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Multiobjective Approaches for the Ship Stowage
Planning Problem Considering Ship Stability

and Container Rehandles
Zizhen Zhang and Chung-Yee Lee

Abstract—The ship stowage planning problem (SSPP) is a
very complex and challenging problem in the logistics industries
because it affects the benefits of both shipping lines and port
terminals. In this paper, we investigate a multiobjective SSPP,
which aims to optimize the ship stability and the number of
rehandles simultaneously. We use metacentric height, list value,
and trim value to measure the ship stability. Meanwhile, the
number of rehandles is the sum of rehandles by yard cranes and
quay cranes and all necessary rehandles at future ports. To solve
this problem, a variant of the nondominated sorting genetic algo-
rithm III (NSGA-III) combined with a local search component
is proposed. The algorithm can produce a set of nondominated
solutions. Decision makers can then choose the most promising
solution for practical implementation based on their experience
and preferences. Extensive experiments are carried out on two
groups of instances. The computational results demonstrate the
effectiveness of the proposed algorithm compared to the NSGA-II
and random weighted genetic algorithms, especially when it is
applied in solving the six-objective SSPP.

Index Terms—Evolutionary algorithms, multiobjective,
rehandle, ship stowage planning, stability.

I. INTRODUCTION

CONTAINERIZATION is one of the catalysts of global
trade. It has resulted in a tremendous growth of the mar-

itime freight industry. Nowadays, over 80% of world trade is
carried by the maritime freight industry, which operates the
container transportation business. The containers come in a
few standard dimensions. Typically, containers are 20 or 40 ft
long, 8 ft wide, and 8.5 or 9.5 ft high. The most common
containers are 20 ft long, defined as a twenty-foot equivalent
unit (TEU). The introduction of standard containers has made
efficient multimodal transportation possible and significantly
reduced the operational costs. In accordance with the standard,
ship capacity is normally measured by the maximum number
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of TEUs that can be placed on the ship. For efficiency reasons,
the ship size has risen from a few thousand TEUs a few years
ago to over 18 000 TEUs today.

There are many challenging operational problems related
to the shipping of containers. A practical one is termed the
ship stowage planning problem (SSPP). Stowage planning is
the process of deciding which container is to be placed in
what location of the ship. Typically, a container ship will load
and/or discharge its containers when it calls a port. Containers
have different weights and are destined for different discharg-
ing ports where the ship is due to visit. In a port terminal,
cranes are used to load and unload containers. Each crane can
move within a certain range and perform container retrieval
operations. Containers are piled up vertically forming stacks.
If container x is stacked above another container y, x will
have to be retrieved before y can be retrieved. In this case,
container x is called a blocking container (of container y).

Designing a good stowage plan is important as it can sig-
nificantly reduce the operational cost and raise the operational
efficiency. Thus, it is one of the key steps to enhancing a ship-
ping line’s competitive advantage. To obtain a good plan, most
of the existing container stowage planning literature takes one
or several of the following requirements into consideration
(see [1], [2]).

1) Minimizing ship turnaround time and reducing container
rehandles. Turnaround time is one of the key produc-
tivity indicators of the shipping line and the port. The
turnaround time of a ship is determined by the time
span from its berthing to departure. From the shipping
line’s perspective, a lower turnaround time at the termi-
nal can save port fees and accelerate the voyage so that
the goods can reach their destinations on time. From
the port’s point of view, a shorter turnaround time can
help to reduce congestion and maximize service pro-
ductivity. Ship turnaround time is primarily dominated
by the time necessary to unload and load containers. In
order to minimize the turnaround time, it is important for
stowage planners to reduce the redundant moves of con-
tainers (known as rehandling or reshuffling). Moreover,
since moving a container is expensive (usually one move
costs tens to hundreds of dollars), it also motivates the
planners to reduce the number of rehandles.

2) Minimizing the makespan of quay cranes. The makespan
of quay cranes is the latest completion time among all
the handling tasks by cranes. It directly affects the ship
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turnaround time and port charges. Because many con-
tainer ships are large, the port terminal will normally
launch two or more cranes simultaneously to speed up
the unloading and loading procedure. In practice, con-
tainer ships are divided longitudinally into several areas
(or holds). Only one crane can work with one hold at
a time. In addition, two adjacent cranes cannot work
too closely for safety reasons. This problem is the so-
called crane scheduling problem, which has attracted
much academic attention. Although in the stowage plan-
ning step we may not be too concerned with the details
of crane scheduling, sometimes we need to consider the
dispersion of containers for the effective utilization of
cranes.

3) Ensuring different kinds of rules for the ship and opti-
mizing ship stability. The container ship is a complex
object. To ensure a safe voyage, various types of con-
straints must be satisfied. These constraints can be clas-
sified into physical constraints and stability constraints.
Physical constraints affect the operations of the ship. For
instance, the last-in-first-out manner is applied to stacks.
Refrigerated, hazardous, or specially treated containers
must be stowed in particular slots. Stability constraints
affect the transverse stability, longitudinal stability, and
hydrostatic properties of the ship [3]. Stability is of vital
importance to ship sailing. It is the ability to maintain
the ship in the upright position. Ships are becoming
ever larger and sailing ever faster, potentially increas-
ing the risk of capsizing [4]. Moreover, there is a
growing economic pressure to sail in adverse weather
conditions, thereby potentially jeopardizing stability and
safety [5]. Several of the previous works treated ship sta-
bilities as hard constraints (see [6]). In actual operation,
however, some noncritical stability issues are tractable.
For example, ballast tanks can be used to hold sea-
water to weigh down the ship [7]. A good stowage
plan needs to optimize the ballast water usage so as to
decrease the draft of the ship and thus improve the fuel
efficiency.

Based on the above discussions, the following two cate-
gories of objectives are of primary importance in ship stowage
planning.

1) Maximization of ship stability.
2) Minimization of container rehandles.
These objectives are equally important and should be con-

sidered together. They relate to the profit and efficiency of
both shipping line and port terminals. However, they may be
in conflict sometimes, e.g., slightly increasing the number of
rehandles may actually improve ship stability. We formally
call such problem a multiobjective SSPP (MO-SSPP). The
MO-SSPP is a very realistic problem in the logistics environ-
ment and thus deserves our attention. To date, multiobjective
optimization has been applied in many fields including engi-
neering, economics, and logistics. The optimal decision is
often based on the tradeoff between two or more conflicting
objectives. In order to solve the multiobjective optimization
problem, two types of approaches are commonly used: the
prior approach and the posterior approach.

The prior approach uses the weighted method to combine
different objectives into one. The idea is simple but it is often
quite difficult to work out the weighted coefficient for each
objective. Moreover, in the MO-SSPP, ship stability must be
within a certain range for safety and/or economic reasons.
However, not all shipowners can tell exactly the range. Instead,
it is much simpler for them to determine how stable the ship is
given its layout. Therefore, the weighted method is sometimes
not appropriate for addressing the MO-SSPP.

The posterior approach, on the other hand, has demon-
strated its applicability to the MO-SSPP. It aims at generating
a representative subset of Pareto-optimal solutions (globally
or locally). A solution is Pareto-optimal if at least one of its
objectives is noninferior to that of other solutions in the solu-
tion space. To be precise, a solution S1 is said to dominate
another solution S2 if S1 is no worse than S2 for all objective
values and S1 is better than S2 for at least one objective value.
A solution S is Pareto-optimal if S is not dominated by any
other solutions in the solution space.

