

Doc.	No.:	Do	oc. 0.18	Sum e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-I	EE18-	DR-2002 No	o.: Sali	cide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
			Lay	out Design Rule		0.9	1/135
5		1 (• • • •				
Docu	ment L	evel: (For Eng	gineering &	Quality Document/工程暨品顶又件专用)			
□ Le	vel 1 -	Manual	☑ Level	2 – Procedure/SPEC/Report 🗆 Level	3 - Operatio	n Instruction	
Secur	ity Lev	vel:					
\Box Se	curity 1	1 - SMIC Con	fidential	Security 2 - SMIC Restricted	□ Security	3 - SMIC Int	ernal
				Document Change History	10		
Doc.	Tech	Effective	Author	Change Descr	ription	111	
Rev.	Dev.	Date		6		011	k:
	Rev.				11	11	9
0T	0.1	2005-1-5	Lan Zhao	Initiate	11	VV	
				11/2	11	SY.	
1T	0.2	2005-02-02	Lan Zhao	Revise:	(1)	×	
				AA.E10b Updated	12		
				Item Unit Old	New		
				AA.E10b um 1.6	3.30		
				Add notice of AA:		1 1 1	
				Notice: For 16v Real_HVPMOS, it sho	of D inside	DNW to F	N+AA as
2Т	03	2005-3-4	Lan Zhao	Revise			/1 \ \ \
	0.5	2000 0 1	Eun_Endo	DRs Old New			
			0	a) DNW.E01: 1.0um	2.2um0		
			dl.	b) DNW.E03: 0 or 1.2um () or 2.0um		
			11	c) TPW.E04b: 0um	0.90um		
		24	11	d) TPWE05: 0 or 1.0um	1.0um		
		20	11	e) $CT.05c$ 0.19um 0.26u	ım		
		0		f) DNW.E08: For DNW operatin	$\log at > 10v$,	a PW guard	ing
		110	1 1	MUST be added at DNW boundary, in v	which no <u>1</u>)	AA2)GI	1S 7
	~	1 1		anowed. Any <u>AA/G1</u> on the PW MUS	l be put out	side the Pw	
			11	guard-ring.			
		11	11	Added:			
		11	2	a) Add CT.05b, to define diffusion CT	to Poly-G	Γon AA(5V	') as
			2	0.19um.	·		
		3.4	с	b) Add CT.05d, to define diffusion CT	to Poly-CO	G on AA as	0.22um.
				c) TPW.E07: For every TPW, a PW g	uarding MU	JST be adde	d at
				TPW boundary, in which no 1) AA 2) C	T is allowe	d. Any AA/	GT on
				the PW MUST be put outside the PW g	uard-ring.		
				Min. PW guard ring width TPW $\rightarrow 0.9$	ım		

Doc	No ·		$D_{00} = 0.18$	$P_{\rm H}$ a EEDDOM 2D2M ($M/5M/6M$)	Doc Pov	Tech Dov	Daga
D00.	TNU	DD 2002	$D_{0}C_{1}$ $0.1c_{1}$	$\frac{1}{1} = \frac{1}{2} $	11T		r age
ID-I	2E18-	DR-2002	No.: Sali	cide 1.8 V/3.3 V/5.0 V/15.5 V Process	111	Rev:	NO.:
			Lay	out Design Rule		0.9	2/135
3T	0.4	2005-3-2	8 Lan Zhao	Revised:			
				1 DRs Old	New		
				AA.E02a 0.80um 0.90)um		
				Deleted: PF.E04.			
4T	0.5	2006-02-	24 EH TAN	Revised:	-	<u></u>	
					A		
				Add MIM Design rule (refers to 7.12)	1.1		
				Update MASK LAYER INFORMATION	V(733)	11	
						V / /	
				0	//	1.17	
5T	0.6	2006-04-	05 I an Zhao	Revised:	1 1	11	
51	0.0	2000-04		MiM 17 Minimum space of MIM canaci	tor bottom	(metal) Mn	with
				WINT 17 Willingth Space of Willy capacit	tor bottom	(metal) win	with
				viA to below all metal layers.	11	V	
				Added:	\sim		
				MiM 18. The MIM structure is placed with	ithin top m	netal and nex	xt 1
				metal.	V		
6T	0.7	2006-8-2	24 Zhen	Added:	×		
			Yang	7.3.2			
			6	CAP BP (137) Dummy Layer f	or DRC/L	VS purpose	
				Capacitor Bottom Plate		r -r -rr	

Doc. No	o.:	Do	c. 0.18	Bum e-EEP	ROM 2	P3M (4M/5	M/6M)	Doc.Rev	: Tech Dev	Page
TD-EE	18-DR-200	2 No	.: Sali	cide 1.8V/	3.3V/5.0	V/15.5V P	rocess	11T	Rev:	No.:
			Lay	out Design	Rule				0.9	3/135
TD-EE1	18-DR-200	2 No	.: Sali	Added 7.3.2 DMPNP 7.4.2 Table1 Recomme Table2 Recomme 7.7.6 CAP_BP(7.7.7 DMPNP(7.13.3.2 PIP.06 PIP.07 PIP.08	3.3V/5.0 Rule (134) ended lay ended lay (137) Des (137) Des (134)	V/15.5V P Dumi D er for DRC er for DRC scription cription of CT to C CG which is forbidden /CG of PIP	my Layer for befine 1.8v F C/LVS C/LVS T stack on be fully co	0.40 0.40	Rev: 0.9 VS purpose ce. SAB	No.: 3/135
	Aller.	11111		PIP.09 PIP.10 PIP.11 7.13.4.1 BJT18 Det Delete CT.E05 CT.E06 Updated 7.4.3.6 PG-VT ER-VT 7.6.19 SAB.E06 7.13.3 Lay out es	Min/M Min/M Space Width esign rule MIN/ MIN/ Devic VSG 15.: SAB Capacito xample	Aax/ of CT Aax/ of CT of CT to S of SAB en for 1.8v E MAX Widt MAX Space (OLD) 5 OLD merge if < or	width Width SAB nclosure GT BJT th of CT ce of CT ble VSG(N 16.0 16.0 0.60	Cor CG 0.36 0.40 EW) NEW merge	0.36 0.22 0.22 0.25	

TD-EE18-DR-2002 No.: Salicide 1.8V/3.3V/5.0V/15.5V Process 11T Rev: No.: Layout Design Rule 7.6.5.1 All HV MOS devices are suggested to use pickup AA guard ring to acquire good isolation and reliability. 7.6.5.2 HVNW , MVNW , LVNW arrangement (suggested) 7.6.5.3 HV device well arrangement example(suggested)	Doc. No.:	Doc. 0.1	8um e-EEPRO	DM 2P3M (4M/5M/6N	M) Doc.Rev	v: Tech Dev	Page
Layout Design Rule 0.9 5/135 7.6.5.1 All HV MOS devices are suggested to use pickup AA guard ring to acquire good isolation and reliability. 7.6.5.2 HVNW, MVNW, LVNW arrangement (suggested) 7.6.5.3 HV device well arrangement example(suggested) 7.6.5.3 HV device well arrangement example(suggested)	TD-EE18-DR-2002	No.: Sal	icide 1.8V/3.3	V/5.0V/15.5V Proces	s 11T	Rev:	No.:
7.6.5.1 All HV MOS devices are suggested to use pickup AA guard ring to acquire good isolation and reliability. 7.6.5.2 HVNW, MVNW, LVNW arrangement (suggested) 7.6.5.3 HV device well arrangement example(suggested)		La	yout Design R	ule		0.9	5/135
7.6.5.1 All HV MOS devices are suggested to use pickup AA guard ring to acquire good isolation and reliability. 7.6.5.2 HVNW, MVNW, LVNW arrangement (suggested) 7.6.5.3 HV device well arrangement example(suggested)							
 (14) Delete 7.6.19 SAB NOTE.1 SAB mside I/O device is blocked from DRC with DRC auxiliary layer RP94 and described in details on 7.7 "DRC AUXILIARY LAYERS" (15) Modify 7.6.19 SAB NOTE.3 to For J/O and ESD, pls follow "0.18um EEPROM ESD/LatchUp Device Layout Guide Line" (TD-EE18-DR-2005) (16) Add to 7.6.23 Metal n The (Mn) layout layer is drawn to define the Metal-2.3.4. of 2PSN process. The (Mn) layout layer is drawn to define the Metal-2.3.4. of 2PSN process. (17) Modify description 7.6.24 Via-n The (Vn) layout layer is drawn to define the Via-2.3 of 2PSN Process. (18) Modify table in 7.6.24 Via-n The (Vn) layout LAYER IS DRAWN TO DEFINE THE VIA-2.3.4 OF 2P6M PROCESS. (18) Modify table in 7.6.24 Via-n Vn.5. Vn can be fully or partially stacked on Vn-1, any stacked structure such as stacked Vn/Vn-1//V1/CT (19) Modify description 7.6.25 Top_Via(VT) The Top_Via (V4) layout layer is drawn to define Via-4, the last Via of 2PSM Process. (20) Modify table 7.6.25 Top_Via(VT) (21) Modify table 7.6.25 Top_Via(VT) (20) Modify table 7.6.25 Top_Via(VT) (21) Modify description in 7.6.26 Top Metal-TM The (TM) layout layer is drawn to define the last Metal laye which is <u>M5</u> for <u>2P5M</u> process. The (TM) layout layer is drawn to define the last Metal laye, which is <u>M5</u> for <u>2P5M</u> process. (22) Update 7.6 LAYOUT DESIGN RULE DESCRIPTIONS 7.6.23 Metal-m (m=2.3n-1) 7.6.24 Via-x (x=2n-2) 7.6.25 Via-y (y=n-1 7.6.26 TM 			7.6.5.1 All ring to acqui 7.6.5.2 HV 7.6.5.3 HV (14) Delete T from DRC w 7.7 "DRC All (15) Modify "0.18um EE (TD-EE18-E (16) Add to The (Mn) process. The (Mn) process. (17) Modify The (Vn) 2P6M PRC (18) Modify Vn.5 Vn castruct (19) Modify The Top Via of 2P5M The Top Via of 2P6M (20) Modify The (T which (22) Update 7.6.23 7.6.24 7.6.25 7.6.26	I HV MOS devices ard re good isolation and VNW, MVNW, LVN V device well arrangen 7.6.19 SAB NOTE.1 S vith DRC auxiliary lay UXILIARY LAYERS 7.6.19 SAB NOTE.3 PROM ESD/LatchUp OR-2005) 7.6.23 Metal n layout layer is drawn layout layer is drawn description 7.6.24 Via layout layer is drawn LAYOUT LAYER IS DRA OCESS. table in 7.6.24 Via-n an be fully or partially ture such as stacked V description 7.6.25 To 2.Via (V4) layout layer Process. b2.Via (V5) layout layer Process. table 7.6.25 Top_Vi description in 7.6.267 M) layout layer is drawn h layout layer is drawn control (V5) layout layer Process. table 7.6.25 Top_Vi description in 7.6.267 M) layout layer is drawn the such as drawn h layout layer is drawn the such as drawn the such as drawn h layout layer is drawn h l	e suggested to u reliability. W arrangemen ment example(s SAB inside I/O ver RP94 and de " to For I/O and Device Layout a to define the <u>M</u> to define the <u>M</u> to define the <u>M</u> a-n vn to define the <u>M</u> wn to define the WN TO DEFINE T v stacked on Vn 'n/Vn-1//V1/ Fop_Via(VT) er is drawn to d er is drawn to d fa(VT) Top Metal-TM rawn to define th Decess SIGN RULE D .n-1)	Ise pickup A (suggested) device is blo escribed in de ESD, pls foll Guide Line Metal-2,3,4 EEAL-2,3,4,5 THE VIA-2,3,4 EEAL-2,3,4,5 THE VIA-2,3,4 EEAL-2,3	A guard ocked etails on low of <u>2P5M</u> of <u>2P5M</u> of <u>2P5M</u> d OF etal the last the last the last the last sthe last the last

Doc.	No.:		Do	c. 0.18	um e-EEF	PROM 2	P3M (4M/	5M/6M)	Doc.Rev	: Tech Dev	Page
TD-F	EE18-	DR-2002	No	.: Sali	cide $1.8V/$	/3.3V/5.0	V/15.5V	Process	11T	Rev:	No.:
				Lav	out Design	n Rule	.,			0.9	6/135
					0						
		All n.	1 11 11 11 D		(23) Add ESDIO;H (24) Mod (25) Mod (25) Mod (26) Mod (27) Mod (28) Add (29) Add (30) Item RULES: The whic (31) Add Stack_P-i (32) Add (33) Add (34) Mod SMIC_18 (35) Mod	7.7 DRC IRP;HRP ify to 7.7 ify descri DRC&LV ify refere ify 7.12.1 7.12.1 1. 7.12.2 H 7.12.3 C (TM) lay h is M5 f (TM) lay h is M6 f 7.13.3.3 i-P Capace 7.13.4.2 7.13.5 1. ify 8.1 gc BEE_1.8v ify 8.2 Li	/LVS AU DMY .5 RESN iption DM Some document fille to Op 8 v Native RP DESIC hange Mr yout layer for 2P5M yout layer for 2P6M Stack Psu stack Psu stack Psu stack Psu stack Psu stack Psu stack approximate stack a	XILIARY L W, RESP1, I IPNP (GDSi 7 ment in 7.10 bion Layer I device desi GN RULES to Mn-1; A is drawn f process. b/POLY2 (C device F DeviceExan bing file to S	AYERS: RESAA (C #134) to " to TD-EE Drawing R gn rule add descrip to define to define CG) /ONO PWI nples_V3p SMIC_18E	DS#95//96/ Fo define 1.3 E18-DR-200 Aule PWI otion MIM I the last Me the last Me /POLY1(GT 0.gds E_MAP_V3	 '97) 3/3.3V 5 DESIGN etal layer, etal layer, C), 3p0.map

Doc.	No.:		Do	c. 0.18	Bum e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-E	E18-	DR-2002	No	.: Sali	cide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
				Lay	out Design Rule		0.9	7/135
8T	0.9	2008-06-	-27	Zhen Yang	 1.In 7.3.2 the layer of EXCLU had been 2.In 7.3.3 MASK LAYER INFORMATION 1) the value of Mask Generation Formulation from GT to SMICE218GE0. 2) the value of Mask Generation Formulation from DDD to SMICE218GE0. 3) the value of Mask Generation Formulation SMICE218GE0 to SN. 3.For the 7.3.3 MASK LAYER INFORM Notice was changed from < If SN(198) in name SN instead of SMIC218GE0 (whis generate) under the column "Mask Generation Formulation and the should be drawing layer!!!> 4.The 7.4.3.11 had been added to 7.4.3 we PIP Capcitor: 5.0 v PIP capacitor 5.For the 7.4.3.10 table(0.18 e-EEPROM 1) the Max Vpp(V) of PIP (ONO) with the first column for UV-Vt was changed from -0.8 v to 0 PG-Vt from -1.0 v to -0.65 ver ER-Vt from 3.2 v to 3.9 ver IDSC-PG from 38 u A to 32 u A 3) the cell operation(TD-EE18-CL-2P4M (5M/6M) Salicide 1.8V/3 Operation Condition Rule)bad to 6.For the 7.7.4 table, the DESCRIPTION Was change from <those bi="" by="" covered="" ct="" from="" is,="" items,="" pa.="" that="" to=""> to Those check BEOL DRC items, that is, from M7.The 7.7.10 had been added to 7.7 whic EXCLU (GDS#209): Define un-DRC area a.) Define un-DRC area b.) If seal ring drawn by seal ring for un-DRC purpose i 9.Add 7.13.6 for SRAM</those> Only Metal_Cross SRAM is preferred 	added wic ON Table a for mask a for mask la for mask la for mask la for mask (ATION T s drawn la ch is logic ration Form which conte thich conte thich conte l Device S was change 0.2v -2005 0.1 .3V/5.0V/2 been add to N of the lay TCEL only covered by 11 to PA. h content y ea customer, ing drawn n this area	h layer num num:8 was num:14 wa k num:14 wa k num:18 w Yable,the Spe yer please u al operation mula".> to < ent was pec(@25C) e from <9V 18um e-EEF 15.5V Cell bo. yer of DRC. y check BEO y BITCEL of was , pls add this by custome) had been a	as ecial se input < SN), to <5V. PROM EE2 DL DRC only s layer in er, pls added

Doc.	No.:		Doc. 0.18	8um	e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-l	EE18-	DR-2002	No.: Sali	icide	e 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
			Lay	out	Design Rule		0.9	8/135
9T	1.0	2009-02-	-11 Zhen Yang	1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Correct the reference file name and a Add the note in item 7.1.1 & 7.4.3.1: but the poly gate GDS is different, fo 0.18um EERPOM, it is 83.Pls note w 18um EEPROM Add table 7.3.1 a layer DSTR for LV ESD1 in table 7.3.1 because process In 7.4.2 device table: Add Table 3 for Resistor table 1 in sp Add Table 4 for Resistor table 1 in sp Add Table 4 for Resistor table 4 in sp Delete GP.12 in 7.6.13 because patter and the content about pattern density Delete NLL.11 in "7.6.15 NLL" because Minimum space between NLL and N 0 Delete PLL.11 in "7.6.16 PLL" because Minimum space between PLL and PI 0 Revise 7.6.27 part B: For detail description Add 7.6.28 for dummy Metal/GT/GF Modified MIM.13 in "7.12.3 MIM D Minimum space between two Via on 4.00 to 1.00.	dd the refe 1.8v devia r 0.18um I yhen use 18 S purpose do not sup vice model rice	erence files ce character Logic it is 3 Bum Logic I and delete I port rule not opt rule not opt e in Part 7.0 NLH layer, A As are ove NLH layer P AAs are ove nmy pattern ULES" chan etal (Mn-1)	in item 5 is same, 0, for library in layer imized, 6.27 NLL.11 verlapped LL.11 erlapped rule nge from

Doc.	No.:		Doc.	0.18	um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev	: Tech Dev	Page
TD-I	EE18-	DR-2002	No.:	Salic	cide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
				Layo	out Design Rule		0.9	9/135
					6		1	1
10T	0.9	2010-01-	14 W	Vade Ye	 Title change to "0.18um e-EEPROM 1.8V/3.3V/5.0V/15.5V Process Layout Update the reference title and add TI Make Rule scheme label and related SAB label (Page 74), 7.6.20 CT label (1996) (Page 82). Purpose change to "To provide SMI 2P3M (4M/5M/6M) Cobalt-Salicide 1.3 layout design rule for customers use ". Subject content for 3M process/PI/SI 6. Add 3LM process to Table 7.1.5. Table 7.3.1 update for new layer PI / 	1 2P3M (4N Design Ru D-EE18-DR rule item N Page 77) an C 0.18μm e 8V/3.3V/5.0 ot rule item ESD2 / ES	A/5M/6M) S le " R-2003 in ite O clear on 7 d 7.6.22 V1 mbedded E 0V/15.5V pr n update. D3 added, O	Salicide m5. 7.6.19 label EPROM rocess
		All m	C III D	UND.	layer DSTR to Table 7.3.2. 8. Table 7.3.2 update for new layers OF MIMDMY added. 9. Update the format of MASK LAYEF PLL information in mask layer mappin, 1/ESD2 / ESD3, and reference layer A/ BITCEL and PWI and add Special Not by customer or by logic operation gene 10. Update 7.6.23-7.6.26 notices for ad 11. Add 7.6.27 Polyimide for PI rule 12. Delete 7.6.28 B1 GT Density sugge is not well define, that is not optimizati confuse 13. Delete 7.6.28 B2 GP Density sugge is not well define, that is not optimizati confuse 14. Delete 7.6.28 B3 CG Density sugge is not well define, that is not optimizati confuse 15. Delete 7.6.29.2 Dummy GT rule, ex (TD-EE18-DR-2003), so need put here 16. Delete 7.6.29.3 Dummy GP rule, ex (TD-EE18-DR-2003), so need put here 17. Update Table 7.7 for new layers add 18. Add the notice c) Since seal-ring is sure it is fully meet the design rule if it 19. Added OPC block layers 7.7.11; 20. Add 7.7.12 for MiM dummy recogn 21. Added 7.8.3 for metal slot rule 22. Added 7.9 e. seal-ring rule if it is dn 23. Add notice for 7.12.3 for 3M proces	CBA/OPC R INFORM g table, Add ADUM, TP ice "2: NLI rated" in ite d 3M proce estion (20% on. Then w stion (50% on. Then w estion (15% on. Then w estion (20% on. Then w stion (20% on. Then w estion (15% on. Then w estion (15% on. Then w estion (15% on. Then w estion (20% on. Then w estion (15% on. Then w estion (15% on. Then w estion (15% on. Then w estion (20% on. Then w estion (15% on. Then w estion (15% on. Then w estion (20% on. Then w estion (15% on. Then w estion (20% on. Then w estion (15% on. Then w estion (15% on. Then w estion (20% on. Then w estion (20% on. Then w estion (15% on. Then w estion (15% on. Then w estion (20% on. T	BP/ OPCBM ATION and d new layer 1 W, HVPF, P //PLL can be em 7.3.3; ess; - 40%), sug ill cause CT - 70%), sug ill cause CT - 35%), sug ill cause CT my rule file my rule file my rule file ea, pls kindl y customer to tomer design rule	A/ NLL and PI / ESD SUB, e drawn gestion M gestion M sgestion M

Doc.	No.:	Do	oc. 0.18	um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-F	EE18-	DR-2002 No	o.: Sali	cide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
			Lay	out Design Rule		0.9	10/135
11T	0.9	2010-08-26	Zhen Yang	 24. Add 7.12.4 ESD2 Design rule 25. Add 7.12.5 ESD3 Design rule 26. Delete design rule BJT18.05 in 7.13. for this device, so can delete and no cause 27. Update 7.13.6 the SRAM application provide two type SRAM by Atison and V library compile SRAM is suggested, esp 2.88um^2 size EECell. 28. Correct the Tech Dev. Revision from 1. Adding 7.3.1 4 layer name: HVBN, 2. Adding 7.3.3 Mask HVBN 3. Delete table in 7.7.4, here list delete DRC.EE1 Those covered by BITCEL ar 	4.1, this ruse CTM condescription description verysilicor vecially what 1.0 to 0.9 BITCEL, 1 item e defined a	Ile in not ne nfuse. on to SMIC Ibrary, Ati en custome ; NST, CLPE	cessary library son r adopt DMY BitCell
			Nel Contraction	 DRC.EE2 Those covered by BITCEL or that is, from M1 to PA. DRC.EE3 SMIC provide EEArray BitCopurpose. 4. Adding rule 7.7.13 INST(GDS#60) 5. Adding rule 7.7.14 CLPDMY(GDS#60) 6. Adding rule 7.12.6 HVBN(GDS#54) 7. Adding notice in 7.3.4.1 (Note2: 1.8v NMOS has two type, one is other one is isolated by HVBN 1.8v NM 8. Modify 7.6.28 CG pattern density from 	hly check F ell with BI f87)) s standard IOS) m 10%~-5	BEOL DRC TCEL for th 1.8v NMOS 5% to 10%~	items, his DRC 5, the ~80%
	<	J.					
			2				

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	11/135

1. Title:

0.18um e-EEPROM 2P3M (4M/5M/6M) Salicide 1.8V/3.3V/5.0V/15.5V Process Layout Design Rule

2. Purpose :

To provide SMIC 0.18µm embedded EEPROM 2P3M (4M/5M/6M) Cobalt-Salicide

1.8V/3.3V/5.0V/15.5V process layout design rule for customers use.

