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Chapter 1

Topologies

1.1 Topological Spaces
Definition. A “set” refers to a collection of objects. From now on, we will use calligraphical
letter to denote a set, for example X . The collection is written as X = {x1, . . . , xn}.

When we say “objects”, it means that they should be logically distinguishable. That is,
if x and y are two objects, x = y and x 6= y cannot hold simultaneously. The definition of
an object makes sense is known as showing that the object is well defined.
Remark 1. A set may have some properties. So people often use these properties to define a
set. A set associates with a property, say x which makes a function f(x) less than zero, we
should define the set in the following way:

X = {x : f(x) ≤ 0}.

Then X consists of all xs having the property f(x) ≤ 0.

Definition. We denote |X | the total number of elements that X contains. This number is
call cardinality. The cardinality of a singleton is one. The class of all subsets of a given set
X as

2X := {S : S ⊆ X},
which is called the power set of X .

Definition. The Cartersian product or product is a product of two non-empty sets A and
B, denoted as A×B. The Cartesian product A×B is a set of all ordered pairs (a, b) where
a comes from A and b comes from B

A× B := {(a, b) : a ∈ A b ∈ B}.

One can easily extend the definition to n-fold product, A1 × A2 × · · · × An or ⊕ni=1Ai in
short. The Cartesian product is not associative 1, so one can think the n-fold product as
n-vector.

1Any distinct objects a and b, we have {a} × {b} = {(a, b)} 6= {(b, a)} = {b} × {a}.

2



Definition. An order pair is an ordered list (a, b) where we distinguish between the first
and second elements. A relation is any set of ordered pairs. A function is a special kind of
relation.

Example 1. The order list is ordered in the sense that: For any two ordered pairs (a, b)
and (a′, b′), we have (a, b) = (a′, b′) iff a = a′ and b = b′. If one defines an order list using
only the concept of sets

(a, b) = {{a}, {a, b}},

then {{a}, {a, b}} = {{a′}, {a′, b′}} iff {a} = {a′} and {a, b} = {a′, b′}. Without distin-
guishing between the first and second elements, {{a}, {a, b}} = {{a, b}, {a}} so {a} = {a, b}
which contradicts the fact that {a} ⊂ {a, b}.

Definition. A relation is any set of ordered pairs. Let S be a subset of X ×X , then S is a
relation on X . S is an equivalence relation (∼, indifferent relation) 2 if it is

(1) reflexive: (x, x) ∈ S for all x ∈ X .
(2) symmetric: if (x, y) ∈ S for any x, y ∈ X , then (y, x) ∈ S.
(3) transitive: if (x, y) ∈ S and (y, z) ∈ S for any x, y, z ∈ X , then (x, z) ∈ S.

Beside these three properties, if for all x, y ∈ X , (x, y) ∈ S and (y, x) ∈ S implies that
x = y, then S is called antisymmetric.

Definition. A function (or a mapping): f from X to Y , denoted by

f : X 7→ Y

is a relation from X to Y i.e. f ⊂ X ×Y , in which every element of X appears exactly once
as the first component of an ordered pair in the relation.

Remark 2. We often write y = f(x) when (x, y) is an ordered pair in the function. In this
case, y is called the image (or the value) of x under f and x the preimage of y. We call X
the domain of f and call Y the codomain of f . The subset of Y consisting of those elements
that appears as second components in the ordered pairs of f is called the range of f and is
denoted by f(X ). A function is a rule that transforms one set into another, and refer to the
set of all ordered pairs (x, f(x)) as the graph of the function Gr(f):

Gr(f) := {(x, f(x)) ∈ X × Y : x ∈ X}.

Definition. A function f is called injective, if f(x1) = f(x2) implies that x1 = x2. A
function f : X 7→ Y is called onto, or surjective, if f(X ) = Y . Thus, f : X 7→ Y is onto iff
for any y ∈ Y , there is x ∈ X such that f(x) = y. f : X 7→ Y is called bijective if f is both
injective and surjective.

Definition. A set T is called an open set if it does not contain any of its boundary points.
2In economics, we usually write x ∼ y if (x, y) ∈ S. So the following expressions are simplified to for

x, y, z ∈ X : (1)x ∼ x (2) if x ∼ y then y ∼ x (3) if x ∼ y and y ∼ z then x ∼ z.
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Definition. A topology on Ω is a collection T of subsets of Ω, and satisfies the following
conditions:

(1) ∅ ∈ T and Ω ∈ T ,
(2) If Uα ∈ T for all α ∈ A, then ∪α∈AUα ∈ T .
(3) If Uj ∈ T for all 1 ≤ j ≤ n, then ∩nj=1Uj ∈ T .

Definition. The pair (Ω, T ) is call a topological space.

Definition. A topological space (Ω, T ) is called compact if, whenever we have a collection
Uα (α ∈ A) of open sets with ∪α∈AUα = Ω, we can find a finite subcollection Uα1 , Uα2 , . . . , Uαn
with αi ∈ A such that Un

i=1Uαi = Ω.

In other words, a set is compact if any cover by open sets has a finite subcover.

Remark. Memebers of Ω are called points. The members of T are open sets. Their comple-
ments, F = Ω\U , U ∈ T , are called closed set. There are sets that are niether closed nor
open, i.e. ∅ and Ω are both open and closed since they are complements of each other.

The continuity really depends only on topology.

Definition. (Continuity-topological language) Given topological spaces (Ω, T ) and (Υ,U),
a function f from Ω into Υ is called continuous iff for all u ∈ U , f−1(u) ∈ T .

We know that many complicated mathematical structures can be considered as a space
which locally looks like a simpler space. Hausdorff defined topologies in terms of neighbour-
hoods, it appears to be technically easier to define topologies in terms of open sets as we have
done in this course. However, topologists still use the notion of neighbourhoods. Loosely
speaking, an open neighbourhood of x is an open set containing x.

Definition. Given topological spaces (Ω, T ), if x ∈ Ω, we say that N is a neighbourhood of
x if we can find U ∈ T with x ∈ U ⊆ N .

Definition. (Continuity-topological language 2) Given topological spaces (Ω, T ) and (Υ,U),
a function f from Ω into Υ is continuous iff given x ∈ Ω andM a neighbourhood of f(x) in
Υ, we can find a neighbourhood N of x with f(N ) ⊆M.

Is it possible to define convergence in terms of neighbourhoods? In set theory, sequences
are inadequate tools for the study of topologies which have neighbourhood systems which
are ‘large in the set theoretic sense’. It turns out that the deeper study of set theory reveals
not only the true nature of the problem but also solutions via nets (a kind of generalised
sequence) or filters.

1.2 Metric Spaces
In this section, I will use bold letter v for vectors and natural letter v for real numbers.
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Definition. A (real) vector space consists of a set V with elements called vectors and two
operations with the following properties:

Vector addition: for each pair u,v ∈ V , there is a vector u + v ∈ V . This is
(1) commutativity: u + v = v + u for all u,v ∈ V .
(2) associativity: u + (v + w) = (v + u) + w for all u,v,w ∈ V .
(3) zero: there is a vector 0 ∈ V such that 0 + u = u = u + 0 for all u ∈ V .
(4) inverses: for each u ∈ V , there is a vector −u such that u + (−u) = 0.
Scalar Multiplication: for each pair v ∈ V and real number r ∈ R, there is a vector

rv ∈ V . This satisfies

(1)(r + s)u = ru + su (4)1v = v

(2)r(sv) = (rs)v (5)0v = 0

(3)r(u + v) = ru + rv (6)(−1)v = −v

Let V be a vector space over the real numbers R.

Definition. A norm on V is a nonnegative real-valued function ‖v‖ defined for v ∈ V such
that

(1) ‖v‖ = 0 if and only if v = 0,
(2) ‖t v‖ = |t| ‖v‖ for every v ∈ V and t ∈ R, as appropriate, and
(3) ‖v + w‖ ≤ ‖v‖ + ‖w‖ for every v, w ∈ V . Here |t| is the absolute value of t when

t ∈ R.

More generally, let n be a positive integer, and let V be the space Rn of n-tuples v =
(v1, . . . , vn) of real numbers. As usual, this is a vector space with respect to coordinatewise
addition and scalar multiplication.

Definition. The following norms are the other most common norms:
‖x‖∞ = max1≤i≤n |xi|, which is known as l∞-norm.
‖x‖1 =

∑n
i=1 |xi|, which is known as l2-norm.

Or more generally, ‖x‖p = (
∑n

i=1 |xi|p)
1/p which is known as lp-norm.

The metrics on Rn associated to the norms ‖x‖1, ‖x‖∞ determine the same topology as
the standard Euclidean metric. The main point is that ‖x‖1, ‖x‖2, and ‖x‖∞ are equivalent
norms on Rn for each positive integer n, in the sense that each is bounded by constant
multiples of the others.

Definition. Let V be a set and d : V × V → R and satifies:
(1) d(v,w) ≥ 0 for all v,w ∈ V .
(2) d(v,w) = 0 iff v = w.
(3) d(v,w) = d(w,v) for every v,w ∈ V .
(4) d(v,w) + d(w, z) ≥ d(v, z) for every v,w, z ∈ V . (triangle inequality)
then (V , d) is a metric space and d(·, ·) is a metric.

Example 2. If ‖v‖ is a norm on a norm vector space V , then d(v,w) = ‖v −w‖ defines a
metric on V .
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For instance, the standard Euclidean metric on Rn is the same as the metric associated
to the standard Euclidean norm in this way. The vector length ‖x‖ = (

∑n
i=1 |xi|2)

1
2 , is called

l2-norm and is denoted as ‖ · ‖2

Example 3. (l2 space) It is not difficult to see the length of x ∈ Rn, ‖x‖2 = (x2
1 + · · ·+x2

n)
1
2

, is a metric space.
(1) ‖x‖2 ≥ 0 and ‖x‖2 = 0 iff x = (0, · · · , 0).
(2) For all λ ∈ R, ‖λx‖2 = |λ|‖x‖2.
(3) For any x, y ∈ Rn, triangle inequality tells that ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2 (Cauchy-

Schwartz inequality).

Definition. Let H be a vector space over R with a mapping 〈·, ·〉 : H×H → R satisfying
(1) 〈αu+ βv, w〉 = α 〈u,w〉+ β 〈v, w〉.
(2) 〈v, w〉 = 〈w, v〉
(3) 〈u, u〉 ≥ 0
(4) If 〈u, u〉 = 0, then u = 0.
Because the mapping 〈·, ·〉 is called inner product, the space (H, 〈·, ·〉) or simply wirtten

as H is called inner product space. H is a normed space with ‖h‖2 =
√
〈h, h〉 for any h ∈ H.

The distance function imposes further features for balls.3 We now give the definition of
balls as follows.

Definition. A ball at a in Rn of radius r is the set

Br(a) = {x ∈ Rn : ‖x− a‖ < r}.

If (X , d) is a general metric space and r > 0,

Br(a) = {x ∈ X : d(x, a) < r}.

A ball Br(a) consists of all v such that d(a, v) < δ.

Example 4. Usually, the ball is used for describing an open set in metric space. For example,
a subset U of Rn is open if for every a ∈ U , there is some r = r(a) > 0 such that Br(a) is
contained in U .

Definition. A limit point x can be then thought as a point x ∈ X if every Bδ(x) with a
positive δ contains a point x′ ∈ X and x 6= x′.

Definition. We say that X is dense in a subset E if every point of E is a limit point of X .

Now we can define the continuity in our “new” space.

Definition. (Contuinity-metric language) Let (X , d) and (Y , ρ) be metric spaces. A function
f : X → Y is called continuous if, given t ∈ X and ε > 0, we can find a δ(t, ε) > 0 such that

ρ(f(t), f(s)) < ε whenever d(t, s) < δ(t, ε).
3(OK) calls these balls δ-neighborhood.
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Similarly, we can define openness by using the metric. We say a subset E in X is open if
whenever e ∈ E , we can find a δ(e) > 0 such that x ∈ E whenever d(x, e) < δ(e).

The second class of well behaved sets identified by Cantor were the closed sets. In order
to define closed sets in metric spaces, we need a notion of limit. Fortunately, the classical
definition generalizes without difficulty.

Definition. (Convergence) Consider a sequence (xn)∞n=1 in a metric space (X, d). If x ∈ X
and given ε > 0, we can find an integer N ≥ 1 (depending on ε) such that

d(xn, x) < ε for all n ≥ N,

then we say xn → x as n→∞ and that x is the limit of the sequence (xn)∞n=1.

Definition. Let (X, d) be a metric space, A set F in X is said to be closed if, whenever
xn ∈ F and xn → x as n→∞, it follows that x ∈ F .

Example 5. In Rn with Euclidean metric, then one point set {x} is not open. However if
(X, d) is a discrete metric space, then {x} = B1/2(x) and all subsets of X are both open and
closed.

Definition. LetX be a metric space and S ⊆ X. The largest open set inX that is contained
in S is called the interior of S (intX(S)). The smallest closed set in X that contains S is
called the closure of S (clX(S)).

Definition. Let V be a real vector space. A set E ⊆ V is said to be convex if for every
x, y ∈ E and real number t with 0 < t < 1, we have that t x+ (1− t) y ∈ E .

Example 6. If ‖ · ‖ is a norm on V , then the closed unit ball B̄1 := {v ∈ V : ‖v‖ ≤ 1} is a
convex set in V . Similarly, the open unit ball B1 := {v ∈ V : ‖v‖ < 1} is also a convex set
in V .

Definition. Let (xn)∞n=1 be a sequence in the metric space (X, d). For every ε, there is an
integer N(ε) such that

d(xn, xm) < ε

for all m,n ≥ N(ε). Then (xn)∞n=1 is called Cauchy sequence.

Definition. A metric space (X, d) is said to be complete if every Cauchy sequence in X
converges to an element of X. Note that completeness is not a topological property

Remark 3. IfM is complete and N ⊆M, then N is complete with respect to the restriction
of d(x, y) to x, y ∈ N if and only if N is a closed set inM.

Let V be a real vector space equipped with a norm and hence a metric. If V is complete
with respect to this metric, then V is said to be a Banach Space. If the norm is also associated
to an inner product, then V is said to be a Hilbert Space. In other words, a Hilber space is
a complete inner product space.
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1.3 Compactness and Completeness in Rn

Theorem 1. (OK p.164 Example 11) Every Cauchy sequence in Rn converges. Thus, Rn is
complete.

Proposition 1. Let (xn) be a seuqence in a metric space X,
(1) If (xn) is convergent, then it is Cauchy,
(2) If (xn) is Cauchy, then (xn) is bounded, but (xn) need not converge in X. (i.e. (1/n)

as a sequence in the metric space (0, 1]).
(3) If (xn) is Cauchy and has a subsequence that converges in X, then it converges in X

as well.
(4) If x ∈ X, x′ ∈ X, and if (xn) converges to x and to x′, then x′ = x.

Remark 4. While (0, 1] is not a complete metric space, [0, 1] is a complete metric subspace
of R. This suggests a tight connection between the closedness of a set and its completeness
as a metric subspace. Indeed, a complete subspace of a metric space is closed.

Theorem 2. (Bolzano–Weierstrass Theorem) Every bounded sequence of real numbers has
a convergent subsequence.

Definition. (In Rn) A subset X ⊂ Rn is compact if every sequence (xn)∞n=1 of points in
X has a convergent subsequence (xni)

∞
i=1 with limit x = limi→∞ xni in X. (Actually it is a

proposition, please see p.134 OK for the proof)

Remark 5. Bolzano–Weierstrass Theorem states that every bounded sequence has a conver-
gent subsequence. Using this new language, we may deduce that every subset of Rn that is
both closed and bounded is compact.

Lemma 1. A compact subset of Rn is closed and bounded.4

Proof. Let C be a compact subset of Rn. Suppose that x is a limit point of C, say x =
limn→∞ cn for a sequence (cn) in C. Then this sequence has a subsequence (cnk) converging
to a point c in C. Therefore,

x = lim
n→∞

cn = lim
i→∞

cni = c ∈ C.

Thus C is closed.
To show that C is bounded, suppose that it were unbounded. That means that there is

a sequence cn ∈ C such that ‖cn‖ > n for each n ≥ 1. Consider the sequence (cn). If there
were a convergent subsequence (cni) with limit c, it would follow that

‖c‖ = lim
i→∞
‖cni‖ ≥ lim

i→∞
ni = +∞.

C must be bounded.
4A subset X of Rn is called bounded if there is a real number R such that X is contained in the ball

BR(0).

8



Theorem 3. (Heine-Borel) A subset of Rn is compact iff it is closed and bounded.

In every analysis related course, especially economic theory and theoretical econometrics,
a lot of effort is spent finding the maximum or minimum of various functions. Sometimes
there were theoretical reasons why such a point should exist. However, generally it was
taken on blind faith (as our blind faith in utility maximization). A positive news is that the
function may attain its maximum value even the function is quite bad, in the sense that it
is not differentiable. To conclude this section, we will see how our new topological tools can
explain this phenomenon.

Theorem 4. If f is a continuous mapping of a compact metric space X into a metric space
Y. Then f(X ) is compact.

Theorem 5. (Extreme Value Theorem) Let C be a compact subset of Rn, and let f be a
continuous function from C into Rn. Then there are points a and b in C attaining the
minimum and maximum values of f on C. That is

f(a) ≤ f(x) ≤ f(b)

for all x ∈ C.

(Think about the hyperbolic cotangent function.)
How is the connection between compactness and completeness in metric spaces?

Theorem 6. (p.171 OK) A metric space is compact iff it is complete and totally bounded.

1.4 Exercises
1. Prove the following statement: A set A ⊂ Rn is open iff if the complement of A,
Ac = {x ∈ Rn : x /∈ A}, is closed. [answer: Let A be open. (xn) is a sequence in Ac
with limit x. If a if any point in A, there is r > 0 such that Br(a) is contained in A.
Hence ‖a− xn‖ ≥ r for all n ≥ 1. Therefore

‖a− x‖ = lim
n→∞

‖a− xn‖ ≥ r.

In particular, x 6= a. This is true for every point in A and hence x ∈ Ac. This is Ac
is closed. Conversely, suppose A is not open. Then there is some a ∈ A such that for
every r > 0, the ball Br(a) is not contained in A. In particular, if r = 1/n, we can
define xn ∈ Ac such that ‖a− xn‖ < 1/n. Then a = limn→∞ xn is a limit point of Ac
belonging to A. Hence Acis not closed. Contradiction.]

2. Prove Proposition 1.

3. Prove Extreme value theorem.
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4. In l∞, we mean the set of all bounded real sequences, that is

l∞ := {(xm) ∈ R : sup{|xm| : m ∈ N} <∞} .

It is implicitly understood that this set is endowed with the metric d∞ : l∞× l∞ → R+

with
d∞((xm), (ym)) := sup{|xm − ym| : m ∈ N}.

The metric is called sup-metric on the set of all bounded real sequences. Prove (l∞, d∞)
is s a complete metric space. Hint: You can refer to the proof of Example 11 (4) in
(OK).
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Chapter 2

Continuity, Convergence in Functions

You must be familiar with Riemann integrals. But in this course, what we will use is the
Lebesgue integrals. Riemann integral, which forms the curical part in introductory analysis
courses, has many deficiencies and thus it does not suffice for more advanced applications.
To realize these deficiencies, we now have a tour in continuity and convergence for functions.
It seems that the standard continuity and convergence requirements are too “relaxing” for
Riemann integral. We need stronger requirements for both the continuity and convergence.

A trivial step is to assume f bounded and continuous on [a, b] except at many points.

Example 7. (Dirichlet) Consider a function which is continuous at “almost all” points of
[a, b].

f(x) =

{
1
n

if x = m
n
∈ Q

0 if x /∈ Q.

This function is Riemann-integrable.

Above example is to show that f is Riemann-integrable iff it is continuous at “almost all”
points of [0, 1]. What about the function is “too discontinuous”? In other words, what if f
is discontinuous at “almost all” points of [0, 1].

Example 8. Consider the upper and lower sums for the indicator function 1Q of Q over
[0, 1]. When we partition [0, 1], each subinterval must contain both rational and irrational
pointsl; thus each upper sum is 1 and each lower sum 0. Hence we cannot calculate the
Riemann integral of f over the [0, 1].

Remark 6. The example shows that we have no easy way of integrating over more general
sets, or of integrating functions whose values are distributed ‘awkwardly’ over sets that differ
greatly from intervals.

Apart from the problem of continuity, there is a more serious issue for Riemann integral:
Riemann integral doesn’t interact well with taking the limit of a sequence of functions. The
difficulties arise if the function (fn) converge to f pointwise, i.e. fn(x) → f(x) for all x. 1.
The limit need not be Riemann integrable and so the convergence question does not even
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make sense. 2. Even the limit is Riemann integrable, the convergence of Riemann integrals
does not hold.

Example 9. Take f = 1Q, fn = 1An where An = {q1, . . . , qn} and the sequence (qn), n ≥ 1 is
an enumeration of the rationals, so that (fn) is monotone increasing. We know fn(x)→ f(x)
for all x. However, as in the above example, f is not Riemann integrable.

Example 10. Let f = 0. Consider the interval [0, 1] and fn(x) such that

fn(x) =


4n2x if 0 ≤ x < 1

2n
,

4n− 4n2x if 1
2n
≤ x < 1

n
,

0 if 1
n
≤ x ≤ 1.

This is a continuous function with integral 1. On the other hand, the sequence fn(x) con-
verges to f = 0 for all x on [0, 1].

Remark 7. To avoid the convergence problem, we can use the idea of uniform convergence.

2.1 Uniform Continuity
Definition. Let (M, d(x, y)) and (N , ρ(u, v)) be metric spaces. A mapping f :M→ N is
said to be uniformly continuous if for every ε > 0 there is a δ > 0 such that ρ(f(x), f(y)) < ε
for every x, y ∈M with d(x, y) < δ.

Uniformly continuous mappings are continuous in particular. One can check that f :
M→N is uniformly continuous iff for every pair of sequences {xj}∞j=1, {yj}∞j=1 of elements
ofM such that limj→∞ d(xj, yj) = 0,

lim
j→∞

ρ(f(xj), f(yj)) = 0.

It is easy to see that the composition of two uniformly continuous mappings is uniformly
continuous, using the definition of uniform continuity in terms of ε’s and δ’s, or the charac-
terization of uniform continuity in terms of sequences.

Remark. If f :M→N is uniformly continuous and {wl}∞l=1 is a Cauchy sequence of elements
ofM, then {f(wl)}∞l=1 is a Cauchy sequence in N . If f is uniformly continuous and E ⊆M
is totally bounded, then f(E) is totally bounded in N . The sum of two uniformly continuous
functions is uniformly continuous, as is the product of such a function and a constant. The
product of two bounded uniformly continuous functions is uniformly continuous.