By using the posterior approach, a set of Pareto-optimal
solutions can be obtained within a single run without prior
information. Then the decision makers can make a trade-
off among different objectives and select the most desirable
solution for practical implementation.

This research contributes to the study of the SSPP by
proposing a multiobjective approach to achieving tradeoff
goals from the perspective of both shipping lines and port
terminals. The remainder of this paper is organized as fol-
lows. In Section II, we briefly describe the relevant literature,
including the studies concerning the SSPP and multiobjec-
tive framework. We then provide a formal definition of the
MO-SSPP in Section III. In Section IV, we introduce a multi-
objective approach, which combines a genetic algorithm with a
local improvement procedure to solve this problem. To evalu-
ate our approach, Section V reports a series of experiments that
we conducted based on the generated benchmark instances.
Section VI gives some closing remarks and some suggestions
for future research in this area.

II. LITERATURE REVIEW

According to [1] and [2], stowage planning is one part of
the ship planning process, which also includes the berth plan-
ning and crane split process. The first study on the SSPP
was conducted by Webster and Van Dyke [8]. The problem
they introduced was an oversimplified one, and their meth-
ods were not extensively tested to show their performance.
In 1981, American President Line adopted a computer-aided
preplanning system using simulation techniques and human
interaction to generate container vessel plans, as described by
Shields [9]. Theoretically speaking, a general SSPP can be
described as an NP-hard problem. Avriel et al. [10] showed
the relation between the SSPP and the problem of coloring
circle graphs, which has proven to be NP-hard.

The SSPP is also known as the master bay plan problem
(MBPP) [11]. Several integer programming models were intro-
duced to formulate different versions of the SSPP or MBPP.
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For example, Avriel et al. [12] presented a 0-1 linear program-
ming formulation for finding the optimal solution to small-
scale stowage planning cases. Ambrosino et al. [11], [13]
described a basic 0-1 linear programming model for MBPP.
Ambrosino et al. [14] extended the basic model by consid-
ering different types of containers (20 and 40 ft containers).
Li et al. [15] proposed a 0-1 linear programming model for
the stowage problem, in which they maximized the space
utilization and minimized the operation cost for a multiport
journey. Delgado et al. [16] also proposed an integer program-
ming model for stowing a set of containers in a single bay
section.

Most of the integer programming approaches can only
solve SSPPs of a small scale. For the problem of a prac-
tical scale, multistage approaches were adopted instead.
Wilson and Roach [17] proposed a method that embodied
a two-stage process to computerized stowage planning. The
first stage uses the generalized placement strategy, where
generalized containers are assigned to a blocked cargo-
space. The second stage is a specialized placement proce-
dure, where specific containers are assigned to specific slots.
Kang and Kim [18] divided the stowage planning problem
into two subproblems. The first subproblem is to assign con-
tainer groups to the holds and the second subproblem is to
determine a loading pattern of containers assigned to each
hold. Ambrosino et al. [14] developed a three-phase heuris-
tic for the master bay problem, where each phase deals with
a particular subproblem. Pacino et al. [19] proposed a two-
phase approach for the stowage of large container ships. The
first phase involves the multiport master planning process
and the second phase concerns the slot planning process.
Gumus et al. [20] also developed a four-stage decompo-
sition heuristic that accounts for many complex real-world
SSPPs.

Many heuristic or metaheuristic approaches for the SSPP
can also be found in the literature. Avriel et al. [12] devel-
oped a heuristic called the suspensory heuristic procedure to
deal with the SSPP with the objective of minimizing con-
tainer rehandles (overstowage). In their problem setting, some
practical constraints, such as the stability and strength of the
ship, are relaxed. Sciomachen and Tanfani [21] presented a
heuristic method for solving the MBPP based on its rela-
tion with the 3-D bin packing problem. They considered the
structural and operational constraints related to the contain-
ers and the ship in their model. Wilson and Roach [22]
used tabu search (TS) for generating a solution to the
SSPP. TS progressively refines the placement of containers.
Dubrovsky et al. [23] adopted a genetic algorithm and
highlighted the efficiency of the encoding through simula-
tions. Ambrosino et al. [24] tested the performance of three
approaches for MBBP, namely a TS, a simple constructive
heuristic and an ant colony optimization (ACO) approach.
The results showed that ACO leads to good results for large-
size instances, while TS is more desirable for medium-size
instances.

Although the aforementioned papers discussed several
objectives of the SSPP, most of them treated the SSPP as a
single objective optimization problem. There have been few

studies on MO-SSPP. Imai et al. [7] considered two crite-
ria in the MO-SSPP, i.e., ship stability and the number of
rehandles. However, they used the weighted sum method and
devised a genetic algorithm to deal with the single objective
SSPP. Liu et al. [25] took into account five objectives, i.e.,
the number of rehandles, the completion time of the longest
crane, the number of stacks that exceed the weight limit, the
number of idle slots, and horizontal moment difference and
cross moment difference, in stowage planning. A randomized
algorithm incorporating TS was developed for finding a set of
Pareto-optimal solutions.

In recent decades, evolutionary approaches have become
very popular and demonstrated great success in solving mul-
tiobjective optimization problems. Surprisingly, to the best
of our knowledge, no existing paper in the literature has
addressed the MO-SSPP using multiobjective evolutionary
(posterior) approaches at the time of writing.

III. PROBLEM DEFINITION AND ASSUMPTIONS

The MO-SSPP we study concerns obtaining a stowage plan
that simultaneously optimizes two categories of objectives
under various kinds of constraints. These constraints mainly
affect the structure of the ship and yard, which are detailed in
Section III-A. In Section III-B, the measurement of ship stabil-
ity is discussed. In Section III-C, we elaborate on the stowage
planning process, while we summarize different objectives of
the SSPP in Section III-D.

A. Structure of the Ship and Yard

The cargo space of a container ship is split into several 20-ft-
long areas. These areas are termed 20-ft bays. In addition, two
contiguous 20-ft bays form a 40-ft bay which can be used to
accommodate 40-ft containers. From the cross sectional view
of a bay, the row denotes the position where the container
is placed relative to the horizontal section of the correspond-
ing bay. The planar positions of the container on the ship are
uniquely defined by bay and row numbers. Each position is
termed a cell. Within a cell, several containers can be piled up
into a stack. A stack is made up of a number of tiers, which
defines the vertical position of the containers. The container
position in the ship is uniquely indexed by (bay, row, tier).
Such three-tuple is called a slot.

Container ships are complex objects and have different
layouts. To simplify the problem, the following assumptions
related to ship structure are made in this research.

1) The container ship is box-shaped and of the lift-on/
lift-off type. Containers are only accessible from the top,
i.e., a container can only be retrieved if it is the topmost
container in the stack.

2) We only consider the standard type of containers.
Refrigerated, hazardous, or other nonstandard containers
are treated specially.

3) 20- and 40-ft bays are commonly stacked separately. Our
research only focuses on 20-ft containers.

4) We only consider the rectangular bays, and the num-
ber of rows in each bay is the same, denoted by rS.
The number of bays is assumed to be bS in the ship.
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(a) (b)

Fig. 1. Ship stability factors. (a) Transverse stability. (b) Longitudinal
stability.

Thus, the number of stacks in the ship equals bSrS. We
also assume that the number of tiers for each stack is
bounded by hS. We do not distinguish between the space
inside the ship hold or that above deck.

The structure of the yard bays is similar to that of the ship
bays. The number of yard bays, the number of rows in each
yard bay, and height limits are denoted by bY , rY , and hY ,
respectively.

