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Abstract Detecting communities is of great importance in
the study of complex networks. In this study, the community
detection problem is formulated as a multiobjective opti-
mization problem; then a local search-based multiobjective
optimization algorithm is proposed. In the proposed algo-
rithm, different objectivewise local searches are designed
for different objectives. These simple but effective local
searches cooperate to simultaneously optimize two objec-
tives. Extensive experiments on both synthetic and real-world
networks show that the proposed algorithm obtains better or
competitive results compared with existing state-of-the-art
algorithms.

Keywords Multiobjective local search · Multiobjective
optimization · Community detection

1 Introduction

Community detection in complex networks is a challeng-
ing problem. The aim of community detection algorithms is
to discover the division of a network into groups of nodes,
called community structures. The characteristic of commu-
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nity structure is denser internal connectivity than external
connectivity. Community structures exist in various fields,
such as biological networks, science and technology net-
works (Castiglione et al. 2015; Esposito et al. 2013; Li et al.
2010), and social networks (Carullo et al. 2015). In recent
years, community detection in networks has attracted a lot
of attention and has been widely used in many different
domains, such as terrorist organization identification, pro-
tein function prediction, and public opinion analysis.

A number of community detection approaches have been
proposed. Extensive and detailed review of community
detection approaches in complex networks can be found in a
recent survey (Fortunato 2010). Optimization basedmethods
(DiMartino and Sessa 2013;Mokryani et al. 2013; Srivastava
et al. 2014) are a main class of methods to detect commu-
nities in complex networks (Cai et al. 2014c). Modularity,
presented in (Girvan and Newman 2002), is the most used
and best knownquality function for optimization basedmeth-
ods to detect communities. Newman (2004) presented an
agglomerative hierarchical method that searches for optimal
values of modularity. Clauset et al. (2004) presented a fast
implementation of the agglomerative hierarchical method.
Blondel et al. (2008) presented a variant of the hierarchi-
cal agglomerative clustering approach, named BGLL. BGLL
includes two phases that partitions a large network by repeat-
edly optimizing the modularity. Chaturvedi et al. (2012)
applied BGLL to various large networks. Pizzuti (2008) pre-
sented a genetic algorithm for community detection in social
networks, named GA-Net. Li and Song (2013) presented an
extended compact genetic algorithm for community detec-
tion. Cai et al. (2014c, 2015) presented a discrete particle
swarm optimization algorithm and a clonal selection algo-
rithm for community detection. All of the above works
consider community detection as a single objective optimiza-
tion problem.
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A network may have multiple potential community struc-
tures in the real world; hence a more suitable approach is
to simultaneously consider several conflicting objectives in
community detection to discover complex and comprehen-
sive community structures. Recently, several multiobjective
optimization algorithms for community detection in net-
works have been proposed. Pizzuti (2012) presented a
multiobjective genetic algorithm, named MOGA-Net. Shi
et al. (2012) presented a multiobjective community detec-
tion algorithm including two phases, named MOCD. Gong
et al. (2012a, 2014) presented a multiobjective evolutionary
algorithm with decomposition, named MOEA/D-Net, and
a multiobjective discrete particle swarm optimization algo-
rithm based on decomposition, named MODPSO.

Most existing multi-objective community detection algo-
rithms are based on evolutionary algorithms. In this study,
we propose a local search-based multiobjective optimization
algorithm, named MOLS-Net, to discover communities in
networks. In the proposed algorithm, different objectivewise
local searches are designed for different objectives. Extensive
experiments on both synthetic and real-world networks show
that MOLS-Net obtains better or competitive results com-
pared with MODPSO, MOEA/D-Net, GA-Net, and BGLL.

The remaining sections are organized as follows. Sec-
tion 2 gives the problem formulation. Section 3 proposes
MOLS-Net for community detection. Section 4 presents
experimental results. Finally, Sect. 5 presents conclusions.

