
Transportation Research Part E 81 (2015) 52–74
Contents lists available at ScienceDirect

Transportation Research Part E

journal homepage: www.elsevier .com/locate / t re
A polynomial-time heuristic for the quay crane double-cycling
problem with internal-reshuffling operations
http://dx.doi.org/10.1016/j.tre.2015.06.009
1366-5545/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: zhangzizhen@gmail.com (Z. Zhang).
Ming Liu a, Feng Chu b, Zizhen Zhang c,⇑, Chengbin Chu a,d

a School of Economics & Management, Tongji University, Shanghai, PR China
b Laboratory IBISC, University of Evry-Val dÉssonne, Evry 91020, France
c School of Mobile Information Engineering, Sun Yat-sen University, Gangzhou 510275, PR China
d Laboratoire Génie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 November 2014
Received in revised form 24 June 2015
Accepted 25 June 2015
Available online 10 July 2015

Keywords:
Container port
Terminal operations
Double cycling
Internal reshuffling
One of great challenges in seaport management is how to handle containers under reshuf-
fling, called reshuffles. Repositioning reshuffles in a bay (internal reshuffling) can improve
the efficiency of quay cranes and help ports to reduce ship turn-around time. This paper
studies the quay crane double-cycling problem with internal-reshuffling operations, and
presents a fast solution algorithm. To reduce the number of operations necessary to turn
around a bay of a vessel, the problem is first formulated as a new integer program. A
polynomial-time heuristic is then developed. The analysis is made on the worst-case error
bound of the proposed algorithm. Results are presented for a suite of combinations of prob-
lem instances with different bay sizes and workload scenarios. Comparisons are made
between our algorithm and the start-of-the-art heuristic. The computational results
demonstrate that our model can be solved more efficiently with CPLEX than the model pro-
posed by Meisel and Wichmann (2010), and the proposed algorithm can well solve
real-world problem instances within several seconds.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Efficient seaports could help to lower transport costs by enabling cargos to get to and from markets in a more timely and
cost-effective fashion. Nowadays, more and more goods in global trade are containerized and transported by container ves-
sels. High utilization of container terminal resources are key in accelerating maritime logistics and lower operating costs.
Quay cranes (QCs) are the most expensive single unit of handling equipment in container ports. One of the key operational
bottlenecks at ports is QC availability (Crainic and Kim, 2005). To reduce ship turn-around time, ports make continuous
improvement on the efficiency of QCs. As QC efficiency is the key bottleneck to port productivity, the work presented in this
paper addresses such an operational-research problem. In contrast to terminal expansion or information technology deploy-
ments, the internal-reshuffling method, considered in this paper, is low-cost. The internal-reshuffling technique can be
quickly implemented, and can be used to complement the classic double-cycling technique (i.e., loading ships as they are
unloaded).

The layout of containers on a ship can be viewed as a box. Containers are stacked on top of one another and arranged in
rows, also called bays. Fig. 1 illustrates the plan, side and front views of a container vessel: in the plan view, there are seven

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tre.2015.06.009&domain=pdf
http://dx.doi.org/10.1016/j.tre.2015.06.009
mailto:zhangzizhen@gmail.com
http://dx.doi.org/10.1016/j.tre.2015.06.009
http://www.sciencedirect.com/science/journal/13665545
http://www.elsevier.com/locate/tre

Fig. 1. Three views of a vessel (Goodchild and Daganzo, 2006).

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 53
rows where the first row consists of six container stacks; in the side view, a stack holds six containers; in the front view, six
container stacks are listed from left to right on the vessel. (In Fig. 1, the number of containers are not representative of typical
ship size.) Note that containers can be accessed only from above by QCs, and such a stacking manner induces the precedence
constraints among containers of each stack, also called the stack dependent accessibility.

Considering that QCs move slowly, only after completing all operations in one bay a crane operator may drive it to the
next one, as is current practice. Traditionally, the unloading and loading processes of a vessel are separated. In one cycle
of quay crane’s trolley, it unloads (or loads) one container and return without container, referred as single cycling (see
Fig. 2a). To improve QC productivity, double-cycling technique is first proposed in a pioneering work (Goodchild, 2005).
The technique consists of converting empty crane moves into productive ones. With double cycling (see Fig. 2b), containers
are loaded and unloaded in the same crane cycle, i.e., a complete round-trip of the crane trolley from the ship to the dock and
back. This allows a QC to double the number of containers transported in one cycle (Goodchild and Daganzo, 2007).
Nowadays, the double-cycling technique has been widely adopted and implemented, e.g., at train terminals (Goodchild
et al., 2011). Although double cycling has been used to some extent in practice, port operators ask for more QC efficiency
to counter port congestion which has been hitting the headlines recently (Drewry Container Insight, 2014).

To improve QC efficiency, internal reshuffling, a complementing technique to the double-cycling technique, can be used
to improve the efficiency of QCs by replacing couples of unloading and loading operations for reshuffles by repositioning
operations (Meisel and Wichmann, 2010). Instead of using the current method (called external reshuffling), where often all
reshuffles are unloaded from the vessel and then reloaded from the dock, some reshuffles can be repositioned directly in
a bay on a ship. This allows the QC to replace two operations (i.e., one unloading and one loading operation) by one operation
(i.e., a repositioning), to complete a reshuffling requirement. Thus, this technique reduces the number of operations, and
ensures high utilization of QCs. In the remainder, for easy recognition where internal-reshuffling method is applied, we also
refer to a repositioning operation induced by internal-reshuffling method as an internal-reshuffling operation. We assume the
Fig. 2. Single cycling and double cycling (Goodchild and Daganzo, 2006).

54 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
ship’s arrival stowage plan, also called arrival plan, and departure stowage plan, also called departure plan, are given, which
indicate the positions, also called slots, of the containers to be unloaded, loaded and reshuffled. In current practice, shipping
lines use software tools to create such plans that accommodate vessel stability requirements, priority of delivery, placement
constraints on hazardous materials, etc. (Goodchild and Daganzo, 2006). We therefore consider improvements only on the
crane’s sequence of operations, to complete the conversion from the arrival plan to the departure plan. Note that not all
reshuffles can be handled internally. Only if a slot to be hold by a reshuffle in the departure plan is empty, may an
internal-reshuffling operation happen.

In the classic quay crane double-cycling problem (QCDCP), decisions are made on the basis of container stacks. That is, a
solution consists of a sequence of container stacks. In our problem, the quay crane double-cycling problem with
internal-reshuffling operations (QCDCP-IR), a solution must be made on a container basis (i.e., it consists of a sequence of
container operations). The QCDCP-IR is more complicated and requires more sophisticated solution algorithms. Meisel
and Wichmann (2010) initiate the study of the QCDCP-IR, and propose an integer programming formulation and a heuristic.
In their work, the advantage of the internal-reshuffling method in improving QC productivity has been shown, compared
with the sole application of the double-cycling technique. Their experimental results demonstrate that about 64% of the
reshuffles in a bay can be reshuffled internally by their solution approach, and 32% operations related to reshuffles can be
saved by the internal-reshuffling method. However, their mathematical formulation is relatively rough, and their heuristic
approach has no guaranteed error bounds and requires a relatively large computational time, especially for practical-size
problems. Thus, a fast solution approach with acceptable worst-case error bounds should further improve QC efficiency
for the QCDCP-IR. We revisit the QCDCP-IR, aiming to provide some analytical results and an easy-to-implement solution
approach. The contribution includes

� We formulate a new integer program based on new several observations. Comparisons are made between the existing
model and our new formulation, both solved with CPLEX. Experimental results show that our model is so-called
CPLEX-effective, which means (i) delivering the same quality solutions, our formulation saves computational time and
(ii) consuming the same running time, our formulation delivers higher quality solutions.
� To address the general QCDCP-IR, especially for large-size problems, we devise a fast heuristic, and analyze its worst-case

error bound. Computational experiments based on 1000 instances have been conducted. Compared with the
state-of-the-art heuristic, results show that our solution approach is very efficient in terms of running time and it is also
relatively robust.

The paper is organized as follows. A brief literature review is given in Section 2. In Section 3, we restate the QCDCP-IR. In
Section 4, we provide a new integer programming formulation based on several observations. In Section 5, for the general
case, we devise a polynomial-time heuristic and analyze its worst-case error bound. In Section 6, computational experiments
are conducted. The performance of our model and the existing one are first compared. Then we evaluate the solution quality
of the proposed algorithm by comparison with the state-of-the-art heuristic, to demonstrate the efficiency of our approach.
Section 7 concludes the paper and give directions of further work. In Appendix, we correct errors in Meisel and Wichmann
(2010)’s formulation, and identify a polynomially solvable case for the QCDCP-IR.
2. Literature review

In the literature, a comprehensive overview on applications and optimization models for container port optimization can
be found in Stahlbock and Voß (2008), Bierwirth and Meisel (2010), and Carlo et al. (2013). Other study streams of maritime
logistics may include liner shipping network management (Meng and Wang, 2011; Wang, 2014 and Wang et al., 2014), con-
tainer assignment and routing (Bell et al., 2011; Bell et al., 2013 and Wang et al., 2015), and vessel bunker and speed man-
agement (Wang and Meng, 2012 and Wang et al., 2013). Recent advances on liner shipping and port operations planning can
be found in Meng et al. (2014) and Bierwirth and Meisel (2015), respectively. As our concern falls in the scope of the quay
crane scheduling at seaports, we review the most pertinent literature.

Daganzo (1989) analyzes the performance of different quay crane scheduling algorithms, with the objective to maximize
the throughput. Kim and Park (2004) define the tasks on the basis of container groups, which are subsets of containers on a
vessel with identical destinations or other attributes such as weight class. An exact algorithm and a greedy randomized
adaptive search procedure are proposed. Lim et al. (2007) analyze a relatively simple model with a major feature of the
non-crossing restriction. They prove the existence of an optimal schedule which is unidirectional if the bay-to-crane assign-
ment is given. This rule has been widely adopted especially for the development of heuristics. Bierwirth and Meisel (2009)
revise Kim and Park (2004)’s model and propose a heuristic based on a branch-and-bound framework. Choo et al. (2010)
investigate a multi-ship quay crane scheduling problem with yard congestion constraint. They develop a Lagrangian
relaxation-based heuristic. Recently, Liu et al. (2014) design a 4/3-approximation and 5/3-approximation algorithms for
the quay crane scheduling problems with two and three QCs, respectively.