B. Stability Measurement

Ship stability depends on four factors, i.e., the segments of
KB, BM, KG, and GM [3]. Fig. 1 shows the relative positions
of the four segments. Among these factors, GM (also referred
to as metacentric height) is the most important. GM is the dis-
tance between the center of gravity of a ship (with containers
loaded) and its metacenter. GM mainly deals with transverse
stability [see Fig. 1(a)], which relates to vertical equilibrium
and cross equilibrium. GM can be calculated by the following
formula:

GM = G0M +
∑

i wi(zi − z0)

W +∑
i wi

. (1)

In (1), G0M is the initial metacentric height. The coordinate
(x0, y0, z0) denotes the initial center of gravity, and (xi, yi, zi) is
the location where the ith container is placed. wi is the weight
of the ith container. W is the weight of the ship without any
containers loaded. In practice, a larger but not extremely large
GM implies greater initial stability against overturning. To
optimize GM, stowage planners will place lighter containers
on top of heavier ones.

GM can also help to calculate the angle of list, which mea-
sures the degree to which a ship is leaning to one side. Let θ

denote the angle of list. A small θ contributes to a ship’s cross
equilibrium, so θ should be minimized. Equation (2) shows a
way to calculate θ

tan θ =
∑

i wi(yi − y0)
(
W +∑

i wi
) · GM

. (2)

The longitudinal stability [see Fig. 1(b)] is related to the trim
value, which is defined as the difference between the draft at
forward perpendicular and after perpendicular. Obviously, the
absolute value of the trim value, denoted by |t|, should also be
minimized. The calculation of t is given by (3), where GML

is the distance between center of gravity G and longitudinal

metacenter ML. The approximated equation in (3) is obtained
from GML � BML = W · l3/12(W +∑

i wi) when the box-
shaped ship is considered (l denotes the length of the ship)

t = l
∑

i wi(xi − x0)
(
W +∑

i wi
) · GML

� 12
∑

i wi(xi − x0)

W · l2 . (3)

C. Ship Stowage Planning Process

Consider that a container ship calls some port terminal.
The containers on the ship destined for the current port are
to be discharged. Meanwhile, there are a number of contain-
ers destined for future ports stowed on the yard and to be
loaded onto the ship. The port terminal operates cranes for
loading and unloading containers. We assume that container
unloading always take place before loading. This assump-
tion is valid in many scenarios of terminal operations. In this
case, the unloading process and loading process can be treated
separately.

During the unloading process, the general goal is to
reduce the import container discharging time, while the stabil-
ity of the ship can be optimized through the loading process.
Thus, the problem of container unloading can often be treated
as a single objective one which minimizes the number of
import container rehandles. We ignore this problem in this
research and mainly focus on the stowage planning problem
during the loading process. That is, given the ship layout
after unloading, we aim to design a loading plan that indi-
cates which export container to be placed in what location of
the ship.

The rehandling of containers related to such stowage plan-
ning problem occurs in two scenarios. First, export containers
(yard containers) arrive at the yard in random order several
days before shipping. They are stowed in the bays forming
stacks. A stowage plan should determine the loading sequence
of yard containers. Following this sequence, yard contain-
ers are retrieved and transported by internal trucks from the
yard to the quayside. The retrieval of yard containers by yard
cranes according to the loading sequence may incur rehan-
dling. It is worth noting that in reality, a premarshalling step
(see [26]) can help to reduce the chances of rehandling during
the container retrieval.

Second, container rehandling may also be needed when yard
containers arrive at the quayside and have to be loaded onto
the ship by quay cranes. This is because the stowage plan des-
ignates the location of each container. If a yard container is
assigned to some location that is already occupied by another
ship container, that container must first be shifted. In the litera-
ture, the rehandling of ship containers is also called voluntary
shifting (refer to [12]). It can help to prevent costlier shifts
at future ports. Through voluntary shifting, the number of
blocking containers may be reduced significantly.

Example 1: Suppose that the ship calls port 1. There is a
stack on the ship composed of only one container with its
port of discharge (POD) equal to 2. Now there are four yard
containers with POD = 3 to be loaded to this stack. If the
ship container remains in the stack, all four yard containers
will become blocking containers and four rehandles will be
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Fig. 2. Ship stowage planning process.

required when the ship calls port 2. However, if the ship con-
tainer is voluntarily shifted and is reloaded after the four yard
containers are loaded, no rehandles will be needed at port 2.

In sum, the number of rehandles with respect to a given
stowage plan consists of the following three parts.

1) Number of rehandles by yard cranes. Note that the prob-
lem of finding the minimum number of rehandles by
yard cranes for a given loading sequence is known as the
block relocation problem or container relocation prob-
lem [27], which is an NP-hard problem in the strong
sense.

2) Number of rehandles by quay cranes (via voluntary shift-
ing). For simplicity, we assume that if a ship container
is rehandled, it is first temporarily shifted to the quay-
side and reloaded onto the ship at a later stage (known
as external move). The movement of containers within
the ship (known as internal move) is not considered.

3) Number of necessary rehandles at future ports. If a
container is a blocking container, a rehandle will be
needed when some container below it is to be retrieved.
Therefore, we use the number of blocking containers to
estimate the number of rehandles at future ports.

We illustrate the ship stowage planning process in Fig. 2.

D. Multiobjective Ship Stowage Planning Problem

As discussed above, there are six objectives in two cate-
gories to be optimized simultaneously. The first category is
related to ship stability and the second one is related to con-
tainer rehandles. Suppose that S is a feasible loading plan
to the MO-SSPP. The six-objective function is defined as
f (S) = ( f1(S), . . . , f6(S)), where the meanings of different
objectives are summarized in Table I and the general form of
the MO-SSPP is stated below

min {−f1(S), | f2(S)|, | f3(S)|, f4(S), f5(S), f6(S)} (4)

s.t. S ∈ S. (5)

Equation (4) is the objective function. Similar to [7], we
can adopt the weighted method to integrate the six objectives
into a single objective by introducing the weights α1, . . . , α6.
Another attractive approach is to adopt posterior approach to
look for a set of Pareto-optimal solutions so that decisions
makers can make a tradeoff among different objectives.

In (5), S is the feasible solution space. In this paper, we do
not present the solution space in mixed integer linear program-
ming (MILP) form, as it would introduce too many decision

TABLE I
SIX OBJECTIVES OF THE MO-SSPP

variables and constraints. Consider the block relocation prob-
lem, a sub-phase of the SSPP. The mathematical model of
this problem can be found in [28]. The authors presented an
MILP model to solve the problem. The model involves more
than r2

Yh2
YNT binary variables, where N is the number of con-

tainers in the bay and T is an upper bound on the number
of container moves. They also reported that the MILP solver
can only solve very small-size instances, e.g., rYhY ≤ 4 × 5.
Instead, we will discuss how to use a compact method to rep-
resent feasible solutions in the next section, which allows us
to devise efficient heuristics for solving the problem.

IV. MULTIOBJECTIVE APPROACH

In this section, we devise a variant of the nondominated
sorting genetic algorithm III (NSGA-III) [29] for solving the
MO-SSPP. We first present an overview of our approach
in Section IV-A. Then, the solution representation is dis-
cussed in Section IV-B. The evaluation of solution is given
in Section IV-C. The method for generating an initial pop-
ulation is presented in Section IV-D. We then describe the
recombination operator and mutation operator with respect to
NSGA-III in Sections IV-E and IV-F, respectively. The local
search process is introduced in Section IV-G. Section IV-H
states the neighborhood generating operators.

