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1. Motivation

The equilibrium from rational expectation models bases on the assumption that the agents
inside the model assume the model’s predictions are valid. As an essential part of the model,
the expectation of agents about future economic conditions is still controversial because
the expected profit or utility for each agent will be rather different if the assumption of
agent’s expectation differs. [14] show how agents adjust their long-term expectations under
different rules of predictors. [13] introduce adaptive rational equilibrium dynamics, whose
predictor is attached to the equilibrium dynamics of certain endogenous variables. Some
other long memory predictors have been used by [15]. These analyses, however, rely on
the same structure that agents expect the future situation through a single presumably
correct law of motion. A recent monograph by [16] introduces the robustness concern to
agent’s expectation so that the agent’s decision contains his/her prior worries about the mis-
specification of the expectation. The associated predictor for the robust decision agents is
the recursive least square method or the Kalman filter that uses only the first two moments
of information of the stochastic motion law. The Kalman filter predictor, as a dual of the
linear-quadratic regulator problem of utilities, indicates that agent’s prediction only involves
parts of observable information. Thus, a class of models whose information is not far from
underlying model in certain divergence will be considered when agent makes the expectation.
The maximum utilities of robust decision agents are obtained by minimizing the risks towards
this class of alternative models.

Although the minimax expectation of robustness concern provides a more general analysis,
the alternative models it considers belong to a class of partially specified processes. If we
enlarge such a class to an abstract economic system, say an abstract probability space, does
the Kalman filter predictor still an optimal choice? An alternative question is that if under
certain circumstance the least square type filter is our best choice, then “how far” is it from
this circumstance to the reality. The reason of asking these questions is that we realize that
the current set-up of rational expectation models is merely an approximation to the real
world. The filtering process as agent’s predictor in this set-up is to fit the request of the
approximating model. We intend to figure out the feasible range of applying filtering as the
agent’s prediction process. The necessity of doing this is to complement the gap between
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rational and boundedly rational literature in the stochastic dynamical system. Rational
models, where agents face restrictive alternative models, may give us similar interpretations
as the boundedly rational models do, where agents use restrictive information. The paper also
intends to mitigate the debates in econometrics of using frequentist or Bayesian approaches
for estimating dynamic economic system. The Bayesian method comes out as a consequence
of several restrictions on the abstract economic model while frequentist method stays away
from parts of these restrictions. A Bayesian estimation may be merely a compromise to
the real complex world while frequentist estimation has to suffer the intractability from the
complexity.

The paper aims at making previous intuitive descriptions rigorous. The mathematical
tools we use here are from stochastic analysis and stochastic control. In section 2, we will
prove the existence of the equilibrium conditional distribution process for expectation given
that fact that the underlying model will generate unpredictable events and observable un-
predictable events will affect the expectation process. Section 3 considers an approximation
of the abstract economy. The approximation shows that a tractable problem of filtering
relies on several assumptions about rationality, fairness, and risk neutral. Section 4 provides
a specific representation for agent’s expectation. The representation induces a computa-
tional demanding problem of filtering. Gaussian prior process, stochastic approximation and
extrapolation have been use to rescue this computational infeasible problem. A simulated
example of complex model is given in section 5.

2. Equilibrium

2.1. A model with P-null set information. The economic system in this paper is driven
by some intrinsic elements whose evolutions are modelled via certain evolving processes. We
stack these intrinsic elements into a state vector and denote it asXt = {Xi,t, t > 0, i = 1, . . . }.
When we state specifically t ∈ Z, Xt is a discrete time process, otherwise Xt is assumed
as a continuous time process. In the paper, x refers to either a deterministic variable or a
realization of Xt. If Xt consists of unobservable features such as private information, utilities
or underlying prices, then Xt includes hidden states. The evolution of X will be considered
as affect some an observable process Yt = {Yi,t, t > 0, i = 1, . . . } as observable choices. A
correspondence should exist between states and observations.

The underlying abstract economic model in our context is a probability space (Ω,F ,P)

where we define X together with a filtration (Ft)t≥0. In F , there is a P-null set1containing
in F0 and consequently in all Ft. The algebra F is limt→∞Ft. The filtration Ft is right
continuous, Ft := ∩ε>0Ft+ε.

