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We present a manpower allocation and vehicle routing problem (MAVRP), which is a real-
life healthcare problem derived from the non-emergency ambulance transfer service in
Hong Kong public hospitals. Both manpower and vehicles are critical resources for the hos-
pitals in their daily operations. The service provider needs to make an effective schedule to
dispatch drivers, assistants and ambulances to transport patients scattered in different
locations. We formulate the MAVRP into a mathematical programming model and propose
several variable neighborhood search (VNS) algorithms to solve it. We tested the VNS with
steepest descent, first descent and a mixed of two descent strategies on the MAVRP
instances. The computational results demonstrate the effectiveness and efficiency of the
VNS algorithms. Moreover, we also conducted additional experiments to analyze the
impact of the number of vehicles on the solutions of the MAVRP instances.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

This research studies a manpower allocation and vehicle routing problem (MAVRP), which is originated from the hospital
environments. Manpower and vehicles are critical resources for the hospitals in maintaining their daily operations, espe-
cially in transporting patients everywhere. It is of great importance to well organize these resources so as to increase the
effectiveness and reduce the operational costs of the hospitals.

As a typical example, a public hospital in Hong Kong provides the non-emergency ambulance transportation service. The
service provider arranges drivers, assistants and ambulances to pick up elderly or disabled patients from home to clinics. The
patients make requests at different places for the ambulance transportation. The patients could have different types of dis-
abilities. Some patients who cannot complete the treatment process independently may be accompanied by their family
members, so one or more seats will be reserved for one request. Moreover, some injured patients who cannot move without
wheelchairs or stretchers may require special assistance. The ambulance vehicle provides adaptive seats that can be con-
verted to beds and wheel chairs (see Fig. 1). In this case, besides drivers, additional assistants have to be staffed on the ambu-
lance to handle wheelchairs or carry stretchers.
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Fig. 1. Adaptive seats in an ambulance.
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To fulfill the patients’ requests, the planner of the service provider needs to consider the following two issues simultane-
ously: (1) deploying a number of staff members on each ambulance; (2) designing a route for each ambulance to transport
patients. The goal of the plan is to optimize the financial expenditure, which roughly consists of three parts: (1) the penalty
costs of the unfulfilled requests (such requests are outsourced to external communities with additional costs); (2) the costs
of deploying manpower on ambulances; and (3) the total travelling costs of each ambulance.

Fig. 2 illustrates an example of the MAVRP, where two ambulances are situated at the hospital and 8 requests are scat-
tered in different locations. The ambulance has a limited capacity C of seats, e.g., C ¼ 12. Patient request 1 reserves for 2 seats
and requires 2 staff members. Other patient requests can be found in this figure. If the first ambulance serves patients 1, 2, 3
and 4, at least 3 staff members must be deployed, which is the maximum number of staff demands among 4 patient requests.
Therefore, patients occupy 8 seats, staff members occupy 3 seats and 11 seats are occupied in total. Note that patient request
8 is unfulfilled and has to be outsourced.

The MAVRP extends the traditional vehicle routing problems (VRPs) by incorporating with the allocation of manpower for
each vehicle. The vehicle load is constituted by both staff members and so-called customers (patients with their family mem-
bers). The contributions of this paper are threefold. First, we introduce a new and practical planning and routing problem
that simultaneously optimizes the resources of both manpower and vehicles. Second, we formulate the problem as an inte-
ger programming model and propose effective heuristic algorithms for solving the problem. Third, we modify the datasets
from traditional capacitated VRP (CVRP) data sets to generate the MAVRP instances. The comprehensive experimental results
can serve as a baseline for future research on this work or other related problems.

The remainder of this paper is organized as follows. In Section 2, we briefly describe the relevant literature on the MAVRP.
We then provide a formal definition of the MAVRP in Section 3. In Section 4, we introduce variable neighborhood search
(VNS) algorithms for solving this problem. To evaluate our approaches, Section 5 reports results of the experiments that
Fig. 2. An example of the manpower allocation and vehicle routing problem.
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we conducted based on the classical CVRP instances and the MAVRP instances. Section 6 gives some closing remarks and
some suggestions to extend this work.

2. Literature review

Vehicle routing problems (VRPs) (Laporte, 1992) are important topics in the area of transportation services. We refer the
reader to Laporte (2009), Toth and Vigo (2014), Lin et al. (2014), Lai et al. (2016), Xiao and Konak (2016) and Dayarian et al.
(2016) for a comprehensive overview on the VRPs. Manpower allocation problem is a kind of manpower scheduling prob-
lems, which are well-studied research topics. Generally speaking, manpower allocation problems (MAPs) deal with the
assignment of manpower to duties subject to a series of constraints. Various methods and applications have been presented
in the relevant literature. For more details, we refer the reader to De Bruecker et al. (2015), Ernst et al. (2004), Brucker et al.
(2011) and Van den Bergh et al. (2013).

The MAVRP combines the characteristics of both VRPs and MAPs. It takes into consideration the assignment of manpower
to vehicles and the design of vehicle routes. In literature, there are several studies relevant to the MAVRP. Lim et al. (2004)
investigated a real-life port manpower allocation problem and gave a manpower allocation model. They proposed a tabu-
embedded simulated annealing algorithm and developed a squeaky wheel optimization method for solving the problem.
Li et al. (2005) studied an extension of the research of Lim et al. (2004) that considers an additional job-teaming constraint,
i.e., each job requires different types of workers and must be carried out in a predetermined time window. The authors pro-
posed construction heuristics to solve the problem. Günlük et al. (2006) introduced a decision support system for a sedan
service provider that assists to schedule driver shifts and route the fleet to satisfy the customer demands. The authors for-
mulated the problem into an integer programming model and then used column generation to solve it. Eveborn et al. (2006)
considered a staff scheduling problem originating from Swedish healthcare systems. They formulated the problem into a set
partitioning model and devised a repeated matching algorithm to solve it. Gutiérrez et al. (2009) focused on the combined
routing and staff scheduling problem in healthcare logistics, in which the staff was scheduled and sequenced to visit
patients. Then the authors formulated the problem into a mixed integer linear programming model and proved its high com-
plexity. Kim et al. (2010) solved a combined problem of vehicle routing and manpower scheduling to carry out multi-staged
tasks, in which each customer demands several tasks and these tasks are completed by a lot of teams. The authors built a
mixed integer programming model for the problem and used a particle swarm optimization-based heuristic algorithm to
solve the problem. Lim et al. (2017) studied a multi-trip pickup and delivery problem with time windows and manpower
scheduling. The authors developed an iterated local search metaheuristic to solve the problem, which applies a variable
neighborhood descent method in the local search stage. Finally, the experimental results demonstrated the performance
of their proposed algorithm.

In this paper, we propose VNS algorithms (Hansen and Mladenović, 2014; Hansen and Mladenović, 2001) for solving the
MAVRP. The effectiveness of the VNS algorithms has been proven in solving VRPs and other related topics (Hertz and Mittaz,
2001; Bräysy, 2003; Escobar et al., 2014; Yang et al., 2015). The results produced by our VNS algorithms can serve as a base-
line of meta-heuristics for the MAVRP.

3. Problem description

The MAVRP is defined on a complete graph G ¼ ðN; EÞ, where N ¼ f0;1; . . . ;ng is the set of nodes and E ¼ fði; jÞji; j 2 Ng is
the set of edges. Node 0 is the depot at which the ambulances are available. Node i 2 N n f0g corresponds to a patient request.
Each edge ði; jÞ is associated with a non-negative cost ci;j that indicates the travelling cost between nodes i and j. The seat
reservation and staff demand for node i are denoted by ri and di, respectively. Let V ¼ f1; . . . ;mg be the set of vehicles or
ambulances. Assume that all vehicles are homogeneous with the same capacity C. If the request at node i is unfulfilled,
the outsourcing cost is pi. The cost of deploying a staff member on vehicle is supposed to be identical, denoted by q.

