCSPSC model is very difficult to solve by
general IP solvers. To address the difficulty, we present a BiEA
for seeking promising solutions of the QCSPSC.

A. Overview of the Approach

It is obvious that a feasible solution of the QCSPSC is also
feasible to the QCSP, i.e., the feasible region of the QCSP

TABLE I

DOMINANCE RELATIONS BETWEEN TWO SOLUTIONS S1 AND S2

encompasses the entire feasible solutions of the QCSPSC. The
basic idea of our approach is to generate a set of solutions
to the QCSP with relaxing the stability constraints, and then
try to repair them to satisfy the stability requirements. To do
so, we treat the QCSPSC as a bicriteria problem [48]. The
first criterion is the minimization of the makespan, which is
also the objective of the QCSPSC. The second criterion is
the minimization of the MAT during the scheduling process,
which guarantees the stability constraints.

Formally, let S ∈ S be a feasible solution of the QCSP,
where S is the solution space of the QCSP. We denote by
fm(S) and ft (S) the makespan and the MAT with respect
to the solution S, respectively. The QCSPSC can be simply
restated as follows:

min fm(S) (27)

subject to ft (S) ≤ H (28)

S ∈ S. (29)

The bicriteria problem tries to minimize fm(S) and ft (S)
simultaneously. Because our approach tries to generate many
QCSP solutions, we need a mechanism to compare the quality
of two solutions S1, S2 ∈ S. The definition of the dominance
relation is introduced as follows.

Definition 1: A solution S1 ∈ S is said to (strictly) dominate
another solution S2 ∈ S, denoted by S1 ≺ S2 (or S2 � S1),
if one of the following conditions hold:

1) fm(S1) < fm(S2) and ft (S1) ≤ ft (S2);
2) fm(S1) < fm(S2) and ft (S2) ≤ ft (S1) ≤ H ;
3) fm(S1) = fm(S2) and ft (S1) < ft (S2);
4) fm(S1) > fm(S2) and ft (S1) ≤ H < ft (S2);
5) fm(S1) > fm(S2) and H < ft (S1) < ft (S2).
The rationale behind the definition lies in the following

observations: 1) feasible solutions are better than infeasible
solutions; 2) feasible solutions with smaller objectives are
preferred; and 3) infeasible solutions with better stability
are more likely to become feasible after slightly perturbing
the solution, and thus are preferred. Table I summarizes the
dominance relations between two solutions with respect to
different relations of fm and ft .

The dominance relations are very important in maintaining
elite solutions during the evolutionary process. For solving
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Fig. 7. Example of the encoding scheme.

the QCSPSC, we adopt a relatively standard evolutionary
framework. The evolutionary algorithm is a population-based
metaheuristic method, which is able to seek optimal or near-
optimal solutions in the solution space. Our algorithm (see
Algorithm 1) consists of an initial population generation phase,
a crossover, a local search, and a bicriteria-based selection
procedure. The algorithm is essentially a hybrid genetic algo-
rithm or memetic algorithm [49].

Algorithm 1: BiEA Framework for the QCSPSC
1: P0 ← INITIAL_POPULATION( );
2: t ← 0;
3: while termination criteria not reached do
4: Qt ← CROSSOVER(Pt );
5: Qt ← LOCAL-SEARCH(Qt );
6: Pt+1← SELECTION(Qt );  Use bi-criteria domination
7: t ← t + 1;
8: end while

One main component in the evolutionary algorithm is the
representation of individuals. Encoding individuals in different
representation ways may have different impacts on the effi-
ciency of evolutionary operators and convergence of the algo-
rithm. In Section IV-B, we introduce a priority-assignment-
based encoding scheme to express a solution of the QCSP
without stability constraints. We then devise a sliding-window
heuristic algorithm in Section IV-C aiming to repair the solu-
tion that violates the stability constraints. The detailed imple-
mentations of the algorithm are presented in Section IV-D.

B. Solution Encoding and Decoding

Similar to the previous work [28], we introduce the priority-
assignment-based encoding scheme. For a given QCSP solu-
tion, we use a priority sequence to indicate the starting order
of each task and use an assignment sequence to represent the
assignment of tasks to QCs. Fig. 7 shows an example of the
encoding scheme. In this example, “Task 1” is the first task
to be processed by “QC 2,” “Task 2” is the last task to be
processed by “QC 1,” and so on.