2 Problem formulation

2.1 Formulation

Given an undirected network denoted as G = (V, E), where
V (|V | = n) and E are the sets of vertices and edges, respec-
tively, G can be represented as an adjacency matrix A. The
size of A is |V |× |V |. Ai j = 1, if e = (i, j) ∈ E ; otherwise,
Ai j = 0. The community structure of the network can be
regarded as a partition P = (V1, V2, . . . , Vi , . . . , Vm) with
the number m of V , where Vi ⊆ V , Vi �= ∅,

⋃m
i=1 Vi = V

and Vi ∩ Vj = ∅(i �= j) should be satisfied for each
Vi (i = 1, 2, . . . ,m). Vi corresponds to a community of
the network. Vertex–vertex connections are dense in a com-
munity Vi and are relatively sparse between Vi and Vj

( j = 1, 2, . . . ,m and j �= i). A community can be clas-
sified into a strong community and a weak community in a
more formal definition (Radicchi et al. 2004).

In this study, ratio cut (RC) (Wei and Cheng 1991) and
kernel K -means (KKM) (Gong et al. 2014) are used as the
two objective functions to be minimized. RC, denoted as
f1, measures the sum of the external link density between
communities. KKM, denoted as f2, measures the sum of
the internal link density in the same community. The two
objectives f1 and f2 are formalized as

f1 = RC =
m∑

i=1

L(Vi , V i )

|Vi | , (1)

f2 = KKM = 2(n − m) −
m∑

i=1

L(Vi , Vi )

|Vi | , (2)

where n is the number of vertices in a network, m is the
number of communities in a partition (solution), |Vi | is the
number of vertices in community i , Vi ∈ P , V i = P − Vi ,
L(Vi , V i ) = ∑

i∈Vi , j∈V i
Ai j , and L(Vi , Vi ) = ∑

i, j∈Vi Ai j .
Minimizing f1 and f2 can ensure sparse interconnections

and dense intraconnections. That is, optimizing RC tends to
divide a network into large communities, while optimizing
KKM tends to divide a network into small communities. This
is in accordance with the characteristics of the communities
in a network (Gong et al. 2014).

2.2 Multiobjective optimization

A multiobjective optimization problem (MOP) can be
described as follows:

min F(X) = ( f1(X), f2(X), . . . , fk(X)), (3)

where X = (X1, X2, . . . , XD) ⊆ �D is a vector in the D-
dimensional solution space; F ∈ �k is the objective space
with k minimization objectives.

Given two feasible solutions X and Y , we say that X dom-
inates Y if ∀i : fi (X) ≤ fi (Y ) and ∃ j : f j (X) < f j (Y ).
Moreover, X is said to be Pareto optimal if it is not dominated
by any other feasible solution. Then, the aim of multiobjec-
tive optimization is to find the set of Pareto optimal solutions,
usually called Pareto set. The set of all Pareto optimal objec-
tive vectors is called Pareto front.

Over the years, a number of metaheuristics have been
extended to solve MOPs. Multiobjective evolutionary algo-
rithms (MOEAs) strive to obtain an accurate and well-
distributed approximation of the true Pareto front. Popular
MOEAs include nondominated sorting genetic algorithm II
(NSGA-II) (Deb et al. 2002) and MOEA based on decom-
position (MOEA/D) (Zhang et al. 2007; Rubio-Largo et al.
2014). More studies about the development and applica-
tion of MOEAs can be found in a recent survey paper
(Zhou et al. 2011). BesidesMOEAs, local search-based algo-
rithms, such as Pareto local search (Talbi et al. 2012) and
multi-directional local search (Tricoire 2012), are promising
alternative approaches to solve MOPs. The merit of local
search-based algorithms is that problem-specific knowledge
can be directly used to guide the search toward the Pareto
front. Thus, they are specially suitable for multiobjective
combinatorial optimization problems. More details about
local search-based algorithms can be found in another recent
survey paper (Talbi et al. 2012).
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Fig. 1 Framework of MOLS-Net

In this study, a multiobjective local search (MOLS-Net) is
proposed for community detection. Note that, in response to
the particularities of a MOP, different multiobjective opti-
mization algorithms may differ in the encoding scheme
(responsible for the characterization of the search space),
objective function, and operators that depend on the kind of
encoding scheme adopted. As a consequence, MOLS-Net is
different from the previous studies (Tricoire 2012; Zhou and
Wang 2014;Wang et al. 2015) sinceMOLS-Net is composed
of dedicated modules (for example, local search operators)
to solve community detection problems.