Let M denote a sufficiently large positive number (e.g., we can set M P maxdi). The MAVRP can be formulated into the
following arc-flow model:

Decision variables:

xki;j: equals to 1 if edge ði; jÞ is in the route of vehicle k, and 0 otherwise;

yk: the number of staff members equipped on vehicle k;
zki : equals to 1 if node i is served by vehicle k, and 0 otherwise;
uk
i : additional variable representing the load of vehicle k after visiting patient i.

Model:
min
X
i2N

pi 1�
X
k2V

zki

 !
þ q
X
k2V

yk þ
X
k2V

X
i2N

X
j2N

ci;jxki;j ð1Þ
subject to
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X
i2N;i–j

xki;j ¼ zkj ;8k 2 V ; j 2 N n f0g ð2Þ
X

j2N;i–j

xki;j ¼ zki ;8k 2 V ; i 2 N n f0g ð3Þ
X

j2N;j–0

xk0j ¼ zk0;8k 2 V ð4Þ
X

i2N;i–0

rizki þ yk 6 Czk0;8k 2 V ð5Þ

yk þMð1� zki ÞP di;8i 2 N n f0g; k 2 V ð6ÞX
k2V

zki 6 1;8i 2 N n f0g ð7Þ

uk
i � uk

j þ Cxki;j 6 C � rj;8i; j 2 N n f0g; i– j; k 2 V ; ri þ rj 6 C ð8Þ
ri 6 uk

i 6 C;8i 2 N n f0g; k 2 V ð9Þ
xki;j; z

k
i 2 f0;1g;8i; j 2 N; i – j; k 2 V ð10Þ

yk 2 Zþ;8k 2 V ð11Þ

In the above model, the objective (1) is to minimize the summation of outsourcing costs, manpower costs and total trav-

eling costs. Constraints (2)–(4) are flow conservation constraints. Constraints (2) state that for each node j (not the depot), if
it is visited, then only one vehicle, coming from some node i– j, visits it. Constraints (3) mean that for each node i (not the
depot), if it is visited, then only one vehicle outgoing from it, visits the next node j– i. Constraints (4) ensure that if vehicle k
is employed, it must visit a node (not the depot). Constraints (5) guarantee that the capacity of each vehicle should not be
exceeded, where the load of a vehicle comprises staff occupations and patient reservations. Constraints (6) require that the
staff on vehicle k must satisfy the staff demands of the served patients. Constraints (7) assure that each node i – 0 is served
at most once. Constraints (8) and (9) are subtour elimination constraints, which were originally proposed for the travelling
salesman problem by Miller et al. (1960) and later extended for the VRPs.

The MAVRP is an NP-hard problem, since there exists a polynomial time reduction from theMAVRP to the classical VRP by
setting pi ¼ 0; ri ¼ di ¼ 1 for i 2 N n f0g and q ¼ 0. The above mixed integer linear programming model of the MAVRP is very
difficult to be solved using general commercial solvers, e.g., Ilog Cplex. Preliminary experiments showed that Cplex can only
solve the MAVRP instance with n 6 20 in a reasonable computation time. This motivates us to develop efficient meta-
heuristics to obtain high quality solutions of the MAVRP.
4. Solution approaches

We devise variable neighborhood search (VNS) approaches for solving the MAVRP. The VNS was first introduced by
Mladenović and Hansen (1997) for complex combinatorial optimization problems. The main idea of VNS is to repeatedly
apply local search methods to obtain the local optimum and then perform perturbation to escape from it. The reasons that
we apply VNS in solving the MAVRP are as follows. First, VNS and its extensions have been proven their effectiveness in solv-
ing VRPs as mentioned in the literature. Second, we devised five groups of neighborhood structures for the MAVRP. It is very
natural to adopt VNS approach to well organize all these neighborhood structures. Third, the MAVRP is a new problem and
we would like to use relatively standard metaheuristic framework to obtain the results. Unlike many other metaheuristics,
the basic scheme of VNS is quite straightforward and requires few user-defined parameters. In the following context, we first
present the basic components of our VNS algorithms. Then, we discuss a basic VNS framework and extend it to a mixed VNS
framework.

4.1. Solution representation and evaluation

A solution to the MAVRP consists of m vehicle routes, each of which starts from the depot, visits a sequence of patients
and finally ends at the depot. The vehicle associated with the corresponding route must be assigned enough staff members to
satisfy the patient requests, and its load can not exceed its capacity.

We take Fig. 2 as an example, where the vehicle capacity is assumed to be C ¼ 12. There are two vehicle routes in this
solution. The first route is ð0;1;2;3;4;0Þ. The reservations of patient requests 1 – 4 are 2, 1, 3 and 2, respectively. The cor-
responding staff demands are 2, 1, 3 and 1, respectively. Thus, the first route requires maxf2;1;3;1g ¼ 3 staff members and
the total occupation is 2þ 1þ 3þ 2þmaxf2;1;3;1g ¼ 11. Similarly, the total occupation of the second route ð0;5;6;7; 0Þ is
3þ 1þ 3þmaxf2;1;2g ¼ 9. Those outsourced patient requests (i.e., patient request 8 in the example) are collected into an
outsourcing route, which has an infinite capacity. In sum, we can use a set of routes fð0;1;2;3;4Þ; ð0;5;6;7; 0Þ; ð8Þg to repre-
sent the solution in Fig. 2, where the last route is an outsourcing route.
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To evaluate a solution, we respectively calculate the cost of each route. For a vehicle route R ¼ ð0; x1; x2; . . . ; xk;0Þ, the
number of patient occupations, denoted by POðRÞ, is

Pk
i¼1rxi . The number of staff members, denoted by NSðRÞ, is

maxfdx1 ; dx2 ; . . . ; dxkg. Thus, the vehicle load is VLðRÞ ¼ POðRÞ þ NSðRÞ. The manpower cost MCðRÞ is equal to NSðRÞ � q. The
incurred travelling cost is TCðRÞ ¼ c0;x1 þ

Pk�1
i¼1 cxi ;xiþ1 þ cxk ;0. If the route is an outsourcing route, the penalty cost of the out-

sourcing patient requests is PCðRÞ ¼Pk
i¼1pxi

.

4.2. Initial solution generation

We modify a well-known saving algorithm proposed by Clarke and Wright (1964) to generate an initial solution of the
MAVRP. This saving algorithm works as follows. First, a simple route ð0; i;0Þ is constructed for each patient request i. Second,
for each pair of routes ð0; . . . ; i;0Þ and ð0; j; . . . ;0Þ, if they can be feasibly merged into a single route ð0; . . . ; i; j; . . . ; 0Þ, then
calculate the cost saving ci;0 þ c0;j � ci;j. Note that the feasibility of merging only depends on whether the vehicle capacity
limitation is violated or not. Third, merge the pair of routes with the largest saving into a single route. The algorithm repeats
the second and the third steps until no further pair of routes can be feasibly merged.

The initial solution constructed by the saving algorithm may use excessive vehicles. We invoke a greedy post-processing
phase to form aMAVRP solution. Suppose that the saving algorithm generates ~m vehicle routes ( ~m > m). For each route R, if it
is recognized as an outsourcing route, the penalty cost is PCðRÞ. If it is not, the incurred cost is MCðRÞ þ TCðRÞ. We calculate
the difference between them: DðRÞ ¼ MCðRÞ þ TCðRÞ � PCðRÞ, and then sort all the DðRÞ in the ascending order. The first m
routes are chosen as vehicle routes and the remaining ~m�m routes are concatenated into a single outsourcing route.
4.3. Local search

The local search is one of the most important factors in designing an effective and efficient meta-heuristic. In our VNS
approaches, the local neighbors of a solution are defined by seven neighborhood operators in five groups. For ease of expo-
sition, if the operator is applied to a single route R1, we denote by R1 ¼ ð0; x1; . . . ; xk;0Þ, where the node xi corresponds to a
patient request and the route consists of k nodes. If the operator is applied to two different routes R1 and R2, then
R1 ¼ ð0; x1; . . . ; xk;0Þ and R2 ¼ ð0; y1; . . . ; yl;0Þ. Note that the route that is not specified can be either a vehicle route or an out-
sourcing route.