On the other hand, given the priority sequence (denoted by
the array pr ) and the assignment sequence (denoted by the
array as), we need to decode them to obtain a QCSP solution.
The decoding of an individual is essentially a greedy procedure
that tries to assign tasks as early as possible. Note that the
priority sequence may be invalid, as the precedence constraints
have defined partial priorities for several tasks. To correct the
priority sequence, a simple reparation procedure is carried out
to swap the elements in the priority sequence. Specifically,
if (i, j) ∈ � and pr [i ] > pr [ j ], swap the values of pr [i ] and
pr [ j ].

Fig. 8. Example of the sliding-window operation.

Then, we only need to consider the noninterference con-
straints in decoding. The decoding procedure is expressed
in Algorithm 2. In this algorithm, QC_ pos[i ] means the
current position of QC i , which is set to qi in initial (line 3).
QC_time[i ] denotes the available starting time of QC i ,
which is set to 0 in the beginning (line 4). The order of
the task in process must be in accordance with the priority
sequence (line 7). Suppose that task k is to be processed by
QC q (lines 7 and 8). The algorithm checks whether QC
q crosses some other QC j (line 10). If so, QC q is not
suitable for processing task k and task k is assigned to its
closest QC (line 14). To process the task, the QC should
move from its current position to the task location (line 16),
incurring the QC traveling time (line 15). When the QC is in
position, it may not be able to start due to potential violations
of the safety margin constraints. The QC needs to wait for
the completion of its interfering QCs (lines 17–20). Because
the priority sequence requires increasing starting times for
processing the corresponding tasks, latest_time records the
latest starting time (lines 21 and 22) and QC_time[q] is
updated accordingly (line 23).

Finally, we introduce a number of activities to represent
a QCSP solution. An activity is a quad-tuple defined as an
assignment of a task to a QC within a specified time period.
Algorithm 2 can generate a feasible QCSP solution (line 26).

Algorithm 2 executes in O(N Q) time. Thus, it is quite
efficient in decoding an individual and at the same time,
evaluating the solution (the makespan value).

C. Sliding-Window Heuristic Algorithm

The decoding procedure (Algorithm 2) guarantees to find a
feasible QCSP solution with respect to the given individual.
However, it appears that the solution may be infeasible to the
QCSPSC. This is because the MAT [i.e., ft (S)] may exceed
the safety threshold. In order to repair the solution to make
it satisfy the stability constraints, we devise a sliding-window
heuristic algorithm.

As a QCSP solution is represented by a set of activities,
the basic idea of the heuristic algorithm is to slide the
time windows of some activities so as to reduce the MAT
meanwhile maintaining the relative order of the tasks and the
feasibility of the solution to the QCSP. To achieve the goal,
we first sort the activities according to the increasing order of
their starting times. Proposition 1 allows us to perform a type
of sliding-window operation.

Proposition 1: For a set of N sorted activities and a given
index k, simultaneously slide all the activities j ≥ k to the
right by the same time units, the resultant solution is also
feasible to the QCSP.
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Algorithm 2 : A Greedy Algorithm for Decoding an Individual
Input:

Assignment sequence array: as[i ], i ∈ N ;
Priority sequence array: pr [i ], i ∈ N ;
Task locations: li , i ∈ N ;
Processing time: pik , i ∈ N, k ∈ Q;
Initial QC positions: qk, k ∈ Q;

Output:
Activity array: a[1], . . . , a[N].

1: for i ← 1 to Q do  set initial QC positions and times
2: QC_ pos[i ] ← qi ;
3: QC_time[i ] ← 0;
4: end for
5: latest_time← 0;
6: for i ← 1 to N do
7: k ← the index of task with pr [i ];
8: q ← as[k];
9: for j ← 1 to Q do

10: If QC q crosses QC j then
11: q � ← record the QC which is closest to task k;
12: end for
13: If there is some q � recorded then
14: q ← q �;  let QC q � handle task k
15: QC_time[q] ← QC_time[q] + travelling time

between QC_ pos[q] and lk ;
16: QC_ pos[q] ← lk ;
17: for j ← 1 to Q do
18: If (QC q is interfered with QC j ) and

(QC_time[ j ] > QC_time[q]) then
19: QC_time[q] ← QC_time[ j ];
20: end for
21: If QC_time[q] > latest_time then
22: latest_time← QC_time[q];
23: QC_time[q] ← latest_time + pi,q ;
24: a[i ] = �k, q, latest_time, QC_time[q]�;
25: end for
26: return a;

Fig. 8 illustrates an example of such sliding-window oper-
ation. The proof of Proposition 1 is straightforward. Because
the relative time windows of activity group 1, 2, . . . , k − 1
and relative time windows of activity group k, k + 1, . . . , N
remain the same, the precedence constraints and interference
constraints are satisfied within the group. Moreover, the activ-
ities in the latter activity group are deferred, so they will not
interfere with the activities in the former activity group.