3 Multiobjective local search for community
detection

3.1 Framework of MOLS-Net

Figure 1 presents the framework of MOLS-Net. The feature
ofMOLS-Net is to use objectivewise local searches (Tricoire
2012; Zhou andWang 2014;Wang et al. 2014, 2015). That is,
for a given solution X , a local search LS1(X) is designed to
improve the objective f1, while another local search LS2(X)

is designed to improve the objective f2. An archive is main-
tained to keep all nondominated solutions found during the
search. Themain loop ofMOLS-Net consists of (1) selecting
a solution from archive, (2) performing objectivewise local
searches to improve this solution, and (3) updating archive.
The pseudo code of MOLS-Net is described in Algorithm 1.

In the following sections, solution representation, initial-
ization, objectivewise local searches, and archive updating
are described in detail.

3.2 Representation

A solution X in MOLS-Net is defined as X = (x1, x2, . . . ,
xi , . . . , xn).Here,n is the number of the vertices in a network,
and xi is the integer community identifier of vertex vi . The
identifier can be any integer number between 1 and n. The

vertices having the same community identifier are considered
to be the same community. A network with n vertices can be
divided into n communities at most. Figure 2 gives a simple
example of how the solution is encoded and decoded. In
Fig. 2, the network with seven vertices is divided into two
communities.

This representation does not need know the exact number
m of communities in advance. The number is automatically
determined during the multiobjective optimization process.
This representation is intuitive and easy to decode. It takes
little computational complexity.

3.3 Initialization

An initialization population with good quality can speed up
the convergence and promote diversity. In this study, a simple
and fast initialization mechanism based on label propagation
(Raghavan et al. 2007) is used. In this procedure (Raghavan
et al. 2007), each vertex is marked by the given unique label.
Then, all vertices are swept over in random sequential order
at each iteration, and each vertex’s label is decided according
to themajority of its neighbors’ labels during the process. The
process converges when each vertex has the majority label
of its neighbors. Finally, a group of vertices with identical
labels after convergence is considered as a community.

3.4 Objectivewise local searches

Given a solution X , LS1(X) and LS2(X) are designed to
optimize objective f1 and f2, respectively. The procedures
are described in Algorithms 2 and 3, respectively.

In Algorithms 2 and 3, the neighbors of a community Vi
are the communities that have at least one edge connection
with the community Vi .

The merging operator in Algorithm 2 decreases the num-
ber of communities, which thus decreases the value of
objective f1. The dividing operator in Algorithm 3 increases
the number of communities, which thus decreases the value
of objective f2 (Angelini et al. 2007). In this way, f1 and f2
will be minimized by themerging and the dividing operators,
respectively.

InAlgorithm3, the idea ofBGLL inBlondel et al. (2008) is
used. The method consists of two phases. In the first phase,
each vertex is considered as a community. The new com-
munities are formed by finding the modularity change. The
change is made by moving a vertex into the community of its
neighborhood vertex. A vertex is placed into the community
when the modularity gain of the community is maximum.
This process is applied to all vertices until no vertex moving
can improve the value of modularity. In the second phase, a
new network is built by considering the communities found
in the first phase as the new vertices. The weight of the link
between the two vertices is the sum of the weights of the
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Algorithm 1 Pseudo code of MOLS-Net
1: parameters: ini t_si ze: the number of initial solutions, t : running time, step_parameter : controlling search step.

input: the adjacent matrix A of a network.
output: archive.