Goodchild and Daganzo (2006) initiate the study of the QCDCP. They formulate the unloading and loading operations of
each container stack as a two-machine flow shop job with two sequential processing times. They show that when there are
no hatch covers, the problem can be mapped into a two machine flow shop scheduling problem, and be solved optimally

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 55
with Johnson’s rule. They further study a general QCDCP in which hatch covers are involved, and propose a decomposition
heuristic. Containers under reshuffling are handled externally in this work. For the general QCDCP, Zhang and Kim (2009)
develop a local-search based heuristic. Numerical experiments show their solution approach is very efficient. Recently,
Lee et al. (2014) have developed an optimal algorithm for the general QCDCP, which runs in polynomial time.

Meisel and Wichmann (2010) initiate the study of the QCDCP-IR, where internal-reshuffling operations are enabled. The
problem is investigated on a container basis. An integer programming formulation and a heuristic approach are provided.
They also demonstrate that the consideration of the internal-reshuffling operations leads to shortening of the vessel handling
time compared to the sole application of the double-cycling technique.

3. Problem description

In this section, we restate the QCDCP-IR, which involves a single bay and a single quay crane. In one crane cycle, the QC is
enabled to perform at most one unloading and one loading operations. Given the arrival and departure plans, the aim is to
determine a feasible sequence of container operations that converts the arrival plan to the departure plan with minimum
service time. A feasible solution must respect the stacking dependent accessibility. In other words, the precedence con-
straints induced by the container stacking manner cannot be violated.

Containers are categorized into four classes: import containers, export containers, fixed containers, and reshuffles (i.e.,
containers to be reshuffled). Import containers are those to be unloaded from the vessel to the dock, whereas export containers
are those to be loaded from the dock to the vessel. Clearly, import (export) containers appear only in the arrival (departure)
plan. There are also some containers on the ship not destined to the current terminal, which can be classified as (i) reshuffles
which stay on top of the import containers, must be temporarily removed and then restored, as they block the unloading
operations of the import containers and (ii) fixed containers which are to stay on the vessel involving no operations, and thus
are not considered in the following analysis. Notice that the same reshuffles can be found in both plans.

From the perspective of terminal managers, reshuffles belong to the same class and thus they can exchange positions in
the departure plan (Meisel and Wichmann, 2010). That is, each reshuffle in the arrival plan can be placed at any slot to be
hold by a reshuffle in the departure plan. Reshuffles can be handled externally or internally. Apparently, an
internal-reshuffling operation is preferable to an unloading operation plus a loading operation, as the former requires only
one container operation, whereas the latter needs two. However, only when a slot to be hold by a reshuffle in the departure
plan (thus it is ready to receive a reshuffle) is available, may an internal-reshuffling operation occur.

Fig. 3 illustrates an example. As there is a doubt how a change of the sequence of operations brings benefits to reduce ship
turn-around time, we compare a solution without internal-reshuffling operations and a solution where internal-reshuffling
technique is implemented. In the former solution, the sequence must consist of 15 operations, i.e., nine unloading and six
loading operations, where reshuffles are handled externally. Fig. 4 illustrates the latter solution with internal-reshuffling
operations. This solution comprises six unloading, five loading and two internal-reshuffling operations, thus 13 operations
in total. For the latter solution, a step-by-step illustration of service time will be shown in Fig. 10. Note that at steps 5
and 10, internal-reshuffling operations happen. Compared with the former solution of 15 operations, the
internal-reshuffling method helps to eliminate two container operations, completing the operations necessary to turn
around a bay of a ship.

3.1. Assumptions

For the QCDCP-IR, the following assumptions are made (Meisel and Wichmann, 2010).

A1. Each of import and export containers is processed by one operation. For example, this prevents the repositioning of an
import container to another slot in the bay before it is finally unloaded. A reshuffle handled internally needs one oper-
ation, whereas a reshuffle handled externally requires two operations.
Fig. 3. The arrival and departure plans (Meisel and Wichmann, 2010).

Fig. 4. A sequence of container operations, including six unloading, five loading and two internal-reshuffling operations.

56 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
A2. Reshuffles are exchangeable, i.e., every reshuffle in the arrival plan can be positioned at any slot to be hold by a reshuf-
fle in the departure plan. The number of reshuffles in one stack is the same in both plans. This ensures that after the
unloading operations of all the containers in a stack, a sufficient number of reshuffles is available for the subsequently
loading operations for the stack.

A3. The stability issue of the vessel is not considered. The arrival and departure plans are preset for the planning of quay
crane operations.

A4. A hatch-coverless container vessel is considered, where containers below and above deck are not separated by hatch
covers.

A5. Horizontal transport vehicles are always available at the dock, waiting to receive unloaded containers or provide con-
tainers to be loaded. Hence, the service time of the bay only depends on the sequence of container operations.

A6. The quay crane starts processing of containers from the vessel. In fact, no matter where the quay crane starts, at the
vessel or dock, it completes the same work.
Remark 1. Assumption A2 is relatively simplistic, because in reality a reshuffle may be moved from one bay to another. This
happens, for instance, to consolidate containers with the same destination, which were not consolidated in the same bay due
to previous port operations. This assumption is to make the QCDCP-IR restricted in a single bay, as the classic QCDCP.

3.2. Notation

Let m denote the number of container stacks, and n the total number of containers in both plans.
Five types of jobs (corresponding to container operations) are identified: (i) VY: unload an import container from the ves-

sel to the yard; (ii) YV: load an export container from the yard to the vessel; (iii) VB: unload a reshuffle from the vessel to the
buffer on the yard; (iv) BV: reload a reshuffle from the buffer to the vessel; and (v) VV: reposition a reshuffle from one slot on
the vessel to another slot on the vessel. With these notation, unloading operations consist of VY and VB jobs, whereas loading
operations consist of BV and YV jobs. Internal-reshuffling operations correspond to VV jobs. Let T denote the set of all the job
types, i.e., T = {VY,YV,VB,BV,VV}. Let pt denote the processing time of the t-type job, where t 2 T , and stu the setup time
(corresponding to the required time of empty trolley move) between the t-type job and the u-type job ðt;u 2 T Þ, such that
the latter immediately follows the former in a sequence. (In the scheduling literature, setup time means a time period
required by the machine to be ready to process a job.)

VV job has a less processing time than those of other types, i.e., pVV ¼mint2T pt , because it starts and ends on the vessel,
whereas other jobs travel between the vessel and the dock. The following Tables 1 and 2 are presented in Meisel and
Wichmann (2010), where the time unit is second. In Table 1, a VV job has a processing time of 90 s whereas each of the
others has a processing time of 100 s. In Table 2, if the two jobs are connected on the vessel or the dock, then the setup time
in between requires 10 s, otherwise 20 s.

Table 1
Processing time pt .

t pt

VY 100
YV 100
VB 100
BV 100
VV 90

Table 2
Setup time stu .

t # nu! VY YV VB BV VV

VY 20 10 20 10 20
YV 10 20 10 20 10
VB 20 10 20 10 20
BV 10 20 10 20 10
VV 10 20 10 20 10

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 57
4. New mathematical formulation

In this section, we first transform the QCDCP-IR to an equivalent scheduling problem, and then formulate a new integer
program. We follow Goodchild and Daganzo (2006)’s work by extending their scheduling approach to the QCDCP-IR and thus
anticipate that the QCDCP-IR can be viewed as a single machine makespan minimization scheduling problem (with prece-
dence constraints and sequence-dependent setup time) and the service time of a sequence of jobs in the QCDCP-IR is equal to
the makespan of a schedule in the scheduling problem.

For simplicity, we use a concise representation of the problem hereafter. For ease of illustration, we index all the contain-
ers in both plans. Fig. 5 illustrates a new representation of the example given in Fig. 3 with indices, where n, the number of all
containers, is equal to 15, which are stowed in m ¼ 4 stacks. In Fig. 5, all fixed containers are dropped, as they are not in our
consideration.
4.1. Problem transformation

A feasible solution to the QCDCP-IR must respect the stacking dependent accessibility. Fig. 6 gives the precedence digraph
of the example problem. Each container in both plans is represented by a node. Because the precedence constraints only exist
among containers in each stack (e.g., job 1 must be processed before job 2, and job 11 must be processed before job 12), and
the containers in the arrival plan must be processed before those in the departure plan (e.g., job 2 must be processed before
job 10), and thus the precedence relation of containers in each stack can be mapped as a chain. Therefore, in the precedence
digraph, there are m parallel chains (here m ¼ 4) for all n jobs (here n ¼ 15). Each node is also associated with a two-tuple
ði; jÞ, which indicates that the container is located at the j-th position (from the chain head) in the i-th chain in the digraph.
Such a set of notation is useful in our new formulation, which we will explain later. In Fig. 6, redundant arcs are reduced by
the transitive property of precedence relations.

To make internal-reshuffling operations (corresponding VV jobs) easy to handle, we reduce the solution search space by
the following observations.
Fig. 5. A concise representation of the example.

Fig. 6. Precedence digraph of the example problem.

58 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
Observation 1. A VV job is equivalent to a VB job immediately followed a BV job, with a virtual setup time of �s ¼ pVV � ðpVB þ pBV Þ
in between (e.g., see Fig. 7).

For any sequence which contains VVs, we can replace these VV jobs according to Observation 1, and thus no sequences
under our consideration contain VVs hereafter. As compensation, for such sequences, we need to further record where each
VV is replaced by a couple of VB and BV and add a setup time �s in between. This observation serves as a preprocessing step,
and after this step each sequence in the search space consists of exact n jobs (i.e., the number of containers in both plans).

Now there exists a phenomenon that in some sequences, the setup time between consecutive VB and BV is sVB;BV (e.g., 10 s
as in Table 2), and in some sequences that value is �s (e.g., �110 s according to Table 2). We have sVB;BV > �s, because the former
corresponds to an unloading operation immediately followed by a loading operation for a reshuffle and the latter corre-
sponds to an internal-reshuffling operation. We have the following observation.

Observation 2. In a job sequence, if a VB job is immediately followed by a BV job with setup time sVB;BV in between, then this
sequence is dominated by a corresponding sequence where each setup time sVB;BV is replaced by a setup time �s.

Applying the above two observations, we efficiently reduce the search space. Now Tables 1 and 2 can be updated to Tables
3 and 4. Note that in these tables, VVs are dropped (by Observation 1), and the setup time between VB and BV is replaced by
‘‘�110’’ (by Observation 2).