The next step is to decide which activities to slide for
reducing the MAT. To do so, we first find the activities which
cross the timepoint to the MAT. Only sliding the time windows
of one or multiple of these activities may reduce the MAT.
Let us take Fig. 9(a) as an example. There are four activities
in total. The number listed above the segment indicates the
trim contribution of the corresponding task in a time period.
The change of trim and trim value during the scheduling
horizon is also presented. It can be observed that the first
three activities cross the timepoint. Subsequently, we test the

Fig. 9. Example of the sliding-window operation for reducing the MAT.

sign of trim contribution of these activities. If the sign is the
same with the sign of trim value, sliding the time window of
the corresponding activity will potentially reduce the MAT.
In Fig. 9(a), the trim value corresponding to the timepoint is
+7, and both the first and the third activities have plus trim
contributions, the same sign with the trim value. If we perform
the sliding-window operation with the index k = 3 for one
time unit, we can obtain a QCSP solution shown in Fig. 9(b),
where the MAT is decreased to 6.

It is worth noting that there are two cases that have no
impacts on reducing the MAT: 1) performing the sliding-
window operation with k = 1 and 2) sliding the activity which
has already lied outside the time window of its preceding
activities. Fig. 9(c) shows that the time window of the third
activity is outside the time window of the first activity and
the second activity.

Based on the above discussion, we propose a sliding-
window heuristic algorithm (Algorithm 3). The algorithm
first calculates the change_of _tr im array (lines 1–5) and
the tr im array (lines 6–10). Next, the algorithm repeatedly
finds the timepoint to the MAT (line 12) and record the
corresponding trim value (line 13). If the MAT does not
exceed the safety threshold H , a feasible QCSPSC solution
is found (lines 14 and 15). Otherwise, the algorithm finds the
activity which crosses the timepoint and has the same sign of
trim contribution with the sign of max_tm, and then performs
the sliding-window operation (lines 16–21).

The sliding-window operation is depicted in Algorithm 4.
It simultaneously slides the time windows of activities i, i +
1, . . . , N to the right by one time unit.

The sliding-window heuristic algorithm is guaranteed to
terminate in finite steps, as the sliding-window operation will
eventually separate all activities in finite steps. The worst case
time complexity of the algorithm is O(N

∑N
i=1 maxk∈Q pik).

D. Implementation of the Bicriteria Evolutionary Algorithm
The proposed BiEA to the QCSPSC combines a genetic

algorithm with a local search procedure. Most components of
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Algorithm 3 : Sliding-Window Heuristic Algorithm
Input:

A set of N activities, sorted by the starting times:
a[1], . . . , a[N];
Trim contribution (per unit time) of each task:
tc[1], . . . , tc[N];
Makespan: M .

Output:
Updated activities: a[1], . . . , a[N].

1: for i ← 1 to N do
2: for j ← a[i ].star t to a[i ].end − 1 do
3: change_of _tr im[ j ] ← change_of _tr im[ j ] +

tc[a[i ].task];
4: end for
5: end for
6: tm ← 0;
7: for j ← 0 to M do
8: tm ← tm + change_of _tr im[ j ];
9: tr im[ j ] ← tm;

10: end for
11: while true do
12: k ← arg max{|tr im[ j ]| | j = 0, . . . , M};
13: max_tm ← tr im[k];
14: If |max_tm| ≤ |H | then
15: return a;  successfully fix the schedule
16: for i ← 2 to N do  the first activity is excluded
17: if (a[i ].star t ≤ k) and (a[i ].end − 1 ≥ k)

and (a[i ].star t < min{a[ j ].end | j < i})
and (sign(tc[a[i ].task]) = sign(max_tm)) then