3. Scope:

All SMIC Fabs

- 4. Nomenclature: N/A
- 5. Reference:

0.18um e-EEPROM 2P4M(5M/6M) Salicide 1.8v/3.3v/5.0v/15.5v ESD/Latch Up Layout Guide Line (TD-EE18-DR-2005) 0.18um EEPROM 2P6M Salicide 1.8/3.3/5/15.5V SPICE Model (Version 1.6) (TD-EE18-SP-2001) 0.18um e-EEPROM 2P4M Salicide 1.8V/3.3V/5.0V/15.5V Design Rule for Shrink Standard Memory Cell(2.88um2) (TD-EE18-CL-2004). 0.18um e-EEPROM 2P4M Salicide 1.8/3.3/5/15.5V Design Rule for Standard EEPROM Cell (3.96um2) (TD-EE18-CL-2001) 0.18um LOGIC 1P6M Salicide 1.8/3.3V Current Density Design Rules (TD-L018-DR-2006) 0.18um e-EEPROM 2P4M (5M/6M) Salicide 1.8V/3.3V/5.0V/15.5V Cell Operation Condition Rule (TD-EE18-CL-2005) 0.18um eEEPROM 2P4M Salicide 1.8V/3.3V Dummy Rule (TD-EE18-DR-2003)

6. Responsibility:

Technology Development Center and PIE

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	12/135

7. Subject Content:

SUBJECT CONTENT

7.1 PU	RPOSE AND SCOPE	
7.2 LAY	YOUT INFORMATION	
7.3 LAY	YOUT DRAWN LAYERS &	MASK LAYERS
7.4 DE	VICE TABLE	(///)
7.5 LAY	YOUT RULES DEFINITION	vs () () ()
7.6 LAY	YOUT DESIGN RULE DES	CRIPTIONS
7.6.1	PSUB	(18EE)
7.6.2	DNW	(18EE)
7.6.3	TPW	(18EE)
7.6.4	NW	4/11/12
7.6.5	AA	~ (/ //// /).
7.6.6	TIM	(18EE)
7.6.7	VTNH	(18EE)
7.6.8	HVPF	(18EE)
7.6.9	TOW	(18EE)
7.6.10	Poly1-GT	(18EE)
7.6.11	ONO	(18EE)
7.6.12	Poly2-CG	(18EE)
7.6.13	POLY2-GP	
7.6.14		(18EE)
/.0.15	NLL DI L	
7.0.10	FLL SN	
7.0.17	SP	0.
7.6.19	SAB	
7.6.20	CT	-
7.6.21	MI	(FIRST METAL LAYER)
7.6.22	V1	(FIRST VIA LAYER)
7.6.23	Metal-m (m=2,3n-1)	(INTER METAL OF 2P3M(4M/5M/6M) PROCESS)
7.6.24	VIA-X (X=2N-2)	(INTER VIA OF 2P3M(4M/5M/6M) PROCESS)
7.6.25	VIA-Y (Y=N-1)	(TOP VIA LAYER, V2(V3/V4/V5) OF 2P3M(4M/5M/6M) PROCESS)
7.6.26	TM	(TOP METAL, M3(M4/M5/M6) OF 2P3M(4M/5M/6M) PROCESS)
7.6.27	PI	POLYIMIDE PAD
7.6.28	LAYOUT SUGGESTION FOR CI	RCUIT YIELD OPTIMIZATION
7.6.29	DUMMY PATTERN LAYOUT SU	GGESTION
7.7 DR	C/LVS AUXILIARY LAYER	S
7.8 ME AND ST	TAL FUSE/ALIGNMENT N RESS RELIEF	1ARK / METAL SLOT SUGGESTION FOR LASER REPAIR

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	13/135

7.9 ANTENNA/SCRIBE LINE SEAL GUARD RING/ BOND PAD OPENING RULES. 7.10 ESD/LATCH-UP PREVENTION LAYOUT GUIDELINES 7.11 CURRENT DENSITY RULES

7.12 OPTION LAYER FOR PWI / HRP / MIM DESIGN RULES

7.12.1 PWI	(OPTION LAYER)
7.12.2 HRP	(OPTION LAYER)
7.12.3 MIM	(OPTION LAYER)
7.12.4 ESD2	(OPTION LAYER)
7.12.5 ESD3	(OPTION LAYER)

7.13 DEVICE LAYOUT EXAMPLE

- 7.1 PURPOSE and SCOPE
- 7.1.1 This document provides the layout design rules to generate mask layers for SMIC's 0.18μm CMOS digital cobalt-salicide, double poly, four to six metal layers' embedded EEPROM technology operating at 1.8V(core)/15.5V(HV). The following device options are available:
 - 1.8v core N/PMOS, fully compatible to SMIC's 0.18um Generic Logic Process. (Note : 1.8v device character is same, but the poly gate GDS is different, for 0.18um Logic it is 30, for 0.18um EERPOM, it is 83.Pls note when use 18um Logic library in 18um EEPROM)
 - 3.3v special MV N/PMOS, moderated for 3.3V I/O circuits.
 - 5v special HV N/ZMOS/Quasi-HVPMOS, moderated for 5V I/O circuits.
 - 15.5v HV N/ZMOS for high-voltage circuits.
 - 16v HV PMOS for high-voltage circuits.
 - ESD mask for I/O ESD protection circuitry (ESD implant optional)
 - MIM module.
 - Thicker top metal
 - Polyimide layer for Polyimide passivation
- 7.1.2 The layout design rules described here do NOT contain Mask Tooling and necessary Boolean Operation information for generating mask layers. To generate all mask layers (before in-house OPC/mask-bias operation), users need to finish the following 2 steps.
 - Finish device layout following this layout design rule.
 - Finish Boolean Operation following "0.18um e-EEPROM 1.8V/3.3V/5.0V/15.5V Mask Generation and Logic Operation Rules"
- 7.1.3 The dimensions stated in this document refer to the minimum allowed geometry or the window of allowed geometry. Deviations from these rules have to be approved by SMIC.
- 7.1.4 The EEPROM cell design rules do not contain in this document. User may refer to "0.18um e-EEPROM 2P4M Salicide 1.8V/3.3V/5.0V/15.5V Design Rule for Shrink Standard

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	14/135

Memory Cell(2.88um2) (TD-EE18-CL-2004)".

"0.18um e-EEPROM 2P4M Salicide 1.8/3.3/5/15.5V Design Rule for Standard EEPROM Cell (3.96um2) (TD-EE18-CL-2001)"

7.1.5 Use the table below for processing of various metal level options.

Levels of Metal	Top Metal
6LM	Use TM as top metal.
5LM	Skip V5, M5. Use TM as top metal.
4LM	Skip V5, M5, V4, M4 rules. Use TM as top metal.
3LM	Skip V4, M5, V4, M4, V3, M3 rules. Use TM as top metal.

Notice :

n=6 if 2P6M process adopted, and M6 is Top Metal, V5 is Top Via

n=5 if 2P5M process adopted, and M5 is Top Metal, V4 is Top Via

n=4 if 2P4M process adopted, and M4 is Top Metal, V3 is Top Via

n=3 if 2P3M process adopted, and M3 is Top Metal, V2 is Top Via

7.2 LAYOUT INFORMATION

7.2.1 This layout rules only define the necessary drawn layers, not include the Mask Generation Boolean-Operation rules.

- 7.2.2 The layout rules defined in this document are expressed in microns (μ m).
- 7.2.3 All drawn dimensions are targeted the same as the finished silicon dimensions.
- 7.2.4 There should not be any notches of geometry smaller than the allowed minimum spacing.
- 7.2.5 All drawings and schematics in this document are not drawn to scale.
- 7.2.6 Only 45° and 90° bends are allowed for poly and metal lines.
- 7.2.7 All dimensions in this document are considered minimum unless otherwise stated.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	15/135

7.3 LAYOUT DRAWN LAYERS & MASK LAYERS

7.3.1 The following drawn layers are necessary to generate related mask layers.

		Drawn	Drawn	
	Tech	L avor Nomo	Layer	Description
		Layer Name	GDS Num	
1	18EE	PSUB	(85)	Define PSUB tube for HV N/ZMOS and EEPROM arrays.
2	18EE	DNW	(19)	Define 16v HVNW tube for Quasi-HVPMOS & Real-HVPMOS, and 3.3v MVNW tube for special 3.3v PMOS.
3	18EE	TPW	(16)	Define 3.3v MVPW tube for special 3.3v NMOS.
4		NW	(14)	Define NW tube for 1.8v PMOS
5		AA	(10)	Define Active Area
6	18EE	TIM	(27)	Define EEPROM FG transistor channel length and NCODE implant.
7	18EE	HVPF	(98)	Define HV-PField Implant Block Region: AAs of 5v/15.5V HVN/ZMOS and Psub Pickup must be covered by HVPF.
8	18EE	VTNH	(49)	Define HVNMOS and EEPROM Arrays VT Implant Region.
9	18EE	TOW	(55)	Define Tunnel Oxide Window Open
		CSD	11	
10	18EE	GT	(30)	Define HV Poly1 /Cell Select, Floating Gate
11	18EE	ONO	(56)	Define ONO covering regions: ONO must cover all GT and AA of HVPMOS (Quasi/Real), HVN/ZMOS, 3.3v MVN/PMOS, and EEPROM Arrays.
12	18EE	CG	(57)	Define EEPROM Cell Control Gate and PiP capacitor top plate: CG must be inside ONO region.
13		GP	(83)	Define 1.8v LV N/PMOS and Native Device Gate Poly: GP must be outside ONO region.
14	18EE	DDD	(84)	Define HVN/ZMOS DDD Implant Region.
15	Option	HRP	(39)	Define High Resistance Poly
16		NLL	(35)	Define 1.8v NLDD Implant Region.

TD-EE18-DR-2002 No.: Salicide 1.8V/3.3V/5.0V/15.5V Process Layout Design Rule 11T Rev: 0.9 No.: 16/135 17 PLL (38) Define 1.8v PLDD Implant Region. 16/135 18 SN (40) Define N+ S/D Implant Region 9 19 SP (43) Define P+ S/D Implant Region 9 21 SAB (48) Define Contact Hole 9 23 M1 (61) Define Metal-1 9 9 24 V1 (70) Define Metal-2 9 <t< th=""><th colspan="2">Doc. No.:</th><th>Doc. 0.</th><th>18um e-EEP</th><th>PROM 2P3M (4M/5M/6M) Doc.Rev: Tech Dev Page</th></t<>	Doc. No.:		Doc. 0.	18um e-EEP	PROM 2P3M (4M/5M/6M) Doc.Rev: Tech Dev Page			
Layout Design Rule [0.9 [16/135 17 PLL (38) Define 1.8v PLDD Implant Region. 18 SN (40) Define N+ S/D Implant Region 19 SP (43) Define P+ S/D Implant Region 21 SAB (48) Define Salicide Block Region 22 CT (50) Define Contact Hole 23 M1 (61) Define Metal-1 24 V1 (70) Define Metal-2 26 V2 (71) Define Metal-3 27 M3 (63) Define Via-2 Hole 27 M3 (63) Define Wata-3 28 Option MIM (58) Define Metal-4 31 Option V4 (73) Define V4 Hole 32 Option M5 (65) Define V5 Hole 33 Option M6 (66) Define V4 Hole 33 Option M5 (65) Define V5 Hole <	TD-EE	TD-EE18-DR-2002		licide 1.8V/	3.3V/5.0V/15.5V Process 11T Rev: No.:			
17 PLL (38) Define 1.8v PLDD Implant Region. 18 SN (40) Define N+ S/D Implant Region 19 SP (43) Define P+ S/D Implant Region 21 SAB (48) Define Salicide Block Region 22 CT (50) Define Contact Hole 23 M1 (61) Define Metal-1 24 V1 (70) Define Metal-2 26 V2 (71) Define Metal-3 27 M3 (63) Define Metal-3 28 Option MIM (58) Define Metal-4 30 M4 (64) Define V3 Hole. (72) 30 M4 (64) Define V4 Hole (73) 31 Option V4 (73) Define V4 Hole 32 Option M5 (55) Define V5 Hole 34 Option M6 (66) Define V4 Hole 35 PA (80) Define Pad Opea 36 <td></td> <td></td> <td>La</td> <td>yout Design</td> <td>n Rule 0.9 16/13:</td>			La	yout Design	n Rule 0.9 16/13:			
17 PLL (38) Define 1.8V PLDJ implant Region. 18 SN (40) Define N+ S/D Implant Region 19 SP (43) Define P+ S/D Implant Region 21 SAB (48) Define P+ S/D Implant Region 21 SAB (48) Define Contact Hole 23 M1 (61) Define Contact Hole 24 V1 (70) Define Metal-1 24 V1 (70) Define Metal-2 26 V2 (71) Define Metal-3 28 Option MIM (58) Define Metal-3 28 Option MIM (58) Define Metal-4 31 Option M4 (64) Define Metal-4 31 Option V4 (73) Define Metal-5 33 Option M5 (65) Define Metal-5 33 Option M5 (66) Define Metal-6 35 PA (80) Define Pad Open	17		DI I	(20)				
18 SN (40) Define N+ S/D Implant Region 19 SP (43) Define P+ S/D Implant Region 21 SAB (48) Define P+ S/D Implant Region 22 CT (50) Define Salicide Block Region 23 M1 (61) Define Contact Hole 23 M1 (61) Define Metal-1 24 V1 (70) Define Metal-2 26 V2 (71) Define Metal-3 28 Option MIM (58) Define Metal-3 29 V3 (72) Define Metal-4 31 Option M4 (64) Define Metal-5 32 Option M5 (65) Define Metal-6 32 Option M5 (65) Define Metal-6 33 Option M6 (66) Define Metal-6 34 Option M6 (66) Define Pad Open 36 Option FUSE (209) Define Ruse window <td>1/</td> <td></td> <td>PLL</td> <td>(38)</td> <td>Define 1.8v PLDD Implant Region.</td>	1/		PLL	(38)	Define 1.8v PLDD Implant Region.			
19 SP (43) Define P+ S/D Implant Region 21 SAB (48) Define Salicide Block Region 22 CT (50) Define Contact Hole 23 M1 (61) Define Metal-1 24 V1 (70) Define Metal-2 26 V2 (71) Define Via-2 Hole 27 M3 (63) Define Metal-3 28 Option MIM (58) Define Metal-3 29 V3 (72) Define Metal-4 31 Option V4 (73) Define Metal-4 31 Option V5 (74) Define V5 Hole 32 Option M5 (65) Define Metal-6 33 Option V5 (74) Define V5 Hole 34 Option M6 (66) Define Retal-6 35 PA (80) Define Pad Open 36 Option FUSE (209) Define Retal-6 38 <td>18</td> <td></td> <td>SN</td> <td>(40)</td> <td colspan="4">(40) Define N+ S/D Implant Region</td>	18		SN	(40)	(40) Define N+ S/D Implant Region			
21SAB(48)Define Salicide Block Region22CT(50)Define Contact Hole23M1(61)Define Metal-124V1(70)Define Metal-1 Hole25M2(62)Define Metal-226V2(71)Define Metal-327M3(63)Define Metal-328OptionMIM(58)Define MIM Top plate (optional)29V3(72)Define Metal-430M4(64)Define Metal-431OptionV4(73)Define Metal-533OptionM5(65)Define Metal-634OptionM5(66)Define Metal-635PA(80)Define Pad Open36OptionPUI(81)Define I.8v LV native device37OptionFUSE(209)Define Res window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 341OptionHVBN(54)Burried N layer42BTCEL(93)Define ELArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	19		SP	(43)	(43) Define P+ S/D Implant Region			
22 CT (50) Define Contact Hole 23 M1 (61) Define Metal-1 24 V1 (70) Define Wetal-1 Hole 25 M2 (62) Define Metal-2 26 V2 (71) Define Metal-3 28 Option MIM (58) Define Mtal-3 29 V3 (72) Define Metal-4 30 M4 (64) Define Metal-4 31 Option V4 (73) Define Metal-5 33 Option M5 (65) Define Metal-6 34 Option M5 (66) Define Metal-6 35 PA (80) Define 1.8v LV native device 37 Option FUSE (209) Define Polymide (Negative Resistor) 38 Option FUSE (209) Define Polymide (Negative Resistor) 39 Option ESD2 (42) ESD Implant for 3 41 Option HVBN (54)	21		SAB	(48)	Define Salicide Block Region			
23 M1 (61) Define Metal-1 24 V1 (70) Define Via-1 Hole 25 M2 (62) Define Metal-2 26 V2 (71) Define Metal-3 27 M3 (63) Define Metal-3 28 Option MIM (58) Define MIM Top plate (optional) 29 V3 (72) Define Metal-4 30 M4 (64) Define Metal-4 31 Option V4 (73) Define Metal-5 33 Option M5 (65) Define Metal-6 34 Option M6 (66) Define Pad Open 36 Option PWI (81) Define 1.8v LV native device 37 Option FUSE (209) Define Polymide (Negative Resistor) 38 Option PI (82) Define Polymide (Negative Resistor) 39 Option ESD3 (51) ESD Implant for 3 41 Option HVBN<	22		CT	(50)	Define Contact Hole			
24 V1 (70) Define Via-1 Hole 25 M2 (62) Define Metal-2 26 V2 (71) Define Metal-3 27 M3 (63) Define Metal-3 28 Option MIM (58) Define MIM Top plate (optional) 29 V3 (72) Define V3 Hole. 30 M4 (64) Define Metal-4 31 Option V4 (73) Define V4 Hole 32 Option M5 (65) Define Metal-5 33 Option V5 (74) Define V5 Hole 34 Option M6 (66) Define Netal-6 35 PA (80) Define Pad Open 36 Option PWI (81) Define fuse window 38 Option FUSE (209) Define Rel via V antive device 37 Option ESD2 (42) ESD Implant for 2 40 Option ESD3 (51)	23		M1	(61) Define Metal-1				
25M2(62)Define Metal-226V2(71)Define Via-2 Hole27M3(63)Define Metal-328OptionMIM(58)Define MIM Top plate (optional)29V3(72)Define W3 Hole.30M4(64)Define Metal-431OptionV4(73)Define Metal-532OptionM5(65)Define Metal-533OptionV5(74)Define V5 Hole34OptionM6(66)Define Metal-635PA(80)Define 1.8v LV native device37OptionFUSE(209)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BFTCEL(93)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	24		V1 (70) Define Via-1 Hole					
26V2(71)Define Via-2 Hole27M3(63)Define Metal-328OptionMIM(58)Define MIM Top plate (optional)29V3(72)Define V3 Hole.30M4(64)Define Metal-431OptionV4(73)Define V4 Hole32OptionM5(65)Define Metal-533OptionV5(74)Define V5 Hole34OptionM6(66)Define Metal-635PA(80)Define I.8v LV native device36OptionPWI(81)Define I.se window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	25		M2	(62)	Define Metal-2			
27M3(63)Define Metal-328OptionMIM(58)Define MIM Top plate (optional)29V3(72)Define V3 Hole.30M4(64)Define Metal-431OptionV4(73)Define Metal-532OptionM5(65)Define Metal-533OptionV5(74)Define Metal-634OptionM6(66)Define Metal-635PA(80)Define Pad Open36OptionPWI(81)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define ELArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	26		V2	(71)	Define Via-2 Hole			
28OptionMIM(58)Define MIM Top plate (optional)29V3(72)Define V3 Hole.30M4(64)Define Metal-431OptionV4(73)Define V4 Hole32OptionM5(65)Define Metal-533OptionV5(74)Define V5 Hole34OptionM6(66)Define Pad Open36OptionPM(81)Define 1.8v LV native device37OptionFUSE(209)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	27		M3	Define Metal-3				
29V3(72)Define V3 Hole.30M4(64)Define Metal-431OptionV4(73)Define Metal-532OptionM5(65)Define Metal-533OptionV5(74)Define Metal-634OptionM6(66)Define Metal-635PA(80)Define Pad Open36OptionPWI(81)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	28	Option	MIM	(58)	Define MIM Top plate (optional)			
30M4(64)Define Metal-431OptionV4(73)Define V4 Hole32OptionM5(65)Define Metal-533OptionV5(74)Define V5 Hole34OptionM6(66)Define Metal-635PA(80)Define Pad Open36OptionFUSE(209)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	29		V3	(72)	Define V3 Hole.			
31OptionV4(73)Define V4 Hole32OptionM5(65)Define Metal-533OptionV5(74)Define V5 Hole34OptionM6(66)Define Metal-635PA(80)Define Pad Open36OptionPWI(81)Define fuse window38OptionFUSE(209)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	30		M4	(64)	Define Metal-4			
32OptionM5(65)Define Metal-533OptionV5(74)Define V5 Hole34OptionM6(66)Define Metal-635PA(80)Define Pad Open36OptionPWI(81)Define 1.8v LV native device37OptionFUSE(209)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	31	Option	V4	(73)	Define V4 Hole			
33OptionV5(74)Define V5 Hole34OptionM6(66)Define Metal-635PA(80)Define Pad Open36OptionPWI(81)Define 1.8v LV native device37OptionFUSE(209)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	32	Option	M5	(65)	Define Metal-5			
34OptionM6(66)Define Metal-635PA(80)Define Pad Open36OptionPWI(81)Define 1.8v LV native device37OptionFUSE(209)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	33	Option	V5	(74)	Define V5 Hole			
35PA(80)Define Pad Open36OptionPWI(81)Define 1.8v LV native device37OptionFUSE(209)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	34	Option	M6	(66)	Define Metal-6			
36OptionPWI(81)Define 1.8v LV native device37OptionFUSE(209)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	35		PA	(80)	Define Pad Open			
37OptionFUSE(209)Define fuse window38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	36	Option	PWI	(81)	Define 1.8v LV native device			
38OptionPI(82)Define Polymide (Negative Resistor)39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	37	Option	FUSE	(209)	Define fuse window			
39OptionESD2(42)ESD Implant for 240OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	38	Option	PI	(82)	Define Polymide (Negative Resistor)			
40OptionESD3(51)ESD Implant for 341OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	39	Option	ESD2	(42)	ESD Implant for 2			
41OptionHVBN(54)Burried N layer42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	40	Option	ESD3	(51)	ESD Implant for 3			
42BITCEL(93)Define EEArray bitcell43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	41	Option	HVBN	(54)	Burried N layer			
43INST(60)Define Cell44CLPDMY(87:1)Define SMIC provide clamp diode(data type is 1)	42		BITCEL	(93)	Define EEArray bitcell			
44 CLPDMY (87:1) Define SMIC provide clamp diode(data type is 1)	43	11	INST	(60)	Define Cell			
	44	1	CLPDMY	(87:1)	Define SMIC provide clamp diode(data type is 1)			