A. Overview of the Approach

When we apply the posterior approach to the MO-SSPP,
the solutions in S are compared based on Pareto dominance
relations. In practice, it is always difficult to obtain all Pareto-
optimal solutions (termed Pareto front) of the MO-SSPP due
to its extremely large solution space. Therefore, we only seek a
representative set of solutions that can approximate the Pareto
front as closely as possible.

We adopt an NSGA-III to find the approximated Pareto front
of the MO-SSPP. NSGA-III is an extension of NSGA-II [29],
which is a very popular population-based multiobjective evo-
lutionary algorithm. NSGA-III improves the selection operator
in NSGA-II by maintaining the diversity of nondominated
solutions with a set of well-distributed reference points.
Compared to NSGA-II, NSGA-III is more adapted to solving
many-objective optimization problems (many means greater
than 3).

We also incorporate a local search procedure in NSGA-III,
which can significantly improve individual solutions.
The framework of NSGA-III is given in Algorithm 1.
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Algorithm 1 Framework of NSGA-III for the MO-SSPP
1: P0 ← INITIAL_POPULATION( );
2: Q0 ← ∅;
3: t← 1;
4: while termination criteria not reached do
5: Rt ← Pt−1 ∪ Qt−1;
6: F← FAST-NON-DOMINATED-SORT(Rt);
7: Pt ← ∅ and i← 1;
8: while |Pt| + |Fi| ≤ POP_SIZE do
9: Pt ← Pt ∪ Fi;

10: i← i+ 1;
11: end while
12: Members to be chosen from the last front Fi: K =

POP_SIZE − |Pt|;
13: Pt ← Pt∪ SELECTION(Pt, Fi, K);
14: Qt ← RECOMBINATION(Pt);
15: Qt ← MUTATION(Qt);
16: Qt ← LOCAL-SEARCH(Qt);
17: t← t + 1;
18: end while

In this algorithm, Pt is the parent population in the tth
generation, Qt is the child population, and Rt is the gen-
erated population. The process fast-nondominated-sort
(line 6) classifies Rt into several nondomination levels, i.e.,
F1, F2, . . . , Fi, . . .. The members from F1 to Fi−1 are already
included to form a new population Pt, and the remaining
K slots (line 12) are selected from the members of the last
front Fi. Line 13 is the selection procedure, which involves
normalization, association and niche-preservation operations.
The procedures recombination and mutation exploit heuristic
operators to evolve the population. Line 16 is the local-search
procedure. For more details of NSGA-III, readers are referred
to [30].

B. Solution Representation

A feasible solution S is associated with three decision sets,
i.e., S = (L, RY , RS). Here, L is the loading plan for the
containers (including all yard containers and some subset of
ship containers). A loading plan should designate the con-
tainer loading sequence and the position to be occupied by
each container. RY is the rehandling plan for yard contain-
ers and RS is the rehandling plans for the subset of ship
containers.

Observe that once L is determined, the loading sequence is
also realized. Given the loading sequence for yard containers,
the optimal rehandling plan RY (in terms of the number of
rehandles) can be obtained by solving the container reloca-
tion problem [27]. Given the loading sequence for the subset
of ship containers, we know which ship containers should be
rehandled, so the number of ship container rehandles can also
be calculated. Moreover, once L is determined, the final con-
tainer layout of the ship can be worked out and ship stability
can be determined. In sum, it suffices to use the loading plan
L to represent the solution.

Let CY be the set of yard containers, CS be the set
of ship containers, and CS(S) ⊆ CS be some subset of
ship containers to be rehandled according to solution S.
Generally, L can be denoted by a sequence of triplets,

Fig. 3. Example of a bay in the container relocation problem.

i.e., L = 〈(id1, b1, r1), (id2, b2, r2), . . . , (idn, bn, rn)〉, where
n = |CY | + |CS(S)|. idi ∈ CY ∪ CS(S)(1 ≤ i ≤ n) is the iden-
tification of the container in the ith position of the loading
sequence. bi (1 ≤ bi ≤ bS) and ri (1 ≤ ri ≤ rS) correspond to
the bay number and row number of the ship for loading this
container, i.e., (bi, ri) denotes a loading stack for container idi.

Example 2: For Fig. 2, suppose that a possible loading
plan is L = 〈(10, 1, 1), (8, 1, 2), (13, 1, 1), (7, 1, 3), . . .〉. The
triplet (10, 1, 1) indicates that container 10 is first loaded to
(bay 1, row 1) of the ship, then container 8 is loaded to
(bay 1, row 2). Note that container 13 is a ship container
that is temporarily shifted to the quayside. Then it is loaded
to (bay 1, row 1) after container 8 is loaded. The loading
sequence for yard containers is 〈10, 8, 7, . . .〉. From the infor-
mation of L, the number of rehandles and the ship layout can
be concluded.

Because the container relocation problem is NP-hard, given
the loading plan L, we cannot obtain the optimal rehandling
plan RY in polynomial time. Therefore, instead of seek-
ing the optimal rehandling plan, we simply adopt a greedy
heuristic method proposed by [31] in Section IV-C to find a
near-optimal rehandling plan. The reasons are as follows.

1) We may need to validate and evaluate different load-
ing plans in the solution space many times. A fast and
effective heuristic is desirable.

2) Yard container rehandles cost much less than ship con-
tainer rehandles. It is sufficient to first invoke a heuristic
method to approximate the optimal RY for the loading
plan L, and then optimize the approximated rehandling
plan at a later stage.

C. Heuristic Method for the Container Relocation Problem

Let LY be the subsequence of L consisting of only yard
containers. Given sequence LY and the yard layout, the
container relocation problem aims to find the minimum num-
ber of rehandles for retrieving all yard containers accord-
ing to LY . Because the relocation operation in a yard bay
is independent of that in other yard bays, without loss
of generality, we only present the method for a particular
yard bay.

Fig. 3 illustrates a bay in the container relocation problem.
Let us denote by (i, j) some container located in stack i and
tier j of the yard bay. Denote by Ni (1 ≤ i ≤ rY ) the
number of containers in stack i and by N the total num-
ber containers in the bay, i.e., N = ∑rY

i=1 Ni. Let pi,j be
the priority value of container (i, j), i.e., pi,j = l means that
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the destination of container (i, j) is l. Let pmax
i and pmin

i be
the maximum and minimum priorities of some container in
stack i, i.e., pmax

i = max1≤j≤Ni pi,j and pmin
i = min1≤j≤Ni pi,j,

respectively.
The heuristic method introduced by Caserta et al. [31]

makes use of simple greedy rules. Assume that container (i, j)
is the target container to be retrieved according to LY . If j = Ni,
container (i, j) can be directly retrieved without any rehandles.
Otherwise, container (i, Ni), which is the topmost container
in stack i, must be relocated to some other stack k(k �= i).
Here, the stack to be chosen is determined by the following
criteria.

1) If there exists a stack k such that Nk < hY and container
(i, Ni) does not block any containers in stack k (i.e.,
pi,Ni ≤ pmin

k ), then stack k is chosen. If there is more
than one stack satisfying these conditions, choose the
one with the smallest pmin

k .
2) If there does not exist a stack satisfying the above con-

ditions, choose the stack k such that Nk < hY and pmax
k

is the largest one.
The heuristic method guarantees a feasible solution if indeed

there is one. The heuristic executes in O(NhYrY) ≤ O(N2)

time. This is because there are N containers in total; each
container may have at most hY −1 blocking containers on top
to be relocated to one of the remaining rY − 1 stacks.