(1) Exchange. The Exchange operator can be either internal-exchange (N1) or external-exchange (N2). The internal-exchange
operator is applied to only one route. The procedure is as follows: select a route R1, choose two nodes xi and xj on route
R1 and change the positions of these two nodes to generate a new route R01. The external-exchange operator affects two
routes. First, pick out two routes R1 and R2. Second, select one node xi on route R1 and one node yj on route R2. Finally,
change the positions of nodes xi and yj, thereby generating two new routes. The external-exchange operator should
guarantee that the vehicle loads of two new routes do not exceed the vehicle capacity.

(2) Reverse. The Reverse (N3) operator is applied to one route. First, a route R1 is selected. Next, choose two nodes xi and xj
with i < j. Finally, reverse all nodes between nodes xi and xj to generate a new route R01.

(3) Insertion. The Insertion operator tries to move a node to the next position of another node. If the two nodes are on the
same route, we refer to this situation as the Internal-insertion (N4). Otherwise, it is referred to as the External-insertion
(N5). For the External-insertion, node xi is inserted into the vehicle route R2. We need to check the vehicle load of the
new route R02 and ensure that it does not exceed the vehicle capacity.

(4) 2-opt. The basic idea of the 2-opt (N6) operator is to exchange edges in two routes. Two nodes xi and yj on two different
routes are first selected. Next, two edges ðxi; xiþ1Þ and ðyj; yjþ1Þ are replaced by edges ðxi; yjþ1Þ and ðyj; xiþ1Þ, respectively.
The loads of the resultant routes must not exceed the vehicle capacity.

(5) Reassignment. The above operators can be regarded as the traditional VRP operators (Bräysy and Gendreau, 2005). The
Reassignment (N7) operator is designed based on the characteristics of the MAVRP. It consists of two phases. The first
phase is called conditional selection, where the condition depends on similar patient requests. For the MAVRP, each
node i is associated with a patient seat reservation ri and a staff demand di. The ranges of the values ri and di are rel-
atively small in practice (ri; di 2 f1;2;3g in our real cases). The operator first determines a combination ðr; dÞ, and then
finds all the nodes having the same combination. Subsequently, some of these nodes are selected according to a prob-
ability q, namely, each node has q percent chances of being selected. The second phase is to reassign the selected
nodes. Specifically, all the selected node are removed from their routes and then reinserted into the routes at their
best positions. Note that all the selected nodes have the same ðr; dÞ combination. If a route has previously removed
k nodes, then exactly k nodes must be reinserted into the route.

Let us take Fig. 3 as an example. Assume that the condition is set to ðr; dÞ ¼ ð2;1Þ. We find that the nodes fx1; x2; x3g have
ðr; dÞ ¼ ð2;1Þ and they are selected. Next, remove these nodes from their routes. Finally, reinsert these nodes into the routes
at their best positions.
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4.4. Shaking process

The shaking (or perturbation) process is also essential in designing an effective VNS algorithm. It helps to escape the local
optimum and thus the search has more chances to reach the global optimum. Our shaking process makes use of large neigh-
borhood search process (Shaw, 1998). It consists of a removal phase and an insertion phase. The removal phase extracts a
percentage of nodes from their corresponding routes and puts them into a public pool. The percentage is controlled by a pre-
scribed parameter d, then q ¼ dN nodes are to be removed. Following the discussions by (Ropke and Pisinger, 2006;
Hemmelmayr et al., 2012; Mancini, 2016), we study the following three types of removal strategies.

(1) Random removal. It simply selects q nodes in the solution in a purely random manner.
(2) Worst removal. It selects q nodes with the highest removal gain. The removal gain is defined by the difference between

the cost when node exists in the solution and the cost when the node is removed.
(3) Related removal. The related removal first randomly removes a node called the seed node, and then removes q� 1

nodes which are most related to the seed node. The relatedness of two nodes i and j is denoted as Rði; jÞ and is given by
Rði; jÞ ¼ w1

ci;j � min
i;j2N;i–j

ci;j

max
i;j2N;i–j

ci;j � min
i;j2N;i–j

ci;j
þw2

jri � rjj
max
i2N

ri �min
i2N

ri
þw3

jdi � djj
max
i2N

di �min
i2N

di
ð12Þ
This equation is modified from a Ropke and Pisinger (2006). The first term in the RHS considers the normalized distance
between two nodes, while the second term and third term measure the similarity based on the normalized differences
between seat reservation and staff demand, respectively. w1;w2 and w3 are the weights and we simply set them to the same
value. A smaller Rði; jÞ indicates that two patient requests are more related to each other.

For the insertion phase, all the removed nodes in the public pool together with the nodes of unfulfilled requests are rein-
serted into the vehicle routes at their best positions. The insertion should guarantee the feasibility of the routes, which
implies that a node that is unable to be inserted into vehicle routes must be put into the outsourcing route.

4.5. Implementation

The order in which we arranged the local search operators basically follows the running time complexity. The operators
are ranked in the increasing order of their complexities so that it is more likely to obtain a promising neighbor in the early
stage. We further detail some implementation issues of these operators. The first six operators (N1–N6) are applied to either
a single route R1 or two routes R1;R2. The neighborhood size is O(n2) for each of them. We summarize the traveling cost and
the vehicle load after applying each of them in Table 1. Remind that we have defined TCðRÞ;VLðRÞ; POðRÞ and NSðRÞ to rep-
resent the travelling cost, vehicle load, patient occupation and the number of staff members on route R, respectively.

In this table, the column ‘‘Route” indicates the resultant route of the corresponding operator. We can see from this table
that the operators N1, N3 and N4 affect the traveling cost of route R1 but do not change its vehicle load. The time complexity
of each of these operators is O(1).

For the operators N2 and N5, the traveling costs of route R01 and R02 can be obtained in O(1) time. However, the vehicle load
is related to the number of staff members and thus cannot be directly calculated in a constant time. To accelerate the cal-

culation, before applying these operators, we pre-process POð�Þ and NSð�Þ for every partial routes as follows. Denote by R
!

i the

forward partial route of R ¼ ð0; x1; . . . ; xk;0Þ obtained by visiting the first i nodes of R, i.e., R
!
i ¼ ð0; x1; . . . ; xiÞ, and denote by

R
 
i ¼ ðxi; . . . ; xk; 0Þ the backward partial route of R obtained by visiting the last k� iþ 1 nodes of R. Then, route R contains

k forward partial routes and k backward partial routes. Once POð�Þ and NSð�Þ are pre-computed for every forward and back-
ward partial routes in the solution, the operators N2 and N5 only take O(1) time. Similarly, for the operator N6, the traveling
costs and vehicle loads of the resultant routes R01 and R02 can also be obtained in O(1) using the pre-computing process.