7.3.2 The following drawn layers are RECOMMANDED for DRC/LVS & mask generation purpose.

	Tech	Drawn Layer Name	Drawn Layer GDS Num	Description
1	18EE	RESDMY	(90)	Dummy Layer For DRC/LVS purpose: Define resistors other than covered by Res_NW, Res_AA, Res_P1 CAD layers.
2		RLHVP	(91)	Dummy Layer for DRC/LVS purpose:

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	17/135

	18EE			Define Real-HVPMOS
3	18EE	5VHVNZ	(92)	Dummy Layer for DRC/LVS purpose: Define 5V HVN/ZMOS
4	18EE	BITCEL	(93)	Dummy Layer for DRC/LVS purpose: Define EEArray BitCell
5		RESNW	(95)	Dummy Layer For DRC/LVS purpose: Define NW resistors.
6		RESP1	(96)	Dummy Layer for DRC/LVS purpose: Define non-Salicide Poly2-(GP) resistors.
7		RESAA	(97)	Dummy Layer for DRC/LVS purpose: Define non-Salicide Diffusion resistors.
8		CAPBP	(137)	Dummy Layer for DRC/LVS purpose: Capacitor Bottom Plate.
9		DMPNP	(134)	Dummy Layer for DRC/LVS purpose: Define 1.8v/3.3v BJT Device.
10		ESDIO	(133)	Dummy Layer for IO region DRC/LVS purpose: Define ESD/IO Device
11		HRP	(39)	Dummy Layer for HRP DRC/LVS purpose: Define High Resistor Poly Device
12		HRPDMY	(210)	Dummy Layer for HRP DRC/LVS purpose: Define High Resistor Poly Device
13		EXCLU	(132)	unDRC Area
14		DSTR	(138)	Define diode for LVS purpose
15		OPCBA	(100)	Blocking layer for DRC/LVS operation on AA
16		OPCBP	(101)	Blocking layer for DRC/LVS operation on GP
17	2	OPCBM	(102)	Blocking layer for DRC/LVS operation on M1
18	-	MIMDMY	(88,1)	Define the dummy MiM

7.3.3 MASK LAYER INFORMATION.

The mask layers generated with other layout drawn layers follow mask generation design rules in LOTA "SMICE218GE0".

Mask ID	Process Name	Dig. Area Tone	GDS No	Mask Generation Formula	Description	Optional
120	AA	D	10	SMICE218GE0	Active Area / SDG	Must
121	AR	С	11	SMICE218GE0	AA Oxide Define Reverse	Must
394	TIM	С	27	NA	Tunnel Implant	Must
292	DNW	С	19	NA	Deen N well imp for substrate	Must

Doc. No.: TD_FF18_DR_2007		Doc.	0.18um e-	EEPROM 2P3M (4	M/5M/6M)	Doc.Rev:	: Tech Dev	Page
TD-E	E18-DR-2002	2 No.:	Salicide 1	.8V/3.3V/5.0V/15.5	SV Process	11T	Rev:	No.:
			Layout De	esign Rule			0.9	18/135
					noise suppre	ession		
318	HVBN	С	54	NA	1.8v NMOS layer	s isolated o	leep N	Option
396	Vtnh	С	49	NA	NCH HV V	T adjust Iı	mplant	Must
391	PFLD	D	46	SMICE218GE0	Pwell Field	Implant	1	Must
320	TOW	С	55	NA	Tunnel Oxic	de Window	v	Must
202	CSD	С	105	NA	Cell Source	/Drain Imj	plant	Optional
130	GT	D	30	SMICE218GE0	Poly Gate /	Poly-1 / C	NO Gate	Must
191	PW	D	20	SMICE218GE0	P-Well / P-7	ſub	J.	Must
192	NW	С	14	NA	N-Well / N-	Tub	1	Must
321	ONO	D	56	NA	ONO Layer	Etch		Must
330	CG	С	57	SMICE218GE0	Control Gat	e (poly2)		Must
331	GP	D	83	SMICE218GE0	Gate Poly (I	Poly2)		Must
316	DDD	С	84	SMICE218GE0	DDD Impla	nt		Must
116	NLL*	С	35	SMICE218GE0	NMOS LDI VDD	O Implant	for Low	Must
113	PLL*	С	38	SMICE218GE0	PMOS LDI VDD) Implant	for Low	Must
198	SN	С	40	NA	N+ S/D Imp	olant		Must
413	HRP	C	39	NA	High Resist	ant Poly Iı	mplant	Optional
197	SP	C	43	NA	P+ S/D Imp	lant		Must
110	ESD1	C	41	SMICE218GE0	ESD Implar	nt for 1		Optional
111	ESD2	C	42	NA	ESD Implar	nt for 2		Optional
210	ESD3	C	51	NA	ESD Implar	nt for 3		Optional
199	CODE	С	25	NA	Code Impla	nt		Optional
155	SAB	D	48	NA	Resist Prote Block	ct Oxide /	Salicide	Must
156	СТ	С	50	NA	CT Contact Si/Poly)	Hole (Me	tal to	Must
160	M1	D	61	NA	Metal-1			Must

Doc. N TD-EE	Io.: E18-DR-2002	Doc. (No.: S).18um e Salicide 1 Layout D	-EEPROM 2P3M (4M 1.8V/3.3V/5.0V/15.5V esign Rule	/5M/6M) Process	Doc.Rev: 11T	Tech Dev Rev: 0.9	Page No.: 19/135
178	V1	С	70	NA	Via-1 Hole			Must
180	M2	D	62	NA	Metal-2			Must
179	V2	С	71	NA	Via-2 Hole			Must
181	M3	D	63	NA	Metal-3	A		Must
162	MIM	D	58	NA	Top Plate of	MIM Cap	acitor	Optional
177	V3	С	72	NA	Via-3 Hole	11	113	Must
182	M4	D	64	NA	Metal-4	//	10	Must
176	V4	С	73	NA	Via-4 Hole	11	VY	Optional
183	M5	D	65	NA	Metal-5	11		Optional
175	V5	С	74	NA	Via-5 Hole	10		Optional
184	M6	D	66	NA	Metal-6	Pr		Optional
107	PA	С	80	NA	Passivation	/ Pad		Must
106	FUSE	С	209	NA	Fuse Windo	W		Optional
009	PI	D	82	NA	Polymide (N	Negative R	esistor)	Optional
	AADUM	26	10;1	NA	AA Dummy AA insertio	v Layer(Fo n)	r dummy	
	TPW	~	16	NA	Tripple Wel	1		
	HVPF	\mathcal{O}	98	NA	HV NCH F	ield		
	PSUB	11	85	NA	Psub area			
	BITCEL		93	NA	Dummy Lay purpose: De BitCell	yer for DR fine EEAr	C/LVS ray	
	PWI	D,	81	NA	VT IMP in I	PW		

Special Notice:

- 1. SN should be drawing layer!!!
- 2. NLL/PLL can be drawn by customer or by logic operation generated

7.4 DEVICE TABLE

The device table below defines the drawn layers used for specific device layout.

7.4.1 Layout examples are described in Chapter 7.14 "Device Layout Examples"

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	20/135

7.4.2 User is **RECOMMENDED** to inform SMIC if other special device design is adopted.

Table.1:	Fransistors
----------	--------------------

0.18e-E	EPRO	M Device	e Table & Layout Drawn Layer Description	Layout Drawn Layer Description 1.8v CORE Device 3.3v (Special) 5v (Special) 15.5v HV										
Layer Name	Layer GDS#	Described in DRs ?	Description	1.8v nMOS	1.8v pMOS	1.8v Native Device	3.3v nMOS	3.3v pMOS	5v HVNMOS	5v HVZMOS	5v Quasi- HVPMOS	15.5v HVNMOS	15.5v HVZMOS	15.5v Real- HVPMOS
PSUB	85	Y	Define Psub tubes for HV n-channel devices						V	V	6	V	V	
DNW	19	Y	Define NW tubes for Quasi/Real HV, special 3.3v p-channel devices				10	v		1	v	<u>.</u>		v
TPW	16	Y	Define 3.3v MVPW tube for special 3.3v nMOS				V	1						
PWI	81	Y	Define 1.8v LV Native Device			V	A			S . 3	1	1		
NW	14	Y	Define NW tubes for 1.8v LV p-channel devices		V	1995-	-		1	100	1	10		
AA	10	Y	Define device Active Area regions	V*	v	V	v	V	V	V	V	v	v	v
TIM	27	Y	Define regions that receive buried N- TIM implant			1	1	1				10	10	
VTNH	49	Y	Define regions that receive HV n-channel VT implant					1	V			V	1	
HVPF	98	Y	Define regions in PSUB that are blocked from HV n-channel field implant	3	l.		1		v	v	1	v	v	
TOW	55	Y	Define tunnel oxide window open regions	1.0	10.7	111	v	v				1		
GT	30	Y	Define poly gate for HV N/ZMOS and Quasi/RealHVPMOS, EEPROM Select-Gate/Float Gate, and buttom-plate of PiP capacitor	1	1	1	v	v	v	v	v	v	v	v
ONO	56	Y	Define regions that ONO are left after ONO etch.		100	1	v	v	v	V	v	v	v	V
Poly2(CG)	57	Y	Define EEPROM Array control gate and top-plate of PiP capacitor			1		1	1	1				
Polv2(GP)	83	Y	Define 1.8v core device poly gate, and poly resistor	V	V	V	1	1	37					
DDD	84	Y	Define regions that receive HV n-channel DDD implant			10	V		v	V		V	v	
NLL	35	Y	Define regions that receive 1.8v LV n-channel LDD implant	V	100	v	1	1						
PLL	38	Y	Define regions that receive 1.8v LV p-channel LDD implant	h	V									
ESD1	41	Y	Define regions that receive P-ESD implant (optional)	ALC: NO			1	P						
SN	40	Y	Define regions that receive S/D N+ implant	V		V	V		V	V		V	V	
SP	43	Y	Define regions that receive S/D P+ implant	20	V	1		V			V			Partial
SAB	48	Y	Define regions that are blocked from salicidation			h.								Partial
RESDMY	90	Y	DRC/LVS auxiliary layer, define resistors other than 0.18 logic parts	1	1									
RLHVP	91	Y	DRC/LVS auxiliary layer, define 16v Real-HVPMOS	· · ·	0									R
5VHVNZ	92	Y	DRC/LVS auxiliary layer, define 5V HVN/ZMOS	1	1.1				V	V				
BITCEL	93	Y	DRC/LVS auxiliary layer, define EEArray BitCell	Sec. 2										
Res_NW	95	Y	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process	S.										
Res_P1	96	Y	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process											
Res_AA	97	Y	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process											
CAP_BP	137	10	DRC/LVS auxiliary layer, define PIP	l	1		Ī		1					
DMPNP	134	Y	DRC/LVS auxiliary layer, define 3.3v/1.8v v_BJT		1		1		1					

Table.2: Resistor/Capacitor/v-BJT

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	21/135

0.18e-l Descri	EEPR(OM Device Table & Layout Drawn Layer	Resistor					Capaci	tor	BJT		Stack	PIP
Layer Name	Layer GDS#	Description	NW (on AA)	TIM (PSUB)	P+ Poly2 GP)	N+ (Poly2(GP)	HRP	Tunnel Ox	PIP	1.8v	3.3v	HV GOX	тоw
PSUB	85	Define Psub tubes for HV n-channel devices		V					no limit			V	V
DNW	19	Define NW tubes for Quasi/Real HV, special 3.3v p-channel devices						V	no limit		V		
TPW	16	Define 3.3v MVPW tube for special 3.3v nMOS					1	1			V		
NW	14	Define NW tubes for 1.8v LV p-channel devices	V				V	1		V			
AA	10	Define device Active Area regions	V	V		122		V	h. 1	V	V	V	V
TIM	27	Define regions that receive buried N- TIM implant		V		- 6	h	V			22	V	V
VTNH	49	Define regions that receive HV n-channel VT implant				1		1	1 1				
HVPF	98	Define regions in PSUB that are blocked from HV n-channel field implant		V	1	1			0	1	N.	V	V
TOW	55	Define tunnel oxide window open regions			5	1	100	V			V	2	V
GT	30	Define poly gate for HV N/ZMOS and Quasi/RealHVPMOS, EEPROM Select- Gate/Float Gate, and buttom-plate of PiP capacitor	- 23	v	1	1	1	v	v	1		v	v
ONO	56	Define regions that ONO are left after ONO etch.	1	V		0.0		V	V	22	V	V	V
Poly2(CG)	57	Define EEPROM Array control gate and top-plate of PiP capacitor	3	11	1	1	5	11	V	1		V	V
Poly2(GP)	83	Define 1.8v core device poly gate, and poly resistor	2	1.	V	V	V	1					
DDD	84	Define regions that receive HV n-channel DDD implant	1	1	1	1	1		V.			V	V
NLL	35	Define regions that receive 1.8v LV n-channel LDD implant	1		1		1	1	0				
PLL	38	Define regions that receive 1.8v LV p-channel LDD implant	1	1	1	1	1		1	V			
ESD1	41	Define regions that receive P-ESD implant (optional)				1	1						
SN	40	Define regions that receive S/D N+ implant	Terminal	V	1	V	Terminal	V	V	V	V	V	V
SP	43	Define regions that receive S/D P+ implant		1	V		1			V	V		
SAB	48	Define regions that are blocked from salicidation	V		V	V	V					V	V
RESDMY	90	DRC/LVS auxiliary layer, define resistors other than 0.18 logic parts	1	R	1	12	V						
RLHVP	91	DRC/LVS auxiliary layer, define 16v Real-HVPMOS	2	1									
5VHVNZ	92	DRC/LVS auxiliary layer, define 5V HVN/ZMOS		1	1								
BITCEL	93	DRC/LVS auxiliary layer, define EEArray BitCell											
ResNW	95	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process	R	1									
ResP1	96	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process	1		R	R							
ResAA	97	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process		0									
HRP	39	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process	N.Y.				V						
CAPBP	137	DRC/LVS auxiliary layer, define PIP	100						R			V	V
DMPNP	134	DRC/LVS auxiliary layer, define 1.8/3.3v v_BJT	- C							V	V		
	Ontional	Davias											·

R Recommend

Notice :

- 1. Tunnel OX Capacitor is an optional device, its cap is 4.06e-7F/cm^2.
- 2. 1.8v/3.3v BJT pls follow spice model (TD-EE18-SP-2001)example
- 3. 3.3v BJT is 018EE device, it is not compatible with 0.18um Logic 3.3v BJT

Table.3: Resistor Table 1 in Spice

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	22/135

				Silicide N+ Diffusion	Silicide P+ Diffusion	Silicide N+ Poly	Silicide N+Poly (three terminal)	Silicide P+ Poly	Silicide P+Poly (three terminal)	Silicide Nwell under AA	Silicide Nwell under STI	Non-Silicide N+ Diffusion	Non-Silicide P+ Diffusion
Layer Name	Layer GDS#	Described in DRs ?	Description	rndif	rpdif	rnpo	rnpo_3t	rppo	rppo_3t	rnwaa	rnwsti	rndifsab	rpdifsab
PSUB	85	Y	Define Psub tubes for HV n-channel devices										
DNW	19	Y	Define NW tubes for Quasi/Real HV, special 3.3v p-channel devices						6	1			
TPW	16	Y	Define 3.3v MVPW tube for special 3.3v nMOS							10			
NW	14	Y	Define NW tubes for 1.8v LV p-channel devices		V			V	V	V	V		V
AA	10	Y	Define device Active Area regions	V	V			1		V	V	V	V
ТІМ	27	Y	Define regions that receive buried N- TIM implant					1	1	1	1	5	
VTNH	49	Y	Define regions that receive HV n-channel VT				6	1	1	0	1	Sec. 1	
			Define regions in PSUB that are blocked from				1		100		11		
HVPF	98	Y	HV n-channel field implant				and the second	1	1 1	. 3	1	1	
TOW	55	Y	Define tunnel oxide window open regions					10	100		1		
GT	30	Y	Define poly gate for HV N/ZMOS and Quasi/RealHVPMOS, EEPROM Select- Gate/Float Gate, and buttom-plate of PiP canacitor			1	\bigcirc	2	1	0	Y		
ONO	56	Y	Define regions that ONO are left after ONO etch.			0	11	1	\sim	1			
Poly2(CG	57	Y	Define EEPROM Array control gate and top- plate of PiP capacitor		1	1	11	1	4				
Poly2(GP)	83	Y	Define 1.8v core device poly gate, and poly resistor	102	0	v	v	v	v				
DDD	84	Y	Define regions that receive HV n-channel DDD implant	0	1	1	1	1	6				
NLL	35	Y	Define regions that receive 1.8v LV n-channel LDD implant	1	11		1	7.					
PLL	38	Y	Define regions that receive 1.8v LV p-channel LDD implant	1	111	1	5						
HRP	39	Y	Define High Poly Resitor	11	010	18	1						
ESD1	41	Y	Define regions that receive P-ESD implant (optional)	1	101	1.	L						
SN	40	Y	Define regions that receive S/D N+ implant	V		V	V			partial	V	V	
SP	43	Y	Define regions that receive S/D P+ implant	2	V	N V		V	V				V
SAB	48	Y			1	1				V		V	V
RESDMY	90	Y	DRC/LVS auxiliary layer, define resistors other than 0.18 logic parts	1	1	1							
RLHVP	91	Y	DRC/LVS auxiliary layer, define 16v Real- HVPMOS	0	1								
5VHVNZ	92	Y	DRC/LVS auxiliary layer, define 5V HVN/ZMOS		- W.								
BITCEL	93	Y	DRC/LVS auxiliary layer, define EEArray BitCell	11	1								
ResNW	95	Y	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process	2						v	V		
ResP1	96	Y	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process			v	V	v	V				
ResAA	97	Y	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process	v	v							v	v
CAPBP	137		DRC/LVS auxiliary layer, define PIP		1						1		
DMPNP	134	Y	DRC/LVS auxiliary layer, define 1.8/3.3v v_BJT										
DSTR	138		LVS layer to recognize resistor										
			S 800 8 5										