D. Initial Population Generation

In NSGA-III, the initial population is made up of POP_SIZE
initial solutions. Motivated by the manual planning procedure
in practice, we employ a two-stage method to generate each
initial solution.

In the first stage, we randomly apply one of the following
mechanisms to obtain a loading sequence for the solution.

1) Each time, retrieve the topmost containers whose desti-
nation is the furthest among all the topmost containers
in the yard stacks. If there are multiple choices, retrieve
the heaviest one.

2) Each time, retrieve the container whose destination is
the furthest among all yard containers. If there are mul-
tiple choices, retrieve the one with the fewest blocking
containers on top of it. If there is still a tie, retrieve the
heaviest one.

In the second stage, we use a heuristic to designate each
container to a loading stack according to the loading sequence
in the first stage. The selection of ship stack k to accommo-
date container x is decided in the similar manner described in
Section IV-C as follows.

1) If there exists a stack k such that Nk < hS and container
x does not block any containers in stack k, then stack
k is chosen. If there is more than one stack satisfying
these conditions, choose the one with the smallest pmin

k .
2) If there does not exist a stack satisfying the above con-

ditions, choose the stack k such that Nk < hS and pmax
k

is the largest one.
After these two stages, a feasible initial solution can be

obtained. Note that no ship container rehandling occurs in the
initial solutions.

(a)

(b)

(c)

(d)

Fig. 4. Example illustrating the use of the recombination operator.
(a) Original parent solutions. (b) Intermediate solutions after two-point
crossover. (c) Intermediate solutions after PMX crossover. (d) Final offspring
solutions.

E. Recombination

The recombination procedure is commonly used in evo-
lutionary algorithms for producing offspring solutions from
parent solutions. Generally, two parent solutions are selected
to generate two offspring solutions after parent mating selec-
tion with the recombination probability Pr. In the MO-SSPP,
designing the recombination operator is associated with two
difficulties. First, the size of loading plans for different solu-
tions may vary, so it is impossible to directly apply traditional
recombination operators (e.g., two-point, partially mapped
crossover (PMX), and so on). Second, the resultant loading
plans may be infeasible if the recombination operator is not
properly designed.

In what follows, we devise a novel and problem-specific
recombination operator to deal with these difficulties. We also
illustrate how the recombination operator works in Fig. 4. In
this example, bS = 2, rS = 2, hS = 3, containers 1–5 are yard
containers, and containers 6–9 are ship containers. Note that
parent 1 in Fig. 4(a) represents a solution with the loading
plan 〈(3, 1, 1), (5, 1, 2), (4, 1, 1), (2, 1, 1), (1, 2, 1), (8, 1, 2)〉.
The steps are as follows.

1) Identify the containers that appear in both parent solu-
tions. These containers are marked with circles in the
figure. Let m be the number of containers marked with
circles in a parent solution (m = 5 in this example).

2) Randomly generate two integers x0 and y0 such that 0 ≤
x0 ≤ y0 ≤ m. In our example, x0 = 2 and y0 = 4.

3) Let pos[0] = 0, pos[m + 1] = n + 1 and pos[i]
(1 ≤ i ≤ m) be equal to the actual position of
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the ith marked container in the corresponding solution.
For example, pos1[2] = 2 and pos1[4] = 4 for parent 1
and pos2[2] = 3 and pos2[4] = 6 for parent 2.

4) Randomly generate two cut points 〈x1, y1〉 for parent 1
and 〈x2, y2〉 for parent 2. The cut points should sat-
isfy pos1[x0] ≤ x1 < pos1[x0 + 1], pos1[y0] ≤ y1 <

pos1[y0 + 1], pos2[x0] ≤ x2 < pos2[x0 + 1], and
pos2[y0] ≤ y2 < pos2[y0 + 1]. In our example, we have
2 ≤ x1 < 3, 4 ≤ y1 < 5, 3 ≤ x2 < 4, and 6 ≤ y2 < 8.
Fig. 4(a) shows cut points 〈2, 4〉 for parent 1 and cut
points 〈3, 6〉 for parent 2.

5) By cut points, the two-point crossover operator is per-
formed. The first part and last part of parent solutions
are swapped [see Fig. 4(b)].

6) Some marked containers can be duplicated in a solu-
tion after a two-point crossover. To overcome this
problem, the well-known PMX procedure is invoked
for position-wise exchanges. Fig. 4(c) illustrates the
resulting intermediate solutions.

7) Some ship stacks may end up with excessive containers
according to the loading plan in the previous step. We
simply apply a greedy strategy to fix it. If loading a con-
tainer causes a stack overflow, this container is loaded
to the stack with the fewest containers. Fig. 4(d) shows
the final offspring solutions.

F. Mutation

After performing the recombination operator, a mutation
procedure is conventionally invoked to help evolutionary algo-
rithms escape from local optima. We thus devise three types
of operators to introduce a small amount of perturbation in
the offspring population, which can help the process locate
promising neighborhoods in a wider region of the search
space. These operators are presented in Section IV-H. They are
applied to the offspring solutions with the mutation probability
Pm, i.e., they are performed Pm × n times for a solution.

G. Local Search

We incorporate a local search in the NSGA-III frame-
work. The local search can significantly improve the individual
solution guided by a search direction. It exploits the problem-
knowledge as the population evolves and is more likely to
achieve good results. This is in fact the concept behind
memetic algorithms [32] in the literature.

Because the local search may take a lot of computation
time, only a portion of the offspring solutions are selected
for the local search. If an offspring solution is selected for
local improvement, three types of operators, the same as those
applied in mutation, are randomly chosen and applied to the
offspring solution for ls_iter times. The solution is updated if
and only if it is improved.

In the selection process, only POP_SIZE× Pls� solutions
from offspring pool Qt are chosen for improvement, where
Pls is the local search probability. The selection of solutions
is based on the local search direction.

Our local search aims to improve the solutions in Qt by opti-
mizing the aggregated single objective function: −α1f1(S) +

Algorithm 2 Local Search Procedure
1: function LOCAL_SEARCH(Qt)
2: Q′t ← ∅;
3: for i← 1 to POP_SIZE × Pls� do
4: Randomly generate weights αi (1 ≤ i ≤ 6);
5: Perform tournament selection on Qt according to the

aggregated objective, and solution S is the winner;
6: S′ ← GUIDED-LOCAL-SEARCH(S, α, ls_iter);
7: Q′t ← Q′t ∪ S′;
8: end for
9: return Q′t;

10: end function

α2| f2(S)| + α3f3(S)+ α4f4(S)+ α5f5(S)+ α6f6(S) for S ∈ Qt.
Therefore, the search direction is actually guided by weights
αi (1 ≤ i ≤ 6). Since there is no prior information about the
importance of each objective, in order to reduce the scalar
effect, αi is randomly and uniformly drawn based on the
following range setting:

{
αi = 0, if maxS∈Qt | fi(S)| = 0

0 ≤ αi ≤
(
maxS∈Qt | fi(S)|)−1

, otherwise.
(6)

Equation (6) can normalize the objectives. A large αi indi-
cates that the ith objective is important in the local search, and
vice versa.

After all the weights αi are determined, the aggre-
gated objective for each offspring solution can be obtained.
Tournament selection [33] with the tournament size τ is then
performed on the offspring pool Qt. The solution in the tour-
nament with the best aggregated objective is selected for local
search.