Proposition 2. Let (M, d(x, y)) and (N , ρ(u, v)) be metric spaces. A mapping f :M→N
is continuous. IfM is compact, then f is uniformly continuous.
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Proof. To see this, let ε > 0 be given. For each x ∈M, there is a δ(x) > 0 such that

ρ(f(y), f(x)) <
ε

2

when y ∈M and d(y, x) < δ(x), by continuity. If Bδ(x)/2(x) is the open ball inM with center
x and radius δ(x)/2, then the open balls Bδ(x)/2(x), x ∈ M, cover M. By compactness,
there are finitely many elements x1, . . . , xk of M such that M ⊆

⋃k
i=1Bδi/2(xi). Put δ =

min(δ(x1)/2, . . . , δ(xk)/2), and let x, y be arbitrary elements of M such that d(x, y) < δ.
There is an i, 1 ≤ i ≤ k, such that x ∈ B(xi), and for which d(y, xi) < δ(xi)/2 + δ ≤ δ(xi),
by the triangle inequality. It follows that

ρ(f(x), f(y)) ≤ ρ(f(x), f(xi)) + ρ(f(xi), f(y)) <
ε

2
+
ε

2
= ε,

as desired.

A continuous map from a metric space (X , d) into another metric (Y , ρ) remains contin-
uous if we remetrize X ( Y ) by a equivalent metric to d ( ρ ). This is in general not true
for uniform continuity.

Proposition 3. Let X and Y be two metric spaces. f : X → Y is uniformly continuous. If
(xn) is a Cauchy sequence in X , then f(xn) is Cauchy.

Let’s see an application of uniform continuity.

Definition. Let (M, d(x, y)) be a metric space. ϕ :M→M is a strict contraction in the
sense that there is a positive real number c < 1 such that

d(ϕ(x), ϕ(y)) ≤ c d(x, y)

for every x, y ∈M. If x, x′ ∈M are fixed by ϕ, which is to say that ϕ(x) = x and ϕ(x′) = x′,
then d(x, x′) = d(ϕ(x), ϕ(x′)) ≤ c d(x, x′), which implies that d(x, x′) = 0 since c < 1 and
hence that x = x′.

Theorem 7. (Contraction Mapping Theorem) Let (M, d(x, y)) be a metric space and ϕ :
M → M is a strict contraction. If M is complete, then there is an x ∈ M such that
ϕ(x) = x.

Proof. Let z be any point in M, and consider the sequence {zn}∞n=1 of elements of M
defined recursively by z1 = z, zn+1 = ϕ(zn). Thus d(zn+2, zn+1) ≤ c d(zn+1, zn) for each n.
By repeating this, we get

d(zn+1, zn) ≤ cn−1 d(z2, z1)

for every n ≥ 1, and hence

d(zn+l, zn) ≤
l−1∑
i=0

d(zn+i+1, zn+i) ≤
l−1∑
i=0

cn+i−1 d(z2, z1)

≤ cn−1
( ∞∑
i=0

ci
)
d(z2, z1) =

cn−1

1− c
d(z2, z1)
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for l, n ≥ 1. This implies that {zn}∞n=1 is a Cauchy sequence inM, which converges because
M is complete. Moreover,

ϕ
(

lim
n→∞

zn

)
= lim

n→∞
ϕ(zn) = lim

n→∞
zn+1 = lim

n→∞
zn

since ϕ is continuous.

2.2 Uniform convergence
Definition. Let (X , d), (Y , ρ) be metric spaces. A mapping f : X → Y is said to be bounded
if f(X ) is a bounded set in Y . Let B(X ) be the space of bounded functions. Let Cb(X ,Y)
be the space of bounded continuous mappings from X into Y . The supremum metric on
Cb(X ,Y) is defined by

d∞(f1, f2) = sup{ρ(f1(x), f2(x)) : x ∈ X}

for f1, f2 ∈ Cb(X ,Y).

Definition. Let (X , d) be a metric space, and let Cb(X ) be the space of bounded continuous
real-valued functions on X , i.e., Cb(M) = Cb(M,R).

Definition. Let X be a set, let (Y , ρ(u, v)) be a metric space, and let fn, n ≥ 1, and f be
functions on X with values in Y . If

lim
n→∞

|fn(x)− f(x)| = 0

in Y for all x ∈ X , then we say that the sequence of functions fn converges pointwise to f
on X .

Definition. For any bounded function f ∈ B(X ) and continuous bounded functions fn ∈
Cb(X ), uniform converges means

lim
n→∞

sup{|fn(x)− f(x)| : x ∈ X} = 0.

where sup{|fn(x)− f(x)| : x ∈ X} is called the supremum metric.

Remark 8. In the case of bounded functions, uniform convergence is identical to convergence
with respect to d∞. The following is a general definition of uniform convergence.

Definition. Let X be a set, let (Y , ρ(u, v)) be a metric space, and let fn, n ≥ 1, and f be
functions on X with values in Y . If for every ε > 0 there is a positive integer N such that

ρ(fn(x), f(x)) < ε

when n ≥ N in Y for all x ∈ X , then we say that the sequence of function fn uniformly
converges to f on X .

14



It is easy to see that uniform convergence implies pointwise convergence.

Proposition 4. For the d∞(·, ·) metric on Cb(X ,Y), a sequence (fn) of elements of Cb(X ,Y)
converges to f ∈ Cb(X ,Y) in the supremum metric iff (fn) converges to f uniformly.

Proposition 5. Suppose that (X , d), (Y , ρ) are metric spaces, and let (fn) be a sequence of
continuous mappings from X to Y. If fn converges uniformly to a mapping f : X → Y, then
f is continuous too.

Proof. For let x ∈ X and ε > 0 be given. Since fn converges uniformly to f , there is a
positive integer L such that

ρ(fn(y), f(y)) <
ε

3
for every y ∈ X

when n ≥ N . Because fN is continuous at x, there is a δ > 0 such that ρ(fN(y), fN(x)) < ε/3
when y ∈ X and d(y, x) < δ. Therefore,

ρ(f(y), f(x)) ≤ ρ(f(y), fN(y)) + ρ(fN(y), fN(x)) + ρ(fN(x), f(x))

<
ε

3
+
ε

3
+
ε

3
= ε

when y ∈ X and d(y, x) < δ, as desired.

The same argument shows that f is uniformly continuous if the fn’s are. As another
variant, if (xn) is a sequence of elements of X that converges to x ∈ X , then one can show
that (fn(xn)) converges to f(x) in Y under these conditions.

Definition. C(X ) is a space of all continuous functions f : X → R.

A general C(X ) cannot be metrized by sup-metric, because a continuous function need
not be bounded. However, when X is compact, the sup-metric can metrize C(X ).
Remark 9. Sup-metric will induce the completeness of Riemann integrals on C([0, 1]). A
sequence (fn) in the space C([0, 1]) converges uniformly to f if an = sup{|fn(x)− f(x)| : 0 ≤
x ≤ 1} converges to 0. In this case one can easily prove the convergence of the Riemann
integrals e.g.

´ 1

0
fn(x)dx→ f 1

0 f(x)dx.
Remark 10. Sup-metric sup{|f(x) − g(x)| : 0 ≤ x ≤ 1} has nothing to do with integration
and the uniform convergence is too restrictive for many application. A more natural concept
of metric is given by ‖f−g‖1 :=

´ 1

0
|f(x)−g(x)|dx called L1([0, 1]), leads to another problem.

Consider

gn(x) =


0 if 0 ≤ x < 1

2
,

n(x− 1
2
) if 1

2
≤ x < 1

2
+ 1

n
,

1 otherwise.

It can be shown that
´ 1

0
|gn(x) − gm(x)|dx → 0 as n,m → ∞ (as a Cauchy sequence).

However this sequence by no means will converge to a continuous function f , since the
pointwise limit is f(x) = 1 for x > 1

2
and 0 otherwise, so that f = 1( 1

2
,1]. So the space

C([0, 1]) is too small for L1([0, 1]) from this point view.
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Proposition 6. Suppose that N is complete, then Cb(M,N ) is complete with respect to the
supremum metric d∞(·, ·).

Proof. Let {fj}∞j=1 be a Cauchy sequence in Cb(M,N ), so that for every ε > 0 there is a
positive integer L(ε) such that

d∞(fj, fl) < ε

when j, l ≥ L(ε). In particular, {fj(x)}∞j=1 is a Cauchy sequence in N for every x ∈ M,
which converges to an element f(x) of N since N is complete. One can check that

ρ(fj(x), f(x)) ≤ ε for every x ∈M

when j ≥ L(ε), which means that {fj}∞j=1 converges uniformly to f and that f is continuous,
as desired.

Thus Cb(M) is a vector space over the real numbers with respect to the usual operations
of pointwise addition of functions and multiplication of functions by constants, and moreover
Cb(M) is a commutative algebra with respect to the operation of pointwise multiplication of
functions.

Definition. The supremum or L∞-norm of a function f ∈ Cb(M) is

‖f‖∞ = sup{|f(x)| : x ∈M},

and it satisfies the commutative algebra

‖f1 + f2‖∞ ≤ ‖f1‖∞ + ‖f2‖∞

and
‖f1 f2‖∞ ≤ ‖f1‖∞ ‖f2‖∞

for every f1, f2 ∈ Cb(M).

It is easy to see that ‖f1 − f2‖∞ is the same as the supremum metric on Cb(M). Using
the triangle inequality, one can check that fp(x) = d(x, p) is a continuous function onM for
every p ∈M. These functions are bounded whenM is bounded, and otherwise min(fp(x), r)
is a bounded continuous function onM for every r ≥ 0. This shows that there are always a
lot of bounded continuous real-valued functions on any metric space, and in particular these
functions separate elements ofM, in the sense that for every x, y ∈ M with x 6= y there is
an f ∈ Cb(M) such that f(x) 6= f(y).

Corollary 1. (OK p. 249) For any metric spaceM, Cb(M) is complete with respect to the
supremum metric d∞(·, ·).

Finally, we conclude this section with a discussion about interchange the operations of
taking limits by uniform convergence.

Example 11. Let (xk) be a sequence in X and xk → x. Let (ϕm) be a sequence in C(X )
such that ϕm → ϕ uniformaly.

lim
k→∞

lim
m→∞

ϕm(xk) = lim
k→∞

ϕ(xk) = ϕ(x) = lim
m→∞

ϕm(x) = lim
m→∞

lim
k→∞

ϕm(xk)
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2.3 Compactness for C(X ) (Optional)
Does a compact set X give a compact C(X )?

Theorem 8. (Sequential Compact in metric spaces) A subset S of a metric space X is
compact iff every sequence in S has a convergent sequence to a point in S.

Example 12. C([0, 1]) is not compact. For example, fn(t) := tn, n ∈ N, then fm is a
sequence in C([0, 1]) without a convergent subsequence.

To maintain compactness, we need an additional condition.

Definition. Let F ⊂ C(X ). F is equi-continuous at x ∈ X if, for any given ε > 0, there is
a δ > 0 such that

|ϕ(x)− ϕ(y)| < ε

for all ϕ ∈ F and y ∈ Bδ(x) ⊂ X .

Definition. Let F ⊂ C(X ). F is uniform equi-continuous if, for any given ε > 0, there is a
δ > 0 such that

|ϕ(x)− ϕ(y)| < ε

for all ϕ ∈ F and any x, y ∈ X with d(x, y) < δ.

Just as a continuous real function on a compact set is uniformly continuous, an equicon-
tinuous F ⊂ C(X ) is uniformly equicontinuous whenver T is compact.

Theorem 9. (Arzela-Ascoli Theorem, OK p. 264) Let X be a compact metric psace, and
F ⊆ C(X ). Then F is compact iff it is closed, bounded and equicontinuous.

[

[Connection between Arzela-Ascoli and Heine-Borel: from wiki In view of Ascoli’s theo-
rem, a sequence in C(X) converges uniformly if and only if it is equicontinuous and converges
pointwise. The hypothesis of the statement can be weakened a bit: a sequence in C(X) con-
verges uniformly if it is equicontinuous and converges pointwise on a dense subset to some
function on X (not assumed continuous).[6] This weaker version is typically used to prove
Ascoli’s theorem for separable compact spaces. Another consequence is that the limit of an
equicontinuous pointwise convergent sequence of continuous functions on a metric space, or
on a locally compact space, is continuous. (See below for an example.) In the above, the
hypothesis of compactness of X cannot be relaxed. To see that, consider a compactly sup-
ported continuous function g on R with g(0) = 1, and consider the equicontinuous sequence
of functions {ƒn} on R defined by ƒn(x) = g(x − n). Then, ƒn converges pointwise to 0 but
does not converge uniformly to 0.]
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2.4 Exercises
1. Give another proof of Proposition 1. Answer: [Suppose that {xj}∞j=1, {yj}∞j=1 are

sequences of elements of M such that limj→∞ d(xj, yj) = 0, but ρ(f(xj), f(yj)) does
not converge to 0. This means that there is an ε > 0 such that ρ(f(xj), f(yj)) ≥ ε for
infinitely many j. Without loss of generality, we may suppose that this holds for all j,
since otherwise we can replace our sequences with the subsequences where it does hold.
By compactness, there is a strictly increasing sequence {jl}∞l=1 of positive integers such
that {xjl}∞l=1 converges to a point x ∈M, and we also get that {yjl}∞l=1 converges to x
too, since d(xjl , yjl)→ 0 as l →∞. Continuity of f at x implies that {f(xjl)}∞l=1 and
{f(yjl)}∞l=1 both converge to f(x) in N , and hence that liml→∞ ρ(f(xjl), f(yjl)) = 0, a
contradiction.]
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Chapter 3

Linear Functionals and Representation
Theorem

3.1 Linear Operators and Linear Functionals
Definition. (Lp-norm on [0, 1]) Let f be a continuous real valued function on the closed unit

interval [0, 1] in the real line. For each positive real number p, ‖f‖p =
( ´ 1

0
|f(x)|p dx

)1/p

.

This obviously satisfies the triangle inequality when p = 1, and one can show that it also
holds for p > 1 using the same argument as for finite sums. Thus ‖f‖p defines a norm on the
vector space of continuous functions on [0, 1] when p ≥ 1. We also have that ‖f‖p ≤ ‖f‖∞
where ‖f‖∞ is the supremum norm of f . If 0 < p < q < ∞, then one can check that
‖f‖p ≤ ‖f‖q.

Remark. Lp-norm on the real line with compact support is ‖f‖p =
( ´∞
−∞ |f(x)|p dx

)1/p

. The
integral here can be reduced to one on a bounded interval, since f has compact support.
However, ‖f‖p is normally neither monotone increasing nor decreasing in p in this case.

Remark. If p = 2, then these norms associated to suitable inner products. On the unit
interval, these inner products are given by 〈f1, f2〉 =

´ 1

0
f1(x) f2(x) dx in the real case. The

inner products on continuous functions with compact support on R are defined similarly.

Definition. A norm vector space (or called norm linear space) (X, ‖ · ‖) is a vector space X
equipped with a norm ‖ · ‖.

Definition. A Banach space is a normed linear space that is a complete metric space with
respect to the metric derived from its norm.

Definition. Let T : X → Y be a linear map between linear spaces X, Y . The kernel (or
null space) of T , denoted by kerT is the subset of X defined by kerT := {x ∈ X : Tx = 0}.
The range of T , denoted by ranT , is the subset of Y defined by ranT := {y ∈ Y : exists x ∈
X s.t. Tx = y}.
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Example 13. C([a, b]) equipped with sup-norm is a Banach space. C(K) on a compact
space K equipped with sup-norm is a Banach space. lp and Lp([a, b]) are both Banach
spaces for 1 ≤ p ≤ ∞.

Definition. A linear operator (or called map) T : X → Y between linear spaces X, Y is a
function satisfying

T (ax+ by) = aT (x) + bT (y)

for all x, y ∈ X and a, b ∈ R.

If X, Y are norm space, then we can define a bounded linear map.

Definition. Let V andW be two normed linear spaces, with norm ‖·‖V and ‖·‖W . A linear
map T : V → W is bounded if there is a constant M ≥ 0 such that ‖T (x)‖W ≤ M‖x‖V for
all x ∈ V . The operator norm (or uniform norm) ‖T‖ of T is given by

‖T‖ = inf {M : ‖T (x)‖W ≤M‖x‖V } .

It is easy to see that every linear mapping is bounded when V ∈ Rn. If V = W with the
same norm, then the identity mapping I(v) = v is bounded, with M = 1.

Definition. The space L(V,W ) is the set of all linear maps from V into W . And the set
of all bounded linear maps is deonoted by the space BL(V,W ) which is a linear subspace of
L(V,W ).

Remark 11. Equivalent expressions for ‖T‖ are:

‖T‖ = sup
x

‖T (x)‖
‖x‖

; ‖T‖ = sup
‖x‖≤1

‖T (x)‖; ‖T‖ = sup
‖x‖=1

‖T (x)‖.

For linear maps, boundedness is equivalent to continuity. (Note that the previous defini-
tion is taken infimum over constant M but supremum is taken over x.)

Proposition 7. If T is a bounded linear map from V into W , then ‖T (v1) − T (v2)‖W ≤
A ‖v1 − v2‖V for every v1, v2 ∈ V , and it follows that T : V → W is uniformly continuous.
Conversely, if a linear map T : V → W is continuous at the origin, then it is bounded.

Proof. (⇒) The linear map implies that ‖T (v)− T (w)‖W = ‖T (v−w)‖W ≤ A ‖v−w‖V for
every v, w ∈ V .

(⇐) Suppose T is continuous at 0. ‖x‖ = 0 if x = 0 in the norm vector space. ‖T (x)‖ ≤
A‖x‖ = 0 if x = 0. Since T is linear in a norm space, T (0) = 0. Then there is a δ > 0 such
that ‖T (v)‖W < 1 satisfies ‖v‖V < δ. For any non-zero x ∈ V , we define

x̃ = δ
x

‖x‖
.

Then ‖x̃‖ ≤ δ, so ‖T x̃‖ ≤ 1. It follows from the linearity of T that

‖Tx‖ =
‖x‖
δ
‖T x̃‖ ≤M‖x‖,

where M = 1/δ. Thus T is bounded.
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The proof shows that if a linear map is continuous at zero, then it is continuous at every
point.

Definition. A linear map T : V → R from a vector space V into R satisfying

T (ax+ by) = aT (x) + bT (y)

for all x, y ∈ V and a, b ∈ R is also known as a linear functional on V . A linear functional on
a vector space V with a norm ‖ · ‖V is bounded if it is bounded with respect to the standard
norm on R such that |T (x)| ≤M‖x‖V .

Arrow and Debreu (1954) define a price system to be a continuous linear functional.

Definition. (Finite dimension) Every finite-dimensional normed linear space is a Banach
space. Every linear operator on a finite-dimensional space is continuous, and that all norms
on a finite-dimensional space are equivalent, e.g. c‖ · ‖V ≤ ‖ · ‖W ≤ C‖ · ‖V . None of these
statements is true for infinite-dimensional linear spaces.

Example 14. Any x ∈ Rn and A ∈ Rm×n, T (x) = Ax is an linear operator T : Rn → Rm

and T ∈ L(Rn,Rm).

Example 15. Let L(x) :=
´ 1

0
f(x)dx. Then L : C[0, 1] → R is a linear functional. The

space of all continuously differentiable functions on [0, 1] is C1[0, 1]. Differenitalbe operator
D : C[0, 1]→ C[0, 1] by D(f) := f ′ is a linear operator.

Linear operators play an important role in identifying the basic algebraic relation between
two linear spaces.

Proposition 8. (OK p.394) A subset W of a linear space X is a hyperplane in X iff
W = {x ∈ X : T (x) = a} for some a ∈ R and nonzero linear functional T on X.

A hyperplane divides the entire space into two parts. For linear space, it divides the
space into two half spaces. The half space could be closed e.g. {x ∈ X : T (x) ≥ a} and
{x ∈ X : T (x) ≤ a} or open (replace inequalities with strictly inequalities).

3.2 Duality
Duality intuitively means that the maps into and out of one type of mathematical object X
can be naturally associated to the maps out of and into a dual object X∗. The dual space of
a linear space consists of the scalar-valued linear maps on the space. Duality methods play
a crucial role in many parts of analysis.

Definition. Given a linear space X, the space of linear functionals on X is called the dual
space of X and the space of continuous linear functionals on X is called the topological dual
space of X.
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In our context, the dual space ofX is L(X,R) and the topological dual space is BL(X,R).
If X is finite dimensional, then L(X,R) = BL(X,R), so both duals are the same. If X is
infinite dimensional, then L(X,R) is much larger than BL(X,R). However, the dual of
BL(X,R) is a Banach space. Thus from now on, when we say dual, we implicitly refer to
the topological dual space.

Definition. Two linear spaces X, Y are linearly isomorphic if there is a one- to-one, onto
linear map T : X → Y . If T also preserves norms, meaning that ‖T (x)‖ = ‖x‖ for all x ∈ X,
then X, Y are isometrically isomorphic.

Definition. A Hamel basis, or algebraic basis, of a linear space is a maximal linearly inde-
pendent set of vectors. Each element of a linear space may be expressed as a unique finite
linear combination of elements in a Hamel basis. Every linear space has a Hamel basis, and
any linearly independent set of vectors may be extended to a Hamel basis by the repeated
addition of linearly independent vectors to the set until none are left.

A Hamel basis of an infinite-dimensional space is frequently very large. In a normed
space, we have a notion of convergence, and we may therefore consider various types of
topological bases in which infinite sums are allowed.

Example 16. The dual space X∗ of a finite-dimensional space X is linearly isomorphic to
X. To see this, pick a basis {e1, . . . , en} of X. The map Ti : (x1, . . . , xn) → xi defines
Ti(
∑n

j=1 xjej) = xi which is an element of dual space X∗. The linearity of Ti is obvious. For
any ϕ : X → R on finite-dimensional X,

ϕ

(
n∑
j=1

xjej

)
=

n∑
j=1

ϕ(ej)xj

or ϕ =
∑n

i=1 ϕ(ei)Ti. {T1. . . . , Tn} is a basis of X∗ and is called the dual basis of {e1, . . . , en}
. The dual basis has the property that Ti(ej) = δij where δij is the Kronecker delta function.

Remark 12. One way to obtain a linear functional on a linear space is to start with a linear
functional defined on a subspace, extend a Hamel basis of the subspace to a Hamel basis of
the whole space and extend the functional to the whole space, by use of linearity and an
arbitrary definition of the functional on the additional basis elements.