For the Reassignment (N7) operator, a condition ðr; dÞ is first made. Suppose that there are k nodes satisfying this combi-
nation. Then the time complexity is OðqknÞ. This is because there are on average qk nodes selected, and the reassignment of



Table 1
The travelling cost and the vehicle load after applying each neighborhood operator

Operator Route Traveling Cost & Vehicle Load

(N1) R01ð0; x1; . . . ; xi�1; xj; . . . ; xi; xjþ1 . . . ; xk;0Þ TCðR01Þ ¼ TCðR1Þ � cxi�1 ;xi � cxj ;xjþ1 þ cxi�1 ;xj þ cxi ;xjþ1
Internal-exchange(xi; xj) VLðR01Þ ¼ VLðR1Þ

(N3) R01ð0; x1; . . . ; xi�1; xj; xj�1; . . . ; xi; xjþ1; . . . ; xk;0Þ TCðR01Þ ¼ TCðR1Þ � cxi�1 ;xi � cxj ;xjþ1 þ cxi�1 ;xj þ cxi ;xjþ1
Reverse(xi; xj) VLðR01Þ ¼ VLðR1Þ

(N4) R01ð0; x1; . . . ; xi; xj; xiþ1; . . . ; xj�1; xjþ1; . . . ; xk;0Þ TCðR01Þ ¼ TCðR1Þ � cxi ;xiþ1 � cxj�1 ;xj � cxj ;xjþ1 þ cxi ;xj þ cxj ;xiþ1 þ cxj�1 ;xjþ1
Internal-insertion(xi; xj) VLðR01Þ ¼ VLðR1Þ

R01ð0; x1; . . . ; xi�1; yj; xiþ1; . . . ; xk;0Þ TCðR01Þ ¼ TCðR1Þ � cxi�1 ;xi � cxi ;xiþ1 þ cxi�1 ;yj þ cyj ;xiþ1
(N2) VLðR01Þ ¼ POðR1

!
i�1Þ þ ryj þ POðR1

 
iþ1Þ þmaxfNSðR1

!
i�1Þ;dyj ;NSðR1

 
iþ1Þg

External-exchange(xi; yj) R02ð0; y1; . . . ; yj�1; xi; yjþ1; . . . ; yl;0Þ TCðR02Þ ¼ TCðR2Þ � cyj�1 ;yj � cyj ;yjþ1 þ cyj�1 ;xi þ cxi ;yjþ1
VLðR02Þ ¼ POðR2

!
j�1Þ þ rxi þ POðR2

 
jþ1Þ þmaxfNSðR2

!
j�1Þ; dxi ;NSðR2

 
jþ1Þg

R01ð0; x1; . . . ; xi; yj ; xiþ1; . . . ; xk;0Þ TCðR01Þ ¼ TCðR1Þ � cxi ;xiþ1 þ cxi ;yj þ cyj ;xiþ1
(N5) VLðR01Þ ¼ POðR1

!
iÞ þ oyj þ POðR1

 
iþ1Þ þmaxfNSðR1

!
iÞ; dyj ;NSðR1

 
iþ1Þg

External-insertion(xi; yj) R02ð0; y1; . . . ; yj�1; yjþ1; . . . ; yl;0Þ TCðR02Þ ¼ TCðR2Þ � cyj�1 ;yj � cyj ;yjþ1 þ cyj�1 ;yjþ1
VLðR02Þ ¼ POðR2

!
j�1Þ þ POðR2

 
jþ1Þ þmaxfNSðR2

!
j�1Þ;NSðR2

 
jþ1Þg

R01ð0; . . . ; xi�1; xi; yjþ1; yjþ2; . . . ; yl;0Þ TCðR01Þ ¼ TCðR1

!
iÞ þ cxi ;yjþ1 þ TCðR2

 
jþ1Þ

(N6) VLðR01Þ ¼ POðR1

!
iÞ þ POðR2

 
jþ1Þ þmaxfNSðR1

!
iÞ;NSðR2

 
jþ1Þg

2-opt(xi; yj) R02ð0; . . . ; yj�1; yj; xiþ1; xiþ2; . . . ; xk;0Þ TCðR02Þ ¼ TCðR2

!
jÞ þ cyj ;xiþ1 þ TCðR1

 
iþ1Þ

VLðR02Þ ¼ POðR2

!
jÞ þ POðR1

 
iþ1Þ þmaxfNSðR2

!
jÞ;NSðR1

 
iþ1Þg

Z. Zhang et al. / Transportation Research Part E 106 (2017) 45–59 51
one node needs to examine at most n positions. Note that we do not need to consider the capacity constraints for this oper-
ator, since all the nodes have the same ðr; dÞ pair and the final vehicle load will not change.

The above discussions show that implementing all the local search operators is quite efficient. We next turn to discuss the
implementation of the shaking process. The process can be decomposed into two following elementary operations, namely,
removing a node from some position of route R and inserting a node into some position of route R. Either of the elementary
operations affects both TCðRÞ and VLðRÞ. For each elementary operation, TCðRÞ can be easily computed in a constant time by
its reduced or increased traveling cost. However, VLðRÞ is related to NSðRÞ, which can only be obtained in linear time by the
naive implementation. In order to accelerate the calculation of VLðRÞ, we introduce an efficient data structure called red–
black tree (Cormen et al., 2001). A red–black tree is a kind of self-balancing binary search tree. We use it to keep track of
dxi when a node xi is added into or removed from the red–black tree. Note that NSðRÞ equals the maximum d-value in the
tree, and finding the maximum value in the red–black tree requires Oðlog kÞ time, where k is the total number of nodes in
the tree. Therefore, if a solution consists of m routes with an average of k nodes in a route, then the time complexity is
Oðlog kÞ for a node removal and Oðm log kþ nÞ for a node insertion. To sum up, the time complexity of the shaking process
is Oðdnðm log kþ nÞÞ.
4.6. Variable neighborhood search

4.6.1. Basic VNS (BVNS)
The BVNS framework is given in Algorithm 1. It begins with an initialization phase and comprises an outer loop and an

inner loop. The outer loop iterates from 1 to tmax, where tmax is a parameter for termination. The inner loop involves all
the shaking neighborhood structures (Nk, for k ¼ 1;2; . . . ; kmax). At each inner iteration, a solution x0 is first generated by per-
turbing the incumbent solution x using the k-th neighbor NkðxÞ (this corresponds to the shaking process in line 6). Note that
different shaking neighbors control different removal probability d (see Section 4.4). It is suggested by Lourenço et al. (2010)
that several routing problems require large perturbation strength. In our implementation, d increases in proportion to the
number k. When k reaches to kmax; d is equal to 1. In line 7, the local search procedure is applied to the solution x0, yielding
an improved solution x00. Lines 8–13 are known as the neighborhood change component. If x00 is better than the incumbent
solution x, then x is updated and the search goes back to explore the first neighborhood N1. Otherwise, the search continues
with the neighborhood Nkþ1. The final local optimal solution x is returned when the termination criterion is reached.

The local search procedure is one of the most important components in the VNS algorithm. In the BVNS, several descent
heuristics are applied in the local search. Steepest descent (or called best improvement) and first descent (or called first
improvement) heuristics are two commonly used methods. The steepest descent heuristic finds the local minimum with
respect to all the current neighborhood NðxÞ, so the neighborhood of x is completely explored. The first descent heuristic
returns the first neighbor solution as soon as a descent is encountered. Based on different descent strategies, we name
the BVNS with the steepest descent as BVNS-S, and name the BVNS with the first descent as BVNS-F.

To sum up, the BVNS consists of a shaking phase, a local search phase and a neighborhood change phase. For more details
of the BVNS, we refer the reader to Hansen and Mladenović (2001) and Hansen and Mladenović (2014).
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Algorithm 1. The basic variable neighborhood search algorithm: BVNS ðx; kmax; tmaxÞ.

1: Generate an initial solution x;
2: t  1;
3: while t 6 tmax do
4: k 1;
5: while k 6 kmax do
6: x0  Shakeðx; kÞ;
7: x00  Local Searchðx0Þ; // steepest descent or first descent heuristic is applied
8: if f ðx00Þ < f ðxÞ then
9: x x00;
10: k 1;
11: else
12: k kþ 1;
13: end if
14: end while
15: t  t þ 1;
16: end while
17: return x;
4.6.2. Mixed VNS (MVNS)
In the BVNS, different local search strategies may have different effects. By preliminary experiments, we find that the

BVNS with the steepest descent can attain better solutions, however, it is time-consuming in general. The BVNS with the first
descent needs less computation time, while the solution quality is relatively lower. Considering both the computation time
and the solution quality, we propose a mixed VNS algorithm for excellent solutions in short computational times.