Moreover, we have the following one-to-one relation, which maps each job (representing a container operation) to a con-
tainer in both plans.

Observation 3. In a job sequence, (i) each VY job corresponds to an import container, (ii) each VB job corresponds to a reshuffle in
the arrival plan, (iii) each YV job corresponds to an export container, and (iv) each BV job corresponds to a reshuffle in the
departure plan.

By this observation, we can use VY, VB, YV and BV to denote the corresponding containers, respectively, and thus each
container is also referred as a job with a certain type. (A sequence of containers can be used to portray a sequence of
Fig. 7. A sequence with VV and a sequence without VV.

Table 3
Processing time pt .

t pt

VY 100
YV 100
VB 100
BV 100

Table 4
Setup time stu .

stu VY YV VB BV

VY 20 10 20 10
YV 10 20 10 20
VB 20 10 20 �110
BV 10 20 10 20

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 59
container operations). The QC service time is the total time necessary to complete all the n jobs. The QCDCP-IR can be viewed
as a kind of single machine makespan minimization scheduling problem, with precedence constraints and
sequence-dependent setup time, which is NP-hard. Specifically, the quay crane is regarded as the single machine. Before
the first job in a sequence, there is no setup time, or to say the setup time is zero. The scheduling problem aims to determine
a sequence of jobs with minimum makespan (i.e., completion time).

4.2. Integer programming formulation

Based on the precedence digraph, we formulate a new integer program for the QCDCP-IR. Given is a precedence digraph
with m chains and n jobs (e.g, see Fig. 6). Let J = {VY, VB, YV, BV} denote the set of job types. We also use the following
notation.

Indices:
ði; jÞ: job index, indicating the job located at the j position in the i-th chain, where positions are indexed in a chain from

head (top) to tail (bottom);
t;u: job type indices, where t;u 2 J ;
k: position index in the sequence, k 2 f1;2; . . . ;ng.

Parameters:
VY: set of VY-type jobs;
YV: set of YV-type jobs;
VB: set of VB-type jobs;
BV: set of BV-type jobs;
G: set of jobs of all types, i.e., G ¼ VY

S
YV
S
VB
S
BV;

pt: processing time of a t-type job, where t 2 J ;
stu: setup time of a u-type job, immediately preceded by a t-type job, where ft;ug 2 J .

For the digraph in Fig. 6, we know VY ¼ fð1;2Þ; ð2;1Þ; ð3;1Þ; ð3;3Þ; ð4;3Þg, YV ¼ fð3;4Þ; ð4;6Þg,
VB ¼ fð1;1Þ; ð3;2Þ; ð4;1Þ; ð4;2Þg and BV ¼ fð1;3Þ; ð3;5Þ; ð4;4Þ; ð4;5Þg.

Decision variables:

xijk: equal to 1 if job ði; jÞ is arranged at the sequence’s k-th position (i.e., the k-th processed); 0 otherwise.
st

k: equal to 1 if the sequence’s k-th position is occupied by a t-type job, t 2 J ; 0 otherwise.
etu

k : equal to 1 if the sequence’s k-th position is possessed by a t-type job, and the ðkþ 1Þ-th position is occupied by a
u-type job, where k 2 f1;2; . . . ;n� 1g; 0 otherwise. That is, etu

k ¼ st
k � su

kþ1.

Let M1 denote a fixed integer, larger than all stu. In our formulation, we use a modified objective function Z0 instead of the
original objective function value Z, such that Z ¼ Z0 �M1ðn� 1Þ. For the minimization problem, the usage of Z0 is to make
variable etu

k preferable to be zero, guaranteed by positive multipliers fstu þM1g. The graph-based integer program (GBIP)
is given below.

60 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
ðGBIP modelÞ min Z0 ¼
Xn

k¼1

X

t2J
pt � st

k þ
Xn�1

k¼1

X

ft;ug2J
ðstu þM1Þ � etu

k ð1Þ

s:t:
Xn

k¼1

xijk ¼ 1; ði; jÞ 2 G: ð2Þ

Xn

k¼1

xijk � kþ 1 6
Xn

k¼1

xi;jþ1;k � k; fði; jÞ; ði; jþ 1Þg 2 G: ð3Þ

X

t2J
st

k ¼ 1; k 2 f1;2; . . . ;ng: ð4Þ

sVY
k ¼

X

ði;jÞ2VY
xijk; k 2 f1;2; . . . ;ng: ð5Þ

sYV
k ¼

X

ði;jÞ2YV
xijk; k 2 f1;2; . . . ;ng: ð6Þ

sVB
k ¼

X

ði;jÞ2VB
xijk; k 2 f1;2; . . . ;ng: ð7Þ

sBV
k ¼

X

ði;jÞ2BV
xijk; k 2 f1;2; . . . ;ng: ð8Þ

etu
k P st

k þ su
kþ1 � 1; ft;ug 2 J ; k 2 f1;2; . . . ;n� 1g: ð9Þ

xijk 2 f0;1g; ði; jÞ 2 G; k 2 f1;2; . . . ;ng: ð10Þ

st
k 2 f0;1g; t 2 J ; k 2 f1;2; . . . ; ng: ð11Þ

etu
k 2 f0;1g; ft;ug 2 J ; k 2 f1;2; . . . ; ng: ð12Þ
The objective function (1) minimizes the makespan (i.e., completion time), which is the sum of job processing times and
setup times. Note that the original objective value is restored by adding M1ðn� 1Þ to Z0. Constraints (2) ensure that each job
ði; jÞ is processed exactly once, by summing up all positions k for each job. Constraints (3) guarantee that precedence rela-
tions are satisfied. In particular, item

Pn
k¼1xijk � k denotes the position in the sequence occupied by job ði; jÞ and item

Pn
k¼1xi;jþ1;k � k denotes the one possessed by job ði; jþ 1Þ. As job ði; jÞmust be processed before job ði; jþ 1Þ due to precedence

relations, the position of ði; jÞ in the sequence must be earlier than the position of job ði; jþ 1Þ by at least one unit. Constraints
(4) impose that only one job (of any type, by summing up all types) can be processed at each position k in the sequence.
Constraints (5)–(8) guarantee the corresponding relation between st

k and t-type jobs. Constraints (9) state the relation
between the setup time and the related two jobs. Note that etu

k is minimized by the objective function. Domains of the deci-
sion variables are defined by (10)–(12).

Our GBIP model is suitable for different values of processing times and setup times (i.e., not restrictive to the data in
Tables 3 and 4). To express the relation etu

k ¼ st
k � su

kþ1, two sets of constraints etu
k 6 st

k and etu
k 6 su

kþ1 are theoretically required.
However, as the objective function Z0 forces etu

k to be zero, these two set of constraints are redundant in our formulation. (This
may be one reason why our formulation is CPLEX-effective.) Moreover, the number of container operations in the sequence is
a fixed number n, whereas in Meisel and Wichmann (2010)’s formulation (see Appendix A) the number of operations is
upper bounded by n. (This may be another reason why our model is relatively competitive.)

5. Solution approach to large-scale problems

CPLEX is not suitable for large-scale NP-hard problems. In this section, we devise a very time-effective heuristic and ana-
lyze its worst-case error bound.

5.1. A fast algorithm

We design a constructive heuristic, called Internal-Reshuffle-Dense (IRD) algorithm. The intuitive idea is to maximize the
number of internal-reshuffling operations. In particular, we update the digraph by reindexing all the chains in a decreasing

Fig. 8. Updated digraph of the example problem.

Fig. 9. IRD sequence of the example problem.

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 61
order of the number of reshuffles (see Fig. 8). Then we construct internal-reshuffling operations between two adjacent chains
as many as possible (see Fig. 9).

In the following, a job is called available if it appears at the head (i.e., first position) of a chain. Note that we assume
reshuffles exist in the problem input, since otherwise the problem can be solved to optimum by Johnson’s rule (see
Appendix B).

Internal-Reshuffle-Dense (IRD) algorithm

Step 1: Rearrange all chains in a decreasing order of the number of reshuffles. Let k ¼ 0. (Suppose there are m chains indexed
from 1.)

Step 2: k :¼ kþ 1. If k ¼ m, go to Step 5.
Step 3: Process jobs in chain k until a BV job is available. If none, go to Step 2.
Step 4: Process jobs in chain kþ 1 until a VB job is available. If none, go to Step 2. Process the VB job in chain kþ 1 and the

BV job in chain k. Go to Step 3.
Step 5: Process all the remaining jobs from top to bottom, chain by chain.
As each stack has an equal number of reshuffles in both plans, chain rearrangement in Step 1 ensures that all VB jobs in
chain k and an equal number of BV jobs in chain k� 1 could construct internal-reshuffling operations, where k ¼ f2; . . . ;mg.
In other words, all VB jobs in chain k are internally reshuffled. For example, jobs 5 and 1 in Fig. 9 are internally reshuffled.

Remark 2. IRD algorithm takes Oðmaxfm log m;ngÞ time, which is polynomial in input n, where m 6 n.

Let a denote the number of internal-reshuffling operations in a sequence (e.g., in Fig. 9, a ¼ 2). Use s0 to denote the time
an internal-reshuffling takes (e.g., according to Table 4, s0 ¼ �110). We use s1 to indicate the setup time between an import
container and an export container (no matter which goes first), and s2 the setup time between two import (or export)

62 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
containers (e.g., according to Table 4, s1 ¼ 10 and s2 ¼ 20). Clearly, s1 < s2. Each job has a processing time p (e.g., according to
Table 3, p ¼ 100). Recall that n denotes the number of containers in both plans.

Theorem 1. The error bound of IRD algorithm is ðn�1�aÞðs2�s1Þ
npþas0þðn�1�aÞs1

.