All linear functionals on a finite-dimensional linear space are bounded. It is not obvious
that this extension procedure can be used to obtain bounded linear functionals on an infinite-
dimensional linear space, because the extension need not be bounded. In fact, it is possible
to maintain boundedness of an extension by a suitable choice of its values at the original
subspace, as stated in the following version of the Hahn-Banach theorem.

Theorem 10. (Hahn-Banach) If Y is a linear subspace of a norm linear space X and
u : Y → R is a bounded linear functional on Y with ‖u‖ = M , then there is a bounded linear
functional ϕ : X → R on X such that ϕ restricted to Y is euqal to u and ‖ϕ‖ = M .
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One consequence of this theorem is that there are enough bounded linear functionals to
separate X, meaning that if ϕ(x) = ϕ(y) for all ϕ ∈ X∗, then x = y.

Example 17. Linear functions connect Pareto-optimal allocations and competitive equilib-
ria. Second welfare theorem says Pareto-optimal allication under suitable choice of prices
can be supported as a competitive euqilibrium. This basically is a mathematical idea of
using Hahn-Banach Theorem (or its revised version “separation theorem” for convex sets).

3.3 Representation Theorem
Although a finite-dimensional space is linearly isomorphic with its dual space, there is no
canonical way to identify the space with its dual; there are many isomorphisms, depending
on an arbitrary choice of a basis. Hilbert spaces are of our interests for a special reason
that the topological dual space of a Hilbert space can be identified with the original space
in a natural way through the inner product (Riesz representation theorem). The dual of an
infinite-dimensional Banach space is, in general, different from the original space.

Definition. A linear functional ϕ on a Hilbert space H is bounded or continuous if there
exists M ∈ R such that |ϕ(x)| ≤ M‖x‖ for all x ∈ H. The norm on H is associated to an
inner product.

Some important classes of bounded linear operators are on Hilbert spaces, including pro-
jections, unitary operators, and self-adjoint operators. We, however, will only visit projection
briefly and then go to the representation theorem.

The Cauchy-Schwarz inequality implies

−1 <
〈x, y〉
‖x‖‖y‖

< 1.

Therefore there is a unique θ, 0 < θ < π, such that cos θ = 〈x, y〉 /(‖x‖‖y‖). We define this
θ to be the angle between x and y. On the other hand,

〈x, y〉 = ‖x‖‖y‖ cos θ.

Thus when x is orthogonal to y, the inner product is zero.

Definition. If M and N are subspaces of a linear space X such that every x ∈ X can be
written as x = y + z with y ∈ M and z ∈ N , then we say that X = M ⊕ N is the direct
sum of M and N , and we call N as complementary subspace of M in X. The decomposition
x = y + z is unique iff M ∩N = {0}.

Example 18. A given subspace M has many complementary subspaces. X = R3 and M
is a plane through the origin, then any line through the origin that does not lie on M is a
complementary subspace.
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Definition. If a linear space X = M ⊕ N , then a projection is P : X → X of X onto M
along N by Px = y where x = y + z with y ∈M and z ∈ N . Then X = ranP + kerP. If M
and N are linear subspaces of X, ranP = M and kerP = N .

Definition. (Another definition of projection) A projection on a linear space X is a linear
operator P : X → X such that P 2 = P .

When using Hilbert spaces, we are particularly interested in orthogonal subspaces. Sup-
pose that M is a closed subspace of a Hilbert space H. Then by definition H = M ⊕M⊥.

Example 19. If x = y + z and x′ = y′ + z′, where y, y′ ∈ M and z, z′ ∈ M⊥. The the
orthogonality of M and M⊥ implies that

〈Px, x′〉 = 〈y, y′ + z′〉 = 〈y, y′〉 = 〈y + z, y′〉 = 〈x, Px′〉 .

This equation states that an orthogonal projection is self-adjoint.

Example 20. If x ∈ H and Px 6= 0, then Cauchy-Schwarz inequality implies that

‖Px‖ =
〈Px, Px〉
‖Px‖

=
〈x, P 2x〉
‖Px‖

=
〈x, Px〉
‖Px‖

≤ ‖x‖.

Therefore ‖P‖ ≤ 1. If P 6= 0, then there is an x ∈ H with Px 6= 0 and ‖P (Px)‖ = ‖Px‖ so
that ‖P‖ ≤ 1. Combine this result and Cauchy-Schwarz inequality’s result we have ‖P‖ = 1.

Theorem 11. Each y ∈ H determines a linear functional ϕy on H, defined by

ϕy(x) = 〈y, x〉.

The Cauchy-Schwarz inequality implies that ϕy is a bounded linear functional on H, and that
‖ϕy‖ = ‖y‖.

Remark 13. If H has finite dimension, then every linear functional on H is of the form ϕy
for some y ∈ H. If H is a Hilbert space, then every bounded linear functional on H is of this
form.

Proof. Let ϕ be a bounded linear functional on H, which is not identically equal to 0.
kerϕ is a proper closed subspace of H. There is a nonzero vector z ∈ H such that

z ⊥ kerϕ. We define a linear map P : H → H by

Px =
ϕ(x)

ϕ(z)
z.

Then P 2 = P . As we know H = ranP ⊕ kerP . Moreover,

ranP ={az : a ∈ R}
kerP =kerϕ
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so that ranP ⊥ kerP . It follows that P is an orthogonal projection and

H = {az : a ∈ R} ⊕ kerϕ

is an orthogonal direct sum (kerϕ)⊥ = ranP = {az : a ∈ R}. We therefore can write x ∈ H
as

x = az + n

for a ∈ R and n ∈ kerϕ.
Take the least square argument, we get

a =
〈z, x〉
‖z‖2

and then we have
ϕ(x) = aϕ(z) + ϕ(n) = aϕ(z).

If we let y = z/‖z‖2, then it follows that ϕ(x) = 〈y, x〉 = ϕy(x) for every x ∈ H, as
desired.

Th theorem says that ϕy(x) = 〈y, x〉 defines a bounded linear functional on H for every
y ∈ H. Riesz representation theorem basically states that this ϕy is unique.

Theorem 12. (Riesz representation) If ϕ is a bounded linear functional on H, there is a
unique vector y ∈ H such that

ϕy(x) = 〈y, x〉.

Proof. Suppose ϕy = ϕy′ . Then ϕy(x) = ϕy′(x) when x = y−y′ which implies that ‖y−y′‖2 =
0 so y = y′.

Riesz representation theorem characterizes the bounded linear functionals on a Hilbert
space.

Example 21. Consider the commodity space (S, ‖ · ‖). S is often determined by economic
model itself. But one needs an appropriate norm to make the Hahn-Banach theorem appli-
cable (the norm determines the class of continuous linear functionals on S). It is the usual
case that l2-norm is chosen since every continuous linear functional has an inner product
representation. Then Riesz representation guarantees the existence of a set of prices in the
usual sense.
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Chapter 4

Applications

4.1 Ergodic Theorem
This section is based on Aliprantis and Border (Chapter 20).

Definition. From Riesz representation we know for any bounded operator A in a Hilbert
space H, there must exist an adjoint operator, which we denote by A∗ (don’t be confused
this notation with the dual space.) . In fact if A ∈ BL(H,H), then A∗ ∈ BL(H,H).

〈x,Ay〉 = 〈A∗x, y〉

for any x, y ∈ H.

To see this, for every x ∈ H, define a map ϕx(y) = 〈x,Ay〉. By the Riesz representation,
there is a unique z ∈ H such that ϕx(y) = 〈z, y〉. Let z = A∗x. The linearity of A∗
comes from the uniquness in the Riesz representation theorem and the linearity of the inner
product.

Example 22. For finite dimension cases, the matrix of the adjoint of a linear map on Rn

with matrix A is AT . That is x(Ay) = (ATx)y.

Example 23. The adjoint relates to the solution of a linear equation Ax = y. If A is a
bounded linear operator, we can consider an adjoint equation A∗z = 0 such that

〈Ax, z〉 = 〈x,A∗z〉 = 0.

Then a necessary condition for a solution x of Ax = y is that 〈y, z〉 = 0 for all z ∈ kerA∗.
Namely y ∈ (kerA∗)⊥ for any y ∈ ranA.

Definition. A bounded linear operator A : H → H is self-adjont if A∗ = A such that
〈x,Ay〉 = 〈Ax, y〉 for any x, y ∈ H.

Example 24. For finite dimension cases, the matrix A is self-adjoint iff A is symmetric such
that A = AT .
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Definition. A linear operator U : H1 → H2 is said to be unitary if

〈Ux, Uy〉H2
= 〈x, y〉H1

for any x, y ∈ H1. Two Hilbert spaces are isomorphic if there is a unitary linear map
between them. In other words, unitary operator is one-to-one and onto, and perserves the
inner product. Especially if U : H → H, then U∗U = U∗U = I.

Example 25. You may think unitary operator for matrix U is U−1. Not exactly. Only if U
is a complex matrix U∗ = U−1. For real valued matrces, we say Q is orthogonal if QT = Q−1.

Ergodic theorem is about equivalence between time averages and probabilistic averages.
It is crucial for understanding the dynamics.

Theorem 13. (von Neumann) A unitary operator U on Hilbert space H. Let M = {x ∈
H|Ux = x} be the subspace of vectors and let P be the orthogonal projection ontoM. Then
for all x ∈ H, we have

lim
N→∞

1

N + 1

N∑
n=0

Unx = Px.

Proof. We know that for Hilbert space H = kerP ⊕ ranP .
If x ∈ ranP , thenM = ranP . Since Ux = x and Px = x, the result is trivial.
Suppose x ∈ kerP . M = {x ∈ H|(I −U)x = 0} = ker(I −U). Because P is a projection

ontoM, ranP = ker(I − U). Ux = x = U∗x by the unitary property. Then

kerP = ker(I − U)⊥ = ker(I − U∗)⊥ = ran(I − U).

Thus any x ∈ kerP may be approximated by (I − U)y. If x = (I − U)y, then

1

N + 1

N∑
n=0

Unx =
1

N + 1

N∑
n=0

(Un − Un+1)y =
1

N + 1
(y − UN+1y)→ 0.

If x ∈ kerP , then there is a sequence xk = (I − U)yk with xk → x, we have

lim
N→∞

∥∥∥∥∥ 1

N + 1

N∑
n=0

Unx

∥∥∥∥∥ = lim
N→∞

∥∥∥∥∥ 1

N + 1

N∑
n=0

Un(x− xk)

∥∥∥∥∥+ lim
N→∞

∥∥∥∥∥ 1

N + 1

N∑
n=0

Unxk

∥∥∥∥∥︸ ︷︷ ︸
→0

≤ ‖x−xk‖.

Note that k is arbitrary and xk → x, so limN→∞
1

N+1

∑N
n=0 U

nx = Px = 0 for every x ∈
kerP .

The result basically says that the averages of Un converge to P .
Usually the ergodic theorem is applied to probability measure. Let P now be a probability

measure on a probability space P := (Ω,F , P ).
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Definition. A measure preserving map T : P → P is P (T−1(A)) = P (A) for all measurable
subsets A ∈ F .

Remark 14. If you still remember in lecture one we define random variable as a “function”, the
measure preserving map basically is a self-mapping function T−1(A) = {ω ∈ Ω|T (ω) ∈ A}.
Now let the random variable be f (a measurable function on Ω), if T is a measure preserving
map, then

Ef =

ˆ
Ω

f(ω)dP (ω) =

ˆ
Ω

(f ◦ T )(ω)dP (ω) = Ef ◦ T.

Then f is invariant under T .

Definition. A one-to-one and onto measure preserving map T on a probability space P :=
(Ω,F , P ) is ergodic iff f ∈ L2(P) such that f = f ◦ T .

Similary as von Neumann’s idea, one can consider a unitrary operator U : L2(P)→ L2(P)
where L2(P) is a Hilbert space of second-order random variables on P so that Uf = f ◦ T.
To see this

〈Uf, Ug〉 =

ˆ
Ω

f(T (ω))g(T (ω)dP (ω) =

ˆ
Ω

f(ω)g(ω)dP (ω) = 〈f, g〉 .

Theorem 14. (Probability) A one-to-one and onto measure preserving map T : P → P is
ergodic iff for every f ∈ L2(P)

lim
N→∞

1

N + 1

N∑
n=0

f ◦ T n =

ˆ
Ω

f(ω)dP (ω).

Example 26. In a dynamical systems, xt+1 = Txt. 1
T+1

∑T
t=1 xt is equivalent to left side of

the above equation. While the right hand side is the probability average of x0.

4.2 Convex Optimization on Function Spaces
In order to obtain existence of solutions for a general optimization problem, two basic prop-
erties are needed: compactness and lower semicontinuity. We know compactness. Now we
consider the latter one.

Definition. For a metric space X , let M : X → R. The functional M is called lower
semicontinuous (lsc) at x ∈ X if

M(x) ≤ lim
k→∞

inf M(xk)

for all sequence xk converging to x.

Theorem 15. If M : X → R is lsc and the level set {x ∈ X |M(x) ≤ C} is non-empty and
compact for some C ∈ R, then there exists a global minimum such that

M(x∗) = min
x∈X

M(x).
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Proof. Let α = infx∈X M(x). There exists a sequence (xk) such that M(xk) → α. For k
sufficiently large, M(xk) ≤ C and hence (uk) is contained in a compact set. Consequently,
there exists a subsequence (xkl) such that xkl → x̃ for some x̃ ∈ X . By lsc, we have

α ≤M(x̃) ≤ lim
k→∞

inf M(xk) = α.

Thus, x̃ is a global minimizer.

Convex problems are an important and interesting class of minimization problems, they
have several advantageous properties.

Definition. For a metric space X , a functional M : X → R is convex if for all α ∈ [0, 1],
u, v ∈ X :

M(αu+ (1− α)v) ≤ αM(u) + (1− α)M(v)

A set C ⊂ X is called convex
αu+ (1− α)v ∈ C.

An optimization problem is called convex, if both M(·) and C are convex.

A fundamental property of convex problems is that any local minimizer is also a global
one. If M(·) is not smooth, we can employ convexity to prove some fundamental properties

Theorem 16. Let X be a Banach space. If M : X → R is convex, locally bounded around
x, then M(·) is lsc at x.

Proof. Let xk → x. For ε > 0, we can find a sequence (ak) such that ‖(x− xk)/ak‖ ≤ ε and
ak → 0 as k →∞. If k is sufficiently large, ‖xk − x‖ ≤ ε. Let ε is large enough so that M is
bounded in the closed ball B2ε(x) and define

vk = xk +
x− xk
ak

so that vk ∈ B2ε(x). By convexity

M(x) ≤ akM(vk) + (1− ak)M(xk) ≤ 2akc+M(xk)

where c is a bound for M in B2ε(x). Thus

M(x) ≤ lim
k→∞

inf(2akc+M(xk)) = lim
k→∞

inf M(xk).

Remark 15. The above result of convexity and local boundedness implying lower semicon-
tinuity is similar to a classical result for linear operators, where local boundedness implies
continuity. In general, roughly speaking convexity in optimization plays the same role as
linearity in solving equations.
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Another advantageous property of convex functionals is the possibility to define a gener-
alized gradient.
Definition. Define a continuous linear operator D(u; ·) : U → V where U and V are Banach
spaces.

D(u; v) = lim
t→0+

F (u+ tv)− F (u)

t
= F ′(u)v

for u, v ∈ U
Assume first thatM is twice continuously Frechet-differentiable and the second derivative

M (2) is positive definite,

M(w) = M(u)+M (1)(u)(w−u)+

ˆ
M (2)(u+t(w−u))(w−u,w−u)dt ≥M(u)+M (1)(u)(w−u).

Definition. Let X be a Banach space. The subgradient ∂M at a point x ∈ X is

∂M(x) := {p ∈ X ∗|M(w) ≥M(x) + p · (w − x),∀w ∈ X} .
where X ∗ is the dual space of X .

Note that the subgradient is now a set of elements in X ∗ instead of a single element.
The subgradient can be used to obtain a local optimality condition, which is necessary

and sufficient for convex problems.
Theorem 17. Let X be a Banach space and let M : X → R be convex. Then each local
minimum is a global minimum. In addition, x∗ ∈ X is a minimizer iff 0 ∈ ∂M(x∗).

A frequently used technique for convex optimization is duality. The idea is to replace
the optimization problem by an equivalent problem in the dual space X ∗ involving a dual
functional which is called convex conjugate or Fenchel transform.
Definition. Let X be a Banach space and any M : X → R (not need to be convex). The
convex conjugate function M∗ : X ∗ → R is given by

M∗(p) = sup
x∈X

(p · x−M(x)) .

Proposition 9. Let X be a Banach space and any M : X → R (not need to be convex).
Then M∗ is convex.
Proof.

M∗(ap+ (1− a)q) = sup
x∈X

(a(p · x) + (1− a)(q · x)−M(x))

= sup
x∈X

(a [(p · x)−M(x)] + (1− a) [(q · x)−M(x)])

≤ sup
x,y∈X

(a [(p · x)−M(x)] + (1− a) [(q · y)−M(y)])

= a sup
x∈X

[(p · x)−M(x)] + (1− a) sup
y∈X

[(q · y)−M(y)]

= aM∗(p) + (1− a)M∗(q).

30



Part II

Probability and Measure Theory
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Chapter 5

Elementary Concepts

5.1 Preliminaries

5.1.1 Data and Models

We assume the data is given, and concern ourselves only with how these data should be
analyzed. Data X, possibly vector-valued and belong to an set Ω. Model describes the
mechanism that produced this data.

Example 27. For example, ifX = (X1, . . . , Xn) is a vector consisting of the recorded heights
of n students, then the model might say that these individuals were sampled completely at
random from the entire population of students, and that heights of students in the popula-
tion are normally distributed. In short, we would write something like X1, . . . , Xn are iid
N (µ, σ2); here “iid” stands for independent and identically distributed.

Inference we shall say that X ∼ Pθ where, for each θ ∈ Θ, Pθ is a probability distribution.
Then inference problem can be stated as follows: Use data X to determine which population
in {Pθ : θ ∈ Θ} was the one that produced the observed X. We shall refer to θ as the
parameter and Θ the parameter space.

Example 28. In the heights example, it shall be assumed that at least one of µ and σ2 are
unknown, and we want to use the observed data X to learn about these unknown quantities.
So, in some sense, the population in question is actually just a class/family of distributions—
in the heights example this is the collection of all (univariate) normal distributions.

To summarize, the statistical inference problem consists of data X taking values in a
sample space Θ and a family of probability distributions {Pθ : θ ∈ Θ}. The ultimate goal is
to identify the particular Pθ which produced the observed X.

5.1.2 Statistics and Probability

Statistics and probability are closely related. Probability can be used directly to describe
characteristics of a sample taken from a fixed populations. The statistics problem, on the
other hand, has a known sample but an unknown population.
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Example 29. The general sampling model “X ∼ Pθ” is a probabilistic statement for known
θ. For example, if X ∼ N (0, 1) then we know from introductory probability courses that
Pr{X ≤ 1} = Φ(1), where Φ(·) is the standard normal distribution function. Statistical
inference is to use this information when θ is unknown.

5.1.3 Large Samples

The general strategy is to embed, in one way or another, the particular problem into a
hypothetical sequence of infinitely many “similar” problems. In so doing, tools from prob-
ability can be introduced. For example, in frequentist statistics, one looks for procedures
which perform well on average across this hypothetical sequence. In Bayesian statistics, a
super-population is introduced from which the unknown θ is believed to be sampled from;
this allows application of Bayes’ theorem to incorporate the observed data.

We, however, will avoid such philosophical concerns in this course.

5.2 Mathematical preliminaries

5.2.1 Measure and integration

Definition. A space is the set with some added structure..

Definition. The sample space (denoted by Ω) is the set of all possible outcomes of an
experiment.

Definition. An event (denoted by A) is a collection of possible outcomes of an experiment,
that is, a subset of the sample space.

Definition. 4 If the sets A1, A2, . . . are pairwise disjoint and their union ∪iAi is equal to
the sample space, the collection A1, A2, . . . forms a partition of the sample space.

Example 30. . There are six outcomes in the sample space, corresponding to the number on
top of the die, so we can take Ω = {1, 2, 3, 4, 5, 6}. Possible events include “an odd number”,
A1 = {1, 3, 5}, “an even number”, A2 = {2, 4, 6}. A1 and A2 are disojint A1 ∩ A2 = Ø and
form a partition.

Definition. A measure is a generalization of the concept of length, area, volume, etc. More
specifically, a measure µ is a non-negative set-function, i.e., µ assigns a non-negative number
to subsets A of an abstract set A, and this number is denoted by µ(A). Similar to lengths,
µ is assumed to be additive:

µ(A ∪B) = µ(A) + µ(B), for each disjoint Aand B.

This extends by induction to any finite set A1, . . . , An of disjoint sets. But a stronger
assumption is σ-additivity :

µ
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai), for all disjoint A1, A2, . . ..
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Note that finite additivity does not imply σ-additivity. All of the (probability) measures
we’re familiar with are σ-additive. But there are some peculiar measures which are finitely
additive but not σ-additive. The classical example of this is the following.

Example 31. Take Ω = {1, 2, . . .} and define a measure µ as

µ(A) =

{
0 if Ais finite
1 if Ais the complement of a finite set,

It is easy to see that µ is additive. Taking a disjoint sequence Ai = {i} we find that
µ(
⋃∞
i=1Ai) = µ(Ω) = 1 but

∑∞
i=1 µ(Ai) =

∑∞
i=1 0 = 0. Therefore, µ is not σ-additive.

In general, a measure µ cannot be defined for all subsets A ⊆ Ω. But the class of subsets
on which the measure can be defined is, in general, a σ-algebra, or σ-field.

Definition. An algebra is the set with some added algebraic structures.

Definition. A σ-algebra A is a collection of subsets of Ω that satisfies the following prop-
erties:

(a) Ω is in A;
(b) If A ∈ A, then Ac ∈ A;
(c) and if A1, A2, . . . ∈ A, then

⋃∞
i=1Ai ∈ A.

Definition. The sets A ∈ A are said to be measurable. We refer to (Ω,A) as a measurable
space and (Ω,A, µ) as a measure space.

Definition. A measure µ is finite if µ(Ω) is a finite number. Probability measures are special
finite measures where µ(Ω) = 1. A measure µ is said to be σ-finite if there exists a sequence
of sets {Ai} ⊂ A such that

⋃∞
i=1Ai = Ω and µ(Ai) <∞ for each i.

Example 32. Let Ω be a countable set (e.g. a set of countable points) and A the class of
all subsets of Ω; then clearly A is a σ-algebra. Define µ according to the rule

µ(A) = number of points in A, A ∈ A.