1A set A is called P-null set if A is measurable on (Ω,F ,P) and P(A) = 0.
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The values of states Xt form a measurable space (S,S). The state space S is a compact
metric space and associates with Borel σ-algebra S = B(S). We assume X to be measurable
and the measurable mapping is:

Xt : ([0,∞)× Ω, B([0,∞))⊗F)→ (S,S),

where ⊗ denotes product σ-field.
While the essential features of economic dynamics are assumed to be captured by the

state variables Xt, the observable economic variables or those of public interest may not be
directly included in Xt. The observable and public information is the major resource for
agents to make their expectations about how the economic states Xt change. Thus, we need
to specify this kind of information. We let Yt include these observable variables that are
relating with Xt. The observable information set is Y := ∨t∈R+Yt the filtration generated
by the observable process Yt

Yt := σ(Ys, s ∈ [0, t]) ∨N

with t ≥ 0, where N is the collection of all P-null sets of our economic model (Ω,F ,P).
Notation A ∨ B means that the σ-algebra is generated by A and B. The σ-algebra Yt is
the available information induced by observations up to time t and thus it will be used for
making inferences of X.

Agents in model (Ω,F ,P) will make the inference of states Xt via Yt. It means computing
or approximating some quantities of Xt in terms of a conditional expectation, in other
words, computing πt, the conditional distribution of Xt, given Yt. For any t, the conditional
distribution is a stochastic process (ω, t) 7→ πωt such that

πωt (A) = P [Xt ∈ A|Yt] (ω), A ⊂ S.

For simplicity, we write πωt as πt in short. Furthermore, the conditional expectation of Xt is
an equivalence class of Yt-measurable Xs:

P[Xt ∩B] = P[X ∩B], X,B ⊂ Yt.

Because of N ⊂ Yt, πt may not be well defined for all ω ∈ Ω but only for ω outside the
P-null set. Thus the question of existence of π is equivalent to the question that under what
circumstances one can gain sufficient control over all P-null sets N so that the integration´
ϕ(x)πt(dx) makes sense for a certain class of choice functions ϕ.
Note that X is Ft-adapted but expectation is evaluated conditioning on Yt in reality

instead of Ft in the underlying abstract economy (Ω,F ,P). It implies that even if some
relations between Xt and Yt exist, for example Yt partially depends on Xt, but expectations
conditional on Yt does not necessarily coincide with those conditional on Ft. Especially,
P-null information in Yt implies that the unpredictable events will affect the expectation
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once these events have been observed by the agents. In next section, we will show that an
equilibrium conditional density exists even the information set and (mechanism of economic
state) do not “match”.

2.2. Existence of equilibrium. We have assumed that Ft is right continuous. To make
Yt comparable with Xt, we assume that the filtration Yt is also right continuous. Let P(S)

denote the space of all probability measures on S. Let oϕ(Xt) be a process that is defined on
the smallest σ-algebra on ([0,∞)×Ω,B([0,∞))⊗F) such that every Yt-adapted process is
measurable. Then oϕ(·) is a Y-measurable function of stochastic states Xt. Moreover, oϕ(·)
can be thought as the Y-measurable representation of the expected choice

´
ϕ(x)πt(dx).

Therefore, the existence of oϕ(·) induces the existence of πt(·) and vice versa.

Theorem 1. For a compact set S and its Borel σ-algebra S, there is a P(S)-valued condi-
tional distribution process πt such that for any bounded S-measurable function ϕ ∈ B(S),

P
[ˆ

S
ϕ(x)πt(dx) = oϕ(Xt) ∀t

]
= 1.

Proof. In appendix. �

The process πt is Yt-adapted while Xt is Ft-adapted, thus E[ϕ(Xt)|Yt] maybe not well-
defined. With an enlarged σ-algebra, a representative process will be defined for ϕ(Xt) even
if X is not Yt-adapted [5, theorem 7.1]. This theorem is called projection theorem. The
theorem says that if a process X is measurable and bounded, then for every stopping time
T , there is a representation oX (optional process) such that

(2.1) oXT I{T<∞} = E[XT I{T<∞}|YT ],

where I{A} is an indicator function for a set A. Note that there is no restriction on the
stopping time T .