Proof. Let CA denote the makespan of an IRD sequence, COPT an optimal objective value. Clearly, CA 6 npþ as0 þ ðn� 1� aÞs2

and COPT P npþ as0 þ ðn� 1� aÞs1. Therefore the error bound is
CA � COPT

COPT
6

ðn� 1� aÞðs2 � s1Þ
npþ as0 þ ðn� 1� aÞs1

:

h

Corollary 1. The error bound of IRD algorithm is 1/10 with regard to the data settings in Meisel and Wichmann (2010).
Proof. Let CA and COPT respectively denote the objective value achieved by IRD algorithm and the optimal solution. By
Theorem 1 and the data settings in Meisel and Wichmann (2010) (also see Tables 3 and 4), we know
CA � COPT

COPT
6

ðn� 1� aÞðs2 � s1Þ
npþ as0 þ ðn� 1� aÞs1

¼ n� a� 1
11n� 12a� 1

:

Let f ðn;aÞ ¼ n�a�1
11n�12a�1. By definitions of n (number of containers in both plans) and a (number of internal-reshuffling oper-

ations), we have n P 1 and a 6 bn=2c. Clearly, n P 2a. For fixed a, the partial derivative of f ðn;aÞ is
@f ðn;aÞ
@n

¼ ðs2 � s1Þðas0 þ apþ pÞ
ððpþ s1Þnþ ðas0 � as1 � s1ÞÞ2

¼ 10� a
ð11nþ 12aþ 1Þ2

:

We discuss three cases of a.

Case 1: 0 6 a < 10. In this case, we know @f ðn;aÞ
@n > 0 and the function f ðn;aÞ attains the maximum as n approaches infinity,

i.e.,
max f ðn;aÞ ¼ lim
n!1

n� a� 1
11n� 12a� 1

¼ 1
11

<
1

10
:

Case 2: a ¼ 10. In this case, f ðn;aÞ ¼ n�11
11n�121 ¼ 1

11 <
1

10.

Case 3: a > 10. In this situation, we know @f ðn;aÞ
@n < 0 and the function f ðn;aÞ attains the maximum when n ¼ 2a, i.e.,
max f ðn;aÞ ¼ f ð2a;aÞ ¼ a� 1
10a� 1

¼ 1
10
� 9

100a� 10
<

1
10

:

This completes the proof. h

5.2. Comparison via example problem

We use the example provided in Meisel and Wichmann (2010) to demonstrate how IRD algorithm works. Then, based on
this example, we compare the results generated with IRD algorithm, Johnson’s rule (Goodchild and Daganzo, 2006), and
GRASP heuristic (Meisel and Wichmann, 2010). In the example (see Fig. 3), there are five import containers, two export con-
tainers, four reshuffles, and two fixed containers. As fixed containers do not affect the decision process, we omit them in the
concise representation (Fig. 5). The task is to convert the arrival plan to the departure plan. Below, we detail the solutions
generated with different approaches.

� A sequence generated with IRD algorithm. We illustrate the details of how IRD algorithm works by Fig. 10, or to say how
the IRD sequence, 7–8–9–4–5–13–14–15–6–11–1–12–2–10–3, depicted by Fig. 9 corresponds to operating time. In
Fig. 10, arrows denote the moving direction of the quay crane, and dotted box indicates the starting slot of a container
operation. In total, there are 13 container operations, and the total operating time is 1460 s. Moreover, we also depict
where internal-reshuffling operations and double-cycling occur. This sequence has two internal-reshuffling operations
(i.e., 5–13 and 1–12) and double-cycling happens twice (i.e., 6–11 and 2–10). In-bay empty crane move occurs four times
(i.e., 15–6, 11–1, 12–2 and 10–3).

Fig. 10. IRD sequence: 7–8–9–4–5–13–14–15–6–11–1–12–2–10–3.

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 63
� A sequence generated with Johnson’s rule. It is well known that Johnson’s rule can be applied to solve the QCDCP
(Goodchild and Daganzo, 2006). For the given example, the Johnson-rule sequence is 7–8–9–4–13–5–14–6–15–1–11–
2–12–3–10. In total, there are 15 operations, and the time is 1670. In this sequence, double-cycling happens six times
(i.e., 4–13, 5–14, 6–15, 1–11, 2–12, and 3–10), as expected, because the purpose of Johnson’s rule is to maximize the num-
ber of double cycles. In-bay empty crane move happens five times (i.e., 13–5, 14–6, 15–1, 11–2 and 12–3).

64 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
� A sequence generated with GRASP heuristic. As Meisel and Wichmann (2010) devise a GRASP heuristic to solve the prob-
lem. The GRASP sequence given in their work is 4–7–8–9–1–13–5–14–6–15–11–2–12–3–10. There are 13 container
operations, and the objective value is 1450. In this sequence, internal reshuffling operation occurs twice (i.e., 1–13,
5–14), double-cycling happens three times (i.e., 6–15, 2–12 and 3–10). Besides, in-bay empty move occurs four times
(i.e., 13–5, 14–6, 11–2 and 12–3).
� A sequence generated with CPLEX. For the above example, an optimal solution can be obtained by CPLEX with either

Meisel and Wichmann (2010)’s model or our GBIP model (see Section 4.2). An optimal solution is 7–8–9–13–4–5–14–
6–11–1–12–2–10–3–15. To save space, we do not depict the details of operations. In total, there are 13 container
operations, in which internal-reshuffling operation occurs twice (i.e., 5–14 and 1–12). Double-cycling happens four times
(i.e., 9–13, 6–11, 2–10 and 3–15). The total time consumed is 1430. In the optimal sequence, in-bay empty move occurs
five times (i.e., 13–4, 14–6 11–1, 12–2 and 10–3).

Table 5 sums up the results. The first column reports the objective function values. The second presents the optimality
gap (compared with CPLEX solution). The following three columns illustrate the number of internal-reshuffling operations,
the number of double-cycling and the number of in-bay empty moves, respectively. The last column illustrates time com-
plexity of different methods. By comparison, we observe that (i) internal-reshuffling operations help to reduce service time
by 16.8% with the sole application of the double cycling technique, (ii) IRD solution is better than Johnson-rule solution by
14.7%, (iii) IRD solution has an optimality gap 2.1%, and (iv) IRD algorithm’s performance is slightly weaker than that of
GRASP by 0.7%. As for time complexity, (i) IRD algorithm is approximately equal to Johnson’s rule and (ii) IRD algorithm
is significantly superior to GRASP heuristic. Besides, IRD algorithm generates the same number of internal-reshuffling oper-
ations as CPLEX does.

Remark 3. Notice that Johnson’s rule generates an optimal solution to the problem without internal-reshuffling operations
(i.e., QCDCP), whereas the CPLEX solution is an optimal solution to the problem with internal-reshuffling operations
(i.e., QCDCP-IR). For this example, the internal-reshuffling method reduces the total service time by 16.8%, and it reduces the
operations related to the four reshuffles by ð4� 2� ð2þ 2� 2ÞÞ=ð4� 2Þ ¼ 25%.
6. Computational experiments

In this section, we conduct computational experiments for the following purposes: (i) to evaluate the quality of GBIP
model presented in Section 4.2, compared with the start-of-the-art model and (ii) to assess the solution quality of IRD algo-
rithm, compared with GRASP heuristic. IRD algorithm is coded in C++ language. GRASP heuristic is reimplemented according
to the description in Meisel and Wichmann (2010) in C++ language. CPLEX 12.5 is used to solve the two integer programming
models. All the experiments are conducted on a Macbook with 2.4 GHz and 8 GB RAM (with software Xcode 4.6.3).

6.1. Instance generation

Experiments are conducted on a large set of test instances.

6.1.1. Bay sizes
All the bay sizes description in Meisel and Wichmann (2010) are included in our experiments. Besides, to evaluate the

efficiency of our GBIP model, an ‘‘extra small’’ bay size is designed, as CPLEX cannot generate optimal solutions for relatively
large instances. To accommodate mega-ships, such as Maersk Triple-E class of mega-ship with TEU capacity of 18,270 (see
Port Technology International, 2015), we also add an ‘‘extra large’’ bay size (see Table 6).

6.1.2. Workload scenarios
Meisel and Wichmann (2010) generate three workload scenarios, i.e., high load, low import, and low export, which are dis-

tinguished by the ratio of import containers, export containers, reshuffles and fixed containers in the arrival and departure
plans. In the example given in Fig. 3, there are five import containers, two export containers, four reshuffles (in either plan)
Table 5
Comparison between IRD, Johnson’s rule, GRASP and CPLEX.

Methods Objective value (sec.) Optimality gap (%) #Internal-
reshuffling

Double-
cycling

#In-bay empty move Time complexity

IRD 1460 2.1 2 2 4 Oðmaxfm log m;ngÞ
Johnson’s rule 1670 16.8 0 6 5 Oðm log mÞ
GRASP 1450 1.4 2 3 4 Non-polynomial
CPLEX 1430⁄ 0 2 4 5 Non-polynomial

⁄ Optimal objective function value.

Table 6
Bay sizes for instance generation.

Bay sizes No. of stacks No. of tiers

extra small 5 5
small 10 10
medium 15 15
large 20 20
extra large 25 25

Table 7
Workload scenarios for instance generation.

Workload scenario Import containers (%) Export containers (%) Reshuffles (%) Fixed containers (%)

High load 70 70 2–20 10
Low import 40 70 2–20 10
Low export 70 40 2–20 10
Low load 40 40 5–50 10

Table 8
Computational results of extra-small bay size.

Workload
scenario

RR (%) GBIP model (CPLEX) M&W model (CPLEX) GRASP IRD Lower
bound

Value Time (sec.) #Opt. Value Time (sec.) #Opt. Value Time (sec.) Value Time (sec.)