Then µ is a σ-finite measure which is refered to as counting measure.

Example 33. Let Ω be a subset of d-dimensional Euclidean space Rd. Take A to be the
smallest σ-algebra that contains the collection of open rectangles

A = {(x1, . . . , xd) : ai < xi < bi, i = 1, . . . , d, ai < bi}.

Then A is the Borel σ-algebra on Ω, which contains all open and closed sets in Ω; but there
are subsets of Ω that do not belong to A! Then the (unique) measure µ, defined by

µ(A) =
d∏
i=1

(bi − ai), for rectangles A ∈ A

is called Lebesgue measure, and it’s σ-finite.
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Our last result has something to do with constructing new measures from old. It also
allows us to generalize the familiar notion of probability densities which, in turn, will make
our lives easier when discussing the general statistical inference problem. Suppose f is a
non-negative integrable function. Then

ν(A) =

ˆ
A

f dµ (5.1)

defines a new measure ν on (Ω,A). An important property is that µ(A) = 0 implies ν(A) = 0;
the terminology is that ν is absolutely continuous with respect to µ, or ν is dominated by µ,
written ν � µ. But it turns out that, if ν � µ, then there exists f such that (5.1) holds.
This is the famous Radon–Nikodym theorem.

Theorem 18. (Radon–Nikodym) Suppose ν � µ. Then there exists a non-negative µ-
integrable function, such that (5.1) holds. The function f , often written as f = dν/dµ is the
Radon–Nikodym derivative of ν with respect to µ.

The function f satisfying the above equality is uniquely defined up to a µ-null set, that
is, if g is another function which satisfies the same property, then f = g almost everywhere
on (Ω,A, µ).

We’ll see later that, in statistical problems, the Radon–Nikodym derivative is the familiar
density or, perhaps, a likelihood ratio. The Radon–Nikodym theorem also formalizes the idea
of change-of-variables in integration. For example, suppose that µ and ν are σ-finite measures
defined on Ω, such that ν � µ, so that there exists a unique Radon–Nikodym derivative
f = dν/dµ. Then, for a ν-integrable function ϕ, we haveˆ

ϕdν =

ˆ
ϕf dµ;

symbolically this makes sense: dν = (dν/dµ) dµ. The probability density function of a
random variable is the Radon–Nikodym derivative of the induced measure with respect to
some base measure (usually the Lebesgue measure for continuous random variables).

(A rigorous proof of the theorem is beyond current scope. You could refer to the following
note for details. Note that the proof uses sign measure which generalizes standard measure
function.

The Hahn-Banach and Radon-Nikodym theorem
http://math.bu.edu/people/mkon/MA779/RadonNykodim.pdf )

5.2.2 Probability basics

Mathematical probability is just a special case of the measure theory stuff presented above.
Probabilities are finite measures, random variables are the measurable functions, expected
values are just integrals.

Start with an essentially arbitrary measurable space (Ω,A), and introduce a probability
measure P ; that is P (Ω) = 1. Then (Ω,A, P ) is called a probability space. The idea is that
Ω contains all possible outcomes of the random experiment.
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Remark. σ([0, 1]) is characterized as the minimal σ-field generated by: (a) the open intervals
(a, b) on [0, 1]; (b) the closed intervals [a, b]; (iii) the closed half-lines [a, b), and so on. It is
also the minimal σ-field containing all the open sets in [0, 1]. (It can be generalized to any
metric space).

Definition. (Kolmogorov Axioms) Given measurable space (Ω,A), a probability function is
a function P from A to R satisfying:

(a) For all A ∈ A, P (A) ≥ 0,
(b) P (Ω) = 1.
(c) If A1, . . . , are pairwise disjoint, then P (∪iAi) =

∑
i P (Ai).

Example 34. An immediate implication of the Kolmogorov axioms is that (a) P (Ac) =
1−P (A). Because 1 = P (Ω) = P (A) +P (Ac). And (b) P (Ø) = 0 and (c) P (A) ≤ 1 for any
A ∈ A. The other useful results are for any A1 and A2 in A, we have

(d) P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2);

(e) P (A1 ∩ Ac2) = P (A1)− P (A1 ∩ A2);

(f) P (A) ≤ P (B) if A ⊂ B.

Example 35. Based on above results, we can have the following:
(a) P (A) =

∑∞
i=1 P (A ∩ Ci) for any partition C1, C2, . . . .

(b) P (∪∞i=1Ai) ≤
∑∞

i=1 P (Ai) for any events A1, A2, . . .

The following theorem establishes the connection between limits of probabilities and
sequences of events.

Theorem 19. For a given probability space (Ω,A, P )
(a) If {A1, A2, . . . } is an increasing sequence of events, i.e. A1 ⊆ A2 ⊆ . . . , then

limn→∞ P (An) = P (∪∞i=1Ai).
(b) If {A1, A2, . . . } is a decreasing sequence of events, i.e. A1 ⊇ A2 ⊇ . . . , then

limn→∞ P (An) = P (∩∞i=1Ai).

Example 36. ([0, 1], σ([0, 1]), µ). The sample space is the real interval [0, 1]. σ([0, 1]) is
Borel σ-algebra on [0, 1]. This is the minimal σ-algebra generated by the elementary events,
e.g. {[0, b), 0 ≤ b ≤ 1}:

lim
n→∞

µ([0, 1/n)) = µ(∩∞n=1[0, 1/n)) = µ({0}) = 0

lim
n→∞

µ((0, 1/n)) = µ(∩∞n=1(0, 1/n)) = µ(Ø) = 0

lim
n→∞

µ([a− 1/n, b+ 1/n]) = µ(∩∞n=1[a− 1/n, b+ 1/n]) = µ([a, b]) = b− a

This collection contains things like [1/4, 2/5], {1/5} etc. µ(·) for all A ∈ σ([0, 1]) is Lebesgue
measure, defined as the sum of the lengths of the intervals onctained in A.

Definition. A random variable X is a measurable function that assigns one and only one
numerical value to each outcome of an experiment such that X : Ω→ X ⊆ R.
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Example 37. Toss a coin three times. The sample space is

Ω = {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}.

Define a random variable X by taking the number of heads in the three tosses. Thus the
random variable can take on values 0, 1, 2, 3. So X({HHT}) = 2.

Remark. It’s important to understand that X, as a mapping, is not random; instead, X is
a function of a randomly chosen element ω in Ω. So when we are discussing probabilities
that X satisfies such and such properties, we’re actually thinking about the probability (or
measure) on the set of ω’s for which X(ω) satisfies the particular property. To make this
more precise we write

P (X ∈ A) = P ({ω : X(ω) ∈ A}) = PX−1(A).

To simplify notation, etc, we will often ignore the underlying probability space, and work
simply with the probability measure PX(·). This is what we’re familiar with from basic
probability and statistics. Namely, P (X ∈ A) is a probability function on X , defined in
terms of the probability function on Ω.

Example 38. In treatment experiments, the effect is either “effective” or “non-effective”.
Here we have Ω = {ω1, ω2}, where ω1 is the effective outcome with probability P (ω1) = q
and ω2 is non-effective outcome with P (ω2) = 1 − q probability. It is natural to define a
random variable X as X(ω1) = X1 = 1 and X(ω2) = X2 = 0. Here X = {0, 1}.

Example 39. The statement X ∼ N (0, 1) means that the probability measure induced on
R by the mapping X is a standard normal distribution.

Remark. If Ω = {ω1, ω2, . . . } is a countable set, then we will observe X = xi iff the outcome
of the random experiment is an ωi ∈ Ω such that X(ωi) = xi. Note that random variables
that take a countable number of values are called discrete. Random variables that take
values from an interval of real numbers are called continuous.

Example 40. For a continuous random variable X : Ω → R. We can define the following
probability space:

(a) Sample space is real line R.
(b) Event space is σ(R), the Borel σ-algebra on the real line.
(c) Probability PX such that for A ∈ σ(R)

PX(A) = Pω(ω ∈ Ω : X(ω) ∈ A) = Pω(X−1(A)).

A consequence of this construction is for all A ∈ σ(R), X−1(A) ∈ σ(R). Otherwise,
Pω(X−1(A)) may not be well-defined, since the domain of the P (·) function is σ(R). This is
the requirement that the random variable X(·) is Borel-measurable.
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Example 41. X(ω) = |ω| with ω from the probability space ([−1, 1], σ([−1, 1]), µ/2) where
µ is the Lebesgue measure. Then

Px

(
[
1

3
,
2

3
]

)
= µ

(
[
1

3
,
2

3
]

)
/2 + µ

(
[−1

3
,−2

3
]

)
/2 = µ

(
[
1

3
,
2

3
]

)
.

When there is no possibility of confusion, we will drop the “X” subscript and simply
write P for PX .

Definition. The cumulative distribution function (CDF) of a random variable X is defined
as FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}). It is often wirtten as P (X ≤ x).

Proposition 10. The function FX(x) is a CDF iff
(a) F (x) is non-decreasing.
(b) limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.
(c) F (x) is right-continuous. (such that for any δ ≥ 0, limδ→0 FX(x+ δ) = FX(x)).

Proof. Note that a CDF can be equivalently written as

FX(x) = Pr({ω ∈ Ω : X(ω) ≤ x}) = Pr(Ax)

where Ax = {ω ∈ Ω : X(ω) ≤ x}.
(a) For any xi < xj we have Axi ⊆ Axj , thus P (Axi) ≤ P (Axj) and thus FX(xi) ≤ FX(xj).
(b) Define a decreasing sequence xn such that xn → −∞ as n→∞. Then for xn ≥ xn+1

we have Axn ⊇ Axn+1 and
∩∞n=1Axn = Ø.

Hence, by Theorem 2 (b), we have

lim
n→∞

FX(xn) = lim
n→∞

P (Axn) = P (∩∞n=1Axn) = 0.

Since xn → −∞, we have the result. Similarly argument holds for limx→∞ FX(x) = 1.
(c) Homework.

Definition. A random variable X is discrete if FX(x) is a step function of x. A random
variable X is continuous if FX(x) is a continuous function of x.

Definition. The random variable X and Y are identically distributed if for every set A ∈ A,
PX(X ∈ A) = PY (Y ∈ A).

Proposition 11. X and Y are identically distributed iff FX(z) = FY (z) for every z.
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5.3 Exercises
1. If A is σ-algebra, show that for any Ai ∈ A,

∩∞i=1Ai ∈ A.

[Answer: Properties of (b) and (c) together with DeMorgan’s laws (A1 ∩ A2) = (Ac1 ∪
Ac2)c assure that ∩∞i=1Ai ∈ A.]

2. Show the following result holds for any A1 and A2 in a probability space (Ω,A, P ):

P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2).

by using the implication of the Kolmogorov axioms. [Hint: The proof relies on creating
pairwise disjoint sets for which one can add up the probabities by the third axiom]

3. If P is a probability function, then the following inequality holds

P (∪∞i=1Ai) ≤
∞∑
i=1

P (Ai)

for any events A1, A2 . . . . [Answer: http://en.wikipedia.org/wiki/Boole’s_inequality ]

4. Prove proposition 1 (c). [Answer: Hint: Define a decreasing sequence xn such that
xn → x as n→∞ and x1 > x2 · · · > xn. So Ax ⊆ Axn for all n. Note that

lim
n→∞

P (Axn) = P (∩∞i=1Axi).

By above argument,

lim
n→∞

FX(xn) = lim
n→∞

P (Axn) = P (∩∞i=1Axi) = P (Ax) = FX(x).

]
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Chapter 6

Lebesgue Measure and its Convergence

6.1 Construction of Lebesgue Measures
Remember that a measure µ on a set X associates to a subset A ⊂ X a nonnegative number
µ(A), called the measure of A. A set is a measurable set if it has a well-defined measure.
We require that the measurable sets form a σ-algebra, meaning that complements, countable
unions, and countable intersections of measurable sets are measurable.

We have not explained why Lebesgue measure should exist at all. Now it is time to do
that. Before showing the construction, we look at an idea about negligibility. The idea of
a ‘negligible’ set relates to one of the limitations of the Riemann integral, as we saw in the
previous lecture (lecture on continuity). Since the function f = 1Q takes a non-zero value
only on Q, then “area under its graph” must be very closely linked to the ‘length’ of the set
Q. Because the sets R and R\Q are so different from intervals, we cannot integrate f in the
Riemann sense. Then how should we define this concept for more general sets?

A finite set is not an interval but since a single point has length 0, adding finitely many
such lengths together should still give 0. The underlying concept here is that if we decompose
a set into a finite number of disjoint intervals, we compute the length of this set by adding
the lengths of the pieces. The following is more general definition of sets of ‘zero length’

Definition. A null set A ⊂ R is a set that may be covered by a sequence of intervals of
arbitrarly small total length. That is, given ε > 0, exists {In} such that A ⊆ ∪∞n=1In and∑∞

n=1 l(In) < ε where l(I) is the length of set I.

Example 42. Any one-element set (singleton) is a null set. Any countable set A =
{x1, x2, . . . } is null. A countable union of null sets is also null.

Example 43. A uncountable sets can be null but not always, i.e. Cantor set (Start with
an interval [0, 1], then remove the middle (1/3, 2/3), and then do the removals for [0, 1/3]
and [2/3, 1] and do these sequentially. At nth stage you will have a set Cn consisting of 2n

disjoint closed intervals, each of length 1/3n. Thus the total length of Cn is (2/3)n which
converges to 0 as n→∞.
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The simple concept of null sets provides the key to our idea of length, since it tells us
what we can ignore. A general notion of length is given by Lebesgue outer measure.

Definition. The Lebesgue outer measure of a set A is

m∗(A) = inf

{
∞∑
n=1

l(In) : In are intervals, A ⊆ ∪∞n=1In

}
where {In} cover the set A.

The outer measure is the infimum of lengths of all possible covers of A. Note that
m∗(A) ≥ 0 for any A ⊆ R.

Example 44. A ⊆ R is a null set iff m∗(A) = 0.

Proposition 12. (i) m∗ is monotone: the bigger the set, the greater its outer measure. (ii)
The outer measure of an interval equals its length. (iii) For any sequence of sets {An}, outer
measure satisfies

m∗ (∪∞n=1An) ≤
∞∑
n=1

m∗(An)

which is countable sub-additive.

Yes, you are right. Now we just need another inequality to bound the outer measure so
that we have the additivity property of the Lebesgue measure.

Definition. (Continuity property for sets) If pairwise disjoint sets {An} have union A, then
the lengths of the set Bn = A\ ∪nk=1 An is expected to decrease to 0 as n → ∞, or say Bn

tends to be a null set as n→∞.

With outer measure, sub-additivity, we wish to ensure that if sets An are pairwise disjoint,
then the inequality of sub-additivity becomes an equality. However, it turns out that this
will not in general be true for outer measure. Then how about decompose a set into finitely
many disjoint pieces? The answer is: with continuity property and finite additivity, one
expect that length of a set should be countably additive.

Definition. A set A ⊆ R is Lebesgue measurable if for every set B ⊆ R we have

m∗(B) = m∗(B ∩ A) +m∗(B ∩ Ac)

where Ac = R\A

Obviously, B = (B ∩ A) ∪ (B ∩ Ac) by the sub-additivity we have

m∗(B) ≤ m∗(B ∩ A) +m∗(B ∩ Ac).

So the rest task is to verify

m∗(B) ≥ m∗(B ∩ A) +m∗(B ∩ Ac).

This is your homework (2).
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Example 45. We summarize the properties of the family of all Lebesgue measurable setsM
as follows: M is closed under countable unions, countable intersections, and complements.
It contains intervals and all null sets.

Definition. For any A in the family of all Lebesgue measurable sets M, we write µ(A)
and call µ(A) the Lebesgue measure of the set A. Lebesgue measure µ : M → [0.∞] is
a countably additive set function defined on the σ-field M of measurable sets. Lebesgue
measure of an interval is equal to its length. Lebesgue measure of a null set is zero.

The countable additivity of µ and on the definition of the sum of a series in [0,∞] allows
that

∞∑
i=1

µ(Ai) = lim
n→∞

n∑
i=1

µ(Ai).

Proposition 13. µ is continuous at Ø, i.e. if (Bn) decrease toØ, then µ(Bn) decrease to 0.

Proof. Let An = Bn\Bn+1 define a disjoint sequence inM. Note that ∪nAn = B1. Then

µ(An) = µ(Bn)− µ(Bn+1) ≥ 0

and hence

µ(B1) =
∞∑
n=1

µ(An) = lim
k→∞

k∑
n=1

[µ(Bn)− µ(Bn+1)] = µ(B1)− lim
n→∞

µ(Bn)

which implies that µ(Bn)→ 0.

Theorem 20. Suppose that A is the σ-algebra on X generated by the collection of sets F .
Let µ and υ be two measures on A such taht µ(B) = υ(B) for every B ∈ F . If there is a
countable family of sets {Bi} ⊂ F such that ∪iBi = X and µ(Bi) <∞, then µ = υ.

A more general result about Lebesgue measurable in Rn is as follows. We just state it
with any proof. But you have the hints from the case in R.

Theorem 21. A set A ⊆ Rn is Lebesgue measurable iff for every ε > 0, there is a closet set
F and an open set G such that F ⊂ A ⊂ G and µ(G\F ) < ε. Moreover

µ(A) = inf{µ(U) : U is open and A ⊂ U}
= inf{µ(K) : K is compact and K ⊂ A}.

Thus a Lebesgue measurable set may be approximated from the outside by open sets,
and from the inside by compact sets.

Example 46. (Geometric properties: Translation invariant) For every measurable set A,
µ(τ(A)) = µ(A) where

τ(A) = {y ∈ Rn : y = x+ τ for some x ∈ A}.
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6.2 Measurable Functions and Convergences
Measurable functions are the natural mapping between measurable spaces.

Definition. Let (X,A) and (Y,B) be measurable spaces. A measurable function is a map-
ping f : X → Y such that f−1(B) ∈ A for every B ∈ B.

The measurability of f : X → Y depends only on the σ-algebras on X and Y and not
on what measure is defined on X or Y .

Definition. Two measurable functions f : X → Y and g : X → Y are equal almost
everywhere (a.e. in short) means µ({x ∈ X|f(x) 6= g(x)}) = 0.

Example 47. Every continuous function between topological spaces is Borel measurable. A
continuous function f : Rn → R is measurable w.r.t. Lebesgue σ-algebra on the domain Rn

and the Borel σ-algebra on the range R.

Proposition 14. Let (X,A) be a measurable space. A function f : X → R is measurable
iff the set {x ∈ X| f(x) < c} belongs to A for every c ∈ R.

Definition. A sequence of functions (fn) from a measure space (X,A, µ) to R converges
pointwise a.e. to a function f : X → R if limn→∞ fn(x) = f(x) for every x ∈ X\N where N
is the null set.

Definition. a complete measure space

Theorem 22. If (fn) is a sequence of measurable functions that converges pointwise to f ,
then f is measurable. If (X,A, µ) is a complete measure space and (fn)converges pointwise
a.e. to f , then f is measurable.

Definition. A function ϕ : X → R on a measurable space (X,A) is a simple function if
there are meausrable sets A1, . . . , An and real numbers c1, . . . , cn such that ϕ =

∑n
i=1 ci1Ai .

The representation of a simple function as a sum of indicator functions is not unique. A
standard representation uses disjoint sets Ai and distinct values ci.

Theorem 23. Let function f : X → [0,∞] be non-negative and measurable. There is a
monotone increasing sequence {ϕn} of simple functions that converges pointwise to f .

Proof. For n ∈ N, we sub-divide the range of f into 22n + 1 intervals such that

In,k =

[
k − 1

2n
,
k

2n

)
for k = 1, 2, . . . , 22n, In,22n+1 = [2n,∞] of length 2−n. The measurable sets are An,k =
f−1(In,k) for k = 1, 2, . . . , 22n + 1. Then the increasing sequence of simple functions are

ϕn =
22n+1∑
k=1

(
k − 1

2n
)1An,k

which converges pointwise to f as n→∞.
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The result can be easily extended to f : X → R. Just re-write the function as two non-
negative measurable functions f = f+ − f− where f+ = max{f, 0} and f− = max{−f, 0}.
Then approximate each part by simple functions.

Lebesgue integral provides an extension of the Riemann integral which applies to highly
discontinuous and unbounded functions, and which behaves very well with respect to limiting
operations. To construct the Lebesgue integral, we first define integral of a simple function.

Definition. If ϕ =
∑n

i=1 ci1Ai is a simple function on a measure space (X,A, µ). The
integral of ϕ w.r.t. µ is

´
ϕdµ =

∑n
i=1 ciµ(Ai).

The value of the sum on the RHS is independent of how ϕ is represented. Because
of the way the approximating simple functions are constructed, the Lebesgue approach to
integration is sometimes contrasted with the Riemann approach since it sub-divides the range
of the function instead of the domain.

Definition. Let f : X → [0,∞] be a non-negative measurable function on a measure space
(X,A, µ). Define

ˆ
fdµ = sup

{ˆ
ϕdµ : ϕ is simple and ϕ ≤ f

}
.

If f : X → R and f = f+ − f−, then defineˆ
fdµ =

ˆ
f+dµ−

ˆ
f−dµ,

provided that at least one of the integrals on RHS is finite. If A is a measurable subset of
X,
´
A
fdµ =

´
f1Adµ.

Lebesgue integral does not assign a value to the integral of a highly osciallatory function
f which have infinities for

´
f+dµ and

´
f−dµ.

6.3 Exercises
1. For any sequence of sets {An}, prove the following statement

m∗ (A1 ∪ A2) ≤ m∗(A1) +m∗(A2).

(Answer: Take ε = 1/n. Find covering sequence (I1
k) of A1 and (I2

k) of A2 such that
∞∑
k=1

l(Ijk) ≤ m∗(E1) +
ε

2
,

where j = 1, 2. Then adding up
∞∑
k=1

l(I1
k) +

∞∑
k=1

l(I2
k) ≤ m∗(E1) +m∗(E1) + ε.
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Because the sequence (I1
1 , I

2
1 , I

1
2 , I

2
2 , . . . ) covers A1 ∪ A2, we have

m∗(A1 ∪ A2) ≤
∞∑
k=1

l(I1
k) +

∞∑
k=1

l(I2
k).

Then let n→∞, the result is desired.)

2. Suppose A1 ∩A2 = Ø, A1 and A2 are both Lebesgue measurable and in R. Show that

m∗ (A1 ∪ A2) = m∗(A1) +m∗(A2).