Remark. Mathematically, the function ϕ is also called test function in distribution theory and
the process oϕ(Xt) is called optional process in stochastic analysis. The reason of introducing
an optional process is to fill in the gap between the observable information set Yt and the
model’s filtration Ft. The procedure of finding an optional process is often called projection.
The purpose of this projection is to get an approximating representation on the available
information set.2 It is a way of looking backward. The constructed conditional distribution
is used by the agents to make expectations. So it is a way of looking forward.

Remark. The proof is an analytic procedure of proving the existence of a positive functional
measure (a random probability measure). Step 1-3 is modified from theorem 5.1.15 in [2].
2In the next section, we will give an explicit expression of this projection by defining a generator. In economic
models, this generator can be used to describe agent’s (local) maximal principle.
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Instead of using the complete separable S, we prefer the compact metric space S here.
There is a subtle difference between these conditions, but since a complete separable space
is homeomorphic to a subset of a compact metric space, i.e. theorem 6.6.40 [7], in the
following, the subtlety between complete separable space and compact metric space of S is
often ignored on purpose. But for this theorem, the compactness allows the finite sum of
ϕi so that the mapping between ϕi and gi preserves the linearity and furthermore the Riesz
representation is more easily to apply on a compact set.

Remark. The uniqueness result in [2] does not hold. Compactness does regularizes the P-null
set of S but not the P-null set in the observable information set Yt. Thus although we can
construct a πωt conditional on Yt, without any additional regularization of Yt, the uniqueness
of πωt is not verified.

Although it complicates the set-up, P-null set is the crucial feature in this section. Apart
from its mathematics characteristics, it has fruitful meanings in economic problems and
motivates us to ponder over the manner of judging a model by statistical data.

The role of P-null set in defining a conditional probability is first discovered and illustrated
by Kolmogorov in his famous Borel–Kolmogorov paradox. The paradox shows that the con-
ditional probability is not uniquely defined with respect to a null set, see Chapter 5 [4]. From
the economic perspective, one can think the P-null set on F and Y as those unexpected and
rare events which have been respectively included in the underlying economic mechanism
F and in the agent’s observable information set Y but not in F . To see the difference,
let’s assume the P-null events in Y as consequences of aggregating of those countable P-null
events in F and thus they are too “complex” to be embedded in the underlying model, the
probability space (Ω,F ,P). The model (Ω,F ,P) attributes zero-measures for any countable
events that go beyond its capacity, but for uncountable events the model does not even has
ability to interpret their existences. For P-null set in Y , individuals may set arbitrary beliefs
towards the events on the set, because they cannot figure out any “law” on the set. More
discussions about how to specify the law will be given in section 3. In the rest of this section,
we will discuss the economic meaning of P-null set on Y which we will call overflow and we
will see how it relates to the regularized P-null set on F , a consequence of theorem 1.

Overflow may conflict some common senses and is not a pleasant gift for modelling, ad-hoc
testing and forecasting. Before giving a quantitative argument about its importance, we use
a qualitative example to discuss this phenomenon. We interpret economic bubbles by using
the concept of overflow on theP-null set.

The debate that whether or not an economic bubble exists has a long history among the
economists. Here our intention is to use the bubble as an example to explain the overflow
characteristic instead of joining the debate. Suppose individual gamblers observe arbitrage
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opportunities in the hedging and the public realize the gains of the gamblers. The specula-
tions, therefore, are included in the observable information set Yt for the agents. However,
the strategies behind these speculations are untouchable for the public or the society and
are conducted thorough inhomogeneous ways, such as forbidden disclosures (private infor-
mation), special equipments (high-frequency trading), or even improper policies (lobbying),
etc.. Any economic model that wants to cover some or all these specific features will make
its complexity blow up and this limitation is recognized by the public and the society, thus
it is reasonable for the public or the society to believe that the underlying economic model
(Ω,F ,P) will set zero measure on each of these strategies and the associated actions. In
other words each action of the speculation is in the P-null set on (Ω,F ,P). The economic
bubble can be considered as an aggregated effect of these actions. Since there are numerous
speculations happening in every minute, it is natural to think that the collection of these
actions is uncountable. Later, we will show that an uncountable collection of null set is
not necessarily contained in the P-null set. It means that the aggregated effect, the bubble,
may have a positive probability to occur, namely appear in Y . And in fact, it does. So one
should realize the probability model is not a “proper” model but a model that “compromises”
to unknowns.