High load 2 4450 292 5 4450 387 3 4620 23 4685 <0.01 4390
4 4450 5 5 4450 175 5 4500 147 4690 <0.01 4390
6 4450 5 3 4450 174 3 4525 10 4690 <0.01 4390
8 4400 303 4 4400 388 3 4585 23 4690 <0.01 4330

10 4450 5 2 4450 175 1 4510 148 4690 <0.01 4390
12 4400 538 2 4400 600 0 4590 22 4615 <0.01 4330
14 4490 328 3 4410 524 3 4420 10 4625 <0.01 4270
16 4160 600 1 4270 600 0 4290 10 4275 <0.01 4090
18 4130 600 1 4180 600 1 4200 26 4265 <0.01 4030
20 4450 589 2 4470 600 2 4530 4 4640 <0.01 4390

Low import 2 3370 32 5 3370 47 5 3500 5 3520 <0.01 3290
4 3370 22 5 3370 33 5 3470 84 3525 <0.01 3290
6 3370 10 5 3370 38 5 3525 5 3530 <0.01 3290
8 3370 15 5 3370 39 5 3460 86 3530 <0.01 3290

10 3250 142 5 3250 312 5 3370 5 3455 <0.01 3170
12 3320 138 5 3320 202 5 3345 30 3475 <0.01 3230
14 3370 36 5 3370 70 5 3460 5 3525 <0.01 3290
16 3370 71 5 3370 185 5 3430 5 3525 <0.01 3290
18 3260 110 5 3260 333 4 3290 86 3480 <0.01 3170
20 3150 226 5 3150 490 3 3200 5 3245 <0.01 3050

Low export 2 3330 45 5 3330 50 5 3400 12 3480 <0.01 3290
4 3330 2 5 3330 7 5 3405 205 3485 <0.01 3290
6 3330 84 5 3330 97 5 3425 12 3485 <0.01 3290
8 3330 86 4 3330 172 4 3400 208 3490 <0.01 3290

10 3330 80 5 3330 60 5 3410 12 3490 <0.01 3290
12 3270 144 5 3270 257 4 3350 207 3490 <0.01 3230
14 3220 301 4 3220 304 3 3310 12 3415 <0.01 3170
16 3100 600 3 3100 600 1 3175 12 3225 <0.01 3050
18 3330 82 4 3330 99 4 3465 207 3490 <0.01 3290
20 3170 600 2 3170 600 2 3230 501 3280 <0.01 3110

Low load 5 2690 6 5 2690 4 5 2700 3 2810 <0.01 2630
10 2590 52 5 2590 52 5 2720 53 2710 <0.01 2510
15 2690 5 5 2690 4 5 3000 182 2760 <0.01 2630
20 2630 16 5 2630 32 5 2970 3 2710 <0.01 2570
25 2580 51 5 2580 115 5 2715 53 2610 <0.01 2510
30 2580 119 5 2580 159 5 2800 1 2645 <0.01 2510
35 2460 85 5 2460 163 5 2565 11 2610 <0.01 2390
40 2400 65 5 2400 278 5 2575 62 2460 <0.01 2330
45 2460 58 5 2460 133 5 2725 206 2610 <0.01 2390
50 2470 71 5 2470 115 5 2605 1 2565 <0.01 2390

Average 3460 181 4.25 3460 251 3.90 3494 12 3625 <0.01 3390

GBIP’s improvement on Time = (251–181)/251 = 28%, improvement on #Opt. = (4.25–3.90)/3.90 = 9%

Average Gaps of GRASP and IRD (%) 4.13 7.02

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 65

66 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
and two fixed containers. The capacity of a bay is 12 containers or slots (4 stacks � 3 tiers). The ratio of import containers in
the arrival plan is 5=12 � 42%, the ratio of export containers in the departure plan is 2=12 � 17%, the ratio of reshuffles is
4=12 � 33% in either plan. In their computational experiments, the percentage of fixed containers is set to 10% in all scenar-
ios and the percentage of reshuffles varies in the range [0, 2%, . . ., 20%]. Note that by Theorem 2 in Appendix B, we show that
an optimal solution to such a situation (with no reshuffles) can be obtained by Johnson’s rule. Thus, it is not necessary to test
the cases with 0% reshuffles. Besides, to study the cases where reshuffles pose a high percentage, we extensively design a
fourth scenario, called low load (see Table 7). In the fourth scenario, the percentage of fixed containers is set to 10% as in other
three scenarios, and the percentage of reshuffles varies in the range [5%, 10%, . . ., 50%]. Thus, in each workload scenario, there
are 10 values of reshuffle ratios or percentages. Table 7 summarizes the workload scenarios used in our computational study.

In our experiments, there are in total 200 combinations (5 bay sizes � 4 workload scenarios � 10 reshuffle percentages).
For each combination, five instances are generated by randomly assigning the different types of containers to slots in the
plans. In total, 1000 benchmark instances are generated. In our tests, the data illustrated in Tables 1 and 2 are used, as in
Meisel and Wichmann (2010).

6.2. Computational results

To demonstrate that our GBIP model (see Section 4.2) is CPLEX-effective, we compare it with Meisel and Wichmann
(2010)’s formulation, called M&W model, both solved with CPLEX. For some cases of extra small bay size, CPLEX cannot
Table 9
Computational results of small bay size.

Workload scenario RR (%) GBIP model (CPLEX) GRASP IRD Lower bound

Value Time (sec.) #Int. Value Time (sec.) Gap (%) Value Time (sec.) Gap (%)

High load 2 None 600 2 18,230 466 4.17 18,915 <0.01 8.27 17,470
4 None 600 4 18,100 546 3.81 18,910 <0.01 8.62 17,410
6 None 600 4 18,260 460 4.65 18,915 <0.01 8.64 17,410
8 18,990 600 5 17,970 349 5.79 17,845 <0.01 5.40 16,930

10 None 600 4 17,425 267 3.53 17,935 <0.01 6.69 16,810
12 18,920 600 5 17,510 523 4.34 18,270 <0.01 9.07 16,750
14 18,870 600 5 17,370 255 2.88 17,770 <0.01 5.33 16,870
16 18,990 600 5 17,040 107 3.11 17,345 <0.01 5.06 16,510
18 None 600 4 16,350 297 2.32 17,275 <0.01 8.17 15,970
20 18,990 600 5 17,015 83 4.38 17,345 <0.01 6.61 16,270

Low import 2 14,250 600 5 13,645 139 5.09 14,050 <0.01 8.49 12,950
4 14,190 600 5 13,425 320 3.54 13,765 <0.01 6.29 12,950
6 14,270 600 5 13,035 128 2.03 13,645 <0.01 6.85 12,770
8 14,250 600 5 13,745 135 5.57 14,200 <0.01 9.40 12,980

10 14,170 600 5 12,740 362 1.65 13,200 <0.01 5.35 12,530
12 14,270 600 5 13,125 439 4.53 13,410 <0.01 7.02 12,530
14 14,200 600 5 13,140 560 3.27 13,580 <0.01 6.85 12,710
16 14,130 600 5 13,345 409 4.31 13,625 <0.01 6.70 12,770
18 14,270 600 5 12,890 140 4.19 13,270 <0.01 7.45 12,350
20 14,270 600 5 12,285 382 3.87 12,625 <0.01 6.90 11,810

Low export 2 13,570 511 5 13,705 199 3.39 14,190 <0.01 7.18 13,240
4 13,820 600 5 13,600 96 3.01 14,190 <0.01 7.58 13,190
6 13,970 600 5 13,490 415 4.00 13,790 <0.01 6.49 12,950
8 14,180 600 5 13,150 167 4.26 13,190 <0.01 4.77 12,590

10 14,050 600 5 13,285 167 3.88 13,190 <0.01 3.29 12,770
12 14,080 600 5 13,235 209 3.51 13,190 <0.01 3.29 12,770
14 14,030 600 5 13,225 479 5.71 13,690 <0.01 9.78 12,470
16 13,960 600 5 13,085 129 3.78 13,190 <0.01 4.77 12,590
18 14,190 600 5 12,170 434 1.97 12,690 <0.01 6.37 11,930
20 14,190 600 5 12,260 104 4.16 12,690 <0.01 8.00 11,750

Low load 5 10,890 600 5 11,530 245 8.41 11,390 <0.01 7.86 10,560
10 11,240 600 5 10,170 268 2.16 10,600 <0.01 6.53 9950
15 11,360 600 5 11,045 499 11.00 10,390 <0.01 5.70 9830
20 11,350 600 5 10,490 269 4.58 10,890 <0.01 8.79 10,010
25 11,160 600 5 10,965 439 8.71 10,390 <0.01 3.80 10,010
30 11,390 600 5 10,610 265 12.44 9890 <0.01 6.46 9290
35 11,380 600 5 9815 479 5.35 10,090 <0.01 8.61 9290
40 11,390 600 5 9495 151 5.32 9790 <0.01 8.90 8990
45 11,390 600 5 9775 417 8.64 9750 <0.01 9.18 8930
50 11,390 600 5 9255 323 9.35 8950 <0.01 6.67 8390

Average 13742.5 395 5.91 13932.5 <0.01 7.75 12,930

Note. Value ‘‘None’’ means CPLEX does not deliver integer solutions for some instances in one combination.

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 67
optimally solve M&W model in 3600 s. Thus, we set a time limit of 600 s in CPLEX for both models, and count the number of
optimal solutions obtained in the tests. Lower bounds can be obtained by the procedure provided by Meisel and Wichmann
(2010), who demonstrate the bounds generated with their procedure are better than those generated with CPLEX in one hour
in most of the cases. Therefore, we use this procedure to calculate lower bounds.

Table 8 shows the computational results of extra small bay size in all four scenarios. Every row in this table reports aver-
age results for a combination of five instances. Column ‘‘Workload scenario’’ indicates the four workload scenarios. Column
‘‘RR (%)’’ gives the reshuffle ratios or percentages. The third to fifth columns report the average objective function values
obtained by solving GBIP model with CPLEX, and the average running times, and the number of optimal values among five
instances, respectively. The sixth to eighth columns report those of M&W model. The ninth to eleventh (twelfth to
fourteenth) columns represent the average objective function values obtained with GRASP heuristic (IRD algorithm) and
its average running times, respectively. The last column reports the average lower bounds delivered by the
lower-bounding procedure (Meisel and Wichmann, 2010). In the experiments, the units of objective function values and run-
ning time are seconds (sec. for short).

Results in Table 8 demonstrate that on average using GBIP model CPLEX can optimally solve 4.25 instances (of five
instances in each combination) in the time limit, whereas this value of M&W model is 3.90. Thus, in terms of solution quality,
compared with M&W model, GBIP model can obtain 9% more optimal solutions in the time limit. In terms of running time,
results show that GBIP model has an improvement about 28%, compared with M&W model. In this table, the superiority of
GBIP model is clearly shown. The ‘‘Average Gap (%)’’ in the last row reports the relative error gaps of IRD and GRASP for all the
Table 10
Computational results of medium bay size.