2: initialization: initialize population with ini t_si ze size, generate several nondominated solutions to initialize archive.
3: while t ≤ maximum computation time do
4: randomly select a solution X from archive.
5: get the community number m of X .
6: generate a pseudo random number q, q ∈ [1,max(m ∗ step_parameter, 3)].
7: for i = 1, 2, . . . , q, do
8: perform objectivewise local search LS1(X) and update archive.
9: perform objectivewise local search LS2(X) and update archive.
10: end for
11: end while
12: return the archive.

Fig. 2 An example of solution
representation. a graph
topology, b solution
representation, c community
structure
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Algorithm 2 Pseudo code of local search LS1(X) for f1
1: randomly select two communities from the solution X .
2: select the community with the larger external link density.
3: if rand(0, 1) < 0.5
4: merge the selected community with a community randomly selected from its neighbors.
5: else
6: change the label identifiers of all vertices in the selected community to the label identifier possessed by the majority of its neighbor vertices.
7: end if

Algorithm 3 Pseudo code of local search LS2(X) for f2
1: randomly select two communities from the solution X .
2: select the community with the smaller internal link density.
3: if rand(0, 1) < 0.5
4: divide the selected community into two new communities by BGLL.
5: else
6: change the label identifiers of all vertices in the selected community to the label identifier possessed by the majority of its neighbor vertices.
7: end if

links in the corresponding communities. The method in the
first phase is repeated for the new network. Themethod stops
until the community number is smaller than or equal to 2. The
algorithm returns the communities found.

During the objectivewise local search process as shown
in Fig. 1, two situations may occur: (1) the newly gener-
ated solution, for example, Y1 or Y2, dominates the original
solution X ; or (2) the newly generated solution, for exam-
ple, Z1 or Z2, is noncomparable with the original solution
X . The first case occurs when the local search improves the
corresponding objective without deteriorating other objec-
tives. This means that a new dominating solution is found.
This case deals with the convergence issue in MOPs since it

drives the algorithm to convergence toward Pareto front. The
second case occurs when the local search improves the cor-
responding objective but deteriorating other objectives. This
case deals with the diversity issue in MOPs since it drives
the algorithm to spread along Pareto front. Both situations
occur during the whole optimization process of local search.
Therefore, it can achieve both the convergence and diversity
goals of multiobjective optimization.

3.5 Archive updating

An archive is maintained to store the nondominated solu-
tions found during the search process. Once a new solution
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is generated by LS1(X) or LS2(X), the archive is updated to
avoid missing any nondominated solution during the search
process.

3.6 Complexity

The complexity of LS1(X) is O(l), and the complexity of
LS2(X) is O(l · n2). Here, n and l denote the number of
vertices and edges of a network, respectively. The whole
complexity of MOLS-Net is O(l · n3). The main time com-
plexity of MOLS-Net lies in the divide operator in LS2(X).
In the divide operator, the idea of BGLL (Blondel et al.
2008) is used. Experiment results in Blondel et al. (2008)
and Chaturvedi et al. (2012) show that BGLL is extremely
fast in practice. Hence,MOLS-Net in our experiments is also
very fast. The computation time of MOLS-net will be given
later.

4 Experimental results

All experiments are implemented in C++ on a PC [Intel(R)
Core(TM) i5-4440 CPU @ 3.10 GHz processor with 8.0G
RAM on 64 bits windows 7].

MOLS-Net is comparedwith two state-of-the-artMOEAs
(i.e., MODPSO and MOEA/D-Net), two famous single
objective optimization algorithms (i.e., GA-Net and BGLL).
The number of generations of EA-based algorithms are all
set as 400. Other parameters in these compared algorithms
are set according to their corresponding references:

(1) MODPSO (Gong et al. 2014): the population size is 100;
the neighborhood parameter is 40; and the mutation rate
is 0.1.