Algorithm 2 presents the MVNS approach in which both steepest descent and first descent strategies are applied. We set a
parameter Itermax, the maximum number of iterations, in the local search procedure. In lines 9–18, a series of neighbors of x0

are explored and compared with the incumbent solution xlocal. If there exists an improvement neighbor and the current iter-
ation (iter) is greater than Itermax, the local search is broken out. Thus, if Itermax is set to a small value, less computation time is
needed and the solution quality may be poor. On the contrary, if Itermax is set to a large value, more computation time needs
to be consumed and a better solution is more likely to be obtained. Specially, when Itermax ¼ 0 and Itermax !1, the algorithm
is equivalent to BVNS-F and BVNS-S, respectively.

Algorithm 2. The mixed variable neighborhood search algorithm: MVNS ðx; kmax; tmax; ItermaxÞ.

1: Generate an initial solution x;
2: t  1;
3: while t 6 tmax do
4: k 1;
5: while k 6 kmax do
6: x0  Shakeðx; kÞ;
7: xlocal  x;
8: iter  1;
9: while iter 6 jNðx0Þj
10: Find a solution x00 2 Nðx0Þ;
11: if f ðx00Þ < f ðxlocalÞ then
12: xlocal  x00;
13: if iter > Itermax then
14: break;
15: end if
16: end if
17: iter  iter þ 1;
18: end while
19: if f ðxlocalÞ < f ðxÞ then
20: x xlocal;
21: k 1;
22: else
23: k kþ 1;
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24: end if
25: end while
26: t  t þ 1;
27: end while
28: return x;
5. Computational experiments

In this section, we present the experimental results of BVNS (including BVNS-S and BVNS-F) andMVNS algorithms on both
CVRP andMAVRP instances. Obviously, the CVRP is a special case of our MAVRP. TheMAVRP is a new problem and no existing
algorithm can be found in literate to compare with our algorithms. Therefore, we use the CVRP instances to evaluate the per-
formance of our algorithms. All experiments were conducted on a personal computer with an Intel i7-4790 4.00 GHz CPU,
8 GB RAM, and Windows 10 operating system. Each instance was executed 10 times with different random seeds.

5.1. Test instances

The test instances used in our experiments contain a class of CVRP instances and a class of MAVRP instances. The CVRP
instances can be found at http://neo.lcc.uma.es/vrp. We used 20 instances in Augerat part and 7 instances in Christofides and
Eilon parts. This is because the optimal solution is known for each of these 27 instances. In order to adapt our algorithms to
solve the CVRP instances, we set the seat reservation r to the customer demand of the corresponding CVRP instance and fix
the staff demand d to 0.

The MAVRP instances are generated by modifying the CVRP instances as follows. First, the locations of the hospital and
patients are given by the coordinates of the depot and customers in the CVRP instance, respectively. Second, each seat reser-
vation r is randomly selected from f1;2;3g. Third, the staff demand d is also randomly drawn from f1;2;3g. The rationale of
such setting is given in the following. If a patient can go to the hospital independently, only one driver is required. If a patient
uses the wheelchair, an additional assistant is assigned to manage the wheelchair. If a patient needs the stretcher, two assis-
tants must be deployed to carry the stretcher. Finally, the capacity of the vehicle is set to C ¼ 12. The unit manpower cost q is
set to 0 for simplicity. The penalty cost pi of each unfulfilled patient request i is set to a large number and is proportional to
the product of seat reservation and staff demand, e.g., pi ¼ M � ri � di, where M is a very large positive number. Here, we use
ri � di to represent the outsourcing intensity of patient request i. Such setting implies that the patient request with larger seat
reservation and staff demand is more likely to be carried out by in-house service than outsourcing service.

5.2. Parameter settings

Our VNS algorithms do not require many user-defined parameters. After some preliminary experiments, the maximum
iteration tmax was set to 1000 and the neighborhood size kmax was set to 30. Such number ensures that every single execution
can terminate within 10 min in our experiments.

In order to fix other parameters, we selected those instances with the sizes greater than 70 for parameter tuning. The
removal probability q used in the Reassignment operator (N7) was tuned first. We used the BVNS-F framework and the ran-
dom shaking strategy. The results are reported in Table 2. q ¼ 0 means that the operator N7 was excluded. The correspond-
ing solution was recorded and served as a baseline. When qwas set to 0.1, 0.2 and 0.3, the solution quality improvement was
0.40%, 0.52% and 0.41%, respectively. The running time was not affected significantly for different q, so we do not report it in
the table. Finally, we fixed q to 0.2.

The MVNS algorithm also requires a maximum number of iterations (Itermax) in the local search procedure. Itermax is
related to jNðx0Þj, which is the neighbor size of x0 in the local search. We introduce a parameter k here and let
Itermax ¼ jNðx0Þjk. We then set k to different values and observed the results shown in Table 3. When k ¼ 0 and k ¼ 1, the algo-
Table 2
Parameter tuning for q.

q ¼ 0 q ¼ 0:1 q ¼ 0:2 q ¼ 0:3

0% 0.40% 0.52% 0.41%

Table 3
Parameter tuning for k.

k ¼ 0 k ¼ 1=2 k ¼ 2=3 k ¼ 3=4 k ¼ 1

Quality impr. Time incr. Quality impr. Time incr. Quality impr. Time incr. Quality impr. Time incr. Quality impr. Time incr.

0% 0% 0.27% 30.50% 0.76% 40.90% 0.98% 67.60% 1.19% 440%

http://neo.lcc.uma.es/vrp
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rithm corresponds to BVNS-F and BVNS-S, respectively. Suppose that BVNS-F is the benchmark algorithm, the quality
improvements and time increments for different k values are presented in the table. We finally chose k ¼ 3=4 so that the
corresponding algorithm can achieve a nice balance between solution quality and running time.

5.3. Results of BVNS and MVNS on the CVRP instances

Table 4 shows the results of BVNS-F, BVNS-S and MVNS algorithms on the CVRP instances. Random removal, worst
removal and related removal strategies for the shaking process are also studied. Column ‘‘Instance” gives the name of each
instance. The first character of the instance name indicates the contributor. The middle term denotes the number of nodes
and the last term corresponds to the number of vehicles. Column ‘‘Opt.” shows the optimal solution found by the existing
approaches. Columns ‘‘Best” and ‘‘Avg.” present the best and the average solution values found by 10 executions with respect
to the corresponding approach. Column ‘‘Time” provides the average running time (in seconds).

From this table, we can see that all the five VNS algorithms can solve 27 CVRP instances to optimality. Under the random
removal strategy, BVNS-S produced slightly better average solution values than BVNS-F and three MVNS algorithms did.
However, the average running time of BVNS-S is more than three times greater than those of BVNS-F and MVNS algorithms.
MVNS with worst removal and related removal perform slightly better than MVNS with random removal. Overall speaking,
the performances of BVNS-F and three MVNS algorithms on these CVRP instances are comparable in terms of the solution
quality and the running time. Clearly, this table demonstrates the effectiveness of VNS algorithms in solving the CVRP
instances.

5.4. Results of BVNS and MVNS on the MAVRP instances

The MAVRP instances do not include the number of vehicles. In our experiments, we consider two scenarios. The first sce-
nario is that the number of vehicles is sufficient and thus no patient request is outsourced. This can be done by setting the
number of vehicles to a sufficiently large positive integer, e.g., dPi2Nðri þ diÞ=Ce. By executing our VNS algorithms, we can
obtain the actual number of vehicles used for each instance. After this number is decreased, it is very likely that some patient
requests has to be outsourced. Therefore, in the second scenario, we decrease the actual number of vehicles used by one to
observe the outsourcing situation of the MAVRP.