[Answer: Let B ⊂ R. By definition of measurabilities of A1 and A2, we have

m∗ (B) = m∗(B ∩ Ai) +m∗(B ∩ Aci) (∗)

for i = 1, 2. Replace A2 with B ∩ Ac1

m∗ (B ∩ Ac1) =m∗ ((B ∩ Ac1) ∩ A2) +m∗ ((B ∩ Ac1) ∩ Ac2)

=m∗ (B ∩ (Ac1 ∩ A2)) +m∗ (B ∩ (Ac1 ∩ Ac2))

Since A1 and A2 are disjoint, Ac1∩A2 = A2. By de Morgan’s law Ac1∩Ac2 = (A1∪A2)c.

m∗ (B ∩ Ac1) = m∗ (B ∩ A2) +m∗ (B ∩ (A1 ∪ A2)c) .

Substitue this into the (*) equation,

m∗ (B) = m∗(B ∩ A1) +m∗ (B ∩ A2) +m∗ (B ∩ (A1 ∪ A2)c) .

Now by the sub-additivity of m∗, we have

m∗(B ∩ A1) +m∗ (B ∩ A2) ≥ m∗ ((B ∩ A1) ∪ (B ∩ A2)) = m∗ (B ∩ (A1 ∪ A2)) .

Then
m∗ (B) ≥ m∗ (B ∩ (A1 ∪ A2)) +m∗ (B ∩ (A1 ∪ A2)c) .

The inverse inequality is always ture. The result is desired.]
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Chapter 7

Integration and Expectation

7.1 Integration and Expectation
Definition. Suppose that X is a random variable with PDF or PMF pX(x). Let X = {x :
pX(x) > 0}. This is called the support set or support of the distribution of X, and intuitively
is the set of values that the random variable X can take on.

Remark 16. When X is a continuous random variable, its PDF is not unique. A more precise
definition is that X should be the set of all points x such that every open neighborhood of
x has positive probability. A consequence of this definition is that supports are closed sets.

When PX , a measure on the space X, is dominated by a σ-finite measure µ, the Radon-
Nikodym theorem says there is a density dPX/dµ = pX , and

PX(A) =

ˆ
A

pX dµ.

Remark. When µ is counting measure, pX is a probability mass function (PMF)

pX(x) = P (X = x)

So, for any set A, the probability

Pr({ω ∈ Ω : X(ω) ∈ A}) = P (X ∈ A) =
∑
x∈A

pX(x).

When µ is Lebesgue measure, pX is a probability density function (PDF)

Pr({ω ∈ Ω : X(ω) ∈ A}) = P (X ∈ A) =

ˆ
A

pX(x)dx.

One of the benefits of the measure-theoretic formulation is that we do not have to han-
dle these two important cases separately. Note that the PDF is not unique. Because we
only care about integrals over the PDF, we can change its value at a countable number of
points without changing any of the associated probabilities, and thus without changing the
distribution of the random variable.
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Theorem 24. (Radon-Nikodym Theorem*) A necessary and sufficient condition for the
existence of PDF pX is that the probability measure PX of a real-valued random variable X
be absolutely continuous with respect to Lebesgue measure.

Remark. Absolutely continuous w.r.t. Lebesgue measure means that all sets in the support
of X (which is a part of the real line) which have zero Lebesgue measure must also have zero
probability under PX . Namely, for all A ∈ R such that µ(A) = 0 implies PX(A) = 0. Since
only singletons (and countable sets of singletons) have zero Lebesgue measure, this condition
essentially rules out random variables which have a “point mass" at some points.

Example 48. ([0, 1], σ([0, 1]), µ) and random variable

X(ω) =

{
1
2

if 1
4
≤ ω ≤ 1

2

ω otherwise

Now µ(1/2) = 0, but Pr(X = 1/2) = Pr(ω ∈ [1/4, 1/2]) = 1/4. So PX is not absolutely
continuous w.r.t. Lebesgue measure, and thus it has no density function.

Definition. Let ϕ be a real-valued measurable function defined on X. Then the expected
value of ϕ(X) is

EX{ϕ(X)} =

ˆ
X
ϕ(x) dPX(x) =

ˆ
X
ϕ(x)pX(x) dµ(x),

the latter expression holding only when PX � µ for a σ-finite measure µ on X.

The usual properties of expected value hold in this more general case; the same tools we
use in measure theory to study properties of integrals of measurable functions are useful for
deriving such things.

Definition. The mean is another name for the expected value of X, usually is denoted as
µ = E[X]. (Don’t be confused with the µ we used for Lebesgue measure.) The k-th moment
of X is µk = E[Xk]. The variance of X is Var(X) = σ2 = E[(X−µ)2]. Or σ2 = µ2−µ2

1. The
expectation of a linear function of a random variable is the linear function of the expectation:

E[a+ bX] = a+ bE[X].

The variance of a linear function of a random variable is the variance of the random variable
multiplied by the square of the slope coefficient:

Var(a+ bX) = b2Var(X).

If g1(x) ≥ g2(x) for all x, then E[g1(X)] ≥ E[g2(X)].
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Remark. Expectation can be treated as one of the best predictors. Suppose we want to
choose a single value b as a prediction for the random outcome X. We might measure the
quality of the prediction by (X−b)2. This is the squared prediction error, and presumably we
want this to be as small as possible. We might try to choose b to minimize the expectation
E[(X − b)]2. Note that

E[(X − b)]2 =E[(X − µ)2 + (µ− b)2 + 2(X − µ)(µ− b)]
=E[(X − µ)2] + (µ− b)2 + 2(µ− b)E[X − µ].

Note however that E[X−µ] = 0 by definition. So the first term is equal to the variance, and
is the same regardless of the choice of b. The second term is clearly minimized by setting
b = µ.

In probability and statistics, product spaces are especially important. The reason, as we
eluded to before, is that independence of random variables is connected with product spaces
and, in particular, product measures. If X1, . . . , Xn are iid PX , then their joint distribution
is the product measure

PX1 × PX2 × · · · × PXn = PX × PX · · · × PX = P n
X .

The first term holds with only “independence;” the second requires “identically distributed;”
the last term is just a short-hand notation for the middle term.

When we talk about convergence theorems, such as the law of large numbers, we say
something like: for an infinite sequence of random variables X1, X2, . . . some event happens
with probability 1. But what is the measure being referenced here? In the iid case, it turns
out that it’s an infinite product measure, written as P∞X . We’ll have more to say about this
when the time comes.

7.2 Conditional Distributions
Conditional distributions in general are rather abstract. When the random variables in
question are discrete (µ = counting measure), however, things are quite simple; the reason
is that events where the value of the random variable is fixed have positive probability, so
the ordinary conditional probability formula involving ratios can be applied.

When one or more of the random variables in question are continuous (dominated by
Lebesgue measure), then more care must be taken.

Definition. Suppose random variables X and Y have a joint distribution with density
function pX,Y (x, y), with respect to some dominating (product) measure µ × ν. Then the
corresponding marginal distributions have densities with respect to µ and ν, respectively,
given by

pX(x) =

ˆ
pX,Y (x, y) dν(y) and pY (y) =

ˆ
pX,Y (x, y) dµ(x).
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Moreover, the conditional distribution of Y , given X = x, also has a density with respect to
ν, and is given by the ratio

pY |X(y | x) = pX,Y (x, y)/pX(x).

As a function of x, for given y, this is clearly µ-measurable since the joint and marginal
densities are measurable. Also, for a given x, pY |X(y | x) defines a probability measure
Qx, called the conditional distribution of Y , given X = x, through the integral Qx(B) =´
B
pY |X(y | x) dν(y); that is, pY |X(y | x) is the Radon–Nikodym derivative for the conditional

distribution Qx.

For us, conditional distribution can always be defined through its conditional density
though, in general, a conditional density may not exist even if the conditional distribution Qx

does exist. There are real cases where the most general definition of conditional distribution
is required. Also, I should mention that conditional distributions are not unique; but, we
shall not dwell on this point here.

Definition. Given conditional distribution with density pY |X(y | x), define conditional prob-
abilities:

P (Y ∈ B | X = x) =

ˆ
B

pY |X(y | x) dν(y).

The law of total probability then allows us to write

P (Y ∈ B) =

ˆ
P (Y ∈ B | X = x)pX(x) dµ(x),

in other words, marginal probabilities for Y may be obtained by taking expectation of the
conditional probabilities.

Definition. For any ν-integrable function ϕ, we may write the conditional expectation

E{ϕ(Y ) | X = x} =

ˆ
ϕ(y)pY |X(y|x) dν(y).

Wemay evaluate the above expectation for any x, so we actually have defined a (µ-measurable)
function, say, g(x) = E(Y | X = x); here I took ϕ(y) = y for simplicity. Now, g(X) is a
random variable, to be denoted by E(Y | X), and we can ask about its mean, variance, etc.
The corresponding versions of the law of total probability for conditional expectations are

E(Y ) = E{E(Y | X)},
Var(Y ) = Var{E(Y | X)}+ E{Var(Y | X)},

where Var(Y | X) is the conditional variance, i.e., the variance of Y relative to its conditional
distribution. The first formula above is called a law of iterated expectation.
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7.3 Some Inequalities
Theorem 25. (Cauchy–Schwarz inequality) If f 2 and g2 are measurable, then(ˆ

fg dµ
)2

≤
ˆ
f 2 dµ ·

ˆ
g2 dµ.

Proof. Take any λ; then
´

(f + λg)2 dµ ≥ 0. In particular,
´
g2 dµ︸ ︷︷ ︸
a

·λ2 + 2
´
fg dµ︸ ︷︷ ︸
b

·λ+
´
g2 dµ︸ ︷︷ ︸
c

≥ 0 ∀ λ.

In other words, the quadratic (in λ) can have at most one real root. Using the quadratic
formula,

λ =
−b±

√
b2 − 4ac

2a
,

it is clear that the only way there can be fewer than two real roots is if b2−4ac is ≤ 0. Using
the definitions of a, b, and c we find that

4
(ˆ

fg dµ
)2

− 4

ˆ
f 2 dµ ·

ˆ
g2 dµ ≤ 0,

and from this the result follows immediately.

Definition. The function f is said to be convex on X if, for any x, y ∈ X and any α ∈ [0, 1],
the following inequality holds:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

In the case where f is twice differentiable, there is an alternative characterization of convexity.
A twice-differentiable function f , defined on p-dimensional space, is convex iff

∇2f(x) =
((∂2f(x)

∂xi∂xj

))
i,j=1,...,p

,

the matrix of second derivatives, is positive semi-definite for each x.

Example 49. Examples of convex (univariate) functions include ex, − log x, xr for r > 1.

Convexity is important in optimization problems (maximum likelihood, least squares,
etc) as it relates to existence and uniqueness of global minima.

Theorem 26. (Jensen’s inequality) Suppose ϕ is a convex function on an open interval
X ⊆ R, and X is a random variable taking values in X. Then

ϕ[E(X)] ≤ E[ϕ(X)].

If ϕ is stricly convex, then equality holds if and only if X is constant.

50



Proof. First, take x0 to be any fixed point in X. Then there exists a linear function `(x) =
c(x − x0) + ϕ(x0), through the point (x0, ϕ(x0)), such that `(x) ≤ ϕ(x) for all x. To prove
our claim, take x0 = E(X), and note that

ϕ(X) ≥ c[X − E(X)] + ϕ[E(X)].

Taking expectations on both sides gives the result.

Theorem 27. (Markov’s Inequality) Suppose X is a random variable and h is a non-
decreasing non-negative function. The expectation E[h(X)] =

´∞
−∞ h(x)f(x)dx exists. Then

for any a > 0,

Pr{X ≥ a} ≤ E[h(X)]

h(a)
.

Proof. We can writeˆ ∞
−∞

h(x)f(x)dx ≥
ˆ ∞
a

h(x)f(x)dx ≥ h(a)

ˆ ∞
a

f(x)dx = h(a) Pr{X ≥ a}.

This leads directly to the following inequality called Markov inequality:

Pr{X ≥ a} ≤ E[h(X)]

h(a)
.

If we set h(x) = |x|, we have the standard version of Markov inequality:

Pr(|X(ω)| ≥ a) ≤ E[|X|]
a

for a > 0.

Theorem 28. (Chebyshev’s Inequality) For any r.v. Y with mean µ and variance σ2, and
for any k > 0,

Pr(|Y − µ| ≥ kσ) ≤ 1

k2
.

Proof. Apply Markov’s Inequality with X = (Y − µ)2 and a = k2σ2. The result follows.

7.4 Exercises
1. Show the conditional CDF for X ∼ U [0, 1] with conditioning event X ≥ z. U [0, 1] is

the uniform distribution.

2. Conditional expectationoften appears in econometrics as the Best approximation. The
idea is as follows. Suppose that X and Y are two random variables. We wish to find
the function f ∗ such that f ∗ (X) is the minimizer of E[Y − f(X)]2 over all functions
f i.e.

E[Y − f ∗(X)]2 = min
f

E[Y − f(X)]2.

Show that f ∗(X) as E[Y |X], the conditional expectation of Y given X.
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3. Change of variables: Let X be a random variable with distribution µ on (S,S). If f is
a measurable function from (S,S) to (R,R) such that f ≥ 0 or E|f(X)| <∞, then

E[f(X)] =

ˆ
S

f(y)µ(dy).

To prove this result, we need four steps: Step 1 use indicator Functions. If B ∈ S and
f = 1B, then

E[1B(X)] = Pr(X ∈ B) = µ(B) =

ˆ
S

1B(y)µ(dy).

Prove step 2: use Simple Functions. Let f(x) =
∑n

i=1 ci1Bi(x) to prove the argument.

4. Prove step 3: extend the result in step 2 to Nonnegative Functions. Can you construct
a simple function fn such that fn ↑ f as n→∞ and f ≥ 0? Combining result in step
2, can you prove the following statement?

E[f(X)] = lim
n→∞

E[f(Xn)] = lim
n→∞

ˆ
S

fn(y)µ(dy) =

ˆ
S

f(y)µ(dy).

5. Prove step 4: extend the result in step 3 to Integrable Functions. [Hint write f(x) =
f+(x)− f−(x) and use the result in step 3.]
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Chapter 8

Integration of Limits and Distributions

8.1 Integration of Limits
Recalled that if X ≥ 0 is a random variable on (Ω,F , P ), then we define its expected value
to be EX =

´
XdP. Notice that this quantity may be ∞. For general X, we say that EX

exists if the difference
EX = EX+ − EX−

is well-defined, which it will be if either EX+ <∞ or EX− <∞. These integrals are taken
over all of Ω. If we wish to integrate over a measurable subset A ⊂ Ω, we will write

E[X|A] ≡
ˆ
A
X dP ≡

ˆ
X1A dP.

Notice that EX inherits all of the properties of the Lebesgue integral. In particular,

Theorem 29. Suppose that X, Y ≥ 0 or E|X|,E|Y | <∞. Then 1) E[X + Y ] = EX + EY .
2) E[aX + b] = aE[X] + b for any a, b ∈ R. 3) If Pr{X ≥ Y } = 1, then EX ≥ EY .

We are interested in conditions that guarantee that if Xn → X, then EXn → EX. The
following example shows that this does not hold in general.

Example 50. Take Ω = (0, 1), F are the Borel sets and P is Lebesgue measure on (0, 1).
If Xn = n1(0,1/n), then Xn → X ≡ 0, but EXn = 1 > 0 = EX.

We begin by recalling three classical results from analysis.

Lemma 2. (Fatou’s Lemma) If Xn ≥ 0, then E [lim infn→∞Xn] ≤ lim infn→∞ E[Xn].

Theorem 30. (Monotone Convergence Theorem) If 0 ≤ Xn ↑ X, then EXn ↑ EX.

Proof. Since Xn ≤ X for all n, we know that lim supn→∞ EXn ≤ EX. However, since
X = lim infn→∞Xn, Fatou’s Lemma implies that EX ≤ lim infn→∞ EXn. Combining these
two results shows that

EX = lim
n→∞

EXn.
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Theorem 31. (Dominated Convergence Theorem) If Xn → X a.s. and |Xn| ≤ Y for all n,
where EY <∞, then EXn → EX.

The special case where Y is constant is called the bounded convergence theorem.
The following theorem can handle some cases that are not covered by either the monotone

or the dominated convergence theorems.

Theorem 32. Suppose that Xn → X a.s. Let g, h be continuous functions such that 1)
g ≥ 0 and g(x) → ∞ as |x| → ∞; 2) |h(x)|/g(x) → 0 as |x| → ∞; 3) E[g(Xn)] ≤ K < ∞
for all n. Then E[h(Xn)]→ E[h(X)].

Proof. By subtracting a constant from h, we can assume wlog that h(0) = 0. Choose M
so that g(x) > 0 whenever |x| ≥ M . Given a random variable Y , let Ȳ = Y 1(|Y |≤M).1
Then X̄n → X̄ a.s. If |Xn| < M for all n sufficiently large then X̄n = Xn → X = X̄, if
|Xn| > M for all n sufficiently large then X̄n = 0→ X̄ = 0. Since h(X̄n) is bounded and h
is continuous, the bounded convergence theorem implies that

E[h(X̄n)]→ E[h(X̄)].

(The rest of the proof is going to be a homework.)

Corollary 2. Suppose that Xn → X a.s. and that there exists a K < ∞ and a p > 1 such
that E[Xp

n] ≤ K for all n ≥ 1. Then EXn → EX.

8.2 Special Distributions
In most of what we do in this course, here in particular, we will ignore the underlying
probability space and work just with probability measures on the X-space. In a statistical
problem, there is not just one probability measure in question, but a whole family of measures
Pθ indexed2 by a parameter θ ∈ Θ. You’re already familiar with this setup; X1, . . . , Xn iid
N (θ, 1) is one common example. Here are some others.

Example 51. (Binomial Distribution) The probability mass function with parameters n
and p is

pX(x) =

(
n
x

)
· px · (1− p)n−x

for x = 0, 1, . . . n. The mean of X is np. A single Bernoulli trial is px(1− p)1−x for x = 0, 1.
Its mean is p and its variance is p(1− p).

Example 52. (Uniform Distribution) A r.v. X on the interval (a, b) has PDF pX(x) =
1/(b− a) for x ∈ (a, b). The mean and variance are (a+ b)/2 and (b− a)2/12 respectively.

1Check the (*) inequality in your exercise to understand the role of truncation.
2Note that the subscript in Pθ serves a different purpose than the subscript PX .
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Example 53. (Exponential Distribution) A r.v. X with parameter λ > 0 has PDF pX(x) =
λ exp(−λx) for x > 0. Sometimes, it is written in terms of β = 1/λ and its PDF becomes
pX(x) = (1/β) exp(−x/β).

Example 54. One of the most important distributions is the normal distribution. It does
not have as easy a motivation as some of the other distributions, but it is of fundamental
importance as an approximation to a large number of statistics through the central limit
theorem. A r.v. X has a normal distribution with parameters µ and σ2, denoted by N (µ, σ2)
has PDF

pX(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
,

for −∞ < x <∞, with the parameter space −∞ < µ <∞ and σ2 > 0.

8.3 Moment Generating Functions and Characteristic Func-
tions

The moments of a random variable are summarized in the moment generating function.

Definition. The moment generating function of X is EetX provided that the expectation
exists in some neighborhood t ∈ [−h, h] of zero. Thi is also called the Laplace transform.

Example 55. Standard Normal distribution:
ˆ ∞
−∞

1√
2π

exp

(
tx− x2

2

)
dx =

ˆ ∞
−∞

1√
2π

exp

(
−1

2
(x− t)2 − t2

)
dx

= exp

(
1

2
t2
) ˆ ∞

−∞

1√
2π

exp

(
−1

2
(x− t)2

)
dx

= exp

(
1

2
t2
)
· 1.

First moment: EX = ∂e
t2

2 /∂t|t=0 = t · exp(t2/2)|t=0 = 0. Second moment: EX2 =

∂2e
t2

2 /∂t2|t=0 = e
t2

2 + t2e
t2

2 = 1. kth-moment: ∂kE[XetX ]/∂tk|t=0 = EXk.

In many cases, the moment generating function can characterize a distribution. But
problem is that it may not exist (eg. Cauchy distribution) For a r.v. X, is its distribution
uniquely determined by its moment generating function?

Theorem 33. For X ∼ PX and Y ∼ PY , if their moment generating functions exist, and
they are equivalent for all t in some neighborhood of zero, then PX(u) = PY (u) for all u.

One of the most important properties of the normal distribution is that linear trans-
formations of normal random variables are also normally distributed. Consider a random
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variable Xwith a N (µ, σ2) distribution, and consider the transformation Y = a+ bX. Then,
through the moment generating function

E(etY ) = E(e(a+bX)t) = eat · E(ebtX)

= exp

(
at+ µbt+

(σbt)2

2

)
= exp

(
µ̃t+

σ̃2t2

2

)
Hence Y has a normal distribution with µ̃ = a+ bµ and σ̃2 = b2σ2.

Note that if the moment generating function exists, then it characterizes a random vari-
able with an infinite number of moments (because themoment generating function is infinitely
differentiable).

There is a connection between the normal distribution and the Chi-squared distribution.
IfX has a standard normal distributionN (0, 1), then Y = X2 has a Chi-squared distribution
with degrees of freedom equal to one. One argument goes as follows

E(etY ) = E(eX
2t) =

ˆ ∞
−∞

1√
2π

exp

(
−1

2
x2 + tx2

)
dx

=

ˆ ∞
−∞

1√
2π

exp

(
−(1 + 2t)x2

2

)
dx

=
1

(1− 2t)1/2

ˆ ∞
−∞

1√
2π/(1− 2t)

exp

(
− x2

2/(1− 2t)

)
dx =

1

(1− 2t)1/2

which is the moment generating function for a Chi-square distribution with degrees of free-
dom one.

Definition. If X is a random variable, then its characteristic function is defined to be

ϕ(t) = EeitX =

ˆ ∞
−∞

exp(itx)p(x)dx

This is also called the Fourier transform.

Remark. The characteristic function always exists. It completely determines the distribution
of X. This follows from the equality

ϕ(t) = EeitX = E cos(tX) + iE sin(tX).

Characteristic functions satisfy the following properties: 1) ϕ(0) = 1; 2) ϕ(−t) = E cos(−tX)+
iE sin(−tX) = ϕ(t); 3) |ϕ(t)| = |EeitX | ≤ E|eitX | ≤ 1; 4) Eeit(aX+b) = eitbϕ(at).
Remark. If X and Y are independent with characteristic functions ϕ1 and ϕ2, then the
characteristic function of X + Y is

Eeit(X+Y ) = E
[
eitXeitY

]
= EeitXEeitY = ϕ1(t)ϕ2(t).

Notice that this relationship extends to arbitrary finite sums of independent random vari-
ables.
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Example 56. Bernoulli distribution: If P (X = 1) = P (X = −1) = 1/2, then

EeitX =
(
eit + e−it

)
/2 = cos(t).