(2) MOEA/D-Net (Gong et al. 2012a): the population size
is 100; the neighborhood parameter is 10; the cross over
rate is 0.9; the mutation rate is 0.06; and the update size
is 2.

(3) GA-Net (Pizzuti 2008): the population size is 100; the
crossover rate is 0.8; and the mutation rate is 0.2.

The source codes of these algorithms were reimplemented in
our experiments for fair comparison. All algorithmswere run
30 times independently. The parameters ofMOLS-Net are set
as follows: the initial population size is ini t_si ze = 100; the
parameter of controlling search step is step_parameter =
0.3; the maximum computation time is set as the average
running time of MODPSO over 30 runs for fair comparison.

4.1 Evaluation metrics

Normalized mutual information (NMI) and modularity (Q)
are two popular evaluation metrics to evaluate the quality of

the partition obtained.NMI is an externalmeasure to estimate
the similarity between the true partitions and the detected
ones (Wu and Huberman 2004). Q is an internal measure to
evaluate the extent towhich the detected community structure
deviates from randomness (Girvan and Newman 2002).

Let R denote a real partition of a network. Let P denote a
partition found by an algorithm. NMI(R, P) is then defined
as

NMI(R, P) =
−2

∑MR
i=1

∑MP
j=1 Mi j log

Mi j n
Mi.M. j

∑MR
i=1 Mi.log

Mi.
n + ∑MP

j=1 M. j log
M. j
n

, (4)

where MR and MP , respectively, denote the number of real
communities and found communities;M denotes a confusion
matrix whose element Mi j is the number of vertices sharing
in common by community i in R and community j in P; Mi.

and M. j , respectively, denote the sum over row i and column
j ofmatrixM ; and n is the number of vertices of the network.
NMI(R, P) = 1 if R = P; NMI(R, P) = 0 if R and P

are totally different. Obviously, the larger the value of NMI,
the better the partition obtained.

Q is defined as

Q = 1

2l

∑

i, j

(Ai j − did j/2l)δ(Vi , Vj ), (5)

where the sum runs over all pairs of vertices of a network; l is
the total number of edges; Ai j is the element of the adjacency
matrix A of graph; di is the degree (the number of links that
have connections with vertex i) of vertex i ; d j is the degree
of vertex j ; and δ(Vi , Vj ) = 1 if vertex i and j belong to the
same community (i.e., Vi = Vj ), otherwise δ(Vi , Vj ) = 0.

The larger the value of Q, the stronger the community
structure.
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Fig. 4 Plots of nondominated solutions found by MOLS-Net and MODPSO on GN extended benchmark networks. a γ = 0.2, b γ = 0.3,
c γ = 0.4, d γ = 0.5

4.2 Experiments on GN extended benchmark networks

GN extended benchmark network (Lancichinetti et al. 2008)
is an extension of the classical benchmark proposed inGirvan
and Newman (2002). The network has 128 vertices parti-
tioned by four communities of 32 vertices each. Every vertex
has an average degree of 16. Each vertex shares a fraction γ

of links with the vertices of its community, and 1 − γ with
the vertices of the other communities. γ is called the mixing
parameter. When γ < 0.5, the neighbors of a vertex inside
its community are more than the neighbors belonging to the
other three communities. Eleven different networks with the
value of γ increasing from 0 to 0.5 with an interval of 0.05
were generated in our experiments. The community struc-
ture of the network gradually becomes fuzzy as the value of
γ increases.