The local search procedure is summarized in Algorithm 2.
The function guided-local-search (line 6) is to perform local
improvement on solution S ls_iter times guided by weights α.

H. Neighborhood Operators

The neighborhood operators introduced in this section are
invoked during the mutation and local search process. Note
that all the neighborhood operators are applied to the loading
plan L rather than the solution S. Therefore, every generated
neighbor must be evaluated.

Recall that a loading plan consists of the loading
sequence and the loading stacks of containers, i.e., L =
〈(id1, b1, r1), (id2, b2, r2), . . . , (idn, bn, rn)〉. Based on the
scopes and effects of the neighborhood operators, we classify
them into the following three categories.

1) Operators Applied to the Loading Sequence: This cate-
gory of operators affects the loading sequence only, while the
loading stacks of containers remain unchanged. It contains the
following three operators.

1) Forward Shift Operator: Randomly generate two
indices i and j (1 ≤ i < j ≤ n), and then shift
the triplet (idj, bj, rj) to the position immediately
before (idi, bi, ri). The resultant loading plan is
〈(id1, b1, r1), . . . , (idj, bj, rj), (idi, bi, ri), . . . , (idn, bn, rn)〉.

2) Backward Shift Operator: Randomly generate two
indices i and j (1 ≤ i < j ≤ n), and then shift the
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Fig. 5. Example of a skyline.

triplet (idi, bi, ri) to the position immediately behind
(idj, bj, rj).

3) Swap A Operator: Randomly generate two indices i and
j (1 ≤ i < j ≤ n), and then swap triplets (idi, bi, ri) and
(idj, bj, rj).

Note that the resultant loading plan is still feasible after
applying this category of operators.

2) Operators Applied to Container Loading Stacks: This
category of operators tries to alter the loading stacks of con-
tainers in the loading plan. Two operators are introduced as
follows.

1) Reassign Operator: Randomly generate an index i (1 ≤
i ≤ n) and a loading stack (b′, r′) such that (b′, r′) �=
(bi, ri) and height (b′, r′) < hS. Here, height (b′, r′)
denotes the height of the stack (b′, r′) on the ship accord-
ing to the loading plan. Subsequently, replace (idi, bi, ri)

in the loading plan with (idi, b′, r′) to obtain a neighbor
loading plan.

2) Swap B Operator: Randomly generate two indices i and
j (1 ≤ i < j ≤ n), and then swap the loading stacks of
these two containers. The resultant loading plan becomes
〈(id1, b1, r1), . . . , (idi, bj, rj), . . . , (idj, bi, ri), . . . , (idn,
bn, rn)〉.

3) Operators Applied to Ship Containers: We have men-
tioned that a subset of ship containers, denoted by the set
CS(S), are temporarily shifted to the quayside in order to
reduce the number of blocking containers. This category of
operators tries to produce a neighbor by adding/removing a
ship container to/from CS(S).

To do this, we first introduce the concept of skyline. A
skyline is a vertical partition that separates the final ship lay-
out (determined by the loading plan L) into two parts. The
upper part consists of the containers in CY ∪ CS(S), i.e., all
the yard containers and those ship containers to be rehandled.
The lower part consists of only ship containers in CS\CS(S).
Fig. 5 illustrates an example of a skyline.

With the assistance of the skyline, two operators are devised
as follows.

1) Add Ship Container Operator: Randomly select a
loading stack (b′, r′) that has more than one ship
container below the skyline. Suppose that the top-
most ship container under the skyline in the stack
is container id. Randomly insert this container into
the loading plan and randomly assign a loading stack
value (b, r) to it. Then we can obtain a neighbor loading
plan such as 〈(id1, b1, r1), . . . , (idi−1, bi−1, ri−1),
(id, b, r), (idi, bi, ri), . . . , (idn, bn, rn)〉.

TABLE II
DATASET FOR THE MO-SSPP

2) Remove Ship Container Operator: Randomly select a
loading stack (b′, r′) such that there is more than one
ship container above the skyline. Remove the bottom-
most ship container above the skyline from the loading
plan.

V. EXPERIMENTAL ANALYSIS

In this section, we evaluate and analyze the performance
of the multiobjective algorithm on a series of test instances.
The algorithm was implemented in GNU C++, using the
“−O2” option. All experiments were run on a Linux server
with 8 GB of memory and Intel Xeon E5420 2.50 GHz pro-
cessor. Computation times reported here are in CPU seconds
on this machine.

A. Data Generation

The experiments were carried out on 32 instances
with different ship and yard structures. These instances
were generated based on the instance groups provided by
Bortfeldt and Forster [34] (BF instances for short). In their
paper, several groups of instances were proposed for solving
the container premarshalling problem. Each group contains 20
container layouts for a rectangular bay. The bays within a
group are of the same size. A rectangular bay is composed of
a number of containers with different priority values.

Our generated MO-SSPP instances are classified into two
types (types A and B) and each type contains 16 instances.
For type A instances, all the containers have identical weight
(1 unit). For type B instances, each container is randomly
assigned a weight ranging from 10 to 20 units. The information
of these instances is summarized in Table II. An instance may
involve several yard bays and ship bays. The layouts of these
bays were constructed from BF instances, where the bay labels
are given in the column “source” in the table. For example,
instance# A1 consists of two yard bays and four ship bays. The
first yard bay is constructed from the instance “BF1_1,” the
number of stacks in the bay (rY ) is 4, the height limit (hY ) is 5,
and the number of containers in this bay (N) is 24. The second
ship bay is constructed from the instance “BF1_4.” The data
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Fig. 6. Example of the ship structure.

TABLE III
COORDINATE OF A SLOT IN THE SHIP

ensure that there is enough space in the ship to accommodate
all the yard containers.

The coordinates of ship slots are needed to calculate the
vertical, traverse, and longitudinal stability of the ship. By our
assumptions, only box-shaped ship is considered. For such a
ship, we number the ship bays and rows from the center to
the two sides, while the tiers are numbered from bottom to
top. Fig. 6 illustrates the structure of the ship with four bays,
four rows, and three tiers. The coordinates of ship slots are set
to the values given in Table III. For example, the coordinates
(xi, yi, zi) of the container i indexed by (bay 2, row 3, tier 1)
are (1,−3,−1). The initial gravity center (x0, y0, z0) is set to
(0, 0,−hS/2), which is the center of the box-shaped ship.

By the above setting, the optimization of vertical sta-
bility equation (1), traverse stability equation (2) and lon-
gitudinal stability equation (3) is equivalent to maximiz-
ing

∑
i∈CY∪CS(S) wizi, minimizing |∑i∈CY∪CS(S) wiyi| and

minimizing |∑i∈CY∪CS(S) wixi|, respectively. Therefore, we
simply assume that f1(S) = ∑

i∈CY∪CS(S) wizi, f2(S) =∑
i∈CY∪CS(S) wiyi and f3(S) =∑

i∈CY∪CS(S) wixi for our exper-
iments.

B. Performance Measurement

The goals in designing a promising multiobjective algorithm
lie in two aspects. First, the algorithm can find a set of solu-
tions that are as close to the Pareto front as possible. Second,
the algorithm can find a set of solutions that are as diverse as
possible.

In order to evaluate the performance of the proposed algo-
rithm and other algorithms, three indicators are introduced.
The first one, the distance from reference set (or inverted
generational distance) indicator [35], measures how “far” an
approximated Pareto front is from the true Pareto front. The
second one, the set coverage indicator [36], judges the domi-
nance relations between two sets of nondominated solutions.
And the third one, the maximum spread (MS) indicator [37],
assesses the spread of a nondominated solution set.