Table.4: Resistor Table 2 in Spice

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	23/135

				Non-Silicide N+ Poly	N+ Poly (three terminal)	Non-Silicide P+ Poly	Non-Silicide P+Poly (three terminal)	High Resistance Poly	High Resistance Poly (three terminal)	TIM
Layer Name	Layer GDS#	Described	Description	rnposab	rnposab 3t	rpposab	rpposab 3t	rhrpo	rhrpo 3t	rtimsab
PSUB	85	Y	Define Psub tubes for HV n-channel devices			11.000	11			V
DNW	19	Y	Define NW tubes for Quasi/Real HV, special 3.3v p-channel devices					0	14	
TPW	16	Y	Define 3.3v MVPW tube for special 3.3v nMOS					10		
NW	14	Y	Define NW tubes for 1.8v LV p-channel devices			V	V	11 3		
AA	10	Y	Define device Active Area regions				1		1	V
TIM	27	Y	Define regions that receive buried N- TIM implant				1		11	v
VTNH	49	Y	Define regions that receive HV n-channel VT implant			19	10	1	10	
HVPF	98	Y	Define regions in PSUB that are blocked from HV n-channel field implant			-	10	1	11	1
TOW	55	Y	Define tunnel oxide window open regions				1 10			
GT	30	Y	Define poly gate for HV N/ZMOS and Quasi/RealHVPMOS, EEPROM Select- Gate/Float Gate, and buttom-plate of PiP capacitor		1		6			V
ONO	56	Y	Define regions that ONO are left after ONO etch.	1	24	11	11.	2	1	V
Poly2(CG)	57	Y	Define EEPROM Array control gate and top- plate of PiP capacitor	1	1		11	1		
Poly2(GP)	83	Y	Define 1.8v core device poly gate, and poly resistor	5	v			v	V	
DDD	84	Y	Define regions that receive HV n-channel DDD implant	12	1	1	1			
NLL	35	Y	Define regions that receive 1.8v LV n-channel LDD implant	11	1		5			
PLL	38	Y	Define regions that receive 1.8v LV p-channel LDD implant	11	1	2	d			
HRP	39	Y	Define High Poly Resitor	101	000		54	V	V	
ESD1	41	Y	Define regions that receive P-ESD implant (optional)		111	1				
SN	40	Y	Define regions that receive S/D N+ implant	V	V	100		V	V	V
SP	43	Y	Define regions that receive S/D P+ implant	N/		V	V	V	M	
SAB RESDMY	48 90	Y Y	DRC/LVS auxiliary layer, define resistors other			v	v	v	v	
	210	V	than 0.18 logic parts		Contraction of the second			V	V	
RLHVP	91	Y	DRC/LVS auxiliary layer, define 16v Real-	Y				v	v	
5VHVNZ	92	Y	DRC/LVS auxiliary laver, define 5V HVN/ZMOS							
BITCEL	93	Y	DRC/LVS auxiliary layer, define EEArray BitCell	18						
ResNW	95	Y	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process	3						
ResP1	96	Y	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process	V	V	V	V			
ResAA	97	Y	DRC/LVS auxiliary layer, follow similar use of 0.18 logic process							
CAPBP	137		DRC/LVS auxiliary layer, define PIP							
DMPNP	134	Y	DRC/LVS auxiliary layer, define 1.8/3.3v v_BJT							

7.4.3 Below Table describes 0.18eEEPROM basic device performance and applications.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	24/135

Users are RECOMMENDED to refer to PCM spec & SPICE Model for more detailed information.

7.4.3.1 1.8v Core : Fully compatible to 1.8v devices of SMIC 0.18um generic logic process. Applications : 1.8v e-CPU, e-SRAM, e-ROM, PLL & other 0.18um generic logic, 1.8v IP/Libraries.

(Note1 : 1.8v device character is same, but the poly gate GDS is different, for 0.18um Logic it is 30, for 0.18um EERPOM, it is 83.Pls note when use 18um Logic library in 18um EEPROM)

(Note2 : 1.8v NMOS has two type, one is standard 1.8v NMOS, the other one is isolated by HVBN 1.8v NMOS)

- 7.4.3.2 3.3v MV : Special 3.3v devices. Oxide thickness same as tunnel oxide. Applications : 3.3v I/Os, USB1.1 transceiver...
- 7.4.3.35v HV: Special 5v devices. Oxide thickness same as HV oxide.Applications: 5v I/Os, voltage regulator...
- 7.4.3.4 16 HV : 15.5v HVN/ZMOS, 16v HVPMOS. Applications : e-EEPROM operation related HV circuitry.
- 7.4.3.5 TIM resistor : Buried As-implanted n-type diffusion resistor. Applications : Resistors for analog design.
- 7.4.3.6Poly resistor: Non-salicided n-type or p-type poly resistor.Applications: Resistors for analog design.
- 7.4.3.7 MIM : Fully compatible to MIM of SMIC 0.18um generic logic process Applications : Capacitor for analog/RF design.
- 7.4.3.8 HRP : Fully compatible to HRP of SMIC 0.18um generic logic process Applications : High Resistance Poly for design.
- 7.4.3.9 BJT : 1.8v/3.3v BJT Applications : BJT device.
- 7.4.3.10 Native Device : 1.8v Native Device Applications : 1.8v Native Device
- 7.4.3.11 PIP Capcitor : 5.0v PIP capacitor Applications : 5.0v PIP capacitor

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	25/135

0.18 e-EEPROM Device Spec (@ 25C)

Tech Feature	CORE		I/O (3.3v M	V)	I/O (HV De	evice)		HV-nMOS		HV-pMOS
1.8v/16v	v	v	v	v	v	V	V	v	v	v
	CORE (sto	d 1.8v)	I/O (specia	I/O (special 3.3v)		al 5v)		HV-nMOS		HV-pMOS
	n	р	n	р	n	n	p	n	n	р
Voperation (V)	1.8v	1.8v	3.3v	3.3v	5V	5V	5V	15.5V	15.5V	16V
Device-Type	nMOS	pMOS	80A MV	80A MV	HVN	HVZ	Quasi-HVP	HVN	HVZ	Real-HVP
Salicide(SA)	SA	SA	SA	SA	SA	SA	SA	SA	SA	CT-SA
GOX(A, as-dep)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GOX(A, acc)	42.0	44.0	80.0	89.0	263.0	263.0	270.0	263.0	270.0	270.0
Lpoly(um, drawn)	0.18	0.18	0.60	0.80	1.40	1.80	1.00	1.70	2.10	1.00
Vt.gm (V)	0.42	-0.50	0.78	-0.84	0.75	0.30	-0.80	0.75	0.30	-0.80
Ids@ Vcc (uA/um) @Vcc	600	-260	380 (3.3v)	155 (3.3v)	245 (5v)	250 (5v)	140 (5v)	210 (5v)	235 (5v)	115 (5v)
loff (norm) @ 1.1Vcc (pA/um)	<30	<30	<10	<10	<10	<10	<10	<10		<10
loff (max) @ 1.1Vcc (pA/um)			<100	<100	<100	<1000	<100	<100		<100
BV @ 0.1uA/um (V)	>3.6	<-3.6	>8	< -8	>8	>7	<-8	>15.5	>10	< -16
AA width (um) DR	0.22	0.22	0.60	0.60	0.60	0.60	0.60	0.60	0.60	1.62
AA-AA Space(um) DR	0.28	0.28	0.40	0.40	0.80	0.90	0.50	1.05	1.05	0.80

PiP Capacitor	Toxeff (A)	Cap (fF/ um^2)	Max Vapp (V)	VC1 (ppm /V)	VC2 (ppm /V^2)	TC1 (ppm /C)	
PIP (ONO)	155	2.23	<5V		2	5	C=C(V=0V) * (1+VC1*V+VC2*V^2) C=C(T=25C)* (1+TC1* (T-25))
MiM	345		<20V	-34.11	-14.89	-34.82	C=C(V=0V) * (1+VC1*V+VC2*V^2) C=C(T=25C)* (1+TC1* (T-25))

		18 81	1. 1.	- N. M.	P		
EECell	1 1	VD	VSG	VCG	VS	VB	Note
UV-VT	0.2v	1	10	1			VT=Vcg@0.1uA, Vd/Vsg/Vb/Vs=1.5/3.3/0/0v
PG-VT	-0.65v	13.5	16	0	F	0	1ms pulse, VT@0.1uA, Vd/Vsg=1.5/3.3v
ER-VT	3.2v	0	16	15	0	0	1ms pulse, VT@0.1uA, Vd/Vsg=1.5/3.3v
IDSC-PG	32 uA	1.5	3.3	1.8	0	0	Vcg=1.8v 6
IDSC-ER	<100pA	1.5	3.3	1.8	0	0	

Electrical data only reference for design, spice model provide the accurate data Notice :

Cell operation : TD-EE18-CL-2005 0.18um e-EEPROM 2P4M (5M/6M) Salicide 1.8V/3.3V/5.0V/15.5V Cell Operation Condition Rule

7.5 LAYOUT RULES DEFINITION

7.6 DESIGN RULE DESCRIPTIONS

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	27/135

- a. All the design rules described here are for "Layout Drawn Layers".
- b. Those design rules numbered with xxxx.xx comply to SMIC 0.18um Generic Logic Process layout Design Rules.
- c. Those design rules numbered with xxxx.Exx are specific for SMIC 0.18um e-EEPROM process.
 - 7.6.0 Design Geometry Rules

RULE NO. DESCRIPTION

- GRID The design grid must be an integer multiple of $0.005 \mu m$.
- OFFGRID All edge boundaries must be snapped to the grid defined above.
- ACUTE All shapes must be orthogonal or on a 45° unless otherwise stated.

7.6.1 PSUB (18EE)

The (PSUB) layout layer is drawn to define PSUB tubes for HV N/ZMOS (5v/15.5v) and EEPROM arrays.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	PSUB	
PSUB.E01	Minimum PSUB width	1.0
PSUB.E02	Minimum space for PSUB to PSUB	1.0
	(PSUB)	

I.	1	1	- I	
I	PSUB.E01	←───	→	I
L	▼ PSUB	PSUB.	.E02	PSUB

7.6.2 DNW (18EE)

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	28/135

The (DNW) layout layer is drawn to define NW tubes for 5/16v Quasi/Real-HVPMOS, and special 3.3v MV PMOS.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	DNW	$\langle \rangle$
DNW.E01	Minimum width of an DNW region	2.2
DNW.E02	Minimum space between DNW (different potential)	6.0
DNW.E03	Minimum space between DNW (same potential)	2 or 0
DNW.E04	Minimum space between DNW to NW	5.0
DNW.E05	Minimum space between DNW to PSUB	2.5
DNW.E06	DNW overlap of PSUB or TPW is forbidden	7
DNW.E07	For DRC/LVS purpose, it's RECOMMENDED to draw RLHVP (#91) on DNW which will operate at >10v as Real-HVPMOS.	<i>v</i>
DNW.E08	For DNW operating at >10v, a PW guarding MUST be added at DNW boundary, in which no 1) AA 2)GT is allowed. Any AA/GT on the PW MUST be put outside the PW guard-ring. Min. PW guard ring width	1.20

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	30/135

7.6.3 TPW (18EE)

The (TPW) layout layer is drawn to define MV-PW tubes for special 3.3v MV NMOS.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	TPW	1172
TPW.E01	Minimum width of an TPW region	1.0
TPW.E02	Minimum space between TPW	1.0
TPW.E03	Minimum space between TPW to NW	0.78
TPW.E04	Minimum space between TPW to DNW	KI IV
	TPW.E04a DNW Vop>10v, Real-HVPMOS	1.20
	TPW.E04b DNW Vop<10v, 3.3v or 5v devices	0.78
TPW.E05	Minimum space between TPW to PSUB	0 or 1.0
TPW.E06	TPW overlap of PSUB or DNW or NW is forbidden	9

(TPW)

100

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	31/135

7.6.4 NW

The (NW) layout layer is drawn to define NW tubes for 1.8v core LVPMOS.

	1 1 1
NW (1111
Ainimum width of an NW region	0.86
Ainimum space between two NW regions (equi-potential vells) Merge if space is less than 0.6µm	0.60
Ainimum space between two NW (different potential vells)	1.40
Ainimum width of a hot NW region, which is not connec o Vdd.	t 2.10
Put NW resistor within AA region to minimize the nfluence of process variation on NW resistance	Y
Ainimum space between NW to DNW	5.0
Ainimum space between NW to PSUB	1.5
W overlap of DNW is forbidden	
W overlap of PSUB is forbidden	
W overlap of TPW is forbidden	
PW (for DRC/LVS) region is defined by " Not { (NW) or DNW) or (PSUB) or (TPW) or (PWI)} "	
	W Inimum width of an NW region Inimum space between two NW regions (equi-potential rells) Merge if space is less than 0.6µm Inimum space between two NW (different potential rells) Inimum width of a hot NW region, which is not connec o Vdd. ut NW resistor within AA region to minimize the affuence of process variation on NW resistance Inimum space between NW to DNW Inimum space between NW to DNW Inimum space between NW to PSUB IW overlap of DNW is forbidden IW overlap of PSUB is forbidden IW overlap of TPW is forbidden IW overlap of TPW is forbidden W (for DRC/LVS) region is defined by " Not { (NW) or DNW) or (PSUB) or (TPW) or (PWI)} "

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	32/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	33/135

Notices: N-Well resistor usage

The mean value and deviation of N-well resistor depend on the layout and dimension. If the designer requires tight control of Rsh deviation, the features of having NW within AA (refer to Fig. 1) is recommended. If the design is not sensitive to the deviation, Fig. 2 will be another option.

Fig 1 NW within AA

- Add SAB to prevent salicide formed in the NW resistance region.
- Dummy layer is needed to avoid N+/P+ implanting into NW resistance region.

Doc. No.:	Doc. 0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page	
TD-EE18-DR-2002	No.: Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:	
	Layout Design Rule		0.9	34/135	
RULE	DESCRIPTION		LAYOUT RULE		
NO.		(Un	it in µm)		
		~		-	
NR.01	Minimum extension of AA to NW	1	1.00		
NR.02	Minimum extension of salicide NW to CT	11	0.30		
NR.03	Minimum space from SAB to related NW	//	0.30		
NR.04	Minimum space from SAB to related AA	11	0.22		
NR.05	Minimum overlap of SAB to SN inside NW	[]]	0.40		
NR.06	Minimum space from SAB to CT in SAB hole	12	0.30		
NR.07	Minimum NW space	A.	1.40		
NR.08	LDD, SN and SP implant inside NW resistance region is not allowed				

Fig 2 NW under STI

- Rs_NW is varied with STI thickness under normal process variation

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	35/135

Note: Minimum NW resistor space is 1.40um (NR.7), otherwise the space less than 1.40um will cause decreased & un-stale resistance due to poor NW-NW isolation.

Notice:

- 1. Hot NW: NW not connected to the most positive power supply (VDD).
- 2. Cold NW: NW connected to the most positive power supply (VDD).

3. To distinguish hot NW and cold NW in DRC, a VDD text label is needed to tag on cold NW net, using the metal layer on the top level. For example:

Two NW connected to VDD with M1, with text "VDD" using M1.

Doc. No.:	Doc. 0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DF	R-2002 No.: Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
	Layout Design Kule		0.9	36/135
7.6.5	5 AA			
The (AA) la	ayout layer is drawn to define drawn to define the Active Area	regions.		
RULE NO.	DESCRIPTION	~	LAYOUT	RULE
Layer	AA	A		
	Below design rules apply to AA outside DNW, PSUB and That is, inside NW or PW.	TPW.	I/λ	
AA.01	Minimum width of an active region for interconnect (N+/P+		0.22	
AA.02	Minimum width of an active region to define the width of NMOS/PMOS	\mathbb{N}	0.22	
AA.03	Minimum space between N+ AA and N+ AA or P+ AA and (both regions are either inside or outside NW)	P+ AA	0.28	
AA.04	Minimum enclosure from NW edge to an N-well pick-up	A.	0.12	
AA.05	Minimum space between N-Well edge and an N+AA region inside an NW	which is	0.43	
AA.06	Minimum space between N-Well edge and a P+AA region winside an NW	which is	0.43	
AA.07	Minimum space between N-Well edge and a P+AA region (pick-up) outside an NW	for PW	0.12	
AA.08	Minimum space between poly edge and edge of a butted diff. AA region	fusion	0.32	
AA.09	Minimum space between N+AA and P+ AA for butted diffu	sion	0.00	
AA.10	Minimum area of a butted diffusion AA is $0.176\mu m^2$. At least segment (AA.10) of the consecutive SN/SP edge of butted d AA should be longer than $0.42\mu m$.	st one liffusion	0.42	
AA.11	Minimum area of a stand-along AA region		0.20	
AA.12	For the situation where N-well and P-well pick-ups are put head-to-head across the well boundary, the space between N and P-pick-up should be 0.36µm in order to meet the implar rules.	-pick-up nt layout		

Doc. No.: TD-EE18-DR	Doc. 0.18um e-EEPROM 2P3M (4M/5M/6M) Doc.Rev: Te 2-2002 No.: Salicide 1.8V/3.3V/5.0V/15.5V Process 11T Re	ch Dev ev:	Page No.:
	Layout Design Rule 0.9	9	37/135
	Below design rules apply to AA inside DNW or PSUB or TPW		
AA.E01	Minimum AA width for		
	AA.E01a interconnect (N+ or P+)	0.6	
	AA.E01b TIM resistor	0.6	
	AA.E01c 5v/15.5v HVN/ZMOS, 5v Quasi-HVPMOS	0.6	
	AA.E01d 3.3v MV N/PMOS	0.6	
	AA.E01e 16v Real-HVPMOS	1.62	P
AA.E02	Minimum space between two N+AA space (both inside PSUB)		
	AA.E02a 5v HVN/ZMOS	0.9	
	AA.E02b 15.5v HVN/ZMOS	1.05	
AA.E03	Minimum space between N+AA to (P+AA pick-up), both inside		
	AA.E3a <=6v N+AA	0.50	
	AA.E3b $> 6v N+AA$	1.0	
	AA.E3c. Butted Diffusion	0	
AA.E04	Minimum enclosure from PSUB edge to (N+AA inside PSUB)	2.8	
AA.E05	Minimum enclosure from PSUB edge to (P+AA pick-up inside	1.0	
AA.E06	PSUB) Minimum space between PSUB edge to (N+AA outside PSUB, NW, DNW)	0.5	
AA.E07	Minimum space between PSUB edge to (P+AA outside PSUB, NW,	0.4	
1	DNW)		
AA.E08	Minimum space between two P+AA, both inside DNW		
	AA.E08a 3.3v MV PMOS	0.4	
	AA.E08b 5v Quasi-HVPMOS, or <=10v voltage difference	0.5	
	AA.E08c 16v Real-HVPMOS, or >10v voltage difference	0.8	
AA.E09	Minimum space between P+AA to (N+AA pick-up), both inside DNW		
	AA.E09a Non-Butted	1.5	