Workload scenario RR (%) GBIP model (CPLEX) GRASP IRD Lower bound

Value Time (sec.) #Int. Value Time (sec.) Gap (%) Value Time (sec.) Gap (%)

High load 2 None 600 0 39,675 569 1.29 41,300 <1 5.44 39,170
4 None 600 0 41,175 334 4.96 42,815 <1 9.14 39,230
6 None 600 3 40,110 584 2.87 42,745 <1 9.63 38,990
8 None 600 3 40,190 752 5.51 41,370 <1 8.61 38,090

10 None 600 2 39,745 635 3.69 41,370 <1 7.93 38,330
12 None 600 3 39,780 345 5.77 38,945 <1 3.55 37,610
14 None 600 2 38,370 475 2.84 39,500 <1 5.87 37,310
16 None 600 3 38,495 626 5.38 38,455 <1 5.27 36,530
18 None 600 3 37,260 567 3.70 38,010 <1 5.79 35,930
20 42,890 600 5 38,130 323 5.77 38,005 1 5.42 36,050

Low import 2 None 600 0 31,080 455 5.53 30,050 <1 2.04 29,450
4 None 600 1 29,775 79 2.99 30,000 <1 3.77 28,910
6 None 600 0 30,265 398 3.19 32,135 <1 9.56 29,330
8 None 600 2 29,890 519 5.14 29,935 <1 5.29 28,430

10 None 600 2 29,870 646 4.62 31,105 <1 8.95 28,550
12 None 600 1 29,910 262 6.10 30,210 <1 7.17 28,190
14 None 600 4 29,290 346 3.68 30,105 <1 6.57 28,250
16 None 600 1 28,960 165 4.06 30,210 <1 8.55 27,830
18 None 600 1 28,200 246 4.02 29,000 <1 6.97 27,110
20 None 600 3 28,605 486 4.36 28,650 1 4.52 27,410

Low export 2 None 600 1 30,580 419 3.84 32,015 <1 8.71 29,450
4 None 600 2 30,210 643 3.21 32,080 <1 9.60 29,270
6 None 600 2 29,595 537 1.53 31,090 <1 6.66 29,150
8 None 600 3 30,070 61 5.32 30,085 <1 5.38 28,550

10 None 600 2 29,040 441 2.15 31,090 <1 9.36 28,430
12 None 600 4 30,570 414 7.08 30,090 <1 5.39 28,550
14 32,060 600 5 29,480 308 5.93 28,660 <1 2.98 27,830
16 32,090 600 5 29,405 611 5.21 30,375 <1 8.68 27,950
18 32,090 600 5 28,295 219 4.14 29,825 <1 9.77 27,170
20 None 600 3 27,990 453 2.34 29,345 <1 7.29 27,350

Low load 5 None 600 1 26,830 299 14.71 25,585 <1 9.38 23,390
10 None 600 2 23,825 108 4.82 24,730 <1 8.80 22,730
15 None 600 2 24,530 263 7.92 23,590 <1 3.78 22,730
20 None 600 2 23,850 319 9.86 23,230 <1 7.00 21,710
25 None 600 4 24,435 667 13.49 23,230 <1 7.90 21,530
30 None 600 4 22,380 167 9.76 22,230 <1 9.02 20,390
35 25,730 600 5 21,150 609 5.28 21,910 <1 9.06 20,090
40 None 600 4 22,105 695 12.04 20,575 <1 4.28 19,730
45 25,730 600 5 19,575 311 2.33 20,445 <1 6.87 19,130
50 25,730 600 5 19,885 313 6.97 19,980 <1 7.48 18,590

Average 29,780 441 4.13 30,640 <1 6.46 28,880

Note. Value ‘‘None’’ means CPLEX does not deliver integer solutions for some instances in one combination.

68 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
combinations, where a relative error gap of each combination is calculated by ðValue� Lower boundÞ=Lower bound� 100%.
In terms of solution quality, on average, IRD algorithm has a relative error bound of 7.02%, slightly weaker than that of GRASP
by 2.89%. In terms of running time, IRD algorithm clearly outperforms GRASP, with a running time far less than one second,
whereas GRASP consumes 181 s on average.

Table 9 presents the results of small bay size. We only report the CPLEX solutions solving with GBIP model, as M&W
model is less CPLEX-effective, shown previously. The purpose is to report the best solutions of CPLEX in 600 s for the
instances. Column ‘‘#Int.’’ reports the number of integer (feasible) solutions obtained for each combination of five instances,
as for some instances CPLEX cannot deliver integer solutions. In Column ‘‘Value’’, we present the average objective function
values where integer solutions are obtained for all five instances, as CPLEX cannot generate integer solutions for some
instances. Column ‘‘Gap (%)’’ gives the relative error gap for each combination. Results show that CPLEX can obtain feasible
solutions for most instances of small bay size, however these objective values are not competitive, compared with the values
generated with IRD algorithm. Generally, the GRASP heuristic outperforms the IRD algorithm in terms of solution quality, as
IRD algorithm has a relative error gap 7.75% on average, slightly weaker than that of GRASP by 1.84%. Notice that for some
combinations, the relative error gap of GRASP is larger than 10%, whereas the IRD algorithm guarantees a relative error
bound less than 10%. Thus, the IRD algorithm is relatively robust. In terms of running time, IRD algorithm clearly outperforms
GRASP, with running time less than one second, whereas GRASP consumes 395 s. On average, in terms of solution quality,
IRD outperforms GRASP in the low load scenario.

Table 10 reports the computational results of the instances of medium bay size. As CPLEX has not totally lost its power for
small bay sized instances, we also report the solutions generated with CPLEX (with GBIP model). Results show that CPLEX
Table 11
Computational results of large bay size.

Workload scenario RR (%) GRASP IRD Lower bound

Value Time (sec.) Gap (%) Value Time (sec.) Gap (%)

High load 2 70,635 20 1.74 72,240 <1 4.05 69,430
4 72,140 220 5.54 71,625 <1 4.79 68,350
6 70,540 613 3.93 69,145 <1 1.88 67,870
8 68,965 587 2.06 69,085 <1 2.24 67,570

10 68,855 404 3.37 71,390 <1 7.18 66,610
12 67,550 274 2.71 70,390 <1 7.02 65,770
14 68,505 295 4.73 71,390 <1 9.14 65,410
16 68,400 441 4.76 68,390 <1 4.75 65,290
18 66,825 645 4.86 66,390 1 4.17 63,730
20 65,965 360 4.49 66,890 1 5.96 63,130

Low import 2 53,900 334 3.75 54,200 <1 4.33 51,950
4 54,810 234 5.51 54,200 <1 4.33 51,950
6 52,945 273 2.51 54,200 <1 4.94 51,650
8 51,790 112 1.21 53,275 <1 4.11 51,170

10 51,235 402 1.92 54,830 <1 9.07 50,270
12 50,675 150 1.41 54,350 <1 8.77 49,970
14 51,530 216 4.63 52,350 <1 6.29 49,250
16 51,300 686 4.04 53,350 <1 8.19 49,310
18 50,285 284 4.91 50,440 <1 5.24 47,930
20 50,625 481 4.32 50,350 <1 3.75 48,530

Low export 2 54,885 110 4.68 56,115 <1 7.03 52,430
4 51,930 428 1.37 55,190 <1 7.73 51,230
6 52,850 223 3.53 53,765 <1 5.32 51,050
8 53,415 296 5.88 53,205 <1 5.46 50,450

10 53,480 651 5.50 53,630 <1 5.80 50,690
12 51,525 777 4.75 52,625 <1 6.98 49,190
14 50,500 171 2.79 51,215 <1 4.24 49,130
16 50,705 574 5.53 50,615 <1 5.34 48,050
18 50,105 217 3.25 51,190 <1 5.48 48,530
20 48,710 171 2.92 51,965 <1 9.79 47,330

Low load 5 44,390 515 8.51 42,520 <1 3.94 40,910
10 43,000 311 7.31 43,970 <1 9.73 40,070
15 43,720 337 11.45 41,970 <1 6.98 39,230
20 42,350 639 8.95 41,540 <1 6.87 38,870
25 38,715 203 2.61 41,040 <1 8.77 37,730
30 38,580 454 6.13 38,430 <1 5.72 36,350
35 39,405 268 11.16 38,415 <1 8.36 35,450
40 38,045 332 10.50 36,470 <1 5.93 34,430
45 35,435 450 3.46 35,400 <1 3.36 34,250
50 34,445 441 4.60 35,400 <1 7.50 32,930

Average 52,540 231 3.17 53,820 <1 5.77 51,180

Table 12
Computational results of extra large bay size.

Workload scenario RR (%) GRASP IRD Lower bound

Value Time (sec.) Gap (%) Value Time (sec.) Gap (%)

High load 2 112,040 96 3.10 115,200 <1 6.01 108,670
4 111,140 504 3.18 114,700 <1 6.49 107,710
6 109,840 620 2.66 114,700 <1 7.21 106,990
8 110,010 540 4.23 114,340 <1 8.33 105,550

10 108,680 642 3.61 109,340 <1 4.24 104,890
12 106,970 448 4.13 109,270 1 6.37 102,730
14 106,175 372 3.78 109,770 1 7.29 102,310
16 104,705 309 3.19 110,200 1 8.60 101,470
18 104,605 276 4.64 107,270 2 7.30 99,970
20 98,260 197 1.21 106,050 2 9.23 97,090

Low import 2 85,395 98 4.28 89,615 <1 9.43 81,890
4 84,010 345 3.50 86,400 <1 6.44 81,170
6 85,515 480 6.06 87,470 <1 8.48 80,630
8 83,885 369 6.57 81,690 <1 3.79 78,710

10 81,405 317 3.82 82,615 <1 5.36 78,410
12 78,620 514 1.98 83,540 <1 8.37 77,090
14 79,585 244 3.48 79,995 <1 4.01 76,910
16 77,165 496 2.16 80,190 <1 6.17 75,530
18 77,625 317 3.27 80,615 1 7.24 75,170
20 77,680 517 5.53 79,840 1 8.46 73,610

Low export 2 86,645 420 6.43 89,410 <1 9.83 81,410
4 83,520 372 3.05 86,490 <1 6.71 81,050
6 83,510 692 4.04 86,490 <1 7.75 80,270
8 81,685 327 3.62 82,940 <1 5.21 78,830

10 83,565 536 5.29 85,990 <1 8.34 79,370
12 82,380 427 5.55 82,940 1 6.27 78,050
14 79,990 413 3.60 82,715 1 7.13 77,210
16 79,755 418 4.11 80,990 1 5.72 76,610
18 79,655 426 4.71 79,415 1 4.40 76,070
20 75,835 548 2.44 79,340 1 7.17 74,030

Low load 5 69,945 29 8.36 69,545 <1 7.74 64,550
10 66,135 380 5.80 65,540 <1 4.85 62,510
15 65,990 530 10.00 63,905 <1 6.53 59,990
20 61,670 297 4.05 61,970 <1 4.56 59,270
25 60,865 356 6.35 60,040 <1 4.91 57,230
30 58,430 610 3.29 59,540 <1 5.25 56,570
35 61,260 634 11.85 56,980 <1 4.04 54,770
40 57,515 382 7.61 58,760 <1 9.93 53,450
45 53,735 123 5.01 54,980 <1 7.45 51,170
50 54,325 358 8.07 54,980 1 9.37 50,270

Average 83,182 227 5.58 85,090 <1 7.69 79,470

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 69
cannot deliver integer solutions for most of the instances. The average relative error gap of IRD is 6.46%, slightly weaker than
that of GRASP by 2.33%. The maximum relative error gap of GRASP is 14.71%, whereas that value of IRD is 9.56%. Therefore,
IRD algorithm is relatively robust. In terms of running time, IRD consumes less than one second, whereas GRASP takes 441 s
on average. Thus, IRD saves a lot of computational time. On average, in terms of solution quality, IRD outperforms GRASP in
the low load scenario.