MOLS-Net, MODPSO, and MOEA/D-Net generate a set
of solutions on each run. The solution with maximum NMI
value over each run is chosen as the output of each algo-
rithm. The average values of NMI over 30 runs for the five
algorithms are calculated and shown in Fig. 3. When the mix

parameter γ is smaller than 0.4, the averageNMI values of all
the algorithms, except for GA-Net, equal to 1. When the mix
parameter γ value ranges from 0.4 to 0.5, MOLS-Net can
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Fig. 5 Average NMI values obtained by the five algorithms on LFR
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Table 1 Experimental results
obtained by the five algorithms
for real-world datasets

Network Index MOLS-Net MODPSO MOEA/D-Net GA-Net BGLL

Karate NMImax 1.0000 1.0000 1.0000 0.8255 0.7071

NMIavg 1.0000 0.9729 1.0000 0.6855 0.6280

Qmax 0.4198 0.4198 0.3715 – 0.4198

Qavg 0.4198 0.4138 0.3715 – 0.4118

Dolphin NMImax 1.0000 1.0000 1.0000 0.4710 0.6363

NMIavg 1.0000 1.0000 1.0000 0.4176 0.5148

Qmax 0.5268 0.5268 0.3735 – 0.5277

Qavg 0.5237 0.5196 0.3735 – 0.5210

Football NMImax 0.9361 0.9289 0.9367 0.9058 0.8923

NMIavg 0.9273 0.9245 0.9334 0.8691 0.8765

Qmax 0.6046 0.6032 0.6005 – 0.6046

Qavg 0.6044 0.5995 0.5993 – 0.6038

The best results are marked in bold

Fig. 6 Real structures found by
MOLS-Net. a on Zachary’s
karate club network, b on
dolphin social network

(a) (b)

still successfully detect the real community structure (i.e.,
the average NMI values are 1). With MODPSO, MOEA/D-
Net, and BGLL, the true structure become harder and harder
to figure out.

Additionally, nondominated solutions found by MOLS-
Net (denoted as ∗) andMODPSO (denoted as •) from all runs
on the selected GN networks for γ = 0.2, γ = 0.3, γ = 0.4,
γ = 0.5 are shown in Fig. 4. The ground truths of these
networks are known, and thus they are also presented in the
figure. It is clear that MOLS-Net finds better nondominated
solutions in terms of both convergence and diversity on the
selected networks.

4.3 Experiments on LFR benchmark networks

GN extended benchmark networks have two drawbacks: (1)
each vertex has the same degree, and (2) each community

has the same size. Hence, Lancichinetti et al. (2008) pro-
posed a new benchmark network, named LFR. In LFR,
both the degrees of vertices and the sizes of commu-
nities obey exponential distribution. Each vertex shares
a fraction μ of links with the vertices of its commu-
nity and a fraction 1 − μ with the vertices of the other
communities. μ is the mixing parameter. Seventeen dif-
ferent networks with the value of μ increasing from 0
to 0.8 with interval 0.05 were generated in our experi-
ments.

Figure 5 displays the average NMI values obtained by the
five algorithms on LFR benchmark networks. It can be seen
that only MOLS-Net and MODPSO can successfully figure
out the true community structure when the mix parameter
μ value ranges from 0.15 to 0.6. All the algorithms cannot
find true partition when μ is larger than 0.6. MOLS-Net out-
performs MODPSO with μ ranging from 0.6 to 0.7, while
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MOLS-Net is outperformed by MODPSO in the remaining
cases.

4.4 Experiments on real-world benchmark networks

In order to further compare the performance of different algo-
rithms, we use three real social networks which are available
inNewman (2013). These networks are Zachary’s karate club
network, dolphin social network, and American college foot-
ball network. These networks are widely used as benchmarks
in community detection (Gong et al. 2012a, 2014; Shi et al.
2012; Pizzuti 2012).

Zachary’s karate clubnetworkwas constructedbyZachary.
Zachary observed 34 members of a karate club over a period
of two years. During this period, a disagreement developed
between the administrator and instructor in the club. Thus, the
instructor left and started a new club. The network split nat-

urally into two communities. We test a simple un-weighted
version of Zachary’s network.

Dolphin social network represents a network of 62 bot-
tlenose dolphins. A tie between two dolphins was established
by their statistically significant frequent association. The net-
work naturally is divided into two large groups: the female
group and the male one.