18: SLIDING_WINDOW(tr im, i, M);
19: break ;
20: end if
21: end for
22: If the function SLIDING_WINDOW( ) not called then
23: return a;  failed to fix the schedule
24: end while

Algorithm 4: SLIDING_WINDOW Procedure
1: M ← M + 1;
2: tr im[M] ← tr im[M − 1];
3: while i ≤ N do
4: for j ← a[i ].star t to a[i ].end − 1 do
5: tr im[ j ] ← tr im[ j ] − tc[a[i ].task];
6: end for
7: a[i ].star t ← a[i ].star t + 1;
8: a[i ].end← a[i ].end + 1;
9: i ← i + 1;

10: end while

the algorithm are standard in the literature but designed in a
problem-specific way.

1) Initial Population Generation: The initial population P0
is made up of |P| different individuals encoded by the priority-
assignment-based scheme, where |P| is the population size.
For each individual, the priority sequence is a random gen-
erated permutation of 1, 2, . . . , N . The assignment sequence

Fig. 10. Example of the two-point partially mapped crossover operator.

consists of N elements, each is a random integer between 1
and Q.

2) Crossover Operator: In the evolutionary algorithm,
the crossover operator is used to produce new generations.
In our algorithm, two parents are randomly selected and two
offsprings are generated. A total of |P| offsprings are produced
finally.

Because an individual is represented by the combination of
priority sequence and assignment sequence, it is impossible
to directly apply the traditional crossover operators, e.g., two-
point crossover, order-based crossover, and partially mapped
crossover. To deal with this issue, we propose a two-point
partially mapped crossover operator, which is similar to the
one in [50].

The two-point partially mapped crossover operator is
devised as follows: 1) two cut points in the range of 1 to
N are randomly generated; 2) the two-point crossover to the
generated cut points is performed on two parent assignment
sequences, producing two offspring assignment sequences;
and 3) the partially mapped crossover to the generated cut
points is performed on two parent priority sequences, obtaining
offspring priority sequences. Fig. 10 shows an example of
the operator. For an individual, the blocks in white constitute
the priority sequence, while the blocks in dark compose the
assignment sequence.

3) Local Search Procedure: After the crossover operator,
the local search operators are introduced to locally improve the
quality of the generated offsprings. In our algorithm, we sim-
ply adopt the exchange operator and the reverse operator.
Because an individual is encoded by the priority sequence
and the assignment sequence, there are a total of four com-
binations for different operators on different sequences. One
combination is randomly chosen, and then, the corresponding
operation is performed. The local search procedure executes in
I ter iterations for each offspring, where I ter is a user-defined
parameter.

Note that both the priority sequence and the assignment
sequence have N elements. The exchange operator randomly
generates two indices x and y, such that 1 ≤ x < y ≤ N , and
then swap the corresponding elements. Similarly, the reverse
operator reverses the segment of elements between x and y.
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TABLE II

COMPARED ALGORITHMS ON THE QCSP INSTANCES

TABLE III

PARAMETER SETTING FOR BIEA

4) Selection Procedure and Termination Criterion: In our
evolutionary algorithm, the tournament selection is applied to
preserve elite individuals. The selection procedure involves
running |P| tournaments. In each tournament, a number of
individuals (determined by the tournament size τ ) in the
population are chosen and compete with each other based
on the dominance relations mentioned in Section IV-A. The
winner of each tournament is selected for the next generation.

The algorithm terminates when the number of generations
achieves a predefined value G.

V. COMPUTATIONAL EXPERIMENTS

To test the performance of the proposed BiEA, we con-
ducted experiments on a series of test instances. The code
was implemented in GNU C++, using the “−O2” option. All
experiments were run on a Linux server with Intel Xeon E5430
2.66-GHz processor and 8-GB RAM.

A. Experimental Setup

The QCSPSC instances can be constructed by modifying
the traditional QCSP instances. Originally, Kim and Park [24]
proposed a set of QCSP benchmark instances, among which
37 small-scale instances (k13–k49) have been widely studied
by researchers (e.g., [24]–[26], [28]). These instances are
classified into four groups. Each group has an identical number
of tasks and QCs. The remaining instances (k50–k102) in six
groups are large-scale instances, which have been used by
Bierwirth and Meisel [27] and Legato et al. [32].