The computational results of the instances of large bay size is given in Table 11. As shown previously that CPLEX cannot
generate integer solutions for most of the instances of medium bay size in the time limit, we only reports solutions generated
with GRASP and IRD. On average, the relative error gap IRD is 5.77%, slightly weaker than that of GRASP by 2.60%. In Table 12,
the instances of extra large bay size are tested. On average, IRD has a relative error gap 7.69%, slightly weaker than that of
GRASP by 2.11%. On average, in terms of solution quality, IRD outperforms GRASP in the low load scenario.

Summing up, (i) our GBIP model is CPLEX-effective compared with Meisel and Wichmann (2010)’s model, (ii) IRD
algorithm, taking about one second to solve problems of practical size, is very efficient in terms of running time, (iii) IRD
algorithm is relative robust with a relative error gap less than 10%, (iv) on average, in terms of solution quality, IRD outper-
forms GRASP in the scenario with high reshuffle percentages, and (v) with the increase of problem sizes, the difference
between the two average relative error gaps decreases. Our experiment results also demonstrate that although the solution
quality of IRD algorithm is slightly weaker than that of GRASP heuristic by about 2%, IRD algorithm can save a lot of com-
putational time. Moreover, as IRD is a constructive heuristic, it is very easy to implement.

70 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
7. Conclusion

In this paper, we revisit the quay crane double cycling problem with internal-reshuffling operations. For the problem, we
propose some observations to map container operations to containers in the arrival and departure plans. Then we present a
new integer programming model. Compared with Meisel and Wichmann (2010)’s formulation, experimental results demon-
strate our formulation is CPLEX-effective. To efficiently solve real-world problem instances, we devise a constructive heuris-
tic approach with worst-case error guarantee. Experimental results demonstrate that our algorithm is very fast and relative
robust than the existing method. As the internal-reshuffling method can be used to complement the classic double-cycling
technique to further improve QC efficiency, our algorithm is very attractive because it is low-cost and very easy to
implement.

Future research directions may include the general problems where the following assumptions are overcome: (i) every
container to be reshuffled in the arrival plan can be positioned at any slot reserved for reshuffles in the departure plan,
(ii) the number of containers under reshuffling in one stack is the same in both plans, and (iii) the hatch-covered problems
are not considered. Moreover, (i) exact solution approaches, such as branch-and-price algorithm, are needed for the
QCDCP-IR and its generalization, and (ii) aiming at looking for a double-cycling operation while pursuing internal reshuffling,
the possibility of inserting a look-ahead step within IRD should be further explored.

Acknowledgement

The authors would like to acknowledge the constructive comments by the referees and the editor. The authors thank Prof.
Chung-Yee Lee for valuable suggestions. The work described in this paper was supported by the National Natural Science
Foundation of China (Grant Nos. 71101106, 71428002, 71272045, and 71072026).

Appendix A

We restate the integer programming formulation proposed by Meisel and Wichmann (2010). Moreover, we correct some
mistakes, i.e., constraints (16)–(18) are corrected.

Meisel and Wichmann (2010)’s model with corrections
In Meisel and Wichmann (2010)’s formulation, ði; jÞ denotes the container occupying the position in i-th stack and j-th tier

in a plan (see Fig. 3). Note that such a definition of ði; jÞ differs from ours. Clearly, the container in slot ði; jþ 1Þ is laid on top of
the container in slot ði; jÞ.

Parameters:
m: number of stacks in the bay;
n: number of tiers in the bay;
AI: set of slots that hold an import container in the arrival plan;
AR: set of slots that hold a reshuffle in the arrival plan;
A: A ¼ AI SAR, i.e., set of slots that hold an import container or a reshuffle in the arrival plan;
DE: set of slots that hold an export container in the departure plan;
DR: set of slots that hold a reshuffle in the departure plan;
D: D ¼ DESDR, i.e., set of slots that hold an export container or a reshuffle in the departure plan;
T: set of container operation types, T ¼ fVY;YV ;VB;BV ;VVg;
dt: processing time of a container operation of type t 2 T;
dtu: time needed for empty crane spreader movement in-between a container operation of type t and a container opera-

tion of type u, where t;u 2 T;
l: l ¼ jAj þ jDj, i.e., an upper bound on the number of container operations;
K;K: K ¼ f1;2; . . . ; lg and K ¼ f1;2; . . . ; l� 1g, i.e., index sets of container operations.

Variables:
xV

ijk: equal 1 if the container at bay slot ði; jÞ is picked in move k 2 K; 0 otherwise;

xY
k : equal to 1 if a container is picked from the yard in move k; 0 otherwise;

xB
k: equal to 1 if a container is picked from the buffer in move k; 0 otherwise;

yV
ijk: equal to 1 if a container is dropped at bay slot ði; jÞ in move k; 0 otherwise;

yY
k : equal to 1 if a container is dropped at the yard in move k; 0 otherwise;

yB
k: equal to 1 if a container is dropped at the buffer in move k; 0 otherwise;

st
k: equal to 1 if container operation k is of type t 2 T; 0 otherwise;

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 71
etu
k : equal to 1 if container operation k is of type t 2 T and operation kþ 1 is of type u 2 T , i.e., st

k ¼ su
kþ1 ¼ 1; 0 otherwise;

bk: number of externally buffered reshuffles at the end of operation k.
ðM&W modelÞ min Z ¼
X

k2K

X

t2T

dt � st
k þ

X

k2K

X

t;u2T

dtu � etu
k ð13Þ

s:t:
X

k2K

xV
ijk ¼ 1; 8ði; jÞ 2 A: ð14Þ

X

k2K

yV
ijk ¼ 1; 8ði; jÞ 2 D: ð15Þ

X

k2K

xV
i;jþ1;k � kþ 1 6

X

k2K

xV
ijk � k; 8ði; jÞ; ði; jþ 1Þ 2 A: ð16Þ

X

k2K

yV
ijk � kþ 1 6

X

k2K

yV
i;jþ1;k � k; 8ði; jÞ; ði; jþ 1Þ 2 D: ð17Þ

X

k2K

xV
ijk � kþ 1 6

X

k2K

yV
ijk � k; 8ði; jÞ 2 A

\
D: ð18Þ

X

t2T

st
k 6 1; 8k 2 K: ð19Þ

sVY
k ¼

X

ði;jÞ2AI

xV
ijk; 8k 2 K: ð20Þ

sVY
k ¼ yY

k ; 8k 2 K: ð21Þ

sYV
k ¼ xY

k ; 8k 2 K: ð22Þ

sYV
k ¼

X

ði;jÞ2DE

yV
ijk; 8k 2 K: ð23Þ

sVV
k þ sVB

k ¼
X

ði;jÞ2AR

xV
ijk; 8k 2 K: ð24Þ

sVB
k ¼ yB

k ; 8k 2 K: ð25Þ

sBV
k ¼ xB

k ; 8k 2 K: ð26Þ

sVV
k þ sBV

k ¼
X

ði;jÞ2DR

yV
ijk; 8k 2 K: ð27Þ

X

t2T

st
k P

X

t2T

st
kþ1; 8k 2 K: ð28Þ

etu
k P st

k þ su
kþ1 � 1; t; u 2 T;8k 2 K: ð29Þ

b0 ¼ 0: ð30Þ

bk ¼ bk�1 � xB
k þ yB

k ; 8k 2 K: ð31Þ

bk 2 Zþ; 8k 2 K: ð32Þ

xV
ijk; x

Y
k ; x

B
k ; s

t
k; e

tu
k 2 f0;1g; 8ði; jÞ 2 A; k 2 K: ð33Þ

72 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
yV
ijk; y

Y
k ; y

B
k 2 f0;1g; 8ði; jÞ 2 D; k 2 K: ð34Þ
The objective function (13) is to minimize the service time of the bay, which is the sum of total time needed for container
operations and total time needed for empty spreader move. Constraints (14) ensure that each import container and each
reshuffle in the arrival plan is picked up once by the QC. Constraints (15) make sure that exactly one container is placed
at every export and every slot to be hold by a reshuffle in the departure plan. Constraints (16) guarantee that the pick-up
of slot ði; jþ 1Þ precedes the pick-up of slot ði; jÞ in the arrival plan. (We fixed this set of constraints in Meisel and
Wichmann, 2010.) Constraints (17) ensure that the drop-off of slot ði; jÞ precedes the drop-off of slot ði; jÞ in the departure
plan. Constraints (18) ensure that a container is removed from a slot before a new container is loaded to that place. (We fixed
this set of constraints in Meisel and Wichmann, 2010) Constraints (19) make sure at most one container is moved in oper-
ation k 2 K . Constraints (20) and (21) guarantee that one import container (or one VY move) corresponds to one pick-up and
one drop-off operations. Constraints (22) and (23) provide the relation between an export container and its pick-up
and drop-off operations. Similarly, constraints (24)–(27) ensure the relation between one reshuffle and its pick-up and
drop-off operations. Constraints (28) enforce a consecutive sequence of non-empty container operations in case that less
than l moves are contained in a solution. Constraints (29) establish the relation between one empty spreader move and
the related two container operations. Constraints (30) and (32) guarantee the number of reshuffles in the dock buffer is
not less than zero. Domains of the decision variables are defined in (33) and (34).

Remark 4. This formulation is a natural representation as the problem appears.
Appendix B

In this part, we identify a special case for the QCDCP-IR which can be solved in polynomial time. The potential benefit may
be that if an instance is recognized as such a case, then it is can be easily solved.