Table 5 presents the results of the MAVRP instances under the first scenario. In this table, 27 CVRP instances were mod-
ified to create the MAVRP instances, each with a prefix ‘‘MS-” in the corresponding instance name. The column ‘‘NV” shows
the actual number of vehicles used in the best found solution. Note that this number is different from the number of vehicles
given in the original CVRP instance. For each instance and each algorithm, the best found value is reported. It is further
marked in bold if it is the smallest one among five algorithms. From this table, we can discover that all these five algorithms
obtained the solutions with the same number of vehicles. On average, the MVNS with related removal algorithm produced
the most promising solutions compared with the other algorithms. The running times of MVNS algorithms are slightly
greater than BVNS-F and far less than BVNS-S.

For the second scenario, the objective is constituted by the outsourcing cost and the total traveling cost. By our settings,
the outsourcing cost is the primary objective determined by the outsourcing intensity of the unfulfilled patient requests,
while the traveling cost is the secondary objective. Table 6 shows the results. In the columns ‘‘Best” and ‘‘Avg.”, a number
pair instead of a single number in a row is reported, where the former number indicates the outsourcing intensity and
the latter number denotes the traveling cost. As can be seen from this table, BVNS-S outperforms BVNS-F and three MVNS
algorithms in terms of the average objective value. BVNS-F consumed the smallest running time. Three MVNS algorithms
executed slightly slower than BVNS-F but much faster than BVNS-S. The MVNS with related removal algorithm outperforms
the MVNS with random removal and worst removal algorithms. To sum up, we can conclude from Tables 5 and 6 that the
MVNS with related removal algorithm achieved a good balance between solution quality and the computation time.

We further conducted experiments on the instances ‘‘MS-A-n80-k10” and ‘‘MS-E-n101-k14” to analyze howdifferent num-
bers of vehicles affect the outsourcing behavior and the traveling cost. For the instance ‘‘MS-A-n80-k10”, 14 vehicles are ade-
quate for accomplishing all patient requests. We set the number of vehicles from 1 to 14 and executed our proposed MVNS
algorithm. The corresponding outsourcing intensity and traveling cost are recorded and plotted in Fig. 4(a). When the number
of vehicles is 14, the outsourcing intensity and the routing cost is 0 and 2492, respectively. This corresponds to theMVNS best
result shown in Table 5. Similarly, when the number of vehicles decreases to 13, the number pair of the outsourcing intensity
and the traveling cost is (9,2324).We can find the corresponding pair in Table 6.When the number of vehicles is 1, the result is
(200,152). Fig. 4(b) illustrates another case. Both figures demonstrate that the objective outsourcing intensity is in conflict
with the objective traveling cost. Reducing the in-house vehicles definitely increases the outsourcing intensity.

5.5. Results of Cplex on the MAVRP instances

We used the Ilog Cplex 12, a commercial MILP solver, to deal with the MAVRP instances. The time limit was set to 7200 s
for each instance. After some runs, we found that Cplex is hardly to solve any MAVRP instance to optimality. Therefore, we
decide to only report the results of the instances with n 6 35.



Table 4
The results of the BVNS-F, BVNS-S and different MVNS algorithms on the CVRP instances.

Instance Opt BVNS-F (Random removal) BVNS-S (Random removal) MVNS (Random removal) MVNS (Worst removal) MVNS (Related removal)

Best Avg. Time Best Avg. Time Best Avg. Time Best Avg. Time Best Avg. Time

A-n32-k5 784 784 784 6.7 784 784 16.1 784 784 8.4 784 784 10.9 784 784 11.3
A-n33-k5 661 661 661 6.3 661 661 15.7 661 661 8.1 661 661 9.9 661 661 11.3
A-n33-k6 742 742 742 6.4 742 742 15.4 742 742 7.9 742 742 8.9 742 742 10.9
A-n34-k5 778 778 778 6.4 778 778 16.2 778 778 8.3 778 778 9.8 778 778 11.3
A-n36-k5 799 799 799 9.4 799 799 25.3 799 799 11.7 799 799 14.2 799 799 15.6
A-n37-k5 669 669 669 9.3 669 669 22.9 669 669 11.1 669 669 15.2 669 669 15.2
A-n38-k5 730 730 730 9.8 730 730 27.0 730 730 11.8 730 730 15.1 730 730 16.1
A-n39-k5 822 822 822 11.6 822 822 29.9 822 822 13.7 822 822 18.0 822 822 17.7
A-n39-k6 831 831 831 11.7 831 831 31.4 831 831 14.1 831 831 17.8 831 831 19.4
A-n44-k6 937 937 937 15.8 937 937 45.6 937 937 19.3 937 937 24.0 937 937 23.9
A-n45-k7 1146 1146 1146 16.2 1146 1146 51.9 1146 1146 20.2 1146 1146 24.4 1146 1146 26.2
A-n46-k7 914 914 914 16.9 914 914 53.2 914 914 20.8 914 914 26.7 914 914 26.9
A-n48-k7 1073 1073 1073 19.9 1073 1073 63.4 1073 1073 25.0 1073 1073 33.0 1073 1073 33.4
A-n53-k7 1010 1010 1010 24.5 1010 1010 80.2 1010 1010 30.1 1010 1010 35.6 1010 1010 39.2
A-n54-k7 1167 1167 1167 30.3 1167 1167 94.4 1167 1167 35.4 1167 1167 44.7 1167 1167 45.7
A-n55-k9 1073 1073 1073 25.9 1073 1073 88.8 1073 1073 30.3 1073 1073 36.4 1073 1073 41.7
A-n61-k9 1034 1034 1034.8 32.8 1034 1034.7 124.9 1034 1034.9 39.1 1034 1034.7 46.4 1034 1034.8 54.0
A-n65-k9 1174 1174 1176.4 39.7 1174 1176.4 146.5 1174 1176.4 46.4 1174 1177 55.2 1174 1176.7 63.8
A-n69-k9 1159 1159 1159.8 52.3 1159 1161.4 195.2 1159 1160.6 61.4 1159 1160.2 77.3 1159 1159.8 83.1
A-n80-k10 1763 1763 1763.2 96.9 1763 1763 392.9 1763 1763 110.6 1763 1763.2 133.0 1763 1763 132.9
E-n22-k4 375 375 375 2.0 375 375 3.9 375 375 2.6 375 375 3.4 375 375 3.6
E-n23-k3 569 569 569 2.4 569 569 3.5 569 569 3.0 569 569 3.9 569 569 4.5
E-n30-k3 534 534 534 5.5 534 534 10.8 534 534 6.6 534 534 8.6 534 534 9.1
E-n33-k4 835 835 835 7.3 835 835 17.4 835 835 9.0 835 835 10.9 835 835 12.4
E-n51-k5 521 521 521 22.8 521 521 64.9 521 521 26.7 521 521 27.8 521 521 37.9
E-n76-k7 682 682 682 90.1 682 682 321.7 682 682 102.6 682 682 139.3 682 682 142.4

E-n101-k14 1067 1067 1076.1 129.1 1067 1074 589.0 1067 1075.4 145.8 1067 1074 184.3 1067 1074 198.0

Average 883.3 883.30 883.79 26.2 883.30 883.76 94.4 883.30 883.79 30.7 883.30 883.74 37.9 883.30 883.71 41.0
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Table 5
Computational results of the MAVRP instances under the first scenario.