Example 57. Poisson distribution: If P (X = k) = e−λλk/k!, then

EeitX =
∞∑
k=0

e−λ
λkeitk

k!
= eλ(eit−1)

Example 58. Normal distribution: Suppose that X is a standard normal random vari-
able. Then

EeitX =

ˆ ∞
−∞

1√
2π
eitx−x

2/2dx = e−t
2/2

ˆ ∞
−∞

1√
2π
e−(x−it)2/2dx = e−t

2/2.

In general, ifX is a normal random variable with mean µ and variance σ2, then Z = (X−µ)/σ
is a standard normal random variable and so

EeitX = eitµe−σ
2t2/2.

The corresponding density pX(x) is available by the inverse Fourier transform, which is

pX(x) =
1

2π

ˆ ∞
−∞

ϕX(t) exp(−itx)dt.

Take as given that the characteristic function is e−t2/2. The inversion formula yields

pX(x) =
1

2π

ˆ ∞
−∞

exp(−t2/2) exp(−itx)dt

=
1

2π

ˆ ∞
−∞

exp(−itx− x2/2)dt

Now substituting z = −t, we have
1

2π

ˆ ∞
−∞

exp(itz − z2/2)dz =
1√
2π
ez

2/2.

Example 59. Uniform distribution on (a,b): If X has density 1(a,b)(x)/(b− a), then

EeitX =
1

b− a

ˆ b

a

eitxdx =
eitb − eita

it(b− a)
.

In the special case where a = −b = l, the characteristic function is sin(lt)/lt.

Example 60. Exponential distribution: If X has density λe−λx on [0,∞), then

EeitX =

ˆ ∞
0

λe(it−λ)xdx =
λ

λ− it
.

Characteristic function also summarizes the moments of a random variable. Specifically,
note that the h-th derivative of ϕX(t) is

ϕ
(h)
X (t) =

ˆ ∞
−∞

ihxh exp(−itx)pX(x)dx.
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8.4 Exercises
1. Theorem 4: To control the truncation error, let

εM ≡ sup{|h(x)|/g(x) : |x| ≥M}.

and observe that for any random variable Y we have

(?)
∣∣E[h(Ȳ )]− E[h(Y )]

∣∣ ≤ E
∣∣h(Ȳ )− h(Y )

∣∣
= E[|h(Y )| | |Y | > M ] ≤ εME[g(Y )].

Can you use this argument to finish the proof? [Hint: take Y = Xn and take Y = X in
(?), and see what could you have.] [Answer: Taking Y = Xn in (?) and using condition
(3) in the theorem, we have ∣∣Eh(X̄n)− Eh(Xn)

∣∣ ≤ KεM .

To estimate the remaining truncation error, notice that because g ≥ 0 and g is contin-
uous, Fatou’s lemma implies that

E[g(X)] ≤ lim inf
n→∞

E[g(Xn)] ≤ K.

Then, taking Y = X in (?) gives∣∣Eh(X̄)− Eh(X)
∣∣ ≤ KεM .

Finally, by the triangle inequality, we have∣∣Eh(Xn)− Eh(X)
∣∣ ≤ ∣∣E[h(Xn)]− E[h(X̄n)]

∣∣
+

∣∣E[h(X̄n)]− E[h(X̄)]
∣∣+
∣∣E[h(X̄)]− E[h(X)]

∣∣.
Letting n→∞, we obtain

lim sup
n→∞

∣∣E[h(Xn)]− E[h(X)]
∣∣ ≤ 2KεM

which can be made arbitrarily close to 0 since εM → 0 as M →∞.]

2. Can you prove that the characteristic function ϕ is uniformly continuous on R? [An-
swer: Since ∣∣ϕ(t+ h)− ϕ(t)

∣∣ =
∣∣E(ei(t+h)X − eitX

)∣∣
≤ E

∣∣ei(t+h)X − eitX
∣∣ = E

∣∣(eihX − 1)eitX
∣∣,

and the bounded convergence theorem shows that the last quantity converges to 0 as
h→ 0, it follows that ϕ is uniformly continuous on R.]
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Chapter 9

LLN and CLT

9.1 Weak Law of Large Numbers
We begin by defining some modes of convergence for random variables. Suppose that
Xn, n ≥ 1 and X are random variables defined on the same probability space.

Definition. (L2 weak law) We say that Xn converges to X in Lp if E|X − Xn|p → 0 as
n→∞.

Definition. We say that Xn converges to X in probability and write Xn
p→ X if for every

ε > 0, we have Pr{|Xn −X| > ε} → 0.

Lemma 3. If r > 0 and E|Xn|r → 0, then Xn → 0 in probability.

Proof. The result follows from Chebyshev’s inequality which shows that

Pr{|Xn| > ε} ≤ ε−rE|Xn|r → 0.

We say that a family of random variables, Xi, i ∈ I, is uncorrelated if EX2
i < ∞ for

every i ∈ I and EXiXj = 0 whenever i 6= j.

Lemma 4. Let X1, · · · , Xn be uncorrelated. Then

Var (X1 + · · ·+Xn) =
n∑
i=1

Var(Xi).

Let X1, X2, · · · be uncorrelated random variables with EXi = µ and Var(Xi) ≤ C < ∞. If
Sn = X1 + · · ·+Xn, then as n→∞, Sn/n→ µ in L2 and in probability.
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Proof. To prove L2 convergence, observe that E[Sn/n] = µ, so

E
(
Sn/n− µ

)2
= Var(Sn/n) =

1

n2

n∑
i=1

Var(Xi) ≤
Cn

n2
→ 0.

Convergence in probability then follows from Lemma 1.

Many limit theorems in probability address the asymptotic behavior of the row sums of
arrays Xn,k, 1 ≤ k ≤ n of random variables.

Theorem 34. Let µn = ESn and σ2
n = Var(Sn). If σ2

n/b
2
n → 0, then (Sn − µn)/bn → 0 in

probability.

Proof. The result follows from Lemma 2 since

E
(
Sn − µn
bn

)2

= b−2
n Var(Sn)→ 0.

We can use truncation to extend the weak law to random variables without a second
moment.

Theorem 35. (Weak law for triangular arrays) For each n ≥ 1, let Xn,k, 1 ≤ k ≤ n be a
collection of independent random variables. Let bn, n > 1 be a collection of real numbers with
bn →∞ and let X̄n,k = Xn,k1(|Xn,k|≤bn). Suppose that as n→∞

(1)
∑n

k=1 Pr(|Xn,k| > bn)→ 0, and
(2) b−2

n

∑n
k=1 EX̄2

n,k → 0.
If Sn = Xn,1 + · · ·+Xn,n and an =

∑n
k=1 EX̄n,k, then (Sn − an)/bn → 0 in probability.

Proof. Let S̄n = X̄n,1 + · · ·+ X̄n,n. Then

Pr

(∣∣∣∣Sn − anbn

∣∣∣∣ > ε

)
≤ Pr(Sn 6= S̄n) + Pr

(∣∣∣∣ S̄n − anbn

∣∣∣∣ > ε

)
.

To estimate the first term on the RHS, note that

Pr(Sn 6= S̄n) ≤ Pr
(
∪nk=1 {X̄n,k 6= Xn,k}

)
≤

n∑
k=1

Pr(|Xn,k| > bn)→ 0

by condition (1). For the second term, we can use condition (2) along with Chebyshev’s
inequality and the fact that Var(Xn) ≤ EX2

n to show that

Pr

(∣∣∣∣ S̄n − anbn

∣∣∣∣ > ε

)
≤ ε−2E

∣∣∣∣ S̄n − anbn

∣∣∣∣2 = ε−2b−2
n Var(S̄n)

= (bnε)
−2

n∑
k=1

var(X̄n,k) ≤ (bnε)
−2

n∑
k=1

E(X̄n,k)
2 → 0.

60



Lemma 5. If Y ≥ 0 and p > 0, then

EY p =

ˆ ∞
0

pyp−1P (Y > y)dy.

Proof. Using Fubini’s Theorem, we can calculate
ˆ ∞

0

pyp−1P (Y > y)dy =

ˆ ∞
0

ˆ
Ω

pyp−11(Y >y)dPdy

=

ˆ
Ω

ˆ ∞
0

pyp−11(Y >y)dydP

=

ˆ
Ω

ˆ Y

0

pyp−1dydP =

ˆ
Ω

Y pdP = EY p.

Theorem 36. (Weak Law of Large Numbers) Let X1, X2, · · · be i.i.d. with

(?) xP (|X1| > x)→ 0 as x→∞.

Let Sn = X1 + · · ·+Xn and µn = E
(
X11(|X1|≤n)

)
. Then Sn/n− µn → 0 in probability.

Proof. We will apply Theorem 2 with Xn,k = Xk and bn = n. To check condition (1) in that
theorem, observe that (?) implies that

n∑
k=1

P (|Xn,k| > n) = nP (|X1| > n)→ 0.

For condition (2), we need to show that n−2 · nEX̄2
n,1 → 0. First observe that

1

n
EX̄2

n,1 =
1

n

ˆ ∞
0

2yP (|X̄n,1| > y)dy ≤ 1

n

ˆ n

0

2yP (|X1| > y)dy

since P (|X̄n,1| > y) = 0 for y ≥ n. To show that the last term tends to 0 as n → ∞, let
g(y) = 2yP (|X1| > y) and notice that 0 ≤ g(y) ≤ 2y and g(y) → 0 as y → ∞ imply that
M = sup g(y) <∞. If we define εK = sup{g(y) : y > K}, then for n > K

ˆ n

0

2yP (|X1| > y)dy ≤ KM + (n−K)εK .

Dividing by n and letting n→∞ gives

lim sup
n→∞

1

n

ˆ n

0

2yP (|X1| > y)dy ≤ εK .

The result then follows upon noting that εK → 0 as K →∞.
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The familiar form of the weak law of large numbers is:

Corollary 3. Let X1, X2, · · · be i.i.d. with E|Xi| <∞. Let Sn = X1+· · ·+Xn and µ = EX1.
Then Sn/n→ µ in probability.

Proof. Chebyshev’s inequality and the dominated convergence theorem imply that

xP (|X1| > x) ≤ E
(
|X1|1(|X1|>x)

)
→ 0 as x→∞

µn = E
(
X11(|X1|≤n)

)
→ EX1 = µ as n→∞.

Using Theorem 3, we see that if ε > 0, then P (|Sn/n − µn| > ε/2) → 0. Since µn → µ, it
follows that P (|Sn/n− µ| > ε)→ 0.

Definition. A sequence of distribution functions (PXn ;n ≥ 1) is said to converge weakly
to a limit P if PXn(x) → P (x) for all x that are points of continuity of P . In this case, we
write PXn  P or PXn ⇒ P or PXn

w→ P . Similarly, a sequence of random variables Xn is
said to converge in distribution to a limit X, written Xn  X or Xn ⇒ X or Xn

d→ X, if
the distribution functions PXn(x) = Pr(Xn ≤ x) converge weakly to the distribution function
of X.

Theorem 37. (Central Limit Theorem) Let X1, X2, · · · be i.i.d. with EXi = µ and Var(Xi) =
σ2 <∞. If Sn = X1 + · · ·+Xn, then

Sn − nµ
σ
√
n
 Z

where Z ∼ N (0, 1).

Proof. Step 1: The following inequality holds for all x:∣∣∣∣∣eix −
n∑

m=0

(ix)m

m!

∣∣∣∣∣ ≤ min

(
|x|n+1

(n+ 1)!
,
2|x|n

n!

)
. (9.1)

Step 2: If E|X|2 <∞, then

ϕ(t) = 1 + itEX − 1

2
t2EX2 + r.

the error term r is bounded by

E
[
|tX|3

6
∧ 2|tX|2

2

]
= t2E

[
|t||X|3

6
∧ |X|2

]
.

Since the expression inside the expectation tends to 0 as t→ 0, from the dominated conver-
gence theorem and the fact that X2 is integrable we know r → 0.
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Step 3: It suffices to consider the case µ = 0. Since X1 has finite variance, step 2 implies
that

ϕ(t) = E
[
eitX1

]
= 1− σ2t2

2
+ o(t2)

so that
E
[
exp

(
itSn/σ

√
n
)]

=

(
1− t2

2n
+ o(n−1)

)n
→ e−t

2/2.

Since the limit on the right-hand side is the characteristic function of Z, the result follows.

Theorem 38. (Delta Method): Let Xn be a sequence of random vectors such that
√
n(Xn − µ) N (0,Σ)

where Σ is positive definite and finite. Let g denote a continuous differentiable function from
Rd into Rk, and let G(x) = ∂g/∂x denote the k × d matrix of partial derivative. Then

√
n(g(Xn)− g(µ)) N (0, G(µ)ΣG(µ)T ).

Appendix
Theorem. (Fubini) Let f(x, y) be a non-negative measurable function on X× Y. Then

ˆ
X

[ˆ
Y
f(x, y) dν(y)

]
dµ(x) =

ˆ
Y

[ˆ
X
f(x, y) dµ(x)

]
dν(y).

The common value above is the double integral, written
´
X×Y f d(µ× ν).

Theorem. (Dominated convergence) Given measurable {fn}, suppose that

f(x) = lim
n→∞

fn(x) µ-almost everywhere,

and |fn(x)| ≤ g(x) for all n, for all x, and for some integrable function g. Then fn and f
are integrable, and ˆ

f dµ = lim
n→∞

ˆ
fn dµ.

Proof. of Equation (1) in CLT. Integration by parts gives
ˆ x

0

(x− s)neisds =
xn+1

n+ 1
+

i

n+ 1

ˆ x

0

(x− s)n+1eisds,

which for n = 0 says ˆ x

0

eisds = x+ i

ˆ x

0

(x− s)eisds.
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Since
´ x

0
eisds = (eix − 1)/i, rearranging gives

eix = 1 + ix+ i2
ˆ x

0

(x− s)eisds.

Next, taking n = 1, we have

eix = 1 + ix+
i2x2

2
+
i3

2

ˆ x

0

(x− s)2eisds,

and iterating leads to

(a) eix −
n∑

m=0

(ix)m

m!
=
in+1

n!

ˆ x

0

(x− s)neisds.

To estimate the magnitude of the remainder term on the right-hand side, we can use the
fact that |eis| ≤ 1 for all s to see that∣∣∣∣in+1

n!

ˆ x

0

(x− s)neisds
∣∣∣∣ ≤ |x|n+1

(n+ 1)!
.

This estimate is good when |x| is small relative to n. To cope with large |x|, we again
integrate by parts

i

n

ˆ x

0

(x− s)neisds = −x
n

n
+

ˆ x

0

(x− s)n−1eisds

= −
ˆ x

0

(x− s)n−1ds+

ˆ x

0

(x− s)n−1eisds.

Multiplying through by in/(n− 1)! then gives

in+1

n!

ˆ x

0

(x− s)neisds =
in

(n− 1)!

ˆ x

0

(x− s)n−1(eis − 1)ds

and since |eis − 1| ≤ 2 for all s, it follows that

(b)

∣∣∣∣in+1

n!

ˆ x

0

(x− s)neisds
∣∣∣∣ ≤ ∣∣∣∣ 2

(n− 1)!

ˆ x

0

(x− s)n−1ds

∣∣∣∣ ≤ 2|x|n

n!
.

Thus the conclusion follows upon combining (a) and (b).

Excercise
1. Let X1, X2, · · · be i.i.d. with E|Xi| <∞. Let Sn = X1 + · · · + Xn and µ = EX1. Use

the previous result to show that Sn/n→ µ in probability. [Refer to the main text.]

2. To show that the last term of (??) tends to 0 as n → ∞. The result of the theorem
follows. [Refer to the main text.]
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Part III

Statistics
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Chapter 10

Likelihood and MLE

10.1 Likelihood
Likelihood is surely one of the most important concepts in statistical theory. The likelihood
function establishes a preference among the possible parameter values given data X = x.
That is, a parameter values θ1 with larger likelihood is better than parameter value θ2 with
smaller likelihood, in the sense that the model Pθ1 provides a better fit to the observed data
than Pθ2 . This leads naturally to procedures for inference which select, as a point estimator,
the parameter value that makes the likelihood the largest, or rejects a null hypothesis if the
hypothesized value has likelihood too small. The likelihood function is also of considerable
importance in Bayesian analysis.

Likelihood function provides the basis for statistical inference. That is, all “good” sta-
tistical methods are driven by the likelihood function (or some variation thereof). There is
a formal, and somewhat controversial version of this claim, called the likelihood principle,
which says something like the following: all the relevant information in data about the pa-
rameter is contained in the (shape of the) likelihood function and, furthermore, if two data
sets give rise to likelihood functions with the same shape, then the same conclusions should
be reached for both data sets.

What has now appeared is that the mathematical concept of probability is ... in-
adequate to express our mental confidence or indifference in making ... inferences,
and that the mathematical quantity which usually appears to be appropriate for
measuring our order of preference among different possible populations does not
in fact obey the laws of probability. To distinguish it from probability, I have
used the term “likelihood” to designate this quantity; since both words “likeli-
hood” and “probability” are loosely used in common speech to cover both kinds
of relationship. -by Fisher 1973

We use θ∗ to denote the true value of the parameter that generated the data, and use θ to
denote any element of the parameter space.
Definition. (Specification) Let (X,A) be a measurable space equipped with a family {Pθ :
θ ∈ Θ} of probability measures (models) indexed by a parameter θ ∈ Θ. Data X1, . . . , Xn
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are independent and identically distributed according to some Pθ∗ . The goal is to estimate
the unknown parameter θ∗.

Since {Pθ : θ ∈ Θ} is defined on the measurable space (X,A). If Pθ is absolutely
continuous with respect to a dominating σ-finite measure µ, then for each θ, the Radon-
Nikodym derivative (dPθ/dµ)(x) is the usual probability density function for the observable
X, written as pθ(x). For fixed θ, we know that pθ(x) characterizes the sampling distribution
of X.

Definition. A point estimator is a statistic used to provide a guess about θ.

Definition. Given X = x, the likelihood function is L(θ) = pθ(x).

Definition. θ is identifiable, that is, θ 7→ Pθ is one-to-one.

Remark. This just means that it is possible to estimate θ based on sample data. An example
of a model that’s not identifiable is N (θ1 + θ2, 1), we can estimate the sum θ1 + θ2 but not
the individual components.

If we have more than one random variable, sayX1, . . . , Xn, the likelihood function is based
on the joint probability density/mass function: the likelihood is Ln(θ) = pθ(X1, . . . , Xn). If
the random variables are i.i.d., with common density function

L(θ) = pθ(X1, . . . , Xn) =
n∏
i=1

pθ(Xi)

Often we prefer to work with the logarithm of the likelihood function, the log likelihood
function:

Ln(θ) = lnL(θ) = ln pθ(X1, . . . , Xn) =
n∑
i=1

ln pθ(Xi).

Definition. Given a class of potential models Pθ indexed by θ ∈ Θ, we observe X = x and
we’d like to know which model is the most likely to have produced this x. This defines an
optimization problem:

θ̂ = arg max
θ∈Θ

Ln(θ), (10.1)

is the maximum likelihood estimate (MLE) of θ.

Pθ̂ is then considered the most likely model, that is, among the class {Pθ : θ ∈ Θ}, the
model Pθ̂ provides the best fit to the observed X = x. In terms of “ranking” intuition, θ̂ is
ranked the highest.

• Bayesian estimation (optional). In a Bayesian context, there is also a prior probability
measure Π on the parameter space Θ. Then, according to Bayes’ theorem, the posterior
distribution Πn = Πn,x, given X = x, satisfies Πn � Π and

dΠn

dΠ
(θ) =

Ln(θ)´
Θ
Ln(u) dΠ(u)

∝ Ln(θ). (10.2)
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When Π has a density π with respect to some dominating measure ν, then so does
Πn and πn(θ) = (dΠn/dν)(θ) ∝ Ln(θ)π(θ). If a Bayesian is forced to produce a point
estimate of θ?, then he/she might choose the posterior mean or posterior mode.

Remark. MLE is θ̂n = arg maxθ Ln(θ). If we use the likelihood function as a relative measure
of plausibility for candidate θ values, then the MLE θ̂n is the “most plausible.” The intuition
is that when lots of data are available, the likelihood function will look like a spike around
θ = θ∗, so the MLE will be close to the true value.

Consider the random variable Y defined as the ratio of the density function at some arbitrary
value of θ to the density function at θ∗, both evaluated at the random variable X:

Y = pθ(X)/pθ∗(X).

The logrithmic function gives the convexity. By Jensen’s inequality

E[− lnY ] ≥ − lnE[Y ],

implying

E
[
− ln

(
pθ(X)

pθ∗(X)

)]
≥ − ln

(
E
[
pθ(X)

pθ∗(X)

])
,

where the expectation is over the distribution of X, that is the density pθ∗(X). Then

E
[
pθ(X)

pθ∗(X)

]
=

ˆ
pθ(x)

pθ∗(x)
pθ∗(x)dx =

ˆ
pθ(x)dx = 1,

for all θ. So E
[
− ln

(
pθ(X)
pθ∗ (X)

)]
≥ 0 implying

E [− ln pθ(X)] ≤ E [ln pθ∗(X)]

for all θ. This implies that the expected value of the log likelihood is maximized at the
true value θ∗, and therefore there is some hope that the actual log likelihood function is
maximized at a value close to θ∗.

Example 61. (Normal Distribution with unknown µ and variance 1) The likelihood is

L(µ) =
n∏
i=1

1√
2π

exp

(
−1

2
(Xi − µ)2

)
,

the log-likelihood is − ln(2π)/2 −
∑

i(Xi − µ)2/2. The value of µ that maximizes the log
likelihood function is µ̂ =

∑
iX/n.

Example 62. (Normal Distribution with unknown µ and unknown variance) The likelihood
is

L(µ, σ2) =
n∏
i=1

1√
2πσ2

exp

(
−1

2
(Xi − µ)2

)
,
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the log-likelihood is

L(µ, σ2) =
n∑
i=1

−1

2
ln(2πσ2)− 1

2σ2
(Xi − µ)2 .

To maximize this over µ and σ2, we need to solve a system of equations:

∂L

∂µ
(µ, σ2) =

n∑
i=1

1

σ2
(Xi − µ)

∂L

∂σ2
(µ, σ2) =

n∑
i=1

− 1

2σ2
+

1

2σ4
(Xi − µ)2

Setting both to zero gives us

σ̂2 =
n∑
i=1

(Xi − µ̂)2/n

where µ̂ =
∑

iX/n.

Remark. An important property of maximum likelihood estimators is their invariance under
reparametrization: If θ̂ is the maximum likelihood estimator for θ∗, then π̂ = g(θ̂) is the
MLE for any one-to-one transformation g(·).