1) Distance From Reference Set Indicator: The distance
from reference set indicator (ID) is used to measure the perfor-
mance of both convergence and spread. Given a nondominated
solution set A and a reference set P∗, ID is defined by the

following equation:

ID
(
A, P∗

) = 1

|P∗|
∑

y∈P∗
minx∈A d(x, y) (7)

where d(x, y) indicates the distance between the solutions x
and y, which is calculated using the relative Euclidean distance
as follows:

d(x, y) =
√
√
√
√

M∑

i

(
fi(x)− f min

i

f max
i − f min

i

− fi(y)− f min
i

f max
i − f min

i

)2

=
√
√
√
√

M∑

i

(
fi(x)− fi(y)

f max
i − f min

i

)2

. (8)

In (8), f max
i and f min

i are the maximum and minimum values
of the ith objective (M objectives in total) among the solutions
in P∗, respectively. Note that we use the absolute values of f2
and f3 rather than the original values in this equation.

Ideally, the reference set P∗ should be the true Pareto front.
However, it is difficult to obtain the true front. In our experi-
ment, P∗ is set to the Pareto front of all the solutions obtained
from the four compared algorithms. A small ID(A, P∗) indi-
cates that front A is a good approximation of the reference
set P∗. Thus, the algorithm that gives a small ID(A, P∗) value
is preferred.

2) Set Coverage Indicator: Suppose that A and B are two
sets of nondominated solutions, the set coverage indicator
C(A, B) is defined as follows:

C(A, B) = |{x ∈ B | ∃y ∈ A : y � x}|
|B| (9)

where y � x means that solution y dominates solution x. If
C(A, B) = 1, every solution in B is dominated by some solu-
tion in A. If C(A, B) = 0, no solution in B is dominated
by those in A. Note that C(A, B) does not necessarily equal
1−C(A, B). As suggested by Coello et al. [38], both C(A, B)

and C(B, A) should be taken into consideration when com-
paring two nondominated sets. If C(A, B) > C(B, A), A is
considered better than B in terms of their dominance relations.

3) Maximum Spread Indicator: The MS indicator measures
the distance between the boundary solutions in a nondomi-
nated solution set. For the nondominated solution set A, MS(A)

is calculated as follows:

MS(A) =
√
√
√
√

M∑

i=1

(

max
x∈A

fi(x)− f min
i

f max
i − f min

i

−min
x∈A

fi(x)− f min
i

f max
i − f min

i

)2

.

(10)

Generally, a large MS(A) indicates that a wide range of
objective values are covered by the nondominated solutions in
A, so A may have a good extent.

C. Experimental Setup and Compared Algorithms

After some preliminary experiments, the final parameter
settings for the proposed algorithm are shown in Table IV.
The population size is set to 100 by a rule of thumb, which
is a suitable size for decision makers to tradeoff solutions
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TABLE IV
PARAMETER SETTINGS FOR THE PROPOSED ALGORITHM

TABLE V
PARAMETER TUNING FOR Pr AND Pm

TABLE VI
EFFECT OF THE NEIGHBORHOOD OPERATORS

in the population. The number of reference points H is set
according to Das and Dennis’s systematic approach [39], i.e.,
H = CM−1

M+p−1, where M is the number of objectives and p is
some divisor. In our six-objective problem, we set p = 3 and
thus H = 56.

It is worth noting that the recombination operator and/or
mutation operators may have little effect during the evolu-
tion process. In our preliminary experiments, we tried to
tune Pr and Pm by different combinations on the instances
#A1 and #B1, while keeping other parameters unchanged. For
each instance and each combination, 30 independent runs were
conducted. The reference set P∗ for each instance is the set of
nondominated solutions over all runs. The average ID values
are reported in Table V, where the smallest value is marked in
bold. From this table, we can see that the recombination prob-
ability is important for achieving small ID values. In addition,
the effects of mutation probability show that a small Pm is
likely to improve ID values when Pr is large. Therefore, we
set Pr = 1 and Pm = 0.05 as the final parameter settings.

We also studied the effect of different neighborhood opera-
tors; the results are presented in Table VI. In this table, N1–N3
correspond to the three categories of neighborhood operators
presented in Section IV-H. The “+” sign (resp. “−” sign)
means that the corresponding category of operators is included
in (resp. excluded from) the mutation and local search process.
The real numbers in the table are average ID values which
were obtained in a similar manner as described for Table V.
As we can see, the impact of N1 is less significant than that of
N2 but more significant than that of N3. Moreover, when all

TABLE VII
COMPARED ALGORITHMS

neighborhood operators were included, the corresponding ID

value is the smallest. This demonstrates the positive impact of
the proposed neighborhood operators in solving the MO-SSPP.

In order to test the effectiveness of our proposed algo-
rithm, the true Pareto front is needed. However, as the true
Pareto front cannot be obtained in a reasonable time, it is
impossible for us to directly measure the performance of
the algorithm. Therefore, we implemented another five evo-
lutionary algorithms for comparison. All these algorithms are
listed in Table VII. In this table, NSGA-III-L is the pro-
posed algorithm. NSGA-III-NL is the traditional NSGA-III,
which can be obtained by disabling the local search compo-
nent of NSGA-III-L. NSGA-II-L and NSGA-II-NL correspond
to NSGA-II with and without local search, respectively.
All four algorithms are posterior approaches. RWGA-L and
RWGA-NL are random weighted genetic algorithms and are
prior approaches. A random weighted genetic algorithm first
randomly assigns relative weights to each individual. Then
the selection process in each iteration preserves the most
promising offspring solution for each individual. Readers are
referred to [40] for more details about the random weighted
genetic algorithm. Note that the parameters of these compared
algorithms were set to the same values as those shown in
Table IV.

The parameters for NSGA-II and RWGA are set to the
same as those for NSGA-III shown in Table IV. Note that we
do not need to introduce the number of reference points (H)
for NSGA-II and RWGA. For each algorithm, 30 independent
runs were carried out on each instance and the results were
collected for the analysis.

D. Computational Results and Analysis

We conducted experiments by applying the four algo-
rithms to 32 generated instances according to the settings
given in Section V-C. For each algorithm and each instance,
the results of 30 independent runs were collected. We then
applied the above three indicators to test the performance of
these four algorithms. Their average values are reported in
Tables VIII–X.

In Table VIII, the instance names are listed in the column
instance. Other columns present the average values of ID for
the corresponding algorithms. We mark the value of ID in bold
if it is the smallest. In terms of the indicator ID, the proposed
algorithm (NSGA-III-L) is better than the others for 24 out
of 32 instances. NSGA-III-NL performs slightly worse than
NSGA-III-L, but it still outperforms the other four algorithms
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TABLE VIII
COMPUTATIONAL RESULTS WITH RESPECT TO THE DISTANCE

FROM REFERENCE SET INDICATOR FOR THE MO-SSPP

for almost all instances. The observations also suggest that the
local search component plays an important role in improving
the solution quality.

To better represent the results with respect to the distance
from reference set indicator, we use box plots to visualize
the distribution of ID values for instances A1–A5 and B1–B5
obtained with different algorithms (see Fig. 7). Each box sum-
marizes 50% of data collected from 30 independent runs. The
bottom and top of the box are the first and third quartiles.
The band inside the box is the median. The figure clearly
reflects that NSGA-III approaches can produce very promising
nondominated solutions.