Instance NV BVNS-F (Random removal) BVNS-S (Random removal) MVNS (Random removal) MVNS (Worst removal) MVNS (Related removal)

Best Avg. Time Best Avg. Time Best Avg. Time Best Avg. Time Best Avg. Time

MS-A-n32-k5 6 937 937 6.3 937 937 16.0 937 937 8.4 937 937 11.2 937 937 10.4
MS-A-n33-k5 7 825 825 6.5 825 825 17.0 825 825 8.6 825 825 9.9 825 825 11.0
MS-A-n33-k6 7 909 909 6.0 909 909 16.8 909 909 7.8 909 909 9.7 909 909 10.0
MS-A-n34-k5 7 954 954 6.7 954 954 19.3 954 954 9.6 954 954 10.2 954 954 11.8
MS-A-n36-k5 7 1026 1026 7.9 1026 1026 22.6 1026 1026 10.7 1026 1026 12.2 1026 1026 13.5
MS-A-n37-k5 6 820 820 8.5 820 820 23.3 820 820 10.7 820 820 13.0 820 820 13.2
MS-A-n38-k5 7 879 879 8.4 879 879 25.9 879 879 11.7 879 879 14.8 879 879 14.6
MS-A-n39-k5 7 1045 1045 10.1 1045 1045 30.8 1045 1045 12.5 1045 1045 15.7 1045 1045 15.7
MS-A-n39-k6 7 1039 1039.2 9.6 1039 1039 29.9 1039 1039 12.0 1039 1039 14.4 1039 1039 15.9
MS-A-n44-k6 8 1151 1151 13.8 1151 1151 47.2 1151 1151 18.2 1151 1151 21.7 1151 1151 21.9
MS-A-n45-k7 9 1527 1529 13.7 1527 1529 49.1 1527 1530.2 17.3 1531 1531 20.4 1527 1529.8 22.9
MS-A-n46-k7 9 1234 1236 14.0 1234 1234 51.1 1234 1234 18.8 1234 1234 22.0 1234 1234 24.5
MS-A-n48-k7 9 1444 1444 15.8 1444 1444 58.8 1444 1444 19.4 1444 1447.1 26.6 1444 1444 26.9
MS-A-n53-k7 10 1379 1381.8 20.9 1379 1380.5 78.8 1379 1380.7 26.0 1379 1380.7 34.9 1379 1381.9 33.6
MS-A-n54-k7 10 1473 1473 23.4 1473 1473 85.0 1473 1473 28.3 1473 1473 37.0 1473 1473 37.5
MS-A-n55-k9 12 1316 1316 19.8 1316 1316 76.0 1316 1316 25.5 1316 1316 29.4 1316 1316 35.8
MS-A-n61-k9 12 1243 1243 26.9 1243 1243 109.2 1243 1243 33.3 1243 1243 42.5 1243 1243 47.7
MS-A-n65-k9 13 1515 1515 31.3 1515 1515 131.7 1515 1515 39.8 1515 1515 47.3 1515 1515 55.4
MS-A-n69-k9 12 1502 1506.4 42.0 1502 1505.3 187.6 1502 1502.7 49.5 1503 1507.4 62.2 1502 1508.6 66.3
MS-A-n80-k10 14 2503 2520 67.7 2493 2523.6 335.8 2492 2513.2 75.9 2494 2515.9 91.5 2492 2504.6 99.6
MS-E-n22-k4 5 437 437 2.1 437 437 4.0 437 437 3.0 437 437 3.7 437 437 4.0
MS-E-n23-k3 4 712 712 2.7 712 712 5.1 712 712 3.5 712 712 4.0 712 712 4.4
MS-E-n30-k3 7 804 804 4.4 804 804 10.3 804 804 5.9 804 804 7.1 804 804 7.8
MS-E-n33-k4 7 1243 1243 6.3 1243 1243 16.5 1243 1243 8.2 1243 1243 9.3 1243 1243 10.7
MS-E-n51-k5 10 842 850.2 17.3 842 842.9 68.1 842 843.2 22.9 842 867.7 28.8 842 842.3 28.5
MS-E-n76-k7 14 1000 1002.4 48.1 1000 1002.3 213.6 1000 1002.6 60.1 1000 1002.4 72.3 1000 1001.9 75.5

MS-E-n101-k14 19 1427 1446.8 105.1 1420 1444.4 568.4 1420 1438.3 125.1 1428 1456.9 156.1 1420 1436.4 157.4

Average 9.1 1155.0 1157.21 20.2 1154.4 1156.81 85.1 1154.4 1156.2 24.9 1154.9 1158.2 30.2 1154.4 1156.0 32.5

The best solution values are marked in bold.
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Table 6
Computational results of the MAVRP instances under the second scenario.

Instance NV BVNS-F (Random removal) BVNS-S (Random removal) MVNS (Random removal) MVNS (Worst removal) MVNS (Related removal)

Best Avg. Time Best Avg. Time Best Avg. Time Best Avg. Time Best Avg. Time

MS-A-n32-k5 5 (6, 965) (6, 965) 6.6 (6, 965) (6, 965) 14.6 (6,965) (6,965) 7.8 (6,965) (6,965.2) 8.7 (6,965) (6,965) 9.3
MS-A-n33-k5 6 (1, 917) (1.8, 836.2) 7.7 (1, 917) (1, 917) 17.9 (1,917) (1,917) 9.5 (1,917) (1,917) 11.2 (1,917) (1,917) 12.0
MS-A-n33-k6 6 (10, 765) (10, 767.5) 6.0 (10, 765) (10, 765) 13.2 (10,765) (10,765) 7.7 (10,765) (10,765) 8.9 (10,765) (10,765) 9.8
MS-A-n34-k5 6 (4, 1004) (4, 1007.2) 6.8 (4, 1004) (4, 1004) 18.7 (4,1004) (4,1004.4) 9.8 (4,1004) (4,1006.5) 11.1 (4,1004) (4,1004.6) 12.4
MS-A-n36-k5 6 (4, 963) (4, 963) 8.4 (4, 963) (4, 963) 20.4 (4,963) (4,963) 10.7 (4,963) (4,963) 12.3 (4,963) (4,963) 14.4
MS-A-n37-k5 5 (9, 703) (9, 706.5) 8.8 (9, 703) (9, 703) 21.4 (9,703) (9,704.5) 10.7 (9,703) (9,704.7) 13.0 (9,703) (9,704.8) 12.3
MS-A-n38-k5 6 (6, 999) (6, 999) 8.6 (6, 999) (6, 999) 24.0 (6,999) (6,1000.4) 12.1 (6,999) (6,1007.2) 14.2 (6,999) (6,999) 15.1
MS-A-n39-k5 6 (10, 860) (10, 861.1) 9.9 (10, 860) (10, 861.4) 24.3 (10,860) (10,860.8) 11.7 (10,860) (10,862.8) 14.2 (10,860) (10,861.6) 13.3
MS-A-n39-k6 6 (9, 953) (9, 961.1) 10.1 (9, 953) (9, 953) 26.0 (9,953) (9,958.4) 12.2 (9,953) (9,957.7) 14.9 (9,953) (9,953) 14.9
MS-A-n44-k6 7 (5, 1123) (5, 1125.7) 14.5 (5, 1123) (5, 1123.4) 42.3 (5,1123) (5,1125.4) 18.0 (5,1125) (5,1130.2) 21.5 (5,1123) (5,1124.1) 22.4
MS-A-n45-k7 8 (10, 1354) (10, 1359.4) 13.9 (9, 1480) (9, 1482.7) 44.1 (9,1480) (9,1482.8) 18.2 (9,1483) (9,1488.6) 19.8 (9,1480) (9,1482.3) 22.0
MS-A-n46-k7 8 (9, 1126) (9, 1143.5) 13.8 (9, 1119) (9, 1126.2) 47.0 (9,1126) (9,1136.5) 19.8 (9,1119) (9,1129.2) 22.2 (9,1119) (9,1129.5) 24.1
MS-A-n48-k7 8 (10, 1271) (10, 1271) 16.8 (10, 1271) (10, 1271) 48.0 (10,1271) (10,1271) 20.4 (10,1271) (10,1271) 22.4 (10,1271) (10,1271) 24.6
MS-A-n53-k7 9 (7, 1382) (7.4,

1363.3)
21.2 (7, 1382) (7, 1386.3) 78.5 (7,1382) (7,1386.1) 28.8 (7,1413) (7,1428.2) 32.8 (7,1382) (7,1382) 34.2

