Skip to content
Cascade R-CNN in Detectron
Python CMake C++ MATLAB Cuda Dockerfile Makefile
Branch: master
Clone or download
Latest commit 4174975 Jan 10, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.github original Detectron Sep 26, 2018
cmake original Detectron Sep 26, 2018
configs Add Cascade R-CNN Oct 5, 2018
demo original Detectron Sep 26, 2018
detectron Add Cascade R-CNN Oct 5, 2018
docker original Detectron Sep 26, 2018
projects/GN original Detectron Sep 26, 2018
tools original Detectron Sep 26, 2018
.gitignore original Detectron Sep 26, 2018
CMakeLists.txt original Detectron Sep 26, 2018
CONTRIBUTING.md original Detectron Sep 26, 2018
FAQ.md original Detectron Sep 26, 2018
GETTING_STARTED.md original Detectron Sep 26, 2018
INSTALL.md original Detectron Sep 26, 2018
LICENSE original Detectron Sep 26, 2018
MODEL_ZOO.md original Detectron Sep 26, 2018
Makefile original Detectron Sep 26, 2018
NOTICE original Detectron Sep 26, 2018
README.md Update download links Jan 9, 2019
requirements.txt original Detectron Sep 26, 2018
setup.py original Detectron Sep 26, 2018

README.md

Cascade R-CNN: Delving into High Quality Object Detection

by Zhaowei Cai and Nuno Vasconcelos

This repository is written by Zhaowei Cai at UC San Diego, on the base of Detectron @ e8942c8.

Introduction

This repository re-implements Cascade R-CNN on the base of Detectron. Very consistent gains are available for all tested models, regardless of baseline strength.

Please follow Detectron on how to install and use Detectron-Cascade-RCNN.

It is also recommended to use our original implementation, cascade-rcnn based on Caffe, and the third-party implementation, mmdetection based on PyTorch and tensorpack based on TensorFlow.

Citation

If you use our code/model/data, please cite our paper:

@inproceedings{cai18cascadercnn,
  author = {Zhaowei Cai and Nuno Vasconcelos},
  Title = {Cascade R-CNN: Delving into High Quality Object Detection},
  booktitle = {CVPR},
  Year  = {2018}
}

and Detectron:

@misc{Detectron2018,
  author =       {Ross Girshick and Ilija Radosavovic and Georgia Gkioxari and
                  Piotr Doll\'{a}r and Kaiming He},
  title =        {Detectron},
  howpublished = {\url{https://github.com/facebookresearch/detectron}},
  year =         {2018}
}

Benchmarking

End-to-End Faster & Mask R-CNN Baselines

        backbone         type lr
schd
im/
gpu
box
AP
box
AP50
box
AP75
mask
AP
mask
AP50
mask
AP75
download
links
R-50-FPN-baseline Faster 1x 2 36.7 58.4 39.6 - - - model | boxes
R-50-FPN-cascade Faster 1x 2 40.9 59.0 44.6 - - - model | boxes
R-101-FPN-baseline Faster 1x 2 39.4 61.2 43.4 - - - model | boxes
R-101-FPN-cascade Faster 1x 2 42.8 61.4 46.1 - - - model | boxes
X-101-64x4d-FPN-baseline Faster 1x 1 41.5 63.8 44.9 - - - model | boxes
X-101-64x4d-FPN-cascade Faster 1x 1 45.4 64.0 49.8 - - - model | boxes
X-101-32x8d-FPN-baseline Faster 1x 1 41.3 63.7 44.7 - - - model | boxes
X-101-32x8d-FPN-cascade Faster 1x 1 44.7 63.7 48.8 - - - model | boxes
R-50-FPN-baseline Mask 1x 2 37.7 59.2 40.9 33.9 55.8 35.8 model | boxes | masks
R-50-FPN-cascade Mask 1x 2 41.3 59.6 44.9 35.4 56.2 37.8 model | boxes | masks
R-101-FPN-baseline Mask 1x 2 40.0 61.8 43.7 35.9 58.3 38.0 model | boxes | masks
R-101-FPN-cascade Mask 1x 2 43.3 61.7 47.2 37.1 58.6 39.8 model | boxes | masks
X-101-64x4d-FPN-baseline Mask 1x 1 42.4 64.3 46.4 37.5 60.6 39.9 model | boxes | masks
X-101-64x4d-FPN-cascade Mask 1x 1 45.9 64.4 50.2 38.8 61.3 41.6 model | boxes | masks
X-101-32x8d-FPN-baseline Mask 1x 1 42.1 64.1 45.9 37.3 60.3 39.5 model | boxes | masks
X-101-32x8d-FPN-cascade Mask 1x 1 45.8 64.1 50.3 38.6 60.6 41.5 model | boxes | masks

Mask R-CNN with Bells & Whistles

        backbone         type lr
schd
im/
gpu
box
AP
box
AP50
box
AP75
mask
AP
mask
AP50
mask
AP75
download
links
X-152-32x8d-FPN-IN5k-baseline Mask s1x 1 48.1 68.3 52.9 41.5 65.1 44.7 model | boxes | masks
[above without test-time aug.] 45.2 66.9 49.7 39.7 63.5 42.4
X-152-32x8d-FPN-IN5k-cascade Mask s1x 1 50.2 68.2 55.0 42.3 65.4 45.8 model | boxes | masks
[above without test-time aug.] 48.1 66.7 52.6 40.7 63.7 43.8

Faster & Mask R-CNN with GN

        backbone         type lr
schd
im/
gpu
box
AP
box
AP50
box
AP75
mask
AP
mask
AP50
mask
AP75
download
links
R-50-FPN-GN-baseline Faster 1x 2 38.4 59.9 41.7 - - - model | boxes
R-50-FPN-GN-cascade Faster 1x 2 42.2 60.6 45.8 - - - model | boxes
R-101-FPN-GN-baseline Faster 1x 2 39.9 61.3 43.3 - - - model | boxes
R-101-FPN-GN-cascade Faster 1x 1 43.8 62.2 47.6 - - - model | boxes
R-50-FPN-GN-baseline Mask 1x 2 39.2 60.5 42.9 34.9 57.1 36.9 model | boxes
R-50-FPN-GN-cascade Mask 1x 1 42.9 60.7 46.6 36.6 57.7 39.2 model | boxes | masks
R-101-FPN-GN-baseline Mask 1x 2 41.1 62.1 45.1 36.3 58.9 38.5 model | boxes | masks
R-101-FPN-GN-cascade Mask 1x 1 44.8 62.8 48.8 38.0 59.8 40.8 model | boxes | masks
You can’t perform that action at this time.