10.2 Hypothesis Testing
For two competing hypotheses H0 and H1 about the parameter θ, the likelihood ratio is often
used to make a comparison. For example, for H0 : θ = θ0 versus H1 : θ = θ1, the likelihood
ratio is L(θ0)/L(θ1), and large (resp. small) values of this ratio indicate that the data x
favors H0 (resp. H1). A more difficult and somewhat more general problem is H0 : θ ∈ Θ0

versus H1 : θ 6∈ Θ0, where Θ0 is a subset of Θ.

Definition. Define the likelihood ratio as

Tn = Tn(X,Θ0) =
supθ∈Θ0

Ln(θ)

supθ∈Θ Ln(θ)
. (10.3)

Remark. The interpretation of this likelihood ratio is if the ratio is small, then data lends
little evidence to the null hypothesis.

If the model is suitably “regular,” then there is a nice asymptotic distribution theory for
the MLE and likelihood ratio statistic. The presentation will be kept informal here; precise
statements and proofs will come later.

Consider the case where X = (X1, . . . , Xn) is an iid sample with a common density pθ(x),
θ ∈ Θ ⊆ Rd, so that the likelihood function is Ln(θ) =

∏n
i=1 pθ(Xi). If the data were not iid,

then the likelihood would still just be the joint density of data, treated as a function of θ.
However, the theory would generally need some revision.
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The MLE θ̂ in (10.1), a d-vector, is a solution to the likelihood equation ∇ logLn(θ) = 0.
Let I(θ) denote the d × d matrix. Suppose a consistent solution θ̂ = θ̂n to the likelihood
equation and it satisfies {nI(θ∗)}1/2(θ̂n−θ∗)→ N (0, I) in distribution under Pθ∗ as n→∞.
This asymptotic normality result says that, when n is large, the sampling distribution of
θ̂n is approximately normal with mean θ∗ and covariance matrix {nI(θ∗)}−1. This approxi-
mate distribution, together with a suitable estimate/approximation for I(θ), can be used to
construction asymptotically correct confidence regions and tests for θ.

Let Θ be an open subset of Rd, consider the testing problem H0 : θ ∈ Θ0 versus H1 : θ 6∈
Θ0, where Θ0 is a subset of Θ that specifies the values θ01, . . . , θ0m of θ1, . . . , θm, 1 ≤ m ≤ d.
IfH0 is true, and if certain regularity conditions hold, thenWn = −2 log Tn, with Tn in (10.3),
satisfiesWn → χ2(m) in distribution, as n→∞. Such a result provides an approximate size-
α test of H0 when n is large, i.e., by rejecting H0 iff Wn is more than χ2

m,1−α, the 100(1−α)
percentile of the χ2(m) distribution.
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Chapter 11

Large Sample Theorem in MLE (I)

11.1 Introduction
Large-sample theory was and is crucial to the development of statistical methods. Before
the availability of high-power computing, the only way to solve many statistical problems
was via asymptotic approximations. Nowadays, bootstrap and Markov chain Monte Carlo
methods are available to get finite-sample approximate inference, but there are still needs
for asymptotic theory.

In cases where the MLE or Bayes estimates are available in closed-form, standard tools
from probability theory (e.g., law of large numbers, central limit theorem, etc) can be used
to develop large-sample properties. But in most interesting cases, computation of the es-
timators is non-trivial. The likelihood could be too complicated to solve analytically, in
which case, some numerical optimization procedure is needed. Popular techniques include
the Newton–Raphson method and the Expectation–Maximization (EM) algorithm. Another
challenge is that the likelihood may have many local maxima so, in such cases, there are
uniqueness concerns. The point here is that we cannot, in general, rely on a formulae to
derive asymptotic properties since, in most cases, there will be none. Instead we must rely
completely on asymptotic properties of the likelihood function itself.

11.2 Likelihood-based Asymptotics

11.2.1 Consistency

Suppose θ̂n is some estimate—the MLE in this case—of the unknown parameter θ = θ?.
Then the estimate is consistent if it converges to the true value when the sample size n
increases to infinity.

Definition. (Consistency) An estimate θ̂n is consistent for θ? if θ̂n → θ? in Pθ?-probability
as n→∞. More precisely, θ̂n is consistent for θ? if

lim
n→∞

Pθ?
{
|θ̂n − θ?| > ε

}
= 0 ∀ ε > 0.
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The estimate is strongly consistent if convergence is in Pθ?-probability 1.

Towards consistency of the MLE, we start with a preliminary results which says that, for
any θ 6= θ?, Ln(θ?) exceeds Ln(θ) for all but finitely many n with probability 1.

Definition. If An, n ≥ 1 is a sequence of subsets of Ω, then we define

lim sup
n→∞

An ≡
∞⋂
n=1

∞⋃
m=n

Am = {ω that are in infinitely many An}

lim inf
n→∞

An ≡
∞⋃
n=1

∞⋂
m=n

Am = {ω that are in all but finitely many An}.

It is common to write lim supAn = {ω : ω ∈ An i.o.}.

Definition. (Almost Surely Convergence) Let Xn → X a.s. denote Xn converges to X
almost surely. Then for all ε > 0, Pr(|Xn −X| > ε i.o.) = 0.

Our first key result is:

Lemma 6. (Borel-Cantelli Lemma) If
∑∞

n=1 Pr(An) <∞, then Pr(An i.o.) = 0.

Proof. Let N =
∑∞

k=1 1Ak be the number of events that occur. Pr(An, i.o) = 0 iff Pr(N <
∞) = 1. By Fubini’s theorem, E[N ] =

∑∞
k=1 Pr(Ak) < ∞. E[N ] < ∞ is equivalent to

Pr(N <∞) = 1. So we must have Pr(An i.o.) = 0.

Theorem 39. Suppose X1, . . . , Xn are iid with density pθ?. For any fixed θ 6= θ?,

Pθ?
{
Ln(θ) > Ln(θ?) i.o.

}
= 0.

The intuition goes as follows. Let

Rn(X, θ) =
1

n
log

Ln(θ)

Ln(θ?)
=

1

n

n∑
i=1

log
pθ(Xi)

pθ?(Xi)
.

By the law of large numbers, Rn(X, θ)→ −K(θ?, θ) almost surely, where

K(θ?, θ) = Eθ?
{

log
pθ?(X)

pθ(X)

}
=

ˆ
log

pθ?(x)

pθ(x)
pθ(x) dµ(x)

is the Kullback-Leibler divergence of pθ from pθ? , which is positive for for θ 6= θ? by Jensen’s
inequality. Therefore, Rn(X, θ) should be negative for large n, so the event {Ln(θ?) > Ln(θ)},
which is equivalent to {Rn(X, θ) < 0}, should have high probability.

Proof. Take any δ > 0. Since Eθ?{Ln(θ)/Ln(θ?)} = 1, it follows from Markov’s inequality
that Pθ?{Rn(X, θ) ≥ δ} = Pθ?{Ln(θ)/Ln(θ?) ≥ enδ} ≤ e−nδ. Since

∑
n e
−nδ <∞, the Borel–

Cantelli lemma implies that Pθ?{Rn(X, θ) ≥ δ i.o.} = 0 for all δ > 0. By letting δ → 0,
it follows that Pθ?{Rn(X, θ) > 0 i.o.} = 0. But the event {Rn(X, θ) > 0} is equivalent to
{Ln(θ) > Ln(θ?)}, so we’re done.
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Theorem 39 shows that Ln(θ?) is likely to be greater than Ln(θ) for any other fixed θ
when n is large. This suggests that the MLE is consistent, but doesn’t prove it, unless
Θ is finite. The trouble is that the result only describes behavior of the likelihood ratio
Rn(X, θ) for fixed θ. There are basically two approaches to get a consistency result. The
first technique relaxes the definition of MLE consistency, only asking if there is a sequence
of solutions to the likelihood equation that’s consistent.

Theorem 40. Let X1, . . . , Xn are iid Pθ, and assume that pθ(x) is the µ-density of Pθ,
and that the support of Pθ does not depend on θ. Suppose that, for µ-almost all x, pθ(x)
is differentiable in θ ∈ Θ0, with derivative p′θ(x). Then, with probability tending to 1, there
exists a consistent sequence of solutions θ̂n to the likelihood equation

0 =
∂

∂θ
logLn(θ | X) =

n∑
i=1

p′θ(Xi)

pθ(Xi)
,

i.e., θ̂n → θ? in probability under Pθ? for all interior points θ? of Θ.

Proof. Take a > 0 small enough that (θ?− a, θ? + a) is contained in the interior of Θ. Write
`n(θ | x) = logLn(θ | x) and define

Sn(a) = {x : `n(θ? | x) > `n(θ? − a | x) and `n(θ? | x) > `n(θ? + a | x)}.

Then for any x ∈ Sn(a), there exists θ̂n(a) ∈ (θ? − a, θ? + a) at which `n(θ) has a local
maximum, i.e., `′n(θ̂n(a)) = 0. We also know by Theorem 39 that Pθ?(Sn(a)) → 1 as
n → ∞ for any fixed a > 0, and from this it follows that there exists an ↓ 0 such that
Pθ?{Sn(an)} → 1 as n → ∞. Let θ̂+

n (x) equal θ̂n(an) if x ∈ Sn(an) and equal to some
arbitrary constant otherwise. Then,

Pθ?{`′n(θ̂+
n (X)) = 0} ≥ Pθ?{Sn(an)} → 1.

Therefore, for any a > 0 and n sufficiently large,

Pθ?{|θ̂+
n (X)− θ?| < a} ≥ Pθ?{|θ̂+

n (X)− θ?| < an} ≥ Pθ?{Sn(an)} → 1,

completing the proof.

This theorem indicates that the process of estimating θ by solving the likelihood equation
is a reasonable one in the sense that there will be a consistent solution. If the solution to the
likelihood equation is unique, then that solution is the MLE and it’s consistent. However,
if the likelihood equations have more than one solution, then the theorem is useless because
it doesn’t say which sequence of solutions to pick. Wald’s consistency (see optional section)
gives another way of showing the result.
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11.3 Wald’s Consistency (Optional)
The second approach of proving the consistency is to show, directly, that the global maximizer
of the likelihood function is consistent—this is a genuine consistency theorem for the MLE.
One can imagine, however, that some stronger conditions are required to get this stronger
result. In fact, what is needed is uniform control of fluctuations in Rn(X, θ). These kind
of conditions are generally referred to as Wald conditions after the famous mathematician
Abraham Wald.

Theorem 41. Let X1, . . . , Xn be iid with density pθ wrt µ. Fix θ? and define, for each
B ⊆ Θ and each x ∈ X,

Z(B, x) = inf
θ∈B

log
pθ?(x)

pθ(x)
. (11.1)

Assume that for each θ 6= θ?, there is an open set Bθ such that θ ∈ Bθ and Eθ?{Z(Bθ, X)} >
0. If Θ is not compact, assume further that there exists compact K ⊆ Θ such that θ? ∈ K
and Eθ?{Z(Kc, X)} > 0. Then θ̂n → θ? with Pθ?-probability 1.

Proof. If Θ is compact, take K = Θ. We shall prove that, for every ε > 0,

Pθ?
{

lim sup
n→∞

|θ̂n − θ?| ≥ ε
}

= 0. (11.2)

For fixed ε > 0, take B to be the open interval centered at θ? of length 2ε. Since K \ B is
a compact set, and {Bθ : θ ∈ K \ B} is an open cover, we may extract a finite sub-cover,
say, Bθ1 , . . . , Bθk . For notational simplicity, rename Kc and these sets as Θ1, . . . ,Θm, so that
Θ = B ∪ (

⋃m
j=1 Θj) and Eθ?Z(Θj, X) > 0.

Write cj = Eθ?Z(Θj, X). Then by the strong law of large numbers,

1

n

n∑
i=1

Z(Θj, Xi)→ cj, with Pθ?-probability 1 for each j.

Let Aj denote the set of data sequences for which this convergence holds and set A =
⋂m
j=1 Aj.

Then Pθ?(A) = 1 and n−1
∑n

i=1 Z(Θj, xi) → cj > 0 for all x = (x1, x2, . . . , ) ∈ A. If “i.o.”
stands for “infinitely often,” then we have:{

x : lim sup
n→∞

|θ̂n(x1, . . . , xn)− θ?| ≥ ε
}
⊆

m⋃
j=1

{
x : θ̂n(x1, . . . , xn) ∈ Θj i.o.

}
⊆

m⋃
j=1

{
x : inf

θ∈Θj

1

n

n∑
i=1

log
pθ?(xi)

pθ(xi)
≤ 0 i.o.

}
⊆

m⋃
j=1

{
x :

1

n

n∑
i=1

Z(Θj, xi) ≤ 0 i.o.
}

⊆
m⋃
j=1

Acj.

Since the last set is Ac and Pθ?(A
c) = 0, the result (11.2) follows.

74



The Wald-type theorem above is quite powerful, but the conditions are difficult to check.
Here is one example for a uniform distribution, which is outside the nice regular exponential
family.

Example. Suppose X1, . . . , Xn are iid U(0, θ), so that pθ(x) = θ−1 for 0 ≤ x ≤ θ. In this
case, the MLE is θ̂ = X(n), the largest of the Xi’s.

To apply Theorem 41, first observe that

log
pθ?(x)

pθ(x)
=


log(θ/θ?) if x ≤ min{θ, θ?}
∞ if θ ≤ x ≤ θ?

−∞ if θ? < x ≤ θ

undefined if x > max{θ, θ?}.

The last two cases have Pθ?-probability zero, so we may choose Bθ = ( θ+θ
?

2
,∞) when θ > θ?.

In this case
Z(Bθ, x) = log

θ + θ?

2θ?
> 0 with Pθ?-probability 1.

When θ < θ?, choose Bθ = ( θ
2
, θ+θ

?

2
). In this case, Z(Bθ, x) = ∞ if x > (θ + θ?)/2. Hence,

Eθ?Z(Bθ, x) > 0 in either case. We also need a compact set K such that Eθ?Z(Θ\K,X) > 0.
Let K = [θ?/a, aθ?] for some a > 1. Then

inf
θ∈Θ\K

log
pθ?(X)

pθ(X)
=

{
log(X/a) if X < θ?/a

log a if X ≥ θ?/a.

Taking expectation we get

1

θ?

(ˆ θ?/a

0

log(x/θ?) dx+

ˆ θ?

θ?/a

log a dx
)
.

The first integral goes to 0 and the second goes to ∞ as a → ∞. This means that there is
some a > 1 such that the expectation is positive. It now follows from Theorem 41 that the
MLE is consistent.

11.4 Some Examples
Example 63. (No unique MLE of Laplace distribution) The likelihood function is

L(β, σ) =
n∏
i=1

(σ
2
e−σ|yi−β|

)
,

while taking the log, we have `(β, σ) = n log σ − σ
∑n

i=1 |yi − β|.
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To take the derivative of `, we have

∂|yi − β|
∂β

=


−1 if yi > β

1 if yi < β

undefined if yi = β

Therefore,
∂`

∂β
= #{yi : yi < β} −#{yi : yi > β},

where #{·} means the number of this event. Note that ∂`/∂β is zero if the same number of
yi are less than β as greater than β. If n is even, β̂ will be any value between the n/2-th
and n/2 + 1-th of the sorted values of y, and if n is odd, β̂ is the middle value of that y.

Example 64. (MLE of Mixture normal) Mixture normal.

x ∼N (µ1, σ
2
1) with probability p

x ∼N (µ2, σ
2
2) with probability 1− p

The the mixture density is

f(x; p, µ1, µ2, σ
2
1, σ

2
2) =

p√
2πσ2

1

exp

[
−(x− µ1)2

2σ2
1

]
+

1− p√
2πσ2

2

exp

[
−(x− µ2)2

2σ2
2

]
.

Taking derivative w.r.t five parameters p, µ1, µ2, σ
2
1, σ

2
2, we will have a system of five equa-

tions. The solution of this system is the MLE of mixture normal model.
Here I just list two of five:

∂ ln f

∂p
=

n∑
i=1

1

∆

(
1√

2πσ2
1

exp

[
−(x− µ1)2

2σ2
1

]
− 1√

2πσ2
2

exp

[
−(x− µ2)2

2σ2
2

])
= 0

∂ ln f

∂µ1

=
n∑
i=1

1

∆

(
p√

2πσ2
1

exp

[
−(x− µ1)2

2σ2
1

]
× (x− µ1)

σ2
1

)
= 0

where ∆ =

(
p√
2πσ2

1

exp
[
− (x−µ1)2

2σ2
1

]
+ 1−p√

2πσ2
2

exp
[
− (x−µ2)2

2σ2
2

])
.
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Chapter 12

Large Sample Theorem in MLE (II)

12.1 Asymptotic Efficiency
While consistency is obviously a desirable property, its practical use is limited in the sense
that it is never a good idea to conclude that θ̂n = θ?, which amounts to assuming n = ∞.
A better idea is to study the asymptotic fluctuations of a normalized version of θ̂n, which
allows for the construction of asymptotically correct confidence intervals, hypothesis tests,
etc. The theorems presented below will pinpoint the asymptotic distributions of the MLE
and posterior means. The next definition is relevant for this task.

Definition 1. (Asymptotic normality) A consistent estimator θ̂n of θ is asymptotically nor-
mal if, for some sequence deterministic cn that converges to infinity, cn(θ̂n− θ)→ N (0, v(θ))
in distribution, where v(θ) > 0 for all θ.

In what follows, the sequence cn will be the usual n1/2; however, this is not the case in
general. For example, there are certain problems where the rate is slower than root-n. For
instance, in pointwise kernel density estimation at a boundary, cn is n1/3.

For the case with cn = n1/2, one could ask what the asymptotic variance v(θ) might
be. This too can vary. However, there is something of a lower bound, called the Cramer–
Rao inequality. Under some regularity conditions, the variance function v(θ) is no less than
I(θ)−1, the inverse of the Fisher information. An estimator θ̂n with corresponding variance
function v(θ) equal to the lower bound I(θ)−1 is called asymptotically efficient.

As we demonstrate below, the MLE is asymptotically efficient. But there is a general
phenomenon called super-efficiency where, for certain θ values, v(θ) < I(θ)−1. Fortunately,
this somewhat problematic super-efficiency can occur only for θ in a topologically small set,
in particular, a set of Lebesgue measure zero.

First, let’s look at the Cramer-Rao lower bound.

Definition. An unbiased estimator is one such that Eθ[θ̂] = θ.

Cramér and Rao proved that one can give a lower bound for the variance of unbiased esti-
mators.

We work in terms of the log-likelihood L(θ |x) = log `(θ |x).
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Definition. We define the score as q(θ |x) = ∂
∂θ
L(θ |x) and we define the Hessian as

H(θ |x) =
∂2

∂θ2
L(θ |x).

Observe that H(θ |X) is a random variable which is a function of the random variable X,
so that we can evaluate

I(θ) = −EθH(θ |X),

which R A Fisher define as the information.

Lemma 7. Eθ[ q(θ |X)] = 0.

Proof. From the definition

Eθ q = Eθ∂L/∂θ =

ˆ
{∂(log `)/∂θ}pθ(x)dx =

ˆ
{∂(log p)/∂θ}pθ(x)dx

=

ˆ
{(∂p/∂θ)/p}pθ(x)dx =

ˆ
(∂f/∂θ)dx

=
∂

∂θ

ˆ
p(x)dx =

∂

∂θ
1 = 0.

since in any reasonable case it makes no difference whether differentiation with respect to θ
is carried out inside or outside the integral with respect to x.

Lemma 8. I(θ) = Eθ(∂L/∂θ)2.

Proof. Again differentiating under the integral sign

I(θ) = −Eθ∂2(log `)/∂θ2 = −
ˆ
{∂2(log pθ)/∂θ

2}pθ(x)dx

= −
ˆ

∂

∂θ

(
∂pθ/∂θ

pθ

)
pθ(x)dx

= −
ˆ (

∂2pθ/∂θ
2

pθ

)
pθ(x)dx+

ˆ (
(∂pθ/∂θ)

2

p2
θ

)
pθ(x)dx

= −
ˆ

(∂2pθ/∂θ
2)dx+

ˆ
{∂(log pθ)/∂θ}2pθ(x)dx

= − ∂

∂2θ
1 +

ˆ
(∂L/∂θ)2pθ(x)dx

= Eθ(∂L/∂θ)2.

Lemma 9. Var[ q(θ |X)] = I(θ).

Proof. Immediate since Eθ q(θ |X) = 0 and so Var[ q(θ |X)] = Eθ (q(θ |X)2.
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Lemma 10. The covariance Cov(θ̂, q) of θ̂ and q(θ |X) is unity.

Proof. We note that since Eθ[θ̂] = θ, that is,

θ =

ˆ
θ̂pθ(x)dx

we can differentiate with respect to θ to get

1 =
∂

∂θ

ˆ
θ̂ pθ(x)dx =

ˆ
θ̂

(
∂pθ/∂θ

pθ

)
pθ(x)dx =

ˆ
θ̂ qθ(x)dx

= Eθ[θ̂ q]

so that as Eθ θ̂ = θ and Eθ q = 0

Cov(θ̂, q) = Eθ(θ̂ − θ)(q − 0) = Eθ[ θ̂ (q − θ)]Eθ[ q] = 1.

The required bound for the variance of θ̂ now follows simply:

Theorem 42. (Cramér-Rao bound) The variance of an unbiased estimator θ̂ satisfies

Var θ̂ >
1

I(θ)
.

Proof. We simply use the well-known inequality

Cov(U, V )2 6 (VarU)(VarV )

with U = θ̂, V = q(θ |X), so that by Lemma 9 we have VarV = I(θ) and by Lemma 10 we
have Cov(U, V ) = 1.

12.2 Likelihood-based Asymptotics Normality
Theorem 43. (Slutsky’s Theorem): Consider random variables Xn, Yn, and X, such that
Xn converges in distribution to X and Yn converges in probability to a constant c with prob-
ability 1, then (a) Xn + Yn converges in distribution to X + c. (b) Xn/Yn converges in
distribution to X/c.

Theorem 44. Let X1, . . . , Xn are iid Pθ, and assume that pθ(x) is the µ-density of Pθ,
and that the support of Pθ does not depend on θ. Suppose that, for µ-almost all x, pθ(x) is
differentiable in θ ∈ Θ0, with derivative p′θ(x).