To formalize the previous argument, let A1, A2,. . . ∈ S be a sequence of pairwise disjoint
sets. In order to ensure that πt is a regular conditional distribution, the σ-additivity condition
needs to be satisfied:

πωt (∪iAi) =
∑
i=1

πωt (Ai)

for every ω ∈ Ω\N (Ai, i ≥ 1). The N (Ai, i ≥ 1) is the P-null set for the disjoint set Ai with
any i ≥ 1. Let the collection of these null sets be N . Note that the power set of all null set
{Ai} is 2N which is uncountable. It means that N is uncountable. We know that πωt satisfies
the σ-additivity condition only if ω ∈ N (Ai) for any i ≥ 1 but not ω ∈ N . Therefore, some
event in N\N (Ai, i ≥ 1) is not in the null sets and has positive probability to occur

Y ∩ {N\N (Ai, i ≥ 1)} 6= ∅.

In fact, the set N need not even be measurable because it is defined in terms of an un-
countable union. Then πωt cannot be a probability measure. The purpose of theorem 1 is to
regularize this problem so that the projected πi is on a countable subspace. This regular-
ization implicitly forces πωt to ignore those aggregated effects or the collections of countable
P-null sets on F .

Beside the overflow, the other effect is the arbitrary definition of πωt over the P-null set
on Y . The arbitrariness allows us to modify Yt-adapted processes by changing the values of
these processes (change of measure) on the P-null set and then the new process should be
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still Yt-adapted. The new process is helpful for simplifying the analysis but it induces an
arbitrary distribution class for πωt . Therefore in order to construct a satisfied approximating
model, additional regularization about the null set are required. Next section will concern
this issue.

3. An Approximating Econom(etr)ic Model

In previous section, a general model shows that an equilibrium conditional density process
πωt exists even some observable (negligible) events in the system are not caused by the
equilibrium mechanism. It also shows that if the model needs a regular solution, it should,
by some means, get rid of these irregular events. On the other hand, the general model does
not infer any explicit solution because the process oϕ(X) is somehow built on the top of a
“cloud”. In this section, we look for an approximating model that will regularize the abstract
process oϕ(X) and exploit a specific approximation of oϕ(X).

There are three claims in the section: 1. to regularize a class of probabilities that are not
uniquely defined on the P-null set on F , 2. to construct an approximating model of X that is
embedded in the general model (Ω,F ,P), 3. to specify the motions of observable process Y .
Claim 1 and 2 basically concern the same issue of finding a feasible sub-class model of X but
the development of claim 2 depends on claim 1. Claim 3. concerns the issue of constructing
a feasible representation of oϕ(Xt) based on observable process Y .

3.1. Fairness Existence. The following claim gives us a “stochastic constant” upon where
we can build our model:

Claim. (Martingale Fairness3 or Contingent claim, MF) A probability measure Q on (Ω,F)

is absolutely continuous with respect to P, such that Q ∼ P. The information of state Xt at
any time t is “fair” for all agents under Q (and has Markov structure4).

The “fair” condition means the martingale property of X:

EQ[Xt|Fs, s ≤ t] = Xs and EQ[Xt −Xs|Fs, s ≤ t] = 0.

To simply illustrate this condition, suppose any adjustment over the state X at time T has
a value HT and HT is predictable i.e. each HT is Ft-measurable for t < T . Let the state’s
pay-off at time t be a random variable f̃ =

´ T
0
HtdXt where the integral is the Itô integral5.