Doc. No.: TD-EE18-DR	-2002	Doc. No.:	0.18um e-El Salicide 1.8 Layout Desi	EPROM 2P3M (4M/5 V/3.3V/5.0V/15.5V P gn Rule	M/6M) rocess	Doc.Rev: 11T	Tech Dev Rev: 0.9	Page No.: 38/135
	AA.I	E09b	Butted				0	
AA.E10	Mini	mum e	nclosure from l	DNW edge to (P+AA	inside DNV	V)		
	AA.I	E10a 3.	3v MV PMOS,	, 5v Quasi-HVPMOS			0.80	
	AA.I	E10b 16	6v Real-HVPM	IOS		\mathcal{A}	3.30*	
AA.E11	Minimum enclosure from DNW edge to (N+AA pick-up inside 1.2							
AA.E12	Mini	mum sj	pace between I	ONW edge to (N+AA	outside PSU	JB, NW,	1.2	
AA.E13	DNW) Minimum space between DNW edge to (P+AA outside PSUB, NW, 1.18 DNW)							
AA.E14	Minimum space between two N+AA space (both inside TPW) 0.4							
AA.E15	Mini TPW	mum sj 7	pace between N	N+AA to (P+AA pick-	up), both in	side		
	AA.I	E15a	Non-Butted	/ 11/	Dr		0.4	
	AA.I	E15b	Butted	11111	2		0	
AA.E16	Mini	mum e	nclosure from 7	TPW edge to (N+AA i	inside TPW)	0.8	
AA.E17	Mini	mum e	nclosure from T	ГРW edge to (P+AA p	oick-up insid	le TPW)	0.4	
AA.E18	Cros or ou	s-over o itside P	of AA to PSUB SUB	is NOT allowed. AA	must be ful	ly inside,		
AA.E19	Cros or ou	s-over o itside D	of AA to DNW DNW	is NOT allowed. AA	must be full	y inside,		
AA.E20	Cros	s-over tside T	of AA to TPW	is NOT allowed. AA r	nust be fully	y inside,		
Notice : For 1 P+ i	6v Re nside	al_HV DNW t	PMOS, it should be DNW	ld be surrounded by N	J+AA as gu	arding for	the rule AA	LE10b of

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	39/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	40/135

(AA)

whole or in part without prior written permission of SMIC.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	41/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	42/135

Some suggestion guidelines for decoder Well/Tube arrangement

7.6.5.1 All HV MOS devices are suggested to use pickup AA guard ring to acquire good isolation and reliability.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	43/135

7.6.5.2 HVNW, MVNW, LVNW arrangement (suggested)

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	44/135

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

-

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	45/135

7.6.6 TIM (18EE)

The (TIM) layout layer is drawn to define EEPROM cell float-gate transistor length, and NCODE MaskROM N- depletion CODE implant.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	TIM	11
	Below design rules apply to TIM outside EEArrays ^{Note1}	10
TIM.E01	Minimum TIM width	0.45
TIM.E02	Minimum TIM to TIM space	0.45
TIM.E03	Minimum TIM enclosure related AA	0.3
TIM.E04	Minimum TIM space to unrelated AA	0.3
	Below deign rules apply to TIM for NCODE ROM N- depletion	
TIM.E05	Minimum TIM to TIM space	merge if <0.45
TIM.E06	Minimum TIM extension AA (NCODE)	0.10
TIM.E07	Minimum TIM extension related GP (NCODE)	0.12
TIM.E08	Minimum TIM space to unrelated GP (NCODE)	0.25
TIM.E09	Minimum TIM space to unrelated AA (NCODE)	0.20
Note.1	TIM inside EEPROM bitcell is blocked from DRC with DRC auxiliary layer RP93 and described in details on 7.7 "DRC AUXILIARY LAYERS"	

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	46/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	47/135

7.6.7 HVPF (18EE)

The (HVPF) layout layer is drawn to block AA inside PSUB from HV-N channel stop (Field) implant.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	HVPF	\sim
	Below design rules apply to HVPF outside EEArrays ^{Note1}	1111
PF.E01	HVPF is only drawn inside PSUB	1110
PF.E02	AAs overlap of HVPF is regarded as the same potential. Any two AAs with different potential must be covered by HVPF SEPARATELY. Any HVPF-HVPF overlap or spacing< PF.E07 is NOT allowed.	ell h
PF.E03	All N+AA must be covered by HVPF separately.	112
PF.E06	Minimum/Maximum HVPF enclosure of AA inside PSUB	
	PF.E06a 5v HVN/ZMOS	=0.150
	PF.E06b 15.5v HVN/ZMOS	=0.225
PF.E07	Minimum HVPF to HVPF space	0.60
PF.E08	Minimum HVPF width	0.60
PF.E09	Inside EEArray, N+AA for VSS is allowed NOT covered by HVPF.	
Note.1	HVPF inside EEPROM bitcell is blocked from DRC with DRC auxiliary layer RP93 and described in details on 7.7	1

"DRC AUXILIARY LAYERS"

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	48/135

7.6.8 VTNH (18EE) The (VTNH) layout layer is drawn to define VT adjust implant for HVNMOS and EEPROM Array.

RULE NO. DESCRIPTION

LAYOUT RULE

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	49/135

Layer	VTNH
	Below design rules apply to VTNH outside EEArrays ^{Note1}
VTN.E01	Minimum VTNH width 0.45
VTN.E02	Minimum VTNH to VTNH space. 0.45
VTN.E03	Minimum VTNH enclosure to related AA 0.30
VTN.E04	Minimum VTNH space to unrelated AA 0.30
VTN.E05	Minimum VTNH extension related P1 (GT) on AA 0.30
VTN.E06	Minimum VTNH space to unrelated P1 (GT) on AA 0.30
Note.1	VTNH inside EEPROM bitcell is blocked from DRC with DRC auxiliary layer RP93 and described in details on 7.7 "DRC AUXILIARY LAYERS" (VTNH)
	A.A A.A VTN.E03 VTN.E02 VTN.E04 A.A HVZMOS GT VTN.E05 VTN.E06 HVNMOS GT

7.6.9 TOW (18EE)

The (TOW) layout layer is drawn to define EEPROM tunnel window opens and special 3.3v MVN/PMOS.

Doc. No.:	D	oc. 0.18um e-EEPROM 2P3M (4M	/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR	-2002 N	Io.: Salicide 1.8V/3.3V/5.0V/15.5V	Process	11T	Rev:	No.:
		Layout Design Rule			0.9	50/135
RULE NO	DESCI	RIPTION	1		RIILE	
ROLL NO.	DLSCI		1	LAIOUI	RULL	
Layer	TOW					
TOW.E01	Below EEArr TOW N	design rules apply to TOW outside rays ^{Note1} , that is, special 3.3v MV N/P MUST cover AA of special 3.3v MV N/P	MOS. PMOS	N	\square	
TOW.E02	Minim	um TOW width	0	0.50	CII	
TOW.E03	Minim	um TOW-to-TOW space.	AL.	Merge if •	<0.60	P
TOW.E04	Minim	um TOW enclosure of related AA	UN.	0.30	S	
TOW.E05	Minim	um TOW space to un-related AA	0111	0.30	P	

Note.1 TOW inside EEPROM bitcell is blocked from DRC with DRC auxiliary layer RP93 and described in details on 7.7 "DRC AUXILIARY LAYERS"

7.6.10 Poly1-GT (18EE) The Poly1-(GT) layout layer is drawn to define Poly1 Gate of HVN/ZMOS, HVPMOS (Real/Quasi),

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	51/135

3.3v MV N/PMOS, PiP capacitor bottom-plate and EEPROM cell Select-Gate and Float-Gate.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	GT	
	Below design rules apply to GT outside EEArrays ^{Note1}	
GT.E01	Minimum width of GT	114
	GT.E01a Interconnect/Resistor purpose	0.60
	GT.E01b 15.5v HVNMOS (inside PSUB)	1.7
	GT.E01c 15.5v HVZMOS (inside PSUB)	2.1
	GT.E01d 16v Real HV PMOS (inside DNW)	1.0
	GT.E01e 5v HV NMOS (inside PSUB)	1.4
	GT.E01f 5v HVZMOS (inside PSUB)	1.8
	GT.E01g 5v Quasi-HV PMOS (inside DNW)	1.0
	GT.E01h 3.3v MV NMOS (inside TPW)	0.60
	GT.E01i 3.3v MV PMOS (inside DNW)	0.80
GT.E02a	Minimum space of GT to GT on FOX	0.40
GT.E02b	For 16v Real-HVPMOS, GT cross over AAs of different potential is NOT allowed. (field isolation) ^{Note.2} Minimum space of GT to GT on AA	
01.205	GT F03a outside DNW	0.40
~	GT E03h inside DNW not 16y Real-HVPMOS	0.40
	GT F03c inside DNW Real-HVPMOS (with CT between)	1.02
	GT F03d inside DNW Real-HVPMOS (without CT between)	1.92
GT F04	Minimum space of GT on FOX to related A A edge	1.34
GT E05	Minimum space of GT on FOX to un-related AA edge	0.20
01.205	GT F05a Except 16v Real-HVPMOS	0.20
	GT = 16x Paul HVPMOS	0.20
		0.45

Doc. No.: TD-EE18-DR	-2002	Doc. No.:	0.18um e-l Salicide 1. Layout De	EEPROM 2P 8V/3.3V/5.0 sign Rule	3M (4M/5M/6M) V/15.5V Process	Doc.Re 11T	v: Tech Dev Rev: 0.9	Page No.: 52/135
GT.E06	Minir (Resis	num sj stor pu	pace of GT or rpose)	n FOX to un-	related AA edge		0.45	5
GT.E07	Minir	num sp	pace of GT or	n AA to relate	ed AA edge.			
	GT.E	07a I	Except 16v R	eal-HVPMO	S		0.40)
	GT.E	07b 1	6v Real-HV	PMOS (with	CT between)		1.77	1
	GT.E	07c 1	6v Real-HVI	PMOS (witho	out CT between.)	11	1.39)
GT.E08	Minir	num e	xtension of G	T to related A	AA edge (end-cap)		0.35	;
Note.1	GT in auxili AUX	nside E iary lay ILIAR	EPROM bitco er RP93 and Y LAYERS"	ell is blocked described in	from DRC with I details on 7.7 "DF	DRC RC	J.	
Note.2	Interc when	connect ever po	at 16v HV le ossible	evel inside D	NW should be rou	ted in metal		

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	53/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	54/135

7.6.11 ONO (18EE)

The (ONO) layout layer is drawn to define the regions that remain ONO dielectric layer after ONO etch. (ONO) must cover all GT and AA of 5v/16v HVN/ZMOS, HVPMOS (Real/Quasi), 3.3v special MV N/PMOS and EEPROM arrays. (ONO) covering entire (PSUB), (DNW), and (TPW) is recommended.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	ONO	1111
ONO.E01	Minimum width of ONO	0.60
ONO.E02	Minimum space between ONO and ONO	0.60
ONO.E03	Minimum ONO enclosure of AA	0.60
ONO.E04	Minimum space for ONO to unrelated AA.	0.60
ONO.E05	Minimum ONO enclosure of P1 (GT).	0.60
ONO.E06	Minimum ONO enclosure P2 (CG)	0.60
ONO.E07	Minimum space for ONO to P2 (GP) outside ONO.	0.60
ONO.E08	All Poly1 (GT) must be inside ONO.	
ONO.E09	All Poly2 (CG) must be inside ONO, cross-over is forbidden	
ONO.E10	All Poly2 (GP) must be outside ONO, cross-over is forbidden	
ONO.E11	All AAs must be either inside or outside ONO, cross-o is forbidden.	ver

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	55/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	56/135

7.6.12 CG (18EE)

The Poly2-(CG) layout layer is drawn to define EEPROM cell Control-Gate and PIP capacitor top -plate.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	CG	111
	Below design rules apply to Poly2-(CG) outside EEArrays ^{Note1}	(14)
CG.E01	CG outside ONO is not allowed	
CG.E02	Minimum width of CG	0.50
CG.E03	Minimum width of CG for Resistor purpose	0.70
CG.E04	Minimum space of CG to CG	4
	CG.E04a on AA	0.40
	CG.E04b on FOX	0.40
CG.E05	Minimum space of POLY2 (CG) to POLY1 (GT)	
	CG.E05a Non-overlap case.	0.30
	CG.E05b Overlap, CG to GT space when CG inside GT (PiP)	0.35
	CG.E05c Overlap, CG to GT space when GT inside CG.	0.35
	CG.E05d Outside EEArrays, overlap of CG and GT must be cover by SAB	
CG.E06	Minimum space of POLY2 (CG) on FOX to related AA	0.20
CG.E07	Minimum space of POLY2 (CG) on FOX to unrelated AA	0.20
CG.E08	Minimum space of POLY2 (CG) on AA to related AA edge.	0.40
CG.E09	Minimum extension of POLY2 (CG) to AA (end-cap)	0.40
CG.E10	SP overlap of POLY2 (CG) Resistor is not allowed	
CG.E11	POLY2 (CG) resistor length is defined as POLY2 (CG) length crossed by SAB	
CG.E12	POLY1 (GT)/ONO/POLY2 (CG) Capacitor is allowed	

Doc. No.: TD-EE18-DR-2002	Doc. No.:	0.18um e-E Salicide 1.8	EPROM 2P3 3V/3.3V/5.0V	M (4M/5N /15.5V Pr	M/6M) ocess	Doc.Rev: 11T	Tech Dev Rev:	Page No.:
		Layout Des	sign Rule				0.9	57/135
Note.1 CG auxi AU2	inside EEI liary layer XILIARY	PROM bitce RP93 and o LAYERS"	ell is blocked : described in d	from DRC letails on 7	c with DRC 7.7 "DRC			
			(CG)			S		
!						CGE05		
			AA ↑ CG.E0*			GI SA	AB	
			CG.E02	2	cg	.E05d		:
:		1	CG.E0		2		CG	
CGE0	8 🖌 C(► G.E04	AA	CGE07	CGE03	←→ C CG.E05a	GT CG.E0:	5b
Ô			CG.E09)	CG Resistor			i
	N	CG.I	502				ONO	
	27	·	Χ.	$\mathbf{\mathbf{x}}$	·		•••	· · · '
			CG CGE01	CG				

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	58/135

7.6.13 GP

The (GP) layout layer is drawn to define Poly2 Gate-Poly of 1.8v N/PMOS.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	GP	\mathcal{O}
GP.01	Minimum width of a GP region for interconnects.	0.18
GP.02	Minimum width of a GP region for channel length of 1.8V PMOS / NMOS.	0.18
GP.03	Minimum space between two GP regions on AA with no contact.	0.25
GP.04	Minimum space between two GP regions on field oxide area.	0.25
GP.05	Extension beyond diffusion to form poly end cap	0.22
GP.06	Minimum extension from AA region to GP	0.32
GP.07	Minimum space between field interconnect poly and AA	0.10
GP.10a	Maximum length of salicide poly on STI between two contacts when poly width <=0.24um	50
GP.10b	Maximum length of salicide poly on STI between one contact and poly line end when poly width <=0.24um	50
GP.11a	90° bends on active area are not allowed	
GP.11b	GP must enter AA region perpendicularly.	
GP.13	Minimum space between two GP's with CT on active area.	0.375
GP.14	Minimum channel length of 1.8v device poly gate on AA with 45-degree	0.21
GP.E01	GP (Poly2) must be outside ONO, ONO overlap of GP is forbidden.	

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	59/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	60/135

Note: Poly2-(GP) resistor design rule. (recommendation)

- a. The resistor width is larger than $2.0\mu m$ and Nsq>=5
- b. The separation from SAB to contact on poly must be equal to $0.22\mu m$
- c. The space from an un-related SAB to a resistor poly must be $\geq 0.3 \mu m$
- d. The minimum separation between resistors with un-related implant region is $0.26 \mu m$
- e. The contact to pick-up poly resistor should be a single column
- f. Can not use dog-bone at the end of poly resistor for contact pick-up.
- g. PLL, NLL, are NOT allowed to overlap N+ or P+ GP resistor.

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	61/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	62/135

7.6.14 DDD (18EE)

The (DDD) layout layer is drawn to define 3.3v MV NMOS, 5v/15.5v HVN/ZMOS, EEArray NLDD implant regions.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	DDD	C = C = C = C = C = C = C = C = C = C =
	Below design rules apply to DDD outside EEArrays ^{Note1}	1141
DDD.E01	Minimum width of DDD	0.50
DDD.E02	Minimum space for DDD to DDD (merged if <0.5um)	0.50
DDD.E03	Minimum enclosure of DDD to related AA ^{Note2}	0.50
DDD.E04	Minimum space of DDD to unrelated AA.	0.30
DDD.E05	DDD inside DNW or NW is forbidden	N
DDD.E06	AA must be either fully inside DDD, or outside DDD.	
Note.1 Note.2	DDD inside EEPROM bitcell is blocked from DRC with DRC auxiliary layer RP93 and described in details on 7.7 "DRC AUXILIARY LAYERS" For butted diffusion regions, the DDD is allowed to cover the P+AA. But in mask-layer generation, it will use logic operation block the P+AA from DDD implant. (DDD)	n to AA
	Note.2 Butted Diff P+AA N+AA N+AA OT CONTRACT OF CONTRACT.	DDD.E04 DDD.E03 N+AA

Doc. No.: TD-EE18-DR	Doc.0.18um e-EEPROM 2P3M (4M/5M/6M)a-2002No.:Salicide 1.8V/3.3V/5.0V/15.5V Process Layout Design Rule	Doc.Rev 11T	Tech Dev Rev: 0.9	Page No.: 63/135
7.6.1 The (NLL)	5 NLL layout layer is drawn to define 1.8v NMOS NLDD implant	regions.		
RULE NO.	DESCRIPTION	~	LAYOUT R	RULE
Layer	NLL	1		
NLL.1	Minimum width of an NLL region	11	0.44	
NLL.2	Minimum space between two NLL regions. Merge if the s than $0.44 \mu m$	pace is less	0.44	
NLL.3	Minimum space between an NLL region and a P+ AA reg	gion	0.26	
NLL.4	Minimum space between an NLL region and a P+ pick-u region	p AA	0.10	
NLL.5	Minimum overlay from an NLL edge to an AA	12	0.23	
NLL.6	Minimum enclosure of an NLL region over SN active reg	gion	0.18	
NLL.8	Minimum enclosure of an NLL region to an N-channel p	oly gate	0.32	
NLL.9	Minimum area of an NLL region		0.40	
NLL.10	Separation from an NLL to a butted edge of a butted difference AA (inside P-Well)	ision P+	0.00	
NLL.12	Minimum enclosure of an NLL region over N-channel ald direction of poly gate	ong the	0.35	
NLL.13	Minimum NLL area for a N-channel poly gate must follo and NLL.12	w NLL.8		
NLL.14	NLL implant is NOT allowed in non-salicide AA/GP resiregion.	stor		
NLL.E01	NLL inside DNW or PSUB or TPW is forbidden.			

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	64/135

7.6.16 PLL The (PLL) layout layer is drawn to define 1.8v PMOS PLDD implant regions.

RULE NO. DESCRIPTION

LAYOUT RULE

Doc. No.:		Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page	
TD-EE18-DR	-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:	
			Layout Design Rule		0.9	65/135	
Layer	PLL						
PLL.1	Mini	mum wi	dth of a PLL region		0.44		
PLL.2	Mini than	mum spa 0.44µm	ace between two PLL regions. Merge if the space	e is less	0.44		
PLL.3	Mini Pwel	Minimum space from a PLL region to an N+ AA region. (inside 0. Pwell)					
PLL.4	Minimum space from a PLL region to an N+ pick-up AA region.						
PLL.5	Mini	0.23					
PLL.6	Minimum enclosure of a PLL region beyond a SP active region 0.18						
PLL.8	Minimum enclosure of a PLL region to a P-channel poly gate 0.32						
PLL.9	Mini	0.40					
PLL.10	Separation from a PLL to a butted edge of a butted diffusion N+ AA (inside N-Well)						
PLL.12	Mini direc	mum en tion of p	closure of a PLL region of P-channel along the oly gate)	0.35		
PLL.13	Mini and I	mum PL PLL.12	L area for a P-channel poly gate must follow I	PLL.8			

PLL.E01 PLL inside DNW or PSUB or TPW is forbidden.