Let Θ ⊆ R, and θ̂n a consistent sequence of solutions to the likelihood equation. Assume
pθ(x) has continuous second partial derivatives wrt θ and that differentiation can be passed
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under the integral sign. Assume that there exists a function gr(x, θ) such that, for each
interior point θ?,

sup
θ:|θ−θ?|≤r

∣∣∣ ∂2

∂θ2
log pθ(x)− ∂2

∂θ2
log pθ?(x)

∣∣∣ ≤ gr(x, θ
?), (12.1)

with limr→0 Eθ{gr(X, θ)} = 0 for each θ. Assume the Fisher information I(θ) exists and is
positive. Then under Pθ?,

n1/2(θ̂n − θ?)→ N (0, I(θ?)−1), in distribution.

Proof. Let `n(θ | x) = n−1 logLn(θ | x) be the scaled log-likelihood. We assume θ? is in the
interior of Θ, so there exists an open neighborhood of θ? also in the interior of Θ. By the
assumed consistency of θ̂n, the event that θ̂n is in this open neighborhood of θ? has probability
converging to 1. Therefore, it suffices to consider the behavior of θ̂n only when it is in this
open neighborhood where the log-likelihood is well-behaved, in particular, `′n(θ̂n) = 0. Next,
take a first-order (linear) Taylor approximation of `′n(θ̂n) around θ?:

0 = `′n(θ?) + `′′n(θ̃n)(θ̂n − θ?), (for θ̂nnear θ?),

where θ̃n is between θ̂n and θ?. Then we get

n1/2(θ̂n − θ?) = −n
1/2`′n(θ?)

`′′n(θ̃n)
, (for θ̂nnear θ?).

So, it remains to show that the right-hand side above has the stated asymptotically normal
distribution. Let’s look at the numerator and denominator separately.

Numerator. The numerator can be written as

n1/2`′n(θ?) = n1/2 · 1

n

n∑
i=1

∂

∂θ
log pθ(Xi)

∣∣∣
θ=θ?

.

The summands are iid with mean zero and variance I(θ?), by our assumptions about in-
terchanging derivatives and integrals. Therefore, the standard Central Limit Theorem says
that n1/2`′n(θ?)→ N (0, I(θ?)) in distribution. (Delta method)

Denominator. The claim is that −`′′n(θ̃n)→ I(θ?) in Pθ?-probability. If we can show this,
then it follows from Slutsky’s Theorem that

−n
1/2`′n(θ?)

`′′n(θ̃n)
→ N (0, I(θ?))

I(θ?)
= N (0, I(θ?)−1), in distribution,

which is the desired result. The key to showing this is to first recognize that −`′′n(θ?)→ I(θ?)
in probability by the law of large numbers. So we can write −`′′n(θ̃n) = −`n(θ?) + ∆n, where

∆n =
1

n

n∑
i=1

∂2

∂θ2
log pθ(Xi)

∣∣∣
θ=θ?
− 1

n

n∑
i=1

∂2

∂θ2
log pθ(Xi)

∣∣∣
θ=θ̃n

.
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By our assumptions, we have |∆n| ≤ n−1
∑n

i=1 gr(Xi, θ
?) when |θ? − θ̃n| ≤ r. By the weak

law of large numbers, n−1
∑n

i=1 gr(Xi, θ
?) → mr(θ

?) := Eθ?gr(X, θ?) in probability. Given
ε > 0, choose r > 0 small enough that mr(θ

?) < ε/2. Then

Pθ?{|∆n| > ε) ≤ Pθ?
{ 1

n

n∑
i=1

gr(Xi, θ
?) > ε

}
+ Pθ?{|θ? − θ̃n| ≥ r}

≤ Pθ?
{∣∣∣ 1
n

n∑
i=1

gr(Xi, θ
?)−mr(θ

?)
∣∣∣ > ε

2

}
+ Pθ?{|θ? − θ̃n| ≥ r}.

The last two inequalities go to zero, as n→∞: the first by the LLN, and the second by the
fact that θ̃n is consistent.1 Therefore, −`′′n(θ̃n) → I(θ?) in probability, as was to be shown.
So we’re done.

When using these theorems on asymptotic normality, it is common to replace I(θ?) with a
quantity that does not depend on the unknown parameter. Standard choices are the expected
Fisher information I(θ̂n) and the observed Fisher information −`′′n(θ̂n), the negative Hessian.

Remark. Note that the Delta Theorem is actually more general, showing how to create new
central limit theorems from existing ones; that is, the Delta Theorem is not specific to MLEs,
etc.

12.2.1 Generalizations: empirical processes, M-estimators, etc

We can see that maximum likelihood estimation is done by maximizing a data-dependent
function or, sometimes equivalently, finding a root of some other data-dependent function.
In this light, one might think we could construct estimators by applying these ideas to other
functions besides the likelihood or log-likelihood. It turns out that this is indeed possible.
Estimators found by optimizing a data-dependent function are generically referred to as
M-estimators.

Things are more interesting when the function has no formula for its optimizer. The
general theory involves some rather sophisticated mathematics, namely, convergence of ran-
dom functions. Important examples of these kinds of random functions are called empirical
processes. These are general versions of the well-known empirical distribution function.

12.3 Bayesian analysis

12.3.1 Introduction

Define a sample (measurable) space (X,A) which is equipped with a family of probability
distributions P = {Pθ : θ ∈ Θ}. Suppose that there exists a σ-finite measure µ such that
Pθ � µ for all θ, so that we have Radon–Nikodym derivatives (densities) pθ(x) = (dPθ/dµ)(x)

1θ̃n → θ? since θ̃n is between θ̂n and θ?, and θ̂n → θ?.
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w.r.t. µ. Bayesians assume that some probability distribution Π on Θ is also available from
somewhere. We call Π the prior distribution. Let the notation U stand for a random variable
distributed according to Π, and u for the observed values. (When it relates to inference about
the parameter, we go back to the θ notation.)

The Bayesian setup assumes the following hierarchical model:

U ∼ Π and X | (U = u) ∼ pu(x). (12.2)

The goal is to take the information from the observedX = x and update the prior information
about the “parameter” U . This is accomplished quite generally via Bayes’ theorem. But
before seeing the technical stuff, it helps to understand the reasoning behind this particular
choice. If uncertainty about θ is described by the (subjective) probability distribution Π,
then the uncertainty about θ after seeing data x should be described by the conditional
distribution Πx, the posterior distribution of U given X = x. This posterior distribution is
used for inference.

A general measure-theoretic version Bayes theorem.

Theorem 45. (Bayes Theorem) Under the setup described above, let Πx denote the con-
ditional distribution of U given X = x. Then Πx � Π for PΠ-almost all x, where PΠ =´
Pu dΠ(u) is the marginal distribution of X from model (12.2). Also, the Radon–Nikodym

derivative of Πx with respect to Π is

dΠx

dΠ
(u) =

pu(x)

pΠ(x)
,

for those x such that the marginal density pΠ(x) = (dPΠ/dµ)(x) is neither 0 nor ∞. Since
the set of all x such that pΠ(x) ∈ {0,∞} is a PΠ-null set, the Radon–Nikodym derivative can
be defined arbitrarily for such x.

The theorem provides a formula for the probability P (A | B) in terms of the opposition
conditional probability P (B | A) and the marginal probabilities P (A) and P (B).
Remark. The posterior mean is defined as

θ̂mean = E(U |X = x) =

ˆ
u dΠx(u),

and, in the case where Πx has a density πx, the posterior mode is defined as

θ̂mode = arg max
u

πx(u),

which is similar to the maximum likelihood estimate.

12.3.2 Posterior consistency

From a Bayesian point of view, one can consider the same kind of consistency for the pos-
terior mean or mode or whatever. But Bayesians have a complete posterior distribution Πn

supported on Θ to work with and they can consider asymptotic properties of the distribution
itself, not just that of functionals.
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Definition 2. (Posterior consistency) The posterior is said to be consistent at θ? if, with
Pθ?-probability 1, Πn(Θ?)→ 1 for any open neighborhood Θ? of θ?.

Remark. Posterior consistency says that the posterior will assign arbitrarily large probability
to any arbitrarily small neighborhood of the true θ?, provided n is large enough. This suggests
that the posterior mean or mode will also be close to θ?.

Theorem 46. (Doob’s theorem) Let X and Θ be complete metric spaces equipped with their
respective Borel σ-algebras, and assume θ 7→ Pθ is one-to-one. For a given prior Π, there
exists a set Θ0 ⊆ Θ such that Π(Θ0) = 1 and the posterior Πn is consistent at any θ? ∈ Θ0.

Remark. Doob’s theorem is quite general. It says that there is a set with prior probability 1 on
which the posteriors are consistent. The trouble is that there is typically only one parameter
value—the “true value” θ?—that’s of interest, and simply knowing that consistency holds on
a set of prior probability 1 generally says nothing about consistency at θ?. It is in this sense
that Doob’s theorem can be unsatisfactory, so stronger theorems are desirable.
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Chapter 13

Hypothesis Testing

13.1 Likelihood Ratio Test
Where do statistical tests come from? A particular discrepancy measure may seem sensible
as a way to capture the relevant departure from H0. AS MLE is very widely applicable
to parametric estimation problems, the likelihood ratio test is very widely applicable to
parametric testing problems.

13.1.1 Test H0 : θ = θ0

The likelihood function assigns to alternative values of θ their plausability in L(θ). We
consider the value L(θ0) and assess whether it is nearly the same as the maximal value L(θ̂).
For a random sample X1, . . . , Xn, we may examine the likelihood ratio

LR =
pθ0(X1, . . . , Xn)

pθ̂(X1, . . . , Xn)

and see how small it is. Because the MLE maximizes the likelihood function, we have
LR ≤ 1.

For a random sample X1, . . . , Xn with joint pdf pθ(x1, . . . , xn), the likelihood ratio test
of H0 : θ = θ0 evaluates the observed likelihood ratio statistic

LRobs =
pθ0(x1, . . . , xn)

pθ̂(x1, . . . , xn)

and assigns the p-value

p = Pr

(
pθ0(X1, . . . , Xn)

pθ̂(X1, . . . , Xn)
< LRobs

)
(13.1)

computed under the assumption that H0 : θ = θ0 is satisfied, i.e., the assumption that
X1, . . . , Xn have pdf pθ0(X1, . . . , Xn).
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Note that it is equivalent to examine the log of the likelihood ratio: in (13.1) we may
take logs to get

p = Pr

(
log

[
pθ0(X1, . . . , Xn)

pθ̂(X1, . . . , Xn)

]
< logLRobs

)
.

As when maximizing a likelihood function, taking logs generally simplifies the expression.

Example 65. Suppose X ∼ B(n, q) and we wish to test H0 : q = q0. We would have q0 = .5
and q̂ = x/n, with n = 17 and x = 14. The PDF is

pq(x) =

(
n

x

)
qx(1− q)n−x

and the observed likelihood ratio statistic is

LRobs =
qx0 (1− q0)n−x

q̂x(1− q̂)n−x

=
1

2n(x
n
)x(1− x

n
)n−x

=
1

2n(14
17

)14(1− 14
17

)3
.

The negative log likelihood ratio becomes

− logLRobs = n log 2 + x log
x

n
+ (n− x) log(1− x

n
)

= 17 log 2 + 14 log
14

17
+ 3 log(1− 14

17
).

The advantage of the likelihood ratio test is that it gives a specific method that can be
applied in many, many problems and, furthermore, like ML estimation, it turns out to have
very good properties in large samples.

Example 66. (Test ofH0 : (ω, θ) = (ω, θ0)) We now consider the case in which the parameter
vector may be decomposed into two sub-vectors ω and θ, having respective dimensions m1

and m2. For example, in linear regression we would have a parameter vector (β0, β1) and
we might decompose it as ω = β0 and θ = β2. We consider null hypotheses of the form
H0 : θ = θ0 which now becomes a short-hand for H0 : (ω, θ) = (ω, θ0). In linear regression,
for example, we might consider whether there is a non-zero slope by introducing H0 : β1 = 0.
This is short for H0 : (β0, β1) = (β0, 0), which means simply that H0 does not put any
restriction on ω = β0. A wide variety of statistical models that are submodels of larger
models may be written in this form.

Result Under fairly general conditions, for large samples, if θ is a vector of length m
then −2 logLR has an approximate χ2

m2
distribution, so that an approximate p-value may

be obtained from the chi-squared distribution with m2 degrees of freedom.
Remark. The likelihood ratio test may be used to derive the t test, and also other standard
tests used in common situations. For testing independence of two traits, the likelihood ratio
test is approximately equivalent to the χ2 test of independence in large samples, meaning
that in large samples it gives very nearly the same p-value as the χ2 test of independence.
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13.1.2 The likelihood ratio test is optimal for simple hypotheses.

Consider both H0 and HA : H0 : X ∼ f(x) and HA : X ∼ g(x) and consider the problem of
testing H0 versus the alternative HA. This is often called the case of “simple versus simple”
hypotheses. The likelihood ratio may be written

LR(x) =
f(x)

g(x)
.

Note that the likelihood ratio test will reject H0 when LR(x) is sufficiently small (which is
equivalent to − logLR(x) being sufficiently large). In other words, the likelihood ratio test
will reject H0 when LR(x) < c for some suitable number c. The type I error is

αLR = Pr(LR(X) < c|H0)

and the power is
PowerLR = Pr(LR(X) < c|HA).

Lemma 11. (Neyman-Pearson Lemma) Let α be a positive number less than 1 and let
c = c(α) be chosen so that

αLR = α.

Let T (X) be another test statistic having type I error αT such that

αT ≤ α.

Then the power of these two tests satisfies

PowerLR ≥ PowerT .

Remark. Neyman-Pearson lemma says that the likelihood ratio test is the optimal test, in
the sense of power, for testing H0 versus HA. More generally, likelihood ratio tests may be
shown to be optimal for large samples (see Section 16.6 of van der Vaart, 1998).

13.2 The Neyman-Pearson Lemma (statistical decision
version)

On a measurable space Ω two probabilities Pθ are given, θ = 0, 1. After observing an outcome
x ∈ Ω one action a is chosen between two possible values a = 0 or a = 1. A loss is associated
to this decision:

if θ = 0 and the action a = 1 is chosen, then the loss is k0 > 0;
if θ = 1 and the action a = 0 is chosen, then the loss is k1 > 0;
in any other case the loss is zero.
Given an observed value x, the choice of the action is randomized: a = 1 is chosen with

probability ϕ(x), a = 0 is chosen with probability 1 − ϕ(x). The function ϕ : Ω → [0, 1] is
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called test function and it will be assumed to be measurable. It specifies the decision rule
(or strategy). We define the expected loss

Lϕ(θ, x) =

{
k0ϕ(x), if θ = 0,
k1(1− ϕ(x)), if θ = 1,

and the risk
R(θ, ϕ) =

ˆ
Ω

Lϕ(θ, x)Pθ(dx).

We denote by ν a finite measure such that Pθ << ν, θ = 0, 1. We may take ν = P0 + P1.
Let fθ denote the density dPθ/dν. Then

R(0, ϕ) = k0

ˆ
Ω

ϕf0 dν, R(1, ϕ) = k1

ˆ
Ω

(1− ϕ)f1 dν.

The goal is to choose ϕ in a way to minimize the risk. We say that ϕ∗ dominates ϕ if

R(0, ϕ∗) ≤ R(0, ϕ), R(1, ϕ∗) ≤ R(1, ϕ),

and at least one of the inequalities is strict. Strategies ϕ and ϕ∗ are identified if ϕ = ϕ∗,
P0 + P1-a.s.

We will denote C the following class of strategies.

(i) for k ∈ (0,∞),

ϕk(x) =


1 if f1(x) > kf0(x),
arbitrary if f1(x) = kf0(x),
0 if f1(x) < kf0(x);

(ii) for k = 0,

ϕ0(x) =

{
1 if f1(x) > 0,
0 if f1(x) = 0;

(iii) for k =∞,

ϕ∞(x) =

{
1 if f0(x) = 0,
0 if f0(x) > 0.

Strictly speaking, if k ∈ (0,∞), each ϕk is a whole set of functions.

Theorem 47. (Neyman-Pearson) For every ϕ /∈ C, there exists ϕ∗ ∈ C that dominates ϕ.
No element of C dominates any other element of C.

The Theorem will be a consequence of the following Propositions.

Proposition 15. If R(0, ϕ) ≤ R(0, ϕ∗), R(1, ϕ) ≤ R(1, ϕ∗), and ϕ∗ ∈ C, then ϕ = ϕ∗,
P0 + P1-a.s. In particular, R(0, ϕ) = R(0, ϕ∗), R(1, ϕ) = R(1, ϕ∗) and ϕ ∈ C.

Proposition 16. If 0 ≤ α ≤ R(0, ϕ0), then there exists ϕ∗ ∈ C such that R(0, ϕ∗) = α.
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Proof of the Theorem.
Let ϕ be a strategy, ϕ /∈ C. If R(0, ϕ) ≤ R(0, ϕ0), then by Proposition 16 there exists

ϕ∗ ∈ C such that R(0, ϕ∗) = R(0, ϕ). If we had, in addition, R(1, ϕ∗) ≥ R(1, ϕ), then
by Proposition 15 we would conclude that ϕ ∈ C, which is false. Therefore we must have
R(1, ϕ∗) < R(1, ϕ), and this implies that ϕ∗ dominates ϕ.

If R(0, ϕ) > R(0, ϕ0), then ϕ0 dominates ϕ, since

R(1, ϕ0) = k1

ˆ
Ω

(1− ϕ0)f1 dν = 0 ≤ R(1, ϕ).

The last statement follows immediately from Proposition 15.
Proof of Proposition 15. Notice that{

R(0, ϕ) ≤ R(0, ϕ∗),
R(1, ϕ) ≤ R(1, ϕ∗).

⇔
{ ´

Ω
ϕf0 dν ≤

´
Ω
ϕ∗f0 dν,´

Ω
(1− ϕ)f1 dν ≤

´
Ω

(1− ϕ∗)f1 dν.

so that { ´
Ω

(ϕ∗ − ϕ)f0 dν ≥ 0,´
Ω

(ϕ∗ − ϕ)f1 dν ≤ 0.
(13.2)

Before proceeding, let us notice that f0 + f1 > 0, P0 + P1-a.s. Indeed,

(P0 + P1){f0 + f1 = 0} =

ˆ
{f0+f1=0}

d(P0 + P1) =

ˆ
{f0+f1=0}

(f0 + f1) dν = 0.

ϕ∗ is one of the functions ϕk, for some k ∈ [0,∞]. We distinguish three cases.
First case: k ∈ (0,∞).

From (13.2) we obtain ˆ
Ω

(ϕ∗ − ϕ)(f1 − kf0) dν ≤ 0. (13.3)

If f1 > kf0 then ϕ∗ = 1 and ϕ∗ ≥ ϕ. If f1 < kf0 then ϕ∗ = 0 and ϕ∗ ≤ ϕ. So the integrand
function in (13.3) is nonnegative, and it follows that (ϕ∗ − ϕ)(f1 − kf0) = 0, ν-a.s. So on
the set {f1 6= kf0} we have ϕ = ϕ∗, ν-a.s. We conclude that ϕ is one of the functions ϕk.
Second case: k = 0.

In this case ϕ∗ = ϕ0. Then ϕ∗ = 1 on {f1 > 0}. It follows from (13.2) that
ˆ
{f1>0}

(1− ϕ)f1 dν ≤ 0.

Since the integrand function is nonnegative, we deduce that ϕ = 1 = ϕ∗ on {f1 > 0}, ν-a.s.
By (13.2) again,

0 ≤
ˆ
{f1=0}

(ϕ∗ − ϕ)f0 dν =

ˆ
{f1=0}

(−ϕf0) dν.

So we have ϕf0 = 0, ν-a.s. on {f1 = 0}. Since f0 + f1 > 0, P0 + P1-a.s., then ϕ = 0,
P0 + P1-a.s. on {f1 = 0} and we conclude that ϕ = ϕ∗, P0 + P1-a.s.
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Third case: k =∞.
In this case ϕ∗ = ϕ∞. Then ϕ∗ = 0 on {f0 > 0}. It follows from (13.2) thatˆ

{f0>0}
(−ϕf0) dν ≥ 0.

We deduce that ϕ = 0 = ϕ∗, ν-a.s. on {f0 > 0}. By (13.2) again,

0 ≥
ˆ
{f0=0}

(ϕ∗ − ϕ)f1 dν =

ˆ
{f0=0}

(1− ϕ)f1 dν.

So we have (1 − ϕ)f1 = 0, ν-a.s. on {f0 = 0}. Since f0 + f1 > 0, P0 + P1-a.s., then ϕ = 1,
P0 + P1-a.s. on {f0 = 0} and we conclude that ϕ = ϕ∗, P0 + P1-a.s.
Proof of Proposition 16. If α = 0, then R(0, ϕ∞) = k0

´
Ω
ϕ∞f0 dν = 0 = α. So we will

assume 0 < α < R(0, ϕ0). Let us define the function

g(k) = k0

ˆ
{f1>kf0}

f0 dν, k ∈ [0,∞).

Notice that if we set
ϕk(x) =

{
1 if f1(x) > kf0(x),
0 if f1(x) ≤ kf0(x),

(13.4)

then g(k) = R(0, ϕk). It is readily verified that g is decreasing on [0,∞) and

lim
k→∞

g(k) = 0, g(0) = k0

ˆ
{f1>0}

f0 dν = R(0, ϕ0) > α.

Moreover, for any sequence kn, with kn 6= k, the implications

kn ↓ k ≥ 0 ⇒ {f1 > knf0} ↑ {f1 > kf0}, kn ↑ k > 0 ⇒ {f1 > knf0} ↓ {f1 ≥ kf0}∩{f1 > 0}

show that g is right-continuous on [0,∞) and at any possible point of discontinuity k > 0 it
has a jump equal to

g(k−)− g(k) = k0

´
{f1≥kf0}∩{f1>0} f0 dν − k0

´
{f1>kf0} f0 dν

= k0

´
{f1≥kf0} f0 dν − k0

´
{f1>kf0} f0 dν = k0

´
{f1=kf0} f0 dν.

If there exists k > 0 such that g(k) = α, then α = R(0, ϕk) and the proof is finished.
Otherwise there exists k > 0 such that g(k−) ≥ α > g(k). Let us define

ϕ′k(x) =


1 if f1(x) > kf0(x),
c if f1(x) = kf0(x),
0 if f1(x) < kf0(x),

where c ∈ [0, 1] is a suitable constant to be determined in such a way that R(0, ϕ′k) = α, i.e.
we wish the following equality to hold:

α = R(0, ϕ′k) = k0

ˆ
{f1>kf0}

f0 dν + k0

ˆ
{f1=kf0}

c f0 dν = g(k) + c(g(k−)− g(k)).

It suffices to choose c = (α− g(k))/(g(k−)− g(k)) ∈ (0, 1].
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