The “fairness” says that any f̃ constructed in this way will have zero expected pay-off such
that EQ[f̃ ] = 0.
3The problem can be extended to a semi-martingale problem by using No Free Lunch claim (Kreps-Yan
Theorem). But then X in general cannot provide any explicit solution form for the conditional probability
π.
4E[f(XT )|Ft] = E[f(XT )|Xt] for any f(·) ∈ B(S).
5The definition of Itô integral is given in the Appendix.
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The martingale model (Ω,F ,Q) is treated as a ghost model since it may never happen in
the reality. However, if one accepts the existence of this martingale model, it will guide us
to a feasible model and help us to solve it. With absolute continuity of Q and P, if there is a
P-martingale process Z on (Ω,F), then any Q-martingale process X implies an P-martingale
process ZX. It is obvious that a process is regularized on either measure then it will be
regularized on the other one.

It is better to consider the martingale property together with the Markov structure of X
such that the filtration Fs is independent of the F -adapted Xu if s < t < u. For arbitrary
time t < u, there is a transition kernel Qu−t(Xu|Xt). Chapman-Kolmogorov equation says
that

Qu−s(Xu|Xs) =

ˆ
Qu−t(Xu|Xt)Qt−s(dXt|Xs)

which can be simply stated as Qτ+τ ′(·|·) = Qτ ′Qτ for τ = t − s, τ ′ = u − t. The existence
of the kernel Qτ ′(·|·) is a direct result of the Kolmogorov existence theorem [11, theorem
7.4]. When the process is assumed to be homogeneous on time, the family of Q(·|·) is
a semigroup of transition kernels and has been extensively studied in the recent works of
operator methods, see e.g. [12]. It is obvious that the transition kernel Qτ ′(·|·) is a regular
condition probability.

Since the evolution of the state is completely captured by Qτ ′(·|·), the variation of this
transition kernel describes the variation of the evolution pattern of X. It extracts important
characteristics in the dynamics. To specify this element, we need the tools of expansion.
Take the transition probability Qτ ′ and expand it w.r.t. τ ′ at zero by Taylor’s expansion:

(3.1) Qτ ′(Xu|Xt) = δ(Xu −Xt) + τ ′W(Xu|Xt) + o(τ ′),

where δ(·) is the delta function6. The function W(Xu|Xt) is the time derivative of the
transition probability at τ = 0, called transition probability per unit time. This expression
must satisfy the normalization property, in other words, the integral over Xu must equal
one. For this purpose, the above form can be corrected to:

Qτ ′(Xu|Xt) = (1− α0τ
′)δ(Xu −Xt) + τ ′W(Xu|Xt) + o(τ ′),

where α0(Xu) =
´
W(Xu|dXt). Substituting the expansion form into Chapman-Kolmogorov

equation, dividing the equation by τ ′ and then letting τ ′ go to zero give us the following
result.

6Loosely speaking, delta function is a smooth indicator function such that the derivative of δ(·) exists in the
weak sense. Regardless of technical differences, one can think both of them are identical.
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Corollary 2. The martingale model (Ω,F ,Q) implies a gain-loss equation for the system
such that:

∂

∂τ
Qτ (Xu|Xs) =

ˆ
{W(Xu|Xt)Qτ (dXt|Xs)−W(dXt|Xu)Qτ (Xu|Xs)} .

The first term is the gain of state Xu due to transition from other states Xt and the second
term is the loss due to transitions from Xu into other states.

Proof. For details, please see Chapter 5 in [6]. �

If the ∂τQτ (Xu|Xs) is set to zero, the evolution of X achieves the balance. The equation
merely states the fact that the sum of all transitions per unit time into any state Xu must
be balanced by the sum of all transitions from Xu into other states Xs. Gain balances loss,
in other words, a steady state.

3.2. Invariance Behaviours. From the previous argument, we see that the martingale
Markov model gives us an (approximating) equation to measure the variation of state tran-
sitions in the system. The equation is valid at any time-point and in any state, but the
equation provides no clue about W(·|·), the transition probability per unit time. Now an
idea is that if it is possible to extract some information about the statistics of W(·|·), i.e.
first and the second moments, then this information should be able to generate a class of
sub-models that mimic the behaviour of the original martingale model. We need to find out
under what condition the sub-model is equivalent to the original one, in other words, no loss
of information on representing (Ω,F ,P) via the approximating model.