Table IX summarizes the set coverage indicator val-
ues of different algorithms. Since the algorithm with local
search components is generally better than the one with-
out, we only compare those algorithms with local search.
From Table IX, we can see that the solutions produced
by NSGA-III-L dominate most of the solutions produced
by NSGA-II-L or RWGA-L, as C(A, B) > C(B, A) holds
for these instances. However, an interesting phenomenon is
that for many instances, the solutions found with NSGA-
II-L do not dominate any solutions found with RWGA-L.
After having carefully analyzed the characteristics of these
instances, we found that their solution spaces are extremely
large. Because the prior approaches focus on exploring solu-
tions for particular weight patterns, it is reasonable that
RWGA-L performs better than NSGA-II-L according to the

TABLE IX
COMPUTATIONAL RESULTS WITH RESPECT TO THE SET

COVERAGE INDICATOR FOR THE MO-SSPP

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Box plots based on the distance from reference set indica-
tor. (a) NSGA-III-L. (b) NSGA-III-NL.(c) NSGA-II-L. (d) NSGA-II-NL.
(e) RWGA-L. (f) RWGA-NL.

set coverage indicator. This fact also demonstrates the lim-
itation of NSGA-II in solving many-objective optimization
problems.
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TABLE X
COMPUTATIONAL RESULTS WITH RESPECT TO

THE MS INDICATOR FOR THE MO-SSPP

We then report the results for the MS indicator in Table X.
As we can see, NSGA-II-NL achieves the largest MS values
on average, and NSGA-II-L the second largest. Comparatively,
the MS values obtained by RWGA-L and RWGA-NL are much
smaller. NSGA-III approaches perform better than RWGA
approaches but worse than NSGA-II approaches. These results
show that NSGA-II-L and NSGA-II-NL spread over a wider
extent. Decision makers may have more flexibility in trading
off objectives among different solutions.

In reality, when the dimension of the objective space is high
(e.g., greater than three), it is usually difficult for the decision
makers to get an intuitive impression of the Pareto-optimal
solutions. In what follows, we will reduce the dimension of
the objective space and discuss a bi-objective optimization
SSPP (BO-SSPP). For this problem, we can easily visualize
the Pareto-optimal solutions in a planar graph.

Since there are six objectives that can be classified into two
categories, we decided to manually set the relative weights for
each category. A typical weight setting results in the following
BO-SSPP:

min {g1(S) = −f1(S)+ | f2(S)| + | f3(S)|,
g2(S) = f4(S)+ 3f5(S)+ 2f6(S)} (11)

s.t. S ∈ S. (12)

In (11), g1(S) is the integrated stability function and g2(S)

is the integrated rehandle function. For the function g1(S), the
weights of vertical stability, traverse stability, and longitudinal

TABLE XI
COMPUTATIONAL RESULTS WITH RESPECT TO THE DISTANCE

FROM REFERENCE SET INDICATOR FOR THE BO-SSPP

stability are set to the same values. For the function g2(S), the
weight of yard container rehandles is the smallest, which is
one third of the weight of yard container rehandles and is one
half of the weight of future port rehandles.

We have modified all of the above algorithms to make them
capable of solving the BO-SSPP. In fact, only the dominance
strategy part and the evaluation function part need to be rewrit-
ten. The experiments were also carried out using the same
parameter settings given in Table IV except that H is set to
C2−1

99+2−1 = 100 (100 reference points).
Analogous to Tables VIII–X, the computational results to

the three indicators are reported in Tables XI–XIII. Table XI
shows that NSGA-II-L achieves the best ID values for 24
out of 32 instances compared to the other algorithms, so this
algorithm has a greater advantage in approximating the true
Pareto front when solving these instances. NSGA-III-L per-
forms slightly worse than NSGA-II-L. This demonstrates that
the Pareto-dominance relation method can provide stronger
selection pressure than the reference point method for the
problem with a small dimensional objective space. Note that
for the instances A3 and A4, all six algorithms achieved the
same nondominated solution (only one nondominated solution
was found), so their ID values are all equal to 0.

Table XII shows that NSGA-III-L beats NSGA-II-L for 13
instances but NSGA-II-L beats NSGA-III-L for 17 instances
according to the set coverage indicator. Except for instances
A3, A4, A9, A15, A16, B15, and B16, the nondominated solu-
tions produced by NSGA-III-L and NSGA-II-L are more likely
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TABLE XII
COMPUTATIONAL RESULTS WITH RESPECT TO THE

SET COVERAGE INDICATOR FOR THE BO-SSPP

to dominate those produced by RWGA-L. From Table XIII,
we can see that the NSGA-III and NSGA-II approaches pro-
duced better MS values than the RWGA approaches for most
of the instances.

In Fig. 8, we illustrate the nondominated solutions produced
by different algorithms for four instances (A1, A16, B1, and
B16). For each algorithm and each instance, the nondominated
solutions were collected based on the results from 30 indepen-
dent runs (30×100 = 3000 solutions in total). They are plotted
using different markers. Note that the dominated solutions
were discarded and not plotted. As we can see, the graphical
results agree with the results in Tables VIII–X. The NSGA-III
and NSGA-II approaches can cover the objective space more
completely and coherently than the RWGA approaches.

To sum up, considering both convergence and diversity, no
one algorithm is strictly better than the others. However, the
above results confirmed that the proposed algorithm can pro-
duce a set of nondominated solutions with excellent quality
and satisfactory diversity, especially for SSPP with high-
dimensional objective space. Overall, we recommend using
NSGA-III-L in practice.

VI. CONCLUSION

In this paper, we study an MO-SSPP which simultaneously
deals with ship stability and container rehandles. This prob-
lem is close to the realistic logistics environment. We consider

TABLE XIII
COMPUTATIONAL RESULTS WITH RESPECT TO

THE MS INDICATOR FOR THE BO-SSPP

(a) (b)

(c) (d)

Fig. 8. Nondominated solutions produced by different algorithms on
instances (a) A1, (b) A16, (c) B1, and (d) B16 for the BO-SSPP.

six objectives in the problem: 1) metacentric height; 2) list;
3) trim; 4) yard container rehandles; 5) ship container rehan-
dles; and 6) future port rehandles, where the first three
objectives are related to ship stability and the last three to
container rehandles. A tailored multiobjective evolutionary
algorithm, which is a variant of the NSGA III, is proposed
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for solving this problem. The algorithm makes use of well-
designed operators for evolving the population. In addition,
it features a local search component to help improve the solu-
tion quality. To evaluate the performance of the algorithm, we
conducted extensive experiments on two groups of instances
generated by Bortfeldt and Forster [34]. Another five algo-
rithms were also tested for comparison. The computational
results verify the effectiveness of the proposed algorithm,
especially when it is applied to solving a many-objective SSPP.

In practice, ship stowage planning is a very complex pro-
cess. It relates to the benefits of both shipping lines and port
terminals. Our approach can provide several tradeoff solutions
to cater to the needs from different perspectives. Decision
makers can select from among these solutions based on their
experience.

Three extensions of the SSPP deserve further study. First,
we can incorporate crane scheduling into the stowage plan-
ning process for a more realistic problem. Second, we can
consider stowing a container ship during its multiport voyage.
Given the information of export containers at each port, we
can optimize the overall ship stability and the total number of
container rehandles along the ship’s whole journey. Third, the
uncertainty issue in the ship stowage planning process can be
better studied. In practice, the ship stability and the number
of rehandles cannot be exactly measured beforehand. Robust
optimization may be applied to solve this problem.
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