American college football network comes from United
States college football. The network represents the sched-
ule of Division I games during the 2000 season. Vertices in
the graph represent teams, and edges represent regular sea-
son games between the two teams they connect. The teams
are divided into conferences. The teams on average played
4 inter-conference matches and 7 intra-conference matches.
The teams tended to play between members of the same con-
ference. The network consists of 115 vertices and 616 edges
grouped into 12 teams.

Fig. 7 The detected structure with NMI = 0.9361 on football network by MOLS-Net
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Table 2 The computation time (seconds) of MOLS-Net on the three kinds of networks

GN Extended γ = 0.0 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.35 γ = 0.4 γ = 0.45 γ = 0.5

Time 4.04 3.67 3.91 4.05 4.04 4.07 4.03 3.91 4.00 3.93 3.91

LFR μ = 0.0 μ=0.05 μ = 0.1 μ = 0.15 μ = 0.2 μ = 0.25 μ = 0.3 μ = 0.35 μ = 0.4 μ = 0.45 μ = 0.5

Time 36.71 37.84 41.30 46.03 46.96 50.05 50.10 50.98 51.19 52.43 52.48

LFR μ = 0.55 μ = 0.6 μ = 0.65 μ = 0.7 μ = 0.75 μ = 0.8

Time 47.53 46.75 48.71 51.30 50.01 52.00

Real-world Karate Dolphin Football

Time 0.66 1.06 2.45

Evaluation metric Q has a resolution limit (Fortunato and
Barthelemy 2007). A higher modularity often does not corre-
spond to a better network partition (Fortunato 2010). Thus,
in our experiments, the solution with the maximum NMI
value is selected and the corresponding Q value is computed
for MOLS-Net, MODPSO and MOEA/D-Net at each run.
The maximum and average values of NMI (NMImax and
NMIavg) and Q (Qmax and Qavg) over all the five algorithms
are reported in Table 1. Only NMI values are available in
GA-Net. Table 1 indicates that MOLS-Net outperforms all
the compared algorithms on Zachary’s karate club network
and dolphin social network. MOLS-Net can always detect
the real community structure on those two networks (cor-
respond to NMImax = 1 and NMIavg = 1). Furthermore,
the largest Q values are obtained. The detected real commu-
nities on Zachary’s karate club network and dolphin social
network by MOLS-Net are presented in Fig. 6a, b, respec-
tively. Different colors of the vertices indicate the different
communities obtained by MOLS-Net.

On American college football network, from the per-
spective of Q, MOLS-Net outperforms all the comparison
algorithms. From the perspective of NMI, MOLS-Net is out-
performed by MOEA/D-Net. Due to the self-complicated
structure of the network, none of the algorithms can find
the true partition. The detected communities with NMI =
0.9361 ofMOLS-Net on this complex network are presented
in Fig. 7. From Fig. 7, it is clear that some vertices have been
misplaced.

4.5 Computation time of MOLS-Net

The computation times of MOLS-Net (i.e., the average run-
ning time of MODPSO) on the three kinds of networks are
presented in Table 2. From Table 2, we can conclude that the
computation time of MOLS-Net is reasonable.

5 Conclusion

In this study, a newmultiobjective community detection algo-
rithm (MOLS-Net) has been proposed. MOLS-Net simulta-

neously optimizes two conflicting objective functions, RC
and KKM. In MOLS-Net, each objective is optimized by the
corresponding objectivewise local search. The experimental
results show that MOLS-Net performs better than or com-
petitive with the existing algorithms including MODPSO,
MOEA/D-Net, GA-Net, and BGLL on synthetic and real-
world networks.

In the future, MOLS-Net will be extended to detect com-
munity in signed social networks (Liu et al. 2014; Li et al.
2014; Cai et al. 2014a), dynamic social networks (Gong et al.
2012b, and overlapping communities in social networks (Xie
et al. 2013). In addition, more powerful objectivewise local
searches for the objectives should be further developed to
improve performance.
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