Let f(·, ·) be a function satisfying the maximum principle up to the second order. It means
that for a compact subset B ∈ S, at time t, the maximum of f(t, x) in x ∈ B is found on
the boundary of B, ∂B. The simplest example of f is a function in the monotone functional
class such that for fixed t, x < x′ ∈ B implies f(t, x) < f(t, x′) (or >), ∇xf(t, x′) ≥ 0 (or ≤)
and 4xf(t, x′) = 0 on B ⊂ R. The extremal value of f(t, ·) always exists on the boundary of
the domain. Here 4x and ∇x denote the Laplace and gradient operators on x, respectively.

Claim. (Invariance Fairness, IF) If claim MF is true, then for any f satisfying the maximum
principle up to the second order, f(t,Xt) will preserve the fairness on a certain measure.
The law of f(t,Xt) will also satisfy the maximum principle.

Remark. The claim is another way of specifying Itô’s diffusion problem7. But to our best
knowledge, there is no econom(etr)ics literature concerning on illustrating the problem on
the basis of maximum principle. Understanding the connection between this economics claim

7Mathematically, this claim intends to squeeze a stochastic problem to a Partial Differential Equation (PDE)
problem so that it is possible for economists to construct and solve a specific analytic problem.
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and econometrics model is helpful to assess the potentials of modelling. Before doing serious
estimations, testing, or predictions, it is better to realize how far the model can reach!

Theorem 3. For Xt ∈ (S,S) and f(t, ·) ∈ C∞b , the following are equivalent:
(i) If claim IF is true, any f(t,Xt) in C∞b ([0,∞),S) has an approximating model that

relies on the information contained in the first two moments of the process f(t,Xt).
(ii) The function f(t,Xt) is an Itô diffusion process with drift and diffusion terms, (a, b) =

(a(Xt), b(Xt)).

Proof. From (ii) to (i), the proof is trivially applying Itô’s calculus.
From (i) to (ii), the proof consists of the following four lemmas: 1. to show that the

maximum principle on smooth functions is equivalent to the law of Wiener processes, 2.
to show the invariance of the law is preserved on the Wiener’s path, 3. to set up the
approximation on the Wiener’s path by showing that the martingale fairness is preserved, 4.
to extend the result to the abstract economy (Ω,F ,P).

The deterministic element x is analogy with Xt in the stochastic process. �

Lemma 4. If f(t, x) satisfies maximum principle, then ∇xf(t, x) is proportional to ∂f
∂t

(t, x).

If we specify the proportional factor to −1/2, then solution of

∂f

∂t
(t, x) = −1

2
4xf(t, x)

is the well-known Wiener process. It illustrates a manifest evidence: a state has the invari-
ance property, regardless of any function on it, regardless of any starting value, regardless of
any variational and scaling speed, if it is on the Wiener’s path8. In other words, two paths,
ψ(t) and f(ψ(t)) evolving along time t, should be measurable under the same measure where
the maximum principle satisfies.

In order to formalize the concept of Wiener’s path, we need to introduce the path space.
Suppose that a series of realizations {xti}ti≤tN corresponds to t via xti = ψ(ti) for ti ≤ tN .
Then ψ : [0,∞) → S is a continuous path with the image on the complete separable space
S. A path space P(S) = C([0,∞),S) is a continuous function space of ψs. The σ-algebra
PB is

PBs := σ (ψ(t) : t ∈ [0, s]) , s ∈ [0,∞)

generated by ψ ∈ P(S) 7→ ψ(t) ∈ S. The measure W for P(S) is called the Wiener’s
measure9. Note that in previous section W is used to denote the transition probability per
8The argument is supported by some weak solutions of the heat equations. We also show how to solve the
heat equations by Fourier method. Please see details in the Appendix.
9The formula of Wiener’s measure, however, is not a rigorous definition. Because Wiener’s measure does
not have a closed form expression. One should imagine that the limit of the current formula is the law of
Wiener process. The limit of the ratio of ψ(t)− ψ(s) and t− s is the path derivative of ψ.
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unit time in (3.1). We will see later that the Wiener’s measure is exactly theW in (3.1). Thus
we stick to the notation W . The definition of W is for a sequence {ψ(ti)}ti≤tN = {xti}ti≤tN :

W (ψ : x1 ∈ At1 , . . . xt ∈ AtN ) =
ˆ
At1

· · ·
ˆ
AtN

1√
2π(t1 − t0)

e
− (x1−x0)

2

2(t1−t0) · · · 1√
2π(tN − tN−1)

e
− ((xN−xN−1)

2

2(tN−tN−1) dxt1 · · · dxtN .