Note: Diagram refers to 7.6.14 NLL and change N+ AA to P+AA, P+AA to N+AA, PW to NW and NW to PW, NLL to PLL and NLH to PLH

7.6.17 SN The (SN) layout layer is drawn to define N+ S/D implant regions.

RULE NO.DESCRIPTIONLAYOUT RULELayerSNSN.E01To be compatible to 0.18LG's mask-layer logic operation rules, SN

must be fully inside DNW or PSUB or TPW, or fully outside DNW

Doc. No.: TD-EE18-DR	2-2002 Doc. 0.18um e-EEPROM 2P3M (4M/5M/6M) Doc.Rev: Ten Salicide 1.8V/3.3V/5.0V/15.5V Process 11T Re Layout Design Rule 0.9	ch Dev ev:	Page No.: 66/135
	or PSUB or TPW. Partial-overlap of SN to DNW or PSUB or TPW is NOT allowed		
SN.E02	Minimum space of SN to DNW or PSUB or TPW	0.30	
SN.E03	Poly2(CG) must be fully inside SN, cross-over of SN to Poly2(CG) is NOT allowed.		
SN.E04	Minimum enclosure of SN to Poly2(CG)	0.26	
SN.E05	SN overlap of Poly1-(GT) inside NW is forbidden	11	
SN.E06	Minimum space of SN to non-SN Poly1(GT)	11	
	SN.E06a From an SN edge butted well pickup to a P-Channel P1(GT) 3.3v MV, 5v Quasi-HVPMOS (Show on SN layout). <0.3um extension of gate in the direction of GT	0.32	
	SN.E06b From an SN edge butted well pickup to a P-Channel P1(GT) Real-HVPMOS (Show on SN layout). <0.3um extension of gate in the direction of GT	1.20	
	SN.E06c From an SN edge to a $P1(GT) > = 0.3um$ extension of gate in the direction of GT	0.26	
SN.E07	Poly1(GT) for Resistor purpose must be covered by SN		
	Below design rules also apply to SN inside PSUB, DNW, TPW		
SN.1	Minimum width of an SN region	0.44	
SN.2	Minimum space between two SN regions. Merge if space is less than $0.44 \mu m$	0.44	
SN.3	Minimum space between a SN region and a P+ AA region. (inside N-well)	0.26	
SN.4	Minimum space between a SN region and a P+ pick-up AA region. if the distance between P+AA and NW ≥ 0.43 um.	0.10	
SN.5	Minimum space between a SN region and a non-butted edge of P-well pick-up P+AA region if the distance between P+AA and N-well $<0.43\mu m$	0.18	
SN.6	Minimum space from a SN edge to a P-channel Poly gate.	0.32	
SN.7	Minimum enclosure of a SN edge to an N-channel Poly gate.	0.32	
SN.8	Minimum overlap from a SN edge to an AA	0.23	

Doc. No.:		Doc.	0.18um e-	EEPROM 2	P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR	-2002	No.:	Salicide 1	.8V/3.3V/5.(esign Rule)V/15.5V Process	11T	Rev:	No.: 67/135
SN.9	Mini	mum en	closure of a	SN region b	eyond a SN active re	egion	0.18	077100
SN.10	Mini regio	mum en on if the	closure of a distance bet	SN region b ween N+AA	eyond an N+ pick-up and P-Well >=0.43	p AA 1m	0.02	
SN.11	Mini regio	mum en on if the	closure of a distance bet	N SN region b ween N+AA	beyond an N+ pick-up and P-Well < 0.43µ	p AA m	0.18	
	a. T b 0	Fo obey f between).44μm	this rule and N+ pick-up	l SN.3 simult AA and SP a	aneously, the minim active AA should be i	um space increased to	$\langle 0 \rangle$	>
	b. Т b 0	Го obey t between).36µm	this rule and N+ pick-up	l SN.5 simult AA and SP a	aneously, the minim active AA should be i	um space increased to	- Jan	
SN.12	Sepa AA (ration fr	rom a SN re -well)	gion to butte	d edge of a butted di	ffusion SP	0.00	
SN.13	Mini diffu	mum ex sion N+	tension of a AA/P+AA	SN region a	long the edge of a bu	utted	0.00	
SN.14	Mini	mum ar	ea of a SN r	egion	IIC .		0.40	
SN.15	Mini poly	mum ex without	tension of a SN or SP in	SN region b	eyond a poly as a res T allowed.	sistor. SAB	0.18	
SN.16	Mini direc	mum sp ction of p	pace from a spoly gate.	SN edge to a	P-channel Poly gate	along the	0.35	
SN.17	Mini direc	mum en ction of p	closure of a poly gate.	SN edge to	a N-channel Poly gat	te along the	0.35	
SN.18	SN i	s not allo	owed to ove	erlap with SP				
SN.19	It is p since	prohibite this ope	ed that SN b eration migh	eing generat nt violate SN	ed by the reverse ton .3 and SN.4	e of SP,		
SN.20	Mini SN.1	mum SN 7	N area for a	N-channel p	oly gate must follow	SN.7 and		

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11 T	Rev:	No.:
		Layout Design Rule		0.9	68/135

(SN)

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	70/135

7.6.18 SP

The (SP) layout layer is drawn to define P+ S/D implant regions.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	SP	
SP.E01	To be compatible to 0.18LG's mask-layer logic operation rules, SP must be fully inside DNW or PSUB or TPW, or fully outside DNW or PSUB or TPW. Partial-overlap of SP to DNW or PSUB or TPW is NOT allowed.	6
SP.E02	Minimum space of SP to DNW or PSUB or TPW	0.30
SP.E03	SP can NOT cover Poly2(CG), cross-over of SP to Poly2(CG) is NOT allowed.	A PROVIDE A PROVIDA PROVIDE A PROVIDE A PROVIDE A PROVIDA PROVID
SP.E04	Minimum space of SP to Poly2(CG)	0.26
SP.E05	SP overlap of Poly1(GT) inside PW is forbidden	
SP.E06	Minimum space of SP to non-SP Poly1(GT)	
	SP.E06a From an SP edge butted well pickup to a N-Channel P1(GT) HVN/ZMOS, <0.3um extension of gate in the direction of GT	0.32
	SP.E06b From an SP edge to a $P1(GT) > = 0.3um$ extension of gate in the direction of GT	0.26
SP.E07	Poly1(GT) for Resistor purpose can NOT be covered, or cross-over by SP SP = SP = SP = SP = SP = SP = SP = S	
SPE08	SP must be drawn inside Real-HVPMOS A A cross-over of SP to A A	
51.1.00	is NOT allowed.	
SP.E09	Minimum SP width inside Real-HVPMOS Active Area	
	SP.E09a with CT	0.82
	SP.E09b without CT	0.44
SP.E10	Min/Max space of SP inside AA to Poly1(GT) gate edge.	= 0.55
SP.E11	Min/Max space of SP inside AA to AA edge	= 0.40
SP.E12	Minimum Space of SP outside AA to Real-HVPMOS AA edge.	0.26
	Below design rules also apply to SP inside PSUB, DNW, TPW.	
SP.1	Minimum width of a SP region	0.44

Doc. No.:	Doc. 0.18um e-EEPROM 2P3M (4M/5M/6M) Doc.F	Rev: Tech Dev	Page
ID-EE18-DR	Layout Design Rule	Rev: 0.9	No.: 71/135
SP.2	Minimum space between two SP regions. Merge if the space is less than $0.44 \mu m$	0.44	
SP.3	Minimum space between a SP region and a N+ AA region (inside P-well)	0.26	
SP.4	Minimum space between a SP region and a non-butted edge of N+ pick-up AA region if the distance between N+AA and PW >=0.43um.	0.10	
SP.5	Minimum space between a SP region and a non-butted edge of N-well pick-up N+AA region if the distance between N+AA and P-well ${<}0.43 \mu m$	0.18	
SP.6	Minimum space from a SP edge to N-channel Poly gate.	0.32	
SP.7	Minimum enclosure of a SP edge to P-channel Poly gate.	0.32	
SP.8	Minimum overlap from a SP edge to an AA	0.23	
SP.9	Minimum enclosure of a SP region beyond a SP active region	0.18	
SP.10	Minimum enclosure of a SP region beyond a P-Well pick-up P+AA region if the distance between P+AA and N-Well >= $0.43 \mu m$	A 0.02	
SP.11	Minimum enclosure of a SP region beyond a P-Well pick-up P+AA region if the distance between P+AA and N-Well $< 0.43 \mu m$	A 0.18	
	c. To obey this rule and SP.3 simultaneously, P+ pick-up AA to S active AA minimum spacing must be increased to $0.44 \mu m$	N	
	d. To obey this rule and SP.5 simultaneously, P+ pick-up AA to S pick-up AA minimum spacing must be increased to 0.36μm	N	
SP.12	Separation from a SP region to butted edge of a butted diffusion SI AA (inside N-well)	N 0.00	
SP.13	Minimum extension of a SP region along the edge of a butted diffusion P+AA/N+AA	0.00	
SP.14	Minimum area of a SP region	0.40	
SP.15	Minimum extension of a SP region beyond a poly as a resistor. SA poly without SN or SP implant is NOT allowed.	B 0.18	
SP.16	Minimum space from a SP edge to N-channel Poly gate along the direction of poly gate	0.35	
SP.17	Minimum enclosure of a SP edge to P-channel Poly gate along the direction of poly gate	0.35	

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	72/135

- SP.18 SP is not allowed to overlap with SN
- SP.19 It is prohibited that SP is generated by the reverse tone of SN, since this operation might violated SP.3 and SP.4
- SP.20 Minimum SP area for a P-channel poly gate must follow SP.7 and SP.17

Note: Diagram refers to 7.6.16 and replaces SP as SN, P+AA as N+AA, N-Well as P-Well.

Doc. No.: TD-EE18-DR-2002	Doc. 0.1 No.: Sal La	8um e-EEPROM licide 1.8V/3.3V/5 yout Design Rule	2P3M (4M/5M/6M) .0V/15.5V Process	Doc.Rev: 11T	Tech Dev Rev: 0.9	Page No.: 73/135
Doc. No.: TD-EE18-DR-2002 Real-HVP SP.E11 SP.10 SP.10 SN 0.3um	Doc. 0.1 No.: Sai La P2(CG) SP.EO SP.EO P MOS SP SN.E06 SN.E06	8um e-EEPROM licide 1.8V/3.3V/5 yout Design Rule (SP 2.E03 SP 4 1(GT) SP.E10 SP.E09a/b SP.E09a/b	2P3M (4M/5M/6M) .0V/15.5V Process SP AA SP SP.E02a SP I SP.E02a SP I HVN SN.10	Doc.Rev: 11T SP.F SP E02b DNW, PSUB SP 2 SP	E01 E01 E01 F1(GT) F1(GT) N+	Page No.: 73/135
			SP 0.3um	SP.E06	▶ ▶ 2.E06	

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	74/135

7.6.19 SAB

The (SAB) layout layer is drawn to define regions to be blocked from salicidation.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	SAB ^{Note1,2}	
SAB.1	Minimum width	0.43
SAB.2	Minimum space	0.43
SAB.3	Minimum space to unrelated diffusion	0.22
SAB.4	Minimum space to contact	0.22
SAB.5	Minimum space to GT/CG/GP on diffusion	0.45
SAB.6	Minimum extension over related diffusion	0.22
SAB.7	Minimum extension of diffusion over related SAB	0.22
SAB.8	Minimum extension over related GT/CG/GP on field oxide	0.22
SAB.9	Minimum space of SAB to unrelated GT/CG/GP on field oxide	0.30
SAB.10	Minimum area of SAB	2.00
SAB.11	Below CTs in SAB area is forbidden	
	SAB.11a inside NW or PW	
	SAB.11b inside P+AA	
6	SAB.E01 ~ SAB.E07 apply to Real-HVPMOS only	
SAB.E01	SAB must cover Real-HVPMOS AA, only S/D contact regions are allowed to open SAB. (SAB Opening)	
SAB.E02	SAB Opening must be drawn inside SP in Real-HVPMOS AA, cross-over of SAB Opening to SP is NOT allowed.	
SAB.E03	Minimum SAB Opening width inside Real-HVPMOS AA	merge if < 0.52
SAB.E04	Minimum enclosure of SP to SAB Opening boundary (inside GT or AA)	0.15
SAB.E05	Minimum enclosure of SAB to Real-HVPMOS AA	0.25
SAB.E06	Minimum enclosure of SAB to Real-HVPMOS Poly1(GT)	0.25
SAB.E07	Minimum space of SAB opening on Poly1(GT) to Poly1(GT) boundary	0.20

Doc. No.: TD-EE18-D	R-2002	Doc. No.:	0.18um e-EEI Salicide 1.8V	PROM 2P3N /3.3V/5.0V/1	/1 (4M/5M 15.5V Proc	/6M) cess	Doc.Rev: 11T	Tech Dev Rev:	Page No.: 75/135
			Layour Desig					0.7	13/133
Note.2	Follo	w poly re	sistor guidelir	ne, if poly res	sistor is us	ed.			
Note.3	Iote.3For I/O and ESD, pls follow "0.18um EEPROM ESD/LatchUp Device Layout Guide Line " (TD-EE18-DR-2005)								
(SAB)									
							()	//	
	SAB C)pening `		SAB.E)6				
F	≀eal-HV	'PMOS		СТ	SAB.E07		SA	3	

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	76/135

(SAB)

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	77/135

7.6.20 CT

The (CT) layout layer is drawn to define contact hole opening.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	СТ	
	Below design rules apply to CT outside EEArrays ^{Note1}	
CT.01	Minimum/maximum contact size	0.22
CT.02	Minimum space between two contacts	0.25
CT.03	Minimum space between two contacts in a contact array with row and column numbers are both greater than 3.	0.28
CT.04	Minimum space between a poly (GT/CG/GP) CT and a diffusion region	V
	CT.04a CT on Poly2-GP to AA	0.20
	CT.04b CT on Poly1-GT/Poly2-CG to AA	0.40
CT.05	Minimum space between a poly gate (GT/CG/GP) to a diffusion CT	
	CT.05a Diffusion CT to Poly2-GP on AA	0.16
	CT 05b Diffusion CT to Poly1-GT on AA (5v)	0.19
	CT.05c Diffusion CT to Poly1-GT on AA(15.5v)	0.26
	CT.05d Diffusion CT to Poly2-CG on AA	0.22
CT.06	Minimum diffusion enclosure for a diffusion contact	
0	CT.06a outside (PSUB or DNW)	0.10
0	CT.06b inside DNW or PSUB	0.15
CT.07	Minimum poly enclosure for a Poly1(GT)/Poly2(GP)/Poly2(CG) contact	
	CT.07a Poly2-GP CT	0.10
	CT.07b Poly1-GT/Poly2-CG CT	0.20
CT.08	Minimum enclosure of a SP region beyond an AA contact region	0.12
CT.09	Minimum enclosure of a SN region beyond an AA contact region	0.12
CT.10	Poly (GT/CG/GP) CT on AA region is forbidden	

Doc. No.:		Doc.	0.18um e-EEPROM 2P3M	[(4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR	-2002	No.:	Salicide 1.8V/3.3V/5.0V/1	5.5V Process	11T	Rev:	No.:
			Layout Design Rule			0.9	78/135
CT.11	AAc	contact lo	cated on SN/SP boundary is	NOT allowed			
CT.12	Non-Salicide CT is ONLY allowed in PSUB, and the CT must be covered by SN.						
	CT.H	E01~E04	apply to Real-HVPMOS o	nly	~		
CT.E01	Mini AA c	mum spa or Poly1(ce of CT to SAB Opening of GT)	of Real-HVPMOS,	either on	0.1	15
CT.E02	Mini or Po	mum spa oly1(GT)	ce of CT to SP Opening of	Real-HVPMOS, ei	ther on AA	4 0.1	30
CT.E03	Mini	mum spa	ce of CT on AA to Poly1(G	T) of Real-HVPM	SC	0.8	85
CT.E04	Mini	mum spa	ce of CT on AA to AA edge	of Real-HVPMOS	\mathcal{O}	0.7	70

Note.1 CT inside EEPROM bitcell is blocked from DRC with DRC auxiliary layer RP93 and described in details on 7.7 "DRC AUXILIARY LAYERS"

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	79/135

(CT)

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	80/135

7.6.21 Metal-1 The (M1) layout layer is drawn to define Metal-1, first metal layer.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	M1	
M1.1	Minimum width of M1 region	0.23
M1.2	Minimum space between two M1 regions	0.23

Doc. No.:		Doc.	0.18um e-EEPROM	2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page			
TD-EE18-DR	-2002	No.:	Salicide 1.8V/3.3V/	5.0V/15.5V Process	11T	Rev:	No.:			
			Layout Design Rule			0.9	81/135			
M1.3	Mini	mum en	closure of M1 region of	over CT region		0.00)5			
M1.4	Mini	mum en	closure of M1 line end	l region bevond CT regior	n. (For CT	0.0	6			
	at 90	degree	corner, one side of me	tal enclosure must be cons	sidered as					
	line e	end regio	on)		~					
M1.5	Mini	mum sp	ace between Ml lines v	with one or both metal line	e width	0.6	0			
	and l	and length are greater than 10µm; the minimum space must be								
	main	tained b	etween a metal line an	d a small piece of metal ($<10\mu m$)	1/1				
	that I	s connee	cted to the wide metal	within 1.0µm range from	the wide	011	(c)			
M1.6	Mini		on of M1 ragion		1 1	0.2	0			
M1.0	IVIIII		ea of with region		11		0			
M1.7	Mini	mum de	ensity of M1 area	2/11	11	309	%			
	Dens	sity is ca	lculated as [total meta	l layout area]/[chip area]	11	Y				
	Dum	my patt	ern is required for tho	se with M1 density less th	nan 30%.	2				
M1.8	For c	lummy i	metal pattern, please c	heck SMIC dummy rule.	1					

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	82/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11 T	Rev:	No.:
		Layout Design Rule		0.9	83/135

7.6.22 Via-1

The (V1) layout layer is drawn to define Via-1, the first Via layer.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	V1	\sim
V1.1	Minimum/maximum size of a V1	0.26
V1.2	Minimum space between two V1	0.26
V1.3	Minimum metal 1 enclosure for a V1	0.01
V1.4	If Metal 1 line end beyond V1	0.06
	For V1 located at the 90 degree corner, one side of metal extension must be treated as end-of-line and the other side follows V1.3	Dr
V1.5	Stacked Via's and contacts are allowed	

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	84/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	85/135

7.6.23 Metal n

The (Mn) layout layer is drawn to define the Metal-2of 2P3M process.The (Mn) layout layer is drawn to define the Metal-2,3of 2P4M process.The (Mn) layout layer is drawn to define the Metal-2,3,4of 2P5M process.The (Mn) layout layer is drawn to define the Metal-2,3,4of 2P6M process.

RULE NO. DESCRIPTION

Layer Mn Minimum width of an Mn region 0.28 Mn.1 Mn.2 Minimum space between two Mn regions 0.28 Mn.3 Minimum extension of Mn region beyond Vn-1 region 0.01 Mn.4 Minimum extension of Mn line end region beyond Vn-1 region. 0.06 For Vn-1 located at 90 degree corner, one side of metal extension must be treated as end-of-line, the other side follows Mn.3. Mn.5 Minimum space between metal lines with one or both metal line width 0.60 and length are greater than 10µm; the minimum space must be maintained between a metal line and a small piece of metal (<10µm) that is connected to the wide metal within 1.0µm range from the wide metal Minimum area of a Mn region Mn.6 0.20 Minimum density of Mn area Mn.7 30% Density is calculated as [total metal layout area]/[chip area] Dummy pattern is required for those with Mn density less than 30%. Mn.8 As to metal dummy pattern, please check SMIC Dummy Rules.

* Refers to 7.12 for MIM design rule

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

LAYOUT RULE

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	86/135

7.6.24 Via-n	
The (Vn) layout layer is drawn to)
Γ (Va) large to large in decrease to	

The (Vn) layout layer is drawn to define the V	Via-1	of 2P3M I	Process.
The (Vn) layout layer is drawn to define the <u>V</u>	<i>lia-2</i>	of <u>2P4M</u> I	Process.
The (Vn) layout layer is drawn to define the <u>V</u>	Via-2,3	of <u>2P5M</u>	Process.
The (Vn) layout layer is drawn to define the <u>V</u>	Via-2,3,4	of <u>2P6M</u>	Process.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	Vn	U = U = U = U = U = U = U = U = U = U =
	Vn can be located at any region	$\langle \langle \rangle \rangle$
Vn.1	Minimum/maximum size of a Vn	0.26
Vn.2	Minimum space between two Vn	0.26
Vn.3	Minimum Mn enclosure for a Vn	0.01
Vn.4	Minimum enclosure of Mn over Vn along metal line direction	0.06
	For Vn located at the 90 degree corner, one side of metal extension must be treated as end-of-line and the other side follows Vn.3	
Vn.5	Vn can be fully or partially stacked on Vn-1, any stacked structure such as stacked Vn/Vn-1//V1/CT	

7.6.25 Top_Via(VT)

The Top_Via(V2) layout layer is drawn to define Via-2, the last Via of 2P3M Process. The Top_Via(V3) layout layer is drawn to define Via-3, the last Via of 2P4M Process. The Top_Via (V4) layout layer is drawn to define *Via-4*, the last Via of *2P5M* Process. The Top_Via (V5) layout layer is drawn to define Via-5, the last Via of 2P6M Process.

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	Top_Via	
VT.1	Minimum/maximum size of a VT	0.36
VT.2	Minimum space between two VT	0.35
VT.3	Minimum Mn-1 enclosure for a VT (Mn is top Metal)	0.01

Doc No ·		Doc	$0.18um e_{\rm FFPROM}$	2P3M (/M/5M/6M)	Doc Rev	Tech Dev	Page
TD FE18 DD	2002	No ·	Salicida 1 8V/3 2V/5	S OV/15 5V Process	11T	Rov:	No ·
ID-EE10-DK-	-2002	110		5.0 V/15.5 V FIOCESS	111		NU 07/125
			Layout Design Rule			0.9	8//135
VT.4	Mini	mum enc	losure of Mn-1 over V	T along metal line direct	ion	0.06	
	For N	Mn-1 loca	tted at the 90 degree co	orner, one side of metal e	xtension		
	is top	o Metal)	u as end-or-nne and u	le other side follows v 1.2			
VT.5	VT c struc	an be ful ture such	ly or partially stacked as stacked VT/Vn-2/	on VT/Vn-2/Vn-3, any s Vn-3//V1/CT	stacked	\mathcal{A}	
	(n=4	if 2P4M	process adopted)	4	//	118	
	(n=5	if 2P5M	process adopted)	~	1/	10	
	(n=6	if 2P6M	process adopted)		1	Nr.	
				~1/N	11	J.	
7.6.26 To	p Met	al-TM		1/1/1	\sim	P	
The (TM) la	vout 1	aver is dr	awn to define the last	Metal layer, which is M	3 for 2P3N	A process	

The (TM) layout layer is drawn to define the last Metal layer, which is M3 for 2P3M process. The (TM) layout layer is drawn to define the last Metal layer, which is <u>M4</u> for <u>2P4M</u> process. The (TM) layout layer is drawn to define the last Metal layer, which is <u>M5</u> for <u>2P5M</u> process. The (TM) layout layer is drawn to define the last Metal layer, which is <u>M6</u> for <u>2P6M</u> process.