MS-A-n54-k7 9 (2, 1484) (2, 1485.6) 24.4 (2, 1484) (2, 1485.6) 89.7 (2,1484) (2,1485.1) 33.0 (2,1487) (2,1492.9) 37.6 (2,1484) (2,1484.2) 41.4
MS-A-n55-k9 11 (5, 1330) (5, 1342.5) 22.1 (5, 1330) (5, 1334.7) 84.3 (5,1330) (5,1343.9) 29.9 (5,1330) (5,1345.6) 33.2 (5,1330) (5,1340.1) 40.6
MS-A-n61-k9 11 (5, 1320) (5.1,

1328.9)
27.7 (5, 1320) (5, 1326.5) 117.5 (5,1320) (5,1330.8) 38.5 (5,1320) (5,1336.8) 42.5 (5,1320) (5,1327.1) 52.2

MS-A-n65-k9 12 (3, 1596) (3.1,
1599.4)

33.3 (2, 1665) (2, 1665) 142.2 (2,1665) (2.6,1628.5) 47.2 (2,1665) (2.2,1652.2) 53.8 (2,1665) (2,1665) 64.4

MS-A-n69-k9 11 (10, 1336) (10, 1358.8) 43.5 (9, 1398) (9, 1408.1) 188.5 (9,1398) (9,1419.1) 57.2 (9,1411) (9,1442.6) 64.5 (9,1398) (9,1401) 69.3
MS-A-n80-

k10
13 (9, 2352) (10, 2286.8) 67.6 (9, 2333) (9, 2350.5) 334.4 (9,2324) (9,2351.1) 88.6 (9,2380) (9,2418) 95.0 (9,2324) (9,2335.3) 110.8

MS-E-n22-k4 4 (7, 346) (7, 346) 2.9 (7, 346) (7, 346) 3.5 (7,346) (7,346) 2.7 (7,346) (7,346) 3.3 (7,346) (7,346) 3.8
MS-E-n23-k3 3 (10, 446) (10, 446) 2.8 (10, 446) (10, 446) 3.6 (10,446) (10,446) 2.7 (10,446) (10,446) 3.1 (10,446) (10,446) 3.5
MS-E-n30-k3 6 (2, 798) (2, 798.4) 4.6 (2, 798) (2, 798) 12.5 (2,798) (2,798) 7.2 (2,798) (2,798) 8.6 (2,798) (2,798) 9.8
MS-E-n33-k4 6 (2, 1183) (2, 1183.4) 6.1 (2, 1183) (2, 1183) 17.4 (2,1183) (2,1183) 9.3 (2,1183) (2,1183) 10.7 (2,1183) (2,1183) 12.3
MS-E-n51-k5 9 (10, 786) (10, 795.7) 18.4 (10, 786) (10, 788.6) 54.4 (10,787) (10,797) 22.4 (10,787) (10,800.2) 25.3 (10,786) (10,787.2) 28.8
MS-E-n76-k7 13 (4, 990) (4, 1015.9) 49.9 (3, 1084) (3, 1086.6) 252.3 (3,1089) (3.9,1023.9) 71.6 (3,1112) (3.8,1049.1) 80.7 (3,1084) (3.8,1019.8) 94.2
MS-E-n101-

k14
18 (8, 1387) (8.8,

1379.2)
113.3 (7, 1457) (7.9,

1388.2)
571.3 (8,1381) (8,1389.8) 141.8 (8,1404) (8,1418.5) 153.3 (7,1473) (7.9,1386.7) 186.7

Average 8.1 (6.56,
1101.4)

(6.67,
1099.9)

21.1 (6.37,
1116.1)

(6.40,
1115.8)

85.6 (6.41,1113.4) (6.46,1114.2) 27.8 (6.41,1118.9) (6.44,1123.2) 31.1 (6.37,1116.3) (6.43,1112.6) 35.5

The best solution values are marked in bold.
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Fig. 4. The impact of different numbers of vehicles on the outsourcing intensity and the traveling cost.

Table 7
The comparison results of Cplex and VNS on the MAVRP instances with n 6 35.

Instance First scenario Second scenario

NV UB LB VNS Gap NV UB LB Cplex VNS Gap

MS-A-n32-k5 6 952 620.58 937 1.58% 5 60989 50570.80 (6,989) (6,965) 2.43%
MS-A-n33-k5 7 828 474.61 825 0.36% 6 10917 10638.79 (1,917) (1,917) 0.00%
MS-A-n33-k6 7 934 565.88 909 2.68% 6 100817 90575.83 (10,817) (10,765) 6.36%
MS-A-n34-k5 7 964 583.36 954 1.04% 6 41015 20711.07 (4,1015) (4,1004) 1.08%
MS-E-n22-k4 5 437 366.91 437 0.00% 4 70346 70346.00 (7,346) (7,346) 0.00%
MS-E-n23-k3 4 712 610.71 712 0.00% 3 100446 100446.00 (10,446) (10,446) 0.00%
MS-E-n30-k3 7 823 427.52 804 2.31% 6 20800 20431.07 (2,800) (2,798) 0.25%
MS-E-n33-k4 7 1318 833.81 1243 5.69% 6 21203 851.13 (2,1203) (2,1183) 1.66%

Average – – – – 1.71% – – – – – 1.47%
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As shown in Table 7, the results of 8 MAVRP instances under two scenarios are presented. For the first scenario, the vehi-
cles are adequate for fulfilling all patient requests. The columns ‘‘UB” and ‘‘LB” give the upper bound and lower bound of
traveling costs found by Cplex. The column ‘‘VNS” presents the best solution obtained by the VNS algorithms. The values
in the column ‘‘Gap” was calculated by ðUB� VNSÞ=UB. We can see that Cplex can only solve the instances ‘‘MS-E-n22-
k4” and ‘‘MS-E-n23-k3” to optimality, but their gaps to ‘‘LB” are still not closed.

Considering the second scenario, vehicles are inadequate and some patient requests are outsourced. By our setting, the
penalty cost pi of each unfulfilled patient request i is set to M � ri � di (M ¼ 10;000 in our experiments). So once we obtained
a result z, the outsourcing intensity is bz=Mc and the traveling cost is z� bz=Mc. The pairs in the column ‘‘Cplex” are
ðbUB=Mc;UB� bUB=McÞ, which are feasible solutions obtained by Cplex. We can observe that the outsourcing intensity
obtained by Cplex is equal to that obtained by VNS for each instance. The column ‘‘Gap” reports the relative difference
between the traveling costs of the best solution found by Cplex and VNS. This column tells us that the results obtained
by Cplex are worse than VNS.
6. Conclusions

In this paper, we study a manpower allocation and vehicle routing problem (MAVRP), which simultaneously considers the
allocation of manpower and the routing of vehicles. We formulate this problem into a mathematical programming model,
and then devise variable neighborhood search (VNS) algorithms to solve it, where the steepest descent, the first descent
and a mixed strategy are used. We propose five groups of operators, i.e., Exchange, Reverse, Insertion, 2-opt and Reassignment,
to define the local neighborhood structure of VNS. To test the performance of our proposed algorithms, we use two classes of
instances, namely, the CVRP and the MAVRP instances. From the computational results, we find that all the VNS algorithms
can achieve optimal solutions for the CVRP instances. For the MAVRP instances, two scenarios (adequate and inadequate
numbers of vehicles) are considered. The results demonstrate that the mixed VNS algorithm can achieve a good balance
between the solution quality and the running time.

To extend our work on the MAVRP, exact approaches such as branch-and-cut algorithm and branch-and-price algorithm,
can be developed to optimally solve the MAVRP instances. Other meta-heuristics can also be designed for the MAVRP
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instances with even larger size. In addition, more practical constraints can be taken into consideration to make the problem
closer to the real environment. These constraints include, for example, the time windows of services, working time of assis-
tants, multi-period transportation, etc.
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