Our experiments consisted of two parts. In the first part,
we ran BiEA on the QCSP instances. This could be achieved
by simply setting the safety threshold H to infinity. In order to
evaluate the algorithm, we compared the results obtained by
our algorithm with other algorithms. Table II summarizes dif-
ferent compared algorithms with their machine configurations,

TABLE IV

RESULTS OF THE QCSP WITHOUT STABILITY CONSTRAINTS
ON SMALL-SCALE INSTANCES

where B&B, GRASP, B&C, TS, UDS, GA, and LTM cor-
respond to branch-and-bound, GRASP, branch-and-cut, tabu
search, unidirectional scheduling heuristic, genetic algorithm,
and the hybrid approach by Legato et al. [32], respectively.
The comparison results are described in Section V-B.

The second part of the experiments assessed the quality of
the solutions by BiEA on the QCSPSC instances. To construct
QCSPSC instances from the QCSP instances, we followed the
manner presented in the end of Section III-C and restated as
follows: 1) set the ship on even keel in initial; 2) the total
weight of containers in a task is set to the task processing time;
3) if an instance contains B bays, the horizontal positions of
the i th bay (numbered from stem to stern) are set to 2i−B−1;
4) the constant coefficient in (19) is neglected; and 5) the
stability threshold is set to the absolute increment of trim in
the final layout. The detailed results and analysis are presented
in Section V-C.
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TABLE V

SUMMARIZED RESULTS OF THE QCSP WITHOUT STABILITY
CONSTRAINTS ON LARGE-SCALE INSTANCES

After some preliminary experiments, the final parameters
with respect to BiEA are listed in Table III. In fact, there is
still room for fine-tuning the parameters on different instance
groups, but we find that such setting is already appropriate in
seeking promising QCSP and QCSPSC solutions.

B. Numerical Results for the QCSP

The results of 37 small-scale instances by different algo-
rithms are reported in Table IV. The value under the second
column to the eighth column indicates the best solution found
by the corresponding algorithm. The LTM approach did not
provide the detailed results of instances k13–k49, so its results
are not shown.

We can observe from Table IV that the BiEA outperforms
other approaches except for UDS in terms of the solution
quality. It is worth noting that GA attained the smallest value
among all the approaches on instance k36. However, such a
value is incorrect as it is below the lower bound generated
by other approaches (see [25]). The UDS approach takes the
lead in most of the instances, but it obtained slightly larger
results on k22 and k42 (marked with asterisks) than B&C and
BiEA did. This is because the interference constraints defined
by UDS require that QCs have to keep a safety margin at
any time, while other approaches assumed that QCs have to
keep a safety margin only if they are processing tasks. More
discussions on interference constraints can be found in [27].
Overall, the BiEA achieves 35 out of 37 best known solutions
on these instances. These results imply that the BiEA is a
competitive approach, although it is not specifically designed
for solving the QCSP.

We also tried to solve the large-scale QCSP instances
using the BiEA. The results are compared with two lead-
ing approaches (i.e., UDS and LTM); they are summa-
rized in Table V. Table V shows that the results obtained
by the BiEA on k50–k102 are inferior to those given by
UDS or LTM. The average gap is 1.81% and 1.94% to UDS
and LTM, respectively.

We do not report the computational times in Tables IV
and V. This is because different algorithms were executed
on different machines and different random seeds potentially
affected running times for those metaheuristic algorithms.
In fact, all the solutions were obtained by the corresponding
algorithms in reasonable computational times (less than 1 h).

Fig. 11. Relations between safety threshold and makespan on instance k13.

C. Numerical Results for the QCSPSC

We ran our BiEA approach on the QCSPSC instances.
For each instance, ten independent runs with differ-
ent random seeds were carried out. Because previous
works (e.g., [44] and [45]) cannot be directly applied for
solving our QCSPSC, and preliminary experiments show that
ILOG Cplex is not able to solve the IP model on any QCSPSC
instances, we only compare the QCSPSC results generated
by the BiEA with the QCSP results. Obviously, the QCSP
solution can provide a lower bound for the corresponding
QCSPSC solution.