(P)

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	TM – Top Metal	
TM.1	Minimum width of a top metal region	0.44
TM.2	Minimum space between two top metal regions	0.46
TM.3	Minimum extension of TM region over VT	0.09
TM.4	Minimum space between top metal lines with one or both metal line width and length are greater than 10μ m; this also includes all metals attached to these areas or extending out for a distance of 1.0μ m or less	0.60
TM.5	Minimum area of an TM region	0.56
TM.6	Minimum density of metal n area Density is calculated as [total metal layout area]/[chip area] Dummy pattern is required for those with TM density less than 30%.	30%
TM.7	As to TM dummy pattern, please check SMIC Dummy Rules.	

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	88/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	89/135

7.6.27 Polyimide

RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	PI - Polyimide	\wedge
PI.1	Minimum space between two polyimide open area	15
PI.2	Minimum space between polyimide open area to chip edge	15

Notice :

Generally PI is LOTA generated layer in SMIC, if it is drawn by customer, pls kindly follow the rule.

Polyimide

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11 T	Rev:	No.:
		Layout Design Rule		0.9	90/135

7.6.28 LAYOUT SUGGESTION FOR CIRCUIT YIELD OPTIMIZATION

Front-end concerns

- A. AA: add dummy patterns for isolated small structures or open areas around AA
- B. Poly: dummy Poly pattern density rule
 - B1 : GT pattern density had better be in 15% 55%.
 - GT pattern density calculation : GT/Chip
 - B2 : GP pattern density should be in 35% 85%.

GP pattern density calculation : [(ONO sd 0.25) + GP]/Chip

B3 : CG pattern density revise to 10% - 80%.

Notice :

If CG pattern density can not meet the spec, pls try to enlarge or scale the ONO area

CG pattern density can be adjusted by ONO enlarge or scale

CG pattern density calculation : (1 - (((((ONO su 0.25) su 0.25) sd 0.3) - CG)/chip))*100%

If pattern density is not meet the requirement, dummy pattern is suggested follow the 7.6.28 C. Follow the antenna rules to ensure gate oxide reliability.

- D. For the leakage concern, avoid 90 degree bent poly designs, which should be replaced by 45
- degree bent poly on AA with shortest length.
- E. Avoid island pattern designs for implantation layers.

Back-end concerns

- B. Add dog-bone or wider line end designs for metal lines.
- C. Use redundant contacts or Via's if possible.
- D. Avoid small metal island structures for stacked Via as possible.
- E. Follow the antenna rules to ensure gate oxide reliability.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	91/135

7.6.29 Dummy Pattern Layout Suggestion

Dummy pattern layout guide line for customer, customer should add dummy pattern by themselves if dummy pattern is necessary.

Pls kindly and carefully check the DRC after the dummy pattern added for the chip.

7.6.29.1	Dummy Metal Rule	
RULE NO.	DESCRIPTION	LAYOUT RULE
Layer	Dummy Metal Pattern	Unit : (um)
DM.01	Dummy metal line width	2
DM.02	Dummy metal line length	5
DM.03	Dummy metal space	2
DM.04	Displacement of adjacent dummy lines	2
DM.05	Space of dummy metal and the dummy metal block layer	2
DM.06	Space of dummy metal and the real metal	2
DM.07	Space between dummy metal and chip edge	2
DM.08	Space between dummy and MOS edge (Poly * AA)	2
	Poly means GT/GP/CG	
DM.09	Define GDSII 121 (DUMBM) as block layer for metal	
DM.10	No metal dummy layer is allowed under DUMBM	
DM.11	The dummy pattern of adjacent layer Mn and M_{n+1} need 90° rotate	
DM.12	Only whole dummy metal pattern is allowed, chopped pattern is not suggested	
DM.13	No dummy metal is allowed on CSD layer, space of dummy metal to CSD	2
DM.14	No dummy layer is allowed on BITCEL, space of dummy metal to BITCEL	2

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	92/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	93/135

7.7 DRC/LVS AUXILIARY LAYERS

User is RECOMMENDED to use following auxiliary layers for DRC/LVS purpose.

	Tech	Drawn Layer Name	Drawn Layer GDS Num	Description
1	18EE	RESDMY	(90)	Dummy Layer For DRC/LVS purpose: Define resistors other than covered by RESNW, RESAA, RESP1 CAD layers.
2	18EE	RLHVP	(91)	Dummy Layer for DRC/LVS purpose: Define Real-HVPMOS
3	18EE	5VHVNZ	(92)	Dummy Layer for DRC/LVS purpose: Define 5V HVN/ZMOS
4	18EE	BITCEL	(93)	Dummy Layer for DRC/LVS purpose: Define EEArray BitCell
5		RESNW	(95)	Dummy Layer For DRC/LVS purpose: Define NW resistors.
6		RESP1	(96)	Dummy Layer for DRC/LVS purpose: Define non-Salicide Poly2-(GP) resistors.
7		RESAA	(97)	Dummy Layer for DRC/LVS purpose: Define non-Salicide Diffusion resistors.
8	i.	CAPBP	(137)	Dummy Layer for DRC/LVS purpose: Capacitor Bottom Plate.
9	0	DMPNP	(134)	Dummy Layer for DRC/LVS purpose: Define 3.3v/1.8v BJT Device.
10	0	ESDIO	(133)	Dummy Layer for IO region DRC/LVS purpose: Define ESD/IO Device
11		HRP	(39)	Dummy Layer for HRP DRC/LVS purpose: Define High Resistor Poly Device
12	0	HRPDMY	(210)	Dummy Layer for HRP DRC/LVS purpose: Define High Resistor Poly Device
13		DSTR	(138)	Define diode for LVS purpose
14		OPCBA	(100)	Blocking layer for DRC/LVS operation on AA
15		OPCBP	(101)	Blocking layer for DRC/LVS operation on GP
16		OPCBM	(102)	Blocking layer for DRC/LVS operation on M1
17		MIMDMY	(88:1)	Define the dummy MiM

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	94/135

7.7.1 RESDMY (GDS#90)

RESDMY (GDS#90): DRC/LVS Auxiliary Layer for Resistor

a) To define Resistor other than covered by Res_P1, Res_AA, Res_NW. (e.g. TIM resistor)

b) User is RECOMMENDED to draw RESDMY to prevent possible False DRC/LVS errors on Resistors.

RULE NO. DESCRIPTION

LAYOUT RULE

Layer RESDMY. (GDS#90)

DRC.RE1 Those design rules specifically described for Resistor are checked with DRC auxiliary layer, RESDMY. The portions of NW/AA/GT/CG(Poly2) overlapped with

DRC.RE2 RESDMY is defined as Resistor.

RESDMY must entirely cover NW/AA/GT/CG/GP for

- DRC.RE3 resistor purpose.
- TIM resistor: AA.E01b is applied to " (AA) AND (TIM),
- DRC.RE4 which is inside RESDMY ".Inside RESDMY, except specifically described, other DRCDRC.RE5 items follow general design rules.

7.7.2 RLHVP (GDS#91)

RLHVP (GDS#91): DRC/LVS Auxiliary Layer for Real-HVPMOS

a) To define Real-HVPMOS region to discern between Quasi/Real-HVPMOS.

b) User is **RECOMMENDED** to draw **RLHVP** to prevent possible False DRC errors on Real-HVPMOS.

RULE NO. DESCRIPTION

LAYOUT RULE

Layer	RLHVP (GDS#91)
DRC.HP1	Those design rules specifically described for Real-HVPMOS are checked with DRC auxiliary layer, RLHVP.
DRC.HP2	RLHVP must entirely cover AA/GT/SP/SAB/CT of Real-HVPMOS.
DRC.HP3	AA/GT/SP/SAB/CT inside RLHVP are checked with Real-HVPMOS Design Rules.
DRC.HP4	Inside RLHVP, except specifically described, other DRC items follow general design rules.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	95/135

7.7.3 5VHVNZ (GDS#92)

5VHVNZ (GDS#92): DRC/LVS Auxiliary Layer for 5v HVN/ZMOS

a) To define 5v HVN/ZMOS to discern between 15.5v HVN/ZMOS.

b) User is RECOMMENDED to draw 5VHVNZ to prevent possible False DRC errors on 5v HVN/ZMOS.

RULE NO. DESCRIPTION

LAYOUT RULE

Layer 5VHVNZ (GDS#92)

DRC.MN1	Those design rules specifically described for 5v HVN/ZMOS are checked with DRC auxiliary layer, 5VHVNZ
DRC.MN2	5VHVNZ must entirely cover AA/HVPF/GT for 5v application.
	Inside 5VHVNZ, except specifically described, other DRC
DRC.MN3	items follow general design rules.

7.7.4 BITCEL (GDS#93)

BITCEL (GDS#93): DRC/LVS Auxiliary Layer for EEArray BitCell

a) To define EEArray BitCell for DRC.

b) User is RECOMMENDED to draw BITCEL to prevent possible False DRC errors on EEArray BitCell.

7.7.5 RESNW, RESP1, RESAA (GDS#95//96/97)

The usage of RESNW, RESP1, RESAA follows same guideline for SMIC 0.18um generic logic process.

7.7.6 CAPBP (GDS#137)

CAPBP (GDS#137): DRC/LVS Auxiliary Layer for PIP

- a) To define PIP for DRC.
- b) User is RECOMMENDED to draw CAPBP to prevent possible False DRC errors on PIP.
- c) Rule ONLY check from AA to CT

7.7.7 DMPNP (GDS#134)

DMPNP (GDS#134): DRC/LVS Auxiliary Layer for PIP

- a) To define 1.8/3.3V PNP for DRC&LVS
- b) User is RECOMMENDED to draw DMPNP to prevent possible False DRC errors on PNP.
- c) Rule ONLY check from AA to SAB

7.7.8 HRP,HRPDMY (GDS#39/ GDS#210)

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	96/135

HRP,HRPDMY (**GDS#39/ GDS#210**): DRC/LVS Auxiliary Layer for HRP Pls refer to layout example 7.12.2 **HRP DESIGN RULES**

7.7.9 FUSE (GDS#209)

FUSE (GDS#209): Define fuse window

Pls refer to layout example 7.8 METAL FUSE/ALIGNMENT MARK FOR LASER REPAIR AND STRESS RELIEF

7.7.10 EXCLU (GDS#132)

EXCLU (GDS#209): Define un-DRC area

- a.) Define un-DRC area
- b.) If seal ring drawn by customer, pls add this layer in seal ring for un-DRC purpose
- c.) Since seal-ring is un-DRC area, pls kindly make sure it is fully meet the design rule if it is drawn by customer

7.7.11 OPCBA (GDS#100)/ OPCBP (GDS#101)/ OPCBM (GDS#102)

OPCBA (GDS#100)/ OPCBP (GDS#101)/ OPCBM (GDS#102) : Define SRAM OPC block layer

- a.) Define SRAM area for SRAM model OPC on AA/GP/M1
- b.) These three layers are auto generated by library

7.7.12 MIMDMY(GDS# 88;1)

MIMDMY(GDS# 88;1) : Define dummy MiM patteren Used to distinguish MiM and dummy MiM

7.7.13 INST(GDS#60)

INST(GDS#60) : DRC/LVS Auxiliary Layer for EEArray BitCell

a) To define EEArray BitCell for DRC with BITCEL(GDS#93).

b) User is RECOMMENDED to draw INST to fully cover all EEArray Region.

c) These rules are based on SMIC provided EEPROM array layout to generate <u>ONLY</u> for DRC, and CTM must compare their own layout with SMIC array example before tape out.

From AA to CT(FEOL DRC check), only rules listed here are checked, BEOL follow standard rule Region covered by (BITCEL and INST)

RULE		DESCRIPTION	LAYOUT RULE
NO.			
Layer	Layer	EEPROM Cell Special Rule apply to EEPROM Cell	Unit (um)
EE.01	AAE_1	Minimum AA width	0.3
EE.02	AAE_2	Minimum space between two N+AA space (both inside PSUB)	0.28

Doc. No	o.:	Doc.	0.18um e-EI	EPROM 2P	3M (4M/5M/6M)) Do	c.Rev:	Tech Dev	Page	
TD-EE	18-DR-2002	No.:	Salicide 1.8	V/3.3V/5.0V	V/15.5V Process	11'	Т	Rev:	No.:	
			Layout Desi	gn Rule				0.9	97/135	
EE.03	TIM.3	Minimun	n TIM enclos	ure related	AA		Not n	ecessary		
EE.04	PF_6b	Minimum	n HVPF encl	osure AA in	PSUB		0.3	-		
EE.05	GTE.1c	Minimun	ı width of G	Г 15.5V HZ	NMOS (inside P	SUB)	1.4 [INS]	(wher F-BITCEL	e co)	vei
EE.06	GTE_8	Minimun	1 extension o	f GT to rela	ited AA edge (en	d-cap)	0.14 ((Byte-SG)		
EE.07	CG.2	Minimun	n width of CO	Ĵ			No is	sue, runset	to cover	
EE.08	CG.6_7	Minimun	1 space of PC	DLY2(CG)	on FOX to AA		0.05 ((Byte-SG)		
EE.09	CG_9	Minimun	1 extension o	f CG to AA	(end cap)		0.25 ((Byte-SG)		
EE.10	DDD.3	Minimun	1 enclosure o	f DDD to re	elated AA		0			
EE.11	DDD.4	Minimun	1 space of DI	OD to unrel	ated AA		0.3			
EE.12	DDD.6	AA must	be either full	ly inside DI	DD,or outside DI	DD	Not N	Jecessary		
EE.13	SAB_8	Minimun oxide is (1 extension).22um	of SAB ov	ver related poly	on field	d0			
EE.14	SAB_9	Minimun	n space of SA	AB to unrela	ated poly on field	oxide is	s 0.1 (E	Byte-SG)		
EE.15	CT_1	Mininmu	m/Maximum	contact siz	e is 0.22um		0.32 [INS]	(min.)(w Г*SAB])	here co	vei
EE.16	CT_4b	Minimun	n space betwe	een GT/CG	contact to AA is	0.40um	0.175	(Byte-SG)	
EE.17	CT_5c	Minimun AA(15.5	1 space betwo V) is 0.26um	een diffusio	n contact to GT_	poly on	0.2 0.2,bt 0.26	(Byte-SC) at Drain s	area, n side must	nini be
EE.18	CT_6b	Minimun region is	n enclosure of 0.15um (ints	of an AA r ide PSUB c	egion beyond an or DNW)	AA C	Г0.04 ((BL CT)		
EE.19	CT_10	CT on ga	te region is f	orbidden			Not n	ecessary		
EE.20	RES_1	Min. TIM	I extension C	T for TIM	resistor is 0.30		Use I array	NST layer check	, exclude (Cell
EE.21	RES_2	GT must	be drawn for	TIM resist	or		Use I array	NST layer check	, exclude (Cell
EE.22		ONO/PS	UB/SN/ spac	e is not allo	wed in INST					
EE.23	AA.E5	Minimun inside PS	n enclosure f UB)	from PSUB	edge to (P+AA	pick-u	p0.6			
EE.24	AA.E4	Minimun PSUB)	1 enclosure	from PSUI	B edge to (N+A	A insid	e2.5			
EE.25	SN.E4	Minimun	1 enclosure o	f SN to Pol	y2(CG)		0			
EE.26	SN.7	Minimun gate.	1 enclosure	of a SN ed	ge to an N-char	nel Pol	y0			
EE.27	SN.9	Minimun region	1 enclosure	of a SN reg	gion beyond a S	N activ	e0			
EE.28	SAB.5	Minimun	1 space to G7	C/CG/GP or	diffusion		0.4			
EE.29	sab.6	Minimun	1 extension o	ver related	diffusion		0			
EE30	AA.E3	Minimun inside PS	n space betw UB	een N+AA	to (P+AA pick-	up), bot	h0.30			

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	98/135

Not necessary : means cell do not check this rule

CLPDMY(GDS#87) : DRC/LVS Auxiliary Layer for SMIC provided the clamp diode

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	99/135

The rules list here is special for clamp diode, which do not same as periphery design rule

RULE		DESCRIPTION	LAYOUT RULE
NO.			
Layer	Layer	Clamp diode layout rule	Unit (um)
CLP.01	NWE_2	Minimum space NW to PSUB	0
CLP.02	SP_1	Minimum width of a SP region	0.43
CLP.05		Minimum enclosure of an AA region beyond an AA CT	0.09
	CT_6a	region is 0.10um (outside PSUB or DNW)	
CLP.06		Convention_BAD_IMP	Not necessary
CLP.07		Minimum space of CT to GT	0.55
CLP.08		Minimum AA space	0.50
CLP.09		Minimum DNW to PSUB	2.80
CLP.10		Minimum DNW enclosure N+AA	2.00
CLP.11		Minimum NW enclosure N+AA	1.02
CLP.12		ONO must cover all CLPDMY region	

7.8 METAL FUSE/ALIGNMENT MARK FOR LASER REPAIR AND STRESS RELIEF 7.8.1 Metal Fuse Rules

RULE NO.	DESCRIPTION	LAYOUT GUIDELI NE (Unit in µm)
2	1110.	
Fuse.1	Width of metal fuse	0.80
Fuse.2	Minimum space of metal fuse	4.00
Fuse.3	Minimum length of metal fuse	4.00
Fuse.4	Maximum length of metal fuse	10
Fuse.5	Minimum extension from GT to CT	0.30
Fuse.6	Minimum extension from M1 to CT	0.30
Fuse.7	Minimum extension from M1 to MT-1 to CT/V1~V3 (stacked via)	0.30
Fuse.8	Min. separation from fuse edge to p-well edge (p-type substrate are used)	8.00
Fuse.9	Min. separation from fuse to fuse window	3.50

Doc. No.:	Doc. 0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.: Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
	Layout Design Rule		0.9	100/135
Fuse.10	Min. separation from fuse window to protection ring	g	1.50	
Fuse.11	Width of V1~Vx-1 in protection ring		0.26	
	Width of Vx-1 in protection ring		0.36	
Fuse.12	Minimum extension from M1~Mx to V1~Vx-1 in p	protection ring	0.40	
Fuse.13	Minimum width of fuse window	1	5.00	
Fuse.14	Minimum length of fuse window	1/2	20	1
Fuse.15	Minimum width of polymide opening	11	30	2
Fuse.16	Min. extension from polymide window to passivation	on window	12	
Fuse.17	Min. separation between Via's inside protection ring	g) / / (g	0.00	
Fuse.18	Min. separation from metal island to protection ring	$U D_{i}$	1.00	

 In 2PxM process, MT-1 is required to be used as fuse. For Example:
In 2P6M process, M5 is required to be used as fuse.
In 2P5M process, M4 is required to be used as fuse.
In 2P4M process, M3 is required to be used as fuse.
In 2P3M process, M2 is required to be used as fuse.
In 2P2M process, M1 is required to be used as fuse.
In 2P2M process, M1 is required to be used as fuse.
Metal fuse has to be connected to GP through stacked Via/contact.

- Alignment Mark should be located at each corner of the chip.
- Alignment Mark should follow the Alignment Mark Rule for laser repairing.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	101/135

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	103/135

7.8.2 Alignment Mark for Laser Repairing

L mark should be on each corner of a chip

L mark should be the top metal layer and with passivation open above the target

L mark should be surrounded by protection ring

L mark and its protection ring can replace corner dummy pads to serve as stress-relieve structure, i.e., alignment marks do not occupy extra die area.