B.1. The non-reshuffle QCDCP-IR

We consider the case where no reshuffles exist. That is, the problem contains only import containers and export contain-
ers, and thus no internal-reshuffling operations could ever happen. We denote this special case by the nr-QCDCP-IR. Note
that the nr-QCDCP-IR is different from the QCDCP, because in the QCDCP container’s operation time and crane’s empty move
time (from the dock to the ship, or in a reverse direction) are identical, whereas the nr-QCDCP-IR involves different kinds of
empty move times. Thus, the nr-QCDCP-IR is not trivial.

For simplicity, let s1 denote the setup time between an import container and an export container (no matter which goes
first), and s2 the setup time between two import (or export) containers. Clearly, s1 < s2.

Lemma 1. The nr-QCDCP-IR is to maximize the number of s1.
Proof. This is because the number of setup times is a constant n� 1, where n denotes the number of containers. The more
time s1 appears in the sequence, the smaller the makespan is. h
B.2. Two machine flow shop

Following Goodchild and Daganzo (2006)’s work by extending their methodology, we regard each stack as a job (with two
sequential operations) for the two machine flow shop problem. The first (second) operation of a specific job is constructed by
concatenating the import (export) containers from top to bottom (bottom to top) in the arrival (departure) plan. Clearly, the
processing time of its first (second) operation is the number of import (export) containers. See Fig. 11a for illustration. The
flow shop problem allows preemption at integral time points, since each container is represented by a processing request of
length one. Moreover, only active schedules are considered, i.e., there is no unnecessary inserted idleness in the schedule.

Remark 5. All precedence constraints have been captured within flow shop job definition.

We next map a flow shop schedule to a single machine sequence. Given a flow shop schedule, we can obtain a job
sequence for single machine by the following procedure (e.g., see Fig. 11b).

Mapping Procedure
Step 1: Set time t ¼ 0.
Step 2: Choose and add to the targeted sequence, from the schedule of flow shop, the job segment which starts at time t on

machine 1 (if any), and then the job segment which starts at time t on machine 2 (if any). If no further processing
exists, stop; otherwise, set t :¼ t þ 1 and go to Step 2.

Fig. 11. Two machine flow shop.

M. Liu et al. / Transportation Research Part E 81 (2015) 52–74 73
Lemma 2. The mapped single machine sequence is feasible.
Proof. This is because there is no violation of precedence relations. h
Lemma 3. In the single machine sequence, s1 occurs 2k� 1 times, where k denotes the number of time units when both machines
are simultaneously busy.
Proof. Observe that s1 (in the mapped single machine sequence) occurs when the processing crosses machines in the flow
shop schedule. For a given flow shop schedule with k common busy time units, assuming there is a virtual ‘‘line’’ between the
two machines, then the processing of jobs crosses this line 2k� 1 times. h
Lemma 4. The nr-QCDCP-IR aims to maximize the number of k.
Proof. By Lemma 1. h
Lemma 5. The nr-QCDCP-IR is equivalent to the two machine flow shop makespan minimization problem.
Proof. Observe that two machine flow shop makespan minimization problem is equivalent to maximize the number of time
units when both machines are simultaneously busy. It is well known that preemption has no advantage for this flow shop
problem. By Lemma 4, the proposition follows. h

Recall that Johnson’s rule optimally solves two machine flow shop makespan minimization problem (Pinedo, 2012). Let
uðiÞ (lðiÞ) denote the processing time of the first (second) operation of job Ji.

Johnson’s rule
(i) If uðiÞ < lðiÞ, assign job Ji to group A; otherwise, assign it to group B.

(ii) Arrange jobs in group A in non-decreasing order of uðiÞ, and jobs in group B in non-increasing order of lðiÞ.
(iii) Construct the final sequence in which all jobs in group A are followed by all jobs in group B.
Theorem 2. The nr-QCDCP-IR can be optimally solved by Johnson’s rule.
Proof. By Lemma 5. h
References

Bell, M.G.H., Liu, X., Angeloudis, P., Fonzone, A., Hosseinloo, S.H., 2011. A frequency-based maritime container assignment model. Transp. Res. Part B 45 (8),
1152–1161.

Bell, M.G.H., Liu, X., Rioult, J., Angeloudis, P., 2013. A cost-based maritime container assignment model. Transp. Res. Part B 58, 58–70.
Bierwirth, C., Meisel, F., 2009. A fast heuristic for quay crane scheduling with interference constraints. J. Sched. 12 (4), 345–360.
Bierwirth, C., Meisel, F., 2010. A survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. 202 (3), 615–627.

http://refhub.elsevier.com/S1366-5545(15)00131-3/h0010
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0010
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0015
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0020
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0025

74 M. Liu et al. / Transportation Research Part E 81 (2015) 52–74
Bierwirth, C., Meisel, F., 2015. A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. http://
dx.doi.org/10.1016/j.ejor.2014.12.030.

Carlo, H.J., Vis, I.F.A., Roodbergen, K.J., 2013. Seaside operations in container terminals: literature overview, trends, and research directions. Flex. Serv.
Manuf. J. http://dx.doi.org/10.1007/s10696-013-9178-3.

Choo, S., Klabjan, D., Simchi-Levi, D., 2010. Multiship crane sequencing with yard congestion constraints. Transp. Sci. 44 (1), 98–115.
Crainic, T.G., Kim, K.H., 2005. Intermodal transportation. In: Barnhart, C., Laporte, G. (Eds.), Transportation Handbooks in Operations Research and

Management Science. North-Holland, Amsterdam, Netherlands.
Daganzo, C.F., 1989. Crane productivity and ship delay in ports. Transp. Res. Rec. 1251, 1–9.
Drewry Container Insight, 2014. <http://ciw.drewry.co.uk/release-week/2014-40>.
Goodchild, A.V., 2005. Crane Double Cycling in Container Ports: Algorithms, Evaluation, and Planning. Ph.D. thesis, Department of Civil and Environmental

Engineering, University of California at Berkeley.
Goodchild, A.V., Daganzo, C.F., 2006. Double-cycling strategies for container ships and their effect on ship loading and unloading operations. Transp. Sci. 40

(4), 473–483.
Goodchild, A.V., Daganzo, C.F., 2007. Crane double cycling in container ports: planning methods and evaluation. Transp. Res. Part B: Methodol. 41 (8), 875–

891.
Goodchild, A.V., McCall, J.G., Zumerchik, J., Lanigan Sr., J., 2011. Reducing train turn times with doubly cycling in new terminal designs. Transp. Res. Rec.: J.

Transp. Res. Board 2238, 8–14.
Kim, K.H., Park, Y.-M., 2004. A crane scheduling method for port container terminals. Eur. J. Oper. Res. 156 (3), 752–768.
Lee, C-Y., Liu, M., Chu, C.B., 2014. Optimal algorithm for general quay crane double-cycling problem. Transp. Sci. http://dx.doi.org/10.1287/trsc.2014.0563.
Lim, A., Rodrigues, B., Xu, Z., 2007. A m-parallel crane scheduling problem with a non-crossing constraint. Naval Res. Logist. 54 (2), 115–127.
Liu, M., Zheng, F.F., Li, J.F., 2014. Scheduling small number of quay cranes with non-interference constraint. Optim. Lett. http://dx.doi.org/10.1007/s11590-

014-0756-4.
Meisel, F., Wichmann, M., 2010. Container sequencing for quay cranes with internal-reshuffles. OR Spectrum 32 (3), 569–591.
Meng, Q., Wang, S.A., 2011. Liner shipping service network design with empty container repositioning. Transp. Res. Part E: Logist. Transp. Rev. 47 (5), 695–

708.
Meng, Q., Wang, S.A., Andersson, H., Thun, K., 2014. Containership routing and scheduling in liner shipping: overview and future research directions. Transp.

Sci. 48 (2), 265–280.
Pinedo, M., 2012. Scheduling: Theory, Algorithms, and Systems, fourth ed. Springer.
Port Technology International, 2015. Friday Focus: Maersk Triple-E Infographic. <http://www.porttechnology.org>.
Stahlbock, R., Voß, S., 2008. Operations research at container terminals: a literature update. OR Spectrum 30 (1), 1–52.
Wang, S.A., 2014. A novel hybrid-link-based container routing model. Transp. Res. Part E: Logist. Transp. Rev. 61, 165–175.
Wang, S.A., Liu, Z., Bell, M.G.H., 2015. Profit-based maritime container assignment models for liner shipping networks. Transp. Res. Part B 72, 59–76.
Wang, S.A., Meng, Q., 2012. Sailing speed optimization for container ships in a liner shipping network. Transp. Res. Part E 48 (3), 701–714.
Wang, S.A., Meng, Q., Liu, Z., 2013. Bunker consumption optimization methods in shipping: a critical review and extensions. Transp. Res. Part E 53, 49–62.
Wang, H., Wang, S.A., Meng, Q., 2014. Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks.

Transp. Res. Part E: Logist. Transp. Rev. 70, 261–273.
Zhang, H.P., Kim, K.H., 2009. Maximizing the number of dual-cycle operations of quay cranes in container terminals. Comput. Ind. Eng. 56 (3), 979–992.

http://dx.doi.org/10.1016/j.ejor.2014.12.030
http://dx.doi.org/10.1016/j.ejor.2014.12.030
http://dx.doi.org/10.1007/s10696-013-9178-3
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0040
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0045
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0045
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0050
http://ciw.drewry.co.uk/release-week/2014-40
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0065
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0065
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0070
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0070
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0075
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0075
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0080
http://dx.doi.org/10.1287/trsc.2014.0563
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0090
http://dx.doi.org/10.1007/s11590-014-0756-4
http://dx.doi.org/10.1007/s11590-014-0756-4
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0100
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0105
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0105
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0110
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0110
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0115
http://www.porttechnology.org
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0125
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0130
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0135
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0140
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0145
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0150
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0150
http://refhub.elsevier.com/S1366-5545(15)00131-3/h0155

	A polynomial-time heuristic for the quay crane double-cycling problem with internal-reshuffling operations
	1 Introduction
	2 Literature review
	3 Problem description
	3.1 Assumptions
	3.2 Notation

	4 New mathematical formulation
	4.1 Problem transformation
	4.2 Integer programming formulation

	5 Solution approach to large-scale problems
	5.1 A fast algorithm
	5.2 Comparison via example problem

	6 Computational experiments
	6.1 Instance generation
	6.1.1 Bay sizes
	6.1.2 Workload scenarios

	6.2 Computational results

	7 Conclusion
	Acknowledgement
	Appendix A
	Appendix B
	B.1 The non-reshuffle QCDCP-IR
	B.2 Two machine flow shop

	References