The results on small-scale instances (k13–k49) are pre-
sented in Table VI. In Table VI, the number under the
heading “|Hfinal|” is the absolute trim value in the final layout
with respect to the corresponding instance. The constructed
QCSPSC instance requires that the trim values during the
scheduling horizon should not exceed |Hfinal|, so the columns
with the heading “BiEA (H = |Hfinal|)” correspond to the
results of the QCSPSC, while the columns with the heading
“BiEA (H → +∞)” correspond to the results of the QCSP
without stability constraints. The value under the heading
“trim” is the actual trim value to the MAT (can be posi-
tive or negative). If the absolute of the value is larger than
|Hfinal|, an asterisk (“*”) is marked beside the value indicating
that the solution is infeasible to the QCSPSC. The columns
“min,” “max,” and “avg” represent the minimum, maximum,
and average makespan of the ten solutions, respectively. The
column “time(s)” gives for the average running time (in
seconds) of the ten runs. The column “diff.” calculates the
relative difference between the minimum values obtained for
the QCSP and the QCSPSC.

Table VI shows that originally, there are 19 solutions to the
QCSP, which are also feasible to the QCSPSC. By considering
the stability constraints, BiEA is able to find 35 feasible
solutions to the QCSPSC. Only the instances k23 and k33 have
no feasible solutions found. The optimal solution to the QCSP
provides a lower bound for the QCSPSC. On average, the best
found solution to the QCSPSC has an increase of 1% over the
best found solution to the QCSP. Besides, the computational
times do not increase significantly. These facts demonstrate
the effectiveness of the proposed algorithm: ensuring the ship
stability leads to only a small increase of the makespan.
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TABLE VI

RESULTS OF THE QCSPSC ON SMALL-SCALE INSTANCES

TABLE VII

SELECTED RESULTS OF THE QCSPSC ON LARGE-SCALE INSTANCES

Table VII gives the selected results of the QCSPSC on large-
scale instances (k50–k102). If the QCSP solution found is
already feasible to the QCSPSC, the corresponding result is
not selected. Finally, there are a total of 12 instances selected.

We take instance k58 as an example. When the stability
constraints are not considered, a solution was found with its
makespan and stability equal to 789 and −537, respectively.
This solution is infeasible to the QCSPSC, because |−537| >
|Hfinal| = 433. If the stability constraints are considered,
a feasible solution can be obtained. The makespan of the
solution increases by 1.1% and the MAT decreases by 19.4%.
Still, BiEA cannot find any feasible QCSPSC solutions on
instances k73 and k93. The results suffice to demonstrate
that by considering the stability constraints, the ship will
become stable, but the turnaround time will not be affected
significantly.

We also conduct additional experiments on the instance k13.
By increasing the safety threshold H from |Hfinal| = 108
to infinity, the optimal makespan found by the algorithm
decreases from 462 to 453. We plot the relations between
safety threshold and makespan, as shown in Fig. 11. The plot
can provide a Pareto front for users to trade off the makespan
and the safety threshold between the solutions.
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VI. CONCLUSION

The QCSP is an important and a well-studied problem
in the operations of container terminals. It involves the task
precedence constraints and QC noninterference constraints to
ensure safe crane movements. In this paper, we extend the
QCSP by taking into consideration the ship stability con-
straints, which are vital for the safety of ships. We formulate
the QCSPSC into a mixed integer linear programming model.
As the model is generally difficult to solve by integer pro-
gramming solvers, a BiEA is proposed for finding promising
solutions of the QCSPSC. One major contribution of this
paper is the introduction of the sliding-window heuristic for
fixing the schedule which violates the stability constraints.
Computational results on the modified benchmark data set
show that the proposed algorithm can produce high quality
solutions, which are averagely about 1% greater than the best
solutions of the QCSP.

In the literature, there exists several versions of the
QCSP [18]. For example, the QCSP with complete bays
requires that each bay is exclusively served by one QC, while
the QCSP with bay areas enables the cranes to share the work-
load of bays. Our optimization techniques (e.g., the bicriteria
method and the sliding-window heuristic) can potentially be
extended to deal with different versions of the QCSPSCs,
given that a proper heuristic method has been designed for
generating feasible QCSP solutions.

In practice, the scheduling of QCs is a complex process
subject to many constraints. Ship stability is one type of
constraints that is close to the realistic logistics environment,
so it deserves our attention. Ship stability generally consists
of vertical stability, traverse stability, and longitudinal stability.
This paper only focuses on ensuring the longitudinal stability.
The vertical stability and traverse stability are implicitly guar-
anteed during the process of a single task. To extend this paper,
future research can be conducted in ensuring more dimensions
of the ship stability.
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