RULE NO.	DESCRIPTION	LAYOUT GUIDELIN E (Unit in µm)
	2/18/	V
Mark.1	Minimum width of mark	10
Mark.2	Minimum length of mark	40
Mark.3	Min. separation from a mark to the protection opening	30
Mark.4	Min. separation from passivation opening to protection ring	1.50
Mark.5	Min. and max. width of V1/V2/V3/V4 in protection ring	0.36
Mark.6	Min. extension from M1/M2/M3/M4/M5 to V1/V2/V3/V4	0.40

7.8.3 Metal Slot Suggestion rule This rule just suggestion rule for CTM to use .

RULE NO	DESCRIPTION	RULE
		(µm)
	The slot rules are applied to avoid thermal stress induce reliability issue.	
	All metal layers suggest to follow this rule.	
	The metal slot must be placed for wide metal lines. The wide metal is	
	defined as being $\geq 35 \mu m$ wide. Only bonding pad areas are excluded.	
SL.1a	Maximum width of an open slot	5
SL.1b	Minimum width of an open slot	2
SL.2	Minimum length of an open slot	20
SL.3a	Suggested maximum space between any two parallel open slots	35
SL.3b	Suggested minimum space between any two parallel open slots	10

Doc. No.:		Doc.	0.18u	m e-EEPR	ROM 2P3	3M (4N	//5M/6	M)	Doc.Rev:	Tech	Dev	Page	e
TD-EE18-DR-	2002	No.:	Salici	de 1.8V/3.	.3V/5.0V	V/15.5V	/ Proces	SS	11T	Rev:		No.:	:
			Layou	it Design I	Rule					0.9		104/	/135
SL.4a	Sugg	gested n	maximur	n space be	etween a	ny two	open sl	ots in a	a coaxial li	ine	35	5	
SL.4b	Suggested minimum space between any two open slots in a coaxial line 10												
SL.5a	Suggested maximum clearance between any open slot to the metal edge 35												
SL.5b	Suggested minimum clearance between any open slot to the metal edge 10												
SL.6	The length of the slot should be parallel to the current flow direction												
SL.7	Minimum clearance between two slots in neighbor layers (for example:2M1 slot and M2 slot, M2 slot and M3 slot)2												
SL.8	The	starting	g positio	n of the pa	arallel slo	ots show	uld be s	taggere	ed	0	11		

7.9 ANTENNA/SCRIBE LINE SEAL GUARD RING/ BOND PAD OPENING RULES Refer to

TD-LO18-DR-2004 0.18 micro LOGIC 1.8/3.3V Antenna Ratio / Scribe Line and Guard Ring Guideline / Bond Pad Opening Design Guide Rule

- Note: Seal Ring Layout for 0.18um e-EEPROM related mask layer,
 - a. DNW(292)/TIM (394)/PFLD(391)/VTNH(396)/TOW(320)/CG(330)/DDD(316)/PLL(113) => All Dark
 - b. GT(130)/ONO(321)/GP(331) ==>All Clear
 - c. Others follow same as those of 0.18um Generic Logic Process.
 - d. If seal ring drawn by customer, pls add layer EXCLU for un-DRC purpose in this area
 - e. Customer can also draw the seal-ring by themselves, here will explain how to draw the it .

Notice:

Customer has two option on seal-ring/scribe lane layout, one is request SMIC/Maskshop help do the

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	105/135

them, the other is do the them by CTM.

Here is the description for customer do the seal-ring layout and scribe lane

- a) If customer's pattern is different from the SMIC standard rule, seal-ring must be drawn by customer themselves.
- b) If customer draw the seal-ring/scribe lane by themselves, the pattern will be treated as main chip for mask manufacture.

Customer how to draw the seal-ring/Scribe lane :

Notice :

- 1. 0.18um EEPROM provide two kind of scribe lane, one is 60um, the other is 80um, pls kindle select it based on CTM requirement! And inform SMIC before tape out.
- 2. Only the layers list here are necessary!

Doc. No.:	Doc.	0.1	l 8um e	-EEPROM	2P3M (4M/5	M/6M)	Do	c.Rev: 7	Tech Dev	Page
TD-EE18-DR-2002	No.:	No.: Salicide 1.8V/3.3V/5.0V/15.5V Process						T F	Rev:	No.:
	Layout Design Rule							0	106/135	
									_	
	NO	layer	GDS	Assemble	Seal Ring		1	Scribe		
	11.0	name	ODD	Isolation	Start X=0	End	Size	lane		
	1	AA	10	N/A	0	9.2	9.2	60/80		
	2	SP	43	N/A	0	9.3	9.3	60/80		
	3	SAB	48	N/A	N/A	N/A	N/A	60/80	S	
	4	CT	50	N/A	1.30	1.56	0.26	N/A		
	4	CT	50	N/A	3.06	3.32	0.26	N/A		
	4	CT	50	N/A	4.82	5.08	0.26	N/A	11	
	5	M1	61	N/A	0	6	6	N/A	11	
Γ	6	V1	70	N/A	2.02	2.38	0.36	N/A	11)
Γ	6	V1	70	N/A	3.81	4.17	0.36	N/A		
	7	M2	62	N/A	0	6	6	N/A		
	8	V2	71	N/A	1.23	1.59	0.36	N/A		
Γ	8	V2	71	N/A	3.02	3.38	0.36	N/A	· · · ·	
	8	V2	71	N/A	4.81	5.17	0.36	N/A		
	9	M3	63	N/A	0	6	6	N/A		
	10	V3	72	N/A	2.02	2.38	0.36	N/A		
	10	V3	72	N/A	3.81	4.17	0.36	N/A		
	11	M4	64	N/A	0	6	6	N/A		
Γ	12	V4	73	N/A	1.23	1.59	0.36	N/A		
Γ	12	V4	73	N/A	3.02	3.38	0.36	N/A		
	12	V4	73	N/A	4.81	5.17	0.36	N/A		
	13	M5	65	N/A	0	6	6	N/A		
	14	V6	74	N/A	2.02	2.38	0.36	N/A		
	14	V6	74	N/A	3.81	4.17	0.36	N/A	7	
	15	M6	66	N/A	0	6	6	N/A	1	
A 1	16	PA	80	N/A	N/A	N/A	N/A	60/80		
0	17	PI	82	N/A	N/A	N/A	N/A	60/80		

- 3. N/A means it is not drawn!
- 4. Space between seal ring and scribe lane is for AR mask logic operation concern in AA layer
- 5. CT is not suggested for slit type in seal ring, only Via is allowed for slit type
- 6. If slit type seal ring is necessary, customer MUST draw seal ring.
- 7. Scribe lane drawing layer size is same as scribe lane size

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	107/135

7.10 ESD/LATCH-UP PREVENTION LAYOUT GUIDELINES

Refer to

TD-EE18-DR-2005 0.18um e-EEPROM 2P4M(5M/6M) Salicide 1.8v/3.3v/5.0v/15.5v ESD/Latch Up Layout Guide Line

7.11 CURRENT DENSITY RULES

Refer to

TD-LO18-DR-2006 0.18um LOGIC 1P6M Salicide 1.8/3.3V Current Density Design Rules

7.12 Option Layer Drawing Rule

7.12.1 1.8v Native device design rule --- PWI

This dummy layer is used for mask making, for 1.8v native NMOS only. If using 1.8v native NMOS in circuit, PW is generated by reverse tone of NW+DNW+PWI+PSUB+TPW for DRC (But mask generate, PW is reverse tone of (NW+DNW+PWI+PSUB))

Notice :

- 1. 1.8V Native device is an optional choice , and it may be different from 0.18 generic Logic. CTM should make careful evaluation before using Native Device.
- 2. 3.3V native device is not allowed.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	108/135

RULE NO.	DESCRIPTION	LAYOUT RULE (Unit in um)
		1.8V
PWI.1	PWI inside or cross over a N-WELL is not allowed	111
PWI.2	PWI MUST be surrounded by PW	(10)
PWI.3	Minimum dimension of PWI region	0.84
PWI.4	Minimum space between 2 PWI region	0.84
PWI.5	Minimum GP as gate dimension of 1.8V native device	0.50
PWI.6	Minimum and Maximum PWI enclosure beyond SN (N+) AA region	0.26
PWI.7	Minimum space from a PWI region to a normal AA region.	0.52
PWI.8	Minimum space from a PWI region to N-well edge	1.62
PWI.9	Bent gate poly is not allowed to put in PWI region	
PWI.10	P+ region is not allowed to put in PWI region	
PWI.11	Only one AA region is allowed to put in PWI region	
PWI.12	Minimum space from a PWI region to DNW edge	4.0
PWI.13	GT is not allowed in PWI	
PWI.14	NLL/SN MUST be drawn for Native device	

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	109/135

so.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	110/135

7.12.2 HRP DESIGN RULES

This layer is used to define high resistance poly region.

RULE NO.	DESCRIPTION	LAYOUT GUIDELIN E (Unit in µm)
HRP.1	It is strongly suggest that resistor square number > 5 for precision Rs	//Y
HRP.2	Minimum extension from HRP region beyond a PO resistor region	0.26
HRP.3	Minimum clearance from HRP region to GT/GP of NMOS	0.32
HRP.4	Minimum clearance from HRP region to GT/GP of PMOS	0.32
HRP.5	Minimum and maximum P+ implant for pickup overlap with SAB	0.30
HRP.6	Minimum extension from SAB region beyond a PO resistor region	0.22
HRP.7	Minimum width of Poly region for high resistance poly resistor	2.00
HRP.8	Dummy layer "HRPDMY" is needed for DRC for high resistance Poly region	
HRP.9	For contact rule, please follow Logic baseline rule	
HRP.10	It is not allowed to receive SN, and all LDD implant in the HRP region.	
HRP.11	HRP only drawn in NW or PW	

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	111/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	112/135

7.12.3 MIM DESIGN RULES

The MiM modules of 0.18um EEPROM process adopt TM-1/MIM/TV/TM layers. The MiM Structure is placed within top metal and previous 1 metal.

The (TM) layout layer is drawn to define the last Metal layer, which is M3 for 2P3M process. The (TM) layout layer is drawn to define the last Metal layer, which is <u>M4</u> for <u>2P4M</u> process. The (TM) layout layer is drawn to define the last Metal layer, which is <u>M5</u> for <u>2P5M</u> process. The (TM) layout layer is drawn to define the last Metal layer, which is <u>M6</u> for <u>2P6M</u> process.

RULE NO. DESCRIPTION

LAYOUT GUIDELINE

(Unit in µm)

MiM.1	Minimum width of MiM region as top plate	4.00
MiM.2	Minimum space between two MiM regions as top plate.	1.20
MiM.3	Minimum extension of MiM region beyond a Via which connect to this MiM	0.50
MiM.4	Minimum extension of bottom plate (Mn-1) region on a MiM region	0.50
MiM.5	MiM region cross bottom plate (Mn-1) Metal region is not allowed	
MiM.6	Maximum dimension of a MiM region as capacitor top metal	30.0
2	If capacitor lager than 30*30,please use combination of smaller capacitor	
MiM.7	Maximum dimension of a bottom metal (Mn-1) region in capacitor	35.0
0	If capacitor lager than 35*35, please use combination of smaller capacitor	
MiM.8	Minimum density of MiM pattern. Dummy MiM pattern suggested 2X 5µm with line space 1.5µm is required if density less than 3% Notice:	3%
MiM.9	1. Active devices under MiM are not preferred. However, when active devices (AA, CT, Via, metal layers) are used under MiM, it should follow the guideline:	
	a) MiM/Mn-1 as bottom plate and tie to fixed voltage. (i.e. GND or Vcc or Vss)	
	b) Designer must re-run circuit simulation with the extra parasitic	

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M	l) Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	113/135
	capa perf	acitance from Mn-1/ lower Mn layers. Ma formance is acceptable.	ke sure the AC		
MiM.10	Minimu Mn	m extension of capacitor bottom metal be	yond Via conne	ct to	0.20
MiM.11	Minimu	m clearance of a top Via to MiM region			0.50
MiM.12	Minimu	m space between two Via on MiM	12.	11	2.00
MiM.13	Minimu	m space between two Via on bottom meta	l (Mn-1)	011	1.00
MiM .14	Minimu	m width of dummy MiM region	1111	12	0.60
MiM.15	Minimu	m space of dummy MiM to MiM region	11/11	VY	0.80
MiM.16	Minimu	m space of dummy Mn-1 to Mn-1	111.	¥	0.80
MiM.17	Minimu below al	m space of MIM capacitor bottom(metal) l metal layers	Mn-1 with VIA	to	2.00
MIM.18	The MIN	A structure is placed within top metal and	next 1 metal		

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	114/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	115/135

ESD2 is only for customer self-define ESD implant, if customer need do the ESD implant based their own design, pls use this layer to define the ESD region.

Notice : If customer define ESD condition by themselves, pls inform SMIC related information for process run.

RULE NO.	DESCRIPTION	LAYOUT GUIDELINE
		(Unit in µm)
ESD2.1	Minimum width of ESD2 region	0.44
ESD2.2	Minimum space between two ESD2 regions.	0.44
7.12.5 ESI ESD3 is onl	D3 DESIGN RULES y to SMIC/Design Service for some special I/O design.	DH.
RULE NO.	DESCRIPTION	LAYOUT
		(Unit in µm)
ESD3.1	Minimum width of ESD3 region	0.44
ESD3.2	Minimum space between two ESD3 regions.	0.44

7.12.6 HVBN DESIGN RULES

HVBN function is same as 0.18um MM DNW which is used to isolate the PW of 1.8v NMOS from the substrate.

Only 1.8v Vcc is allowed to force on the NW, which is connected to the HVBN.

RULE NO.	DESCRIPTION	LAYOUT GUIDELIN E (Unit in µm)
HVBN.1	HVBN must be surrounded by NW	
HVBN.2	It's not allowed to use HVBN layer as resistor	
HVBN.3	Minimum extension of NW beyond HVBN	1.50
HVBN.4	Minimum overlap of NW onto HVBN	2.00

Doc. No.:	Doc. 0.18um e-EEPROM 2P3M (4M/5M/6	5M) Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.: Salicide 1.8V/3.3V/5.0V/15.5V Proce	ess 11T	Rev:	No.:
	Layout Design Rule		0.9	116/135
HVBN.5a	Minimum clearance from HVBN to NW, v connected to un-related HVBN	which is	3.00	
HVBN.5b	Minimum clearance from HVBN to NW, v connected to any HVBN	which is not	5.00	
HVBN.6	Minimum width of a HVBN region		3.00	
HVBN.7	Minimum space between 2 HVBN regions		5.00	
HVBN.8	Minimum clearance from NW edge to a N is outside a NW when HVBN is implement	+ AA region nted	0.50	
HVBN.9	Recommend to keep NW connected to HV reverse bias for lower leakage application	BN be in	VY.	
HVBN.10	It's not allowed to use NW connect to HV resistor	BN as	Y	
HVBN.11	TPW must be fully outside of HVBN	UN.		
HVBN.12	PWI must be fully outside of HVBN	ll.		
HVBN.13	Psub must be fully outside of HVBN	0.		
HVBN.14	DNW must be fully outside of HVBN	9		
HVBN.14	Minimum space of DNW to HVBN which with NW	is connected	8	
	1/1/			

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

N

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	117/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	118/135

- 7.13 Device Layout Examples
 - SMIC provide device layout examples for user's reference.
 - 1. User is RECOMMENDED to follow the guideline to design devices.
 - 2. The design rules otherwise stated follow those previously listed.
 - 3. User is RECOMMENDED to inform SMIC first if other special device design is adopted
- 7.13.1 Transistors

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11 T	Rev:	No.:
		Layout Design Rule		0.9	119/135

7.13.1.3 3.3v special MV NMOS

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	120/135

7.13.1.5 5v/15.5v HV NMOS, D/S DDD

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	121/135

7.13.1.7 5v Quasi-HVPMOS

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	123/135

7.13.2 Resistors

7.13.2.1 NW Resistor (under STI)

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	124/135

7.13.3 Capacitors

7.13.3.1 Buried N+ POLY1 (GT) /TOW Capacitor

Notice:

Buried N+ POLY1(GT)/TOW Capacitor(DNW) is an optional device PLS kindly take care of isolatin if this device used

7.13.3.2 POLY2 (CG) /ONO/POLY1(GT), P-i-P Capacitor

PIP ONO C RULE NO.	Capacitor DESCRIPTION	LAYOUT RULE
	PIP.01 – PIP.08 extra rule for PIP (w/i SAB & Partial SAB)	
PIP.01	Minimum CG width for PIP ONO capacitor	5
PIP.02	Minimum space of CT to Poly2(CG) or Poly1(GT) edge	0.35
PIP.03	Minimum enclosure of Poly1(GT) to Poly2(CG)	0.35
PIP.04	Minimum CG extension GT	0.35
PIP.05	Maximum CG width for PIP ONO capacitor	40

Doc. No.:	Doc. 0.181	um e-EEPROM 2P3M (4M/	5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.: Salic	ide 1.8V/3.3V/5.0V/15.5V I	Process	11T	Rev:	No.:
	Layo	ut Design Rule			0.9	125/135
PIP.06	Space of C	CT to CT for PIP			0.40	
PIP.07	CT on CG	which stack on GT is forbid	den			
PIP.08	If GT, CG	of PIP must be fully covered	l by SAB	5		
	Minimum	and Maximum of CT (w/i S.	AB)width	(C)	0.36	
	PIP.09 – P. needed	IP11 extra rule only for PI	P (Partial SA	AB)	$\langle l \rangle$	
PIP.09	Minimum	and Maximum of CT width	011	1	0.22	
PIP.10	Space of C	CT to SAB	114	11	0.22	
PIP.11	Width of S	AB enclosure GT or CG	U)	12	0.25	

POLY2(CG)/ONO/POLY1(GT) Capacitor

Notice : PIP.07 CT on CG which stack on GT is forbidden

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	126/135

POLY2(CG)/ONO/POLY1(GT) Capacitor(w/i SAB)

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	127/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	128/135

7.13.3.3 Stack Psub/POLY2 (CG) /ONO/POLY1(GT), Stack_P-i-P Capacitor

RULE NO.	DESCRIPTION	LAYOUT	
	A	RULE	
	Below extra rule is used for Stack PIP TOW & Stack PIP HVGOX capacitor	11	
SPIP.01	Min/Max CT w/o SAB block	0.22	
SPIP.02	SAB extention/enlosure CG	0.40	
SPIP.03	CT on CG to GT under CG	0.40	
SPIP.04	AA enclosure TOW	0.30	
SPIP.05	CT to CT	0.40	
SPIP.06	GT enclosure TOW	0.30	
SPIP.07	CG overlap GT	0.35	
SPIP.08	GT extension related AA	0.35	
Suggestion	Max GT length under CG	5.00	
C 1 DID		2	

Notice : Stack_PIP is a new device, is operation voltage had better be lower than 3.3v

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	129/135

Stack _PIP TOW Capacitor

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	130/135

Stack_PIP HVGOX Capacitor

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	131/135

7.13.4 BJT

7.13.4.1 1.8v- vertical BJT

Notice : BJT layout GDS in 0.18um EEPROM 2P4M Salicide 1.8/3.3/5/15.5V SPICE Model (Version 1.3) (TD-EE18-SP-2001)

v-BJT		
RULE NO.	DESCRIPTION	LAYOUT RULE
BJT18.01	Emitter AA width must be for v-BJT emitter	2.0/5.0/10.0
BJT18.02	Emitter AA must in NW	
BJT18.03	Collector AA width	2.0
BJT18.04	Base AA width	1.5
BJT18.06	SP enclosure emitter AA	0.35
BJT18.07	SP for emitter AA to base AA	0.65
BJT18.08	SN enclosure base AA	0.35
BJT18.09	SN for base AA to emitter AA	0.65
BJT18.10	SP enclosure collector AA	0.4
BJT18.11	SP for collector AA to base AA	1.1
BJT18.12	NW to collector AA	1.0
BJT18.13	NW enclosure base AA	0.5

Notice : All BJT rule is fixed value, pls follow it.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	132/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	133/135

7.13.4.2 3.3v- vertical BJT

Notice : BJT layout GDS in 0.18um	EEPROM 2P4M Salie	cide 1.8/3.3/5/15.5V SPICE	E Model
(Version 1.3) (TD-EE18-	-SP-2001)	~	

v-BJT	
RULE NO.	DESCRIPT
BJT33.01	Emitter AA

RULE NO.	DESCRIPTION	LAYOUT RULE
BJT33.01	Emitter AA width must be for v-BJT emitter	2.0/5.0/10.0
BJT33.02	Emitter AA must in DNW	Nr.
BJT33.03	Collector AA width	1.03
BJT33.04	Base AA width	1.5
BJT33.05	Collector AA to base AA	1.5
BJT33.06	Base AA to emitter AA	1.0
BJT33.07	DNW enclosure base AA	0.5
BJT33.08	DNW to collector AA	1.0
BJT33.09	TPW enclosure collector AA	1.0
BJT33.10	TPW to base AA	0.5
BJT33.11	SN enclosure AA	0.2
BJT33.12	SP enclosure AA	0.2

Notice : All BJT rule is fixed value, pls follow it.

AVOLIT

The information contained herein is the exclusive property of SMIC, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SMIC.

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	134/135

Doc. No.:	Doc.	0.18um e-EEPROM 2P3M (4M/5M/6M)	Doc.Rev:	Tech Dev	Page
TD-EE18-DR-2002	No.:	Salicide 1.8V/3.3V/5.0V/15.5V Process	11T	Rev:	No.:
		Layout Design Rule		0.9	135/135

7.13.5 1.8v Native device --- PWI

7.13.6 SRAM

SMIC library provide two type SRAM : Poly-Cross and Metal-Cross, Metal-Cross type SRAM is suggested, especially when customer adopt 2.88um² size EECell. (SMIC provide two type EECell, one cell size is 3.96um², the other one is 2.88um²)

Notice: If CTM have concern on two type SRAM meaning, pls contact with SMIC Design service department.

- 8. Attachments:
 - 8.1 Examples of device layout mentioned above GDSII files: SMIC_18EE_1.8vRealHV_DeviceExamples_V3p0.gds
 - 8.2 Layer mapping file ASCII file: SMIC_18EE_MAP_V3p0.map