The measure is tight, namely if t− s < ε:

lim
ε→0

sup
ψ∈P(S)

sup
0≤s≤t≤T

ρ(ψ(t), ψ(s)) = 0

for any metric ρ(·, ·)10.

Lemma 5. The invariance of Wiener’s measure for any function f on xt = ψ(t), then
ψ(t)− ψ(s) is independent and identical for any s < t.

Independent identical increment ψ(t)− ψ(s) together with martingale will give us a “sto-
chastic constant”. Recall the path space P(S) and its σ-algebra PB. For an independent
identical increment ψ(t)− ψ(s) on P(R), the Fourier transform is:

EW
[
eiξ(ψ(t)−ψ(s))|PBs

]
=

ˆ
eiξ$

1√
2π(t− s)

e−$
2/2(t−s)d$ = e−

|ξ|2
2

(t−s)

where $ = ψ(t) − ψ(s). What we want is a martingale and a “constant” under W . From
the above equation, it easy to see that we can obtain both of them simultaneously if we shift
the element exp iξψ(t) by a Gaussian factor exp |ξ|2t/2:

EW
[
eiξψ(t)e

1
2
|ξ|2t|PBs

]
=e

1
2
|ξ|2tEW

[
eiξψ(t)−ψ(s)+ψ(s)|PBs

]
=e

1
2
|ξ|2te−

|ξ|2
2

(t−s)EW
[
eiξψ(s)|PBs

]
=EW

[
eiξψ(s)e

1
2
|ξ|2s|PBs

]
= 1.

Let a triplet denote this martingale on the Wiener’s path W :

(3.2)
(

exp

[
iξψ(t) +

1

2
|ξ|2t

]
,PBt,W

)
which is constant 1 under the expectation w.r.t. W .

This “stochastic constant” will help us to define the approximation error in terms of mar-
tingale representation. As in the deterministic case, suppose we define an integral curve of
ψ(·) on a smooth vector field a on R, starting at x ∈ R. Then the path ψ with ψ(0) = x has

10Ascoli-Arzela criterion for compact subset.
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such a property:

f(ψ(t))−
ˆ t

0

〈a,∇xf〉(ψ(τ))dτ

is a constant11 for any f ∈ C∞. If there is a stochastic analogue, then we can use this
stochastic constant to set-up our approximating model. The aim is to maintain a stable
“error.

Lemma 6. The triplet
(
f(t, ψ)−

´ t
0

[
∇xf + 1

2
4xf

]
(τ, ψ)dτ,PBt,W

)
is a martingale. In

addition, if state moves with velocity a(Xt) and volatility b(Xt), then(
f(t, ψ)−

ˆ t

0

[
a∇xf +

b

2
4xf

]
(τ, ψ)dτ,PBt,W

)
is also a martingale.

Since the martingale with initial condition W(ψ(0) = x) = 1 completely characterizes
W , the above result can be extended to any P by the Principle of Accompanying Laws and
Donsker’s Invariance Principle (Theorem 3.1.14 and 3.4.20, [2]) if and only if P belongs to
the family of all tight measures, M(P(S)). In our set-up, S is a compact metric space so
the collection of P(·) over S is tight. Principle of Accompanying Laws says if a sequence in
complete separable space with tight measure, the law of this sequence will weakly converge.
Donsker’s Invariance Principle says for independent increment processes, the convergent law
is the law of Wiener process.

Lemma 7. If P ∈M(P(S)), then(
f(Xt)− f(X0)−

ˆ t

0

(Af)dt,PBt,P
)

is a martingale, where A := a(·)∇x + 1
2
b(·)4x.

Proof. The IF claim says that a martingale exists for f(t,Xt) on (Ω,F ,P). The maximum
principle restricts the process to be PBt-adapted, thus F ∼ PB and the result holds on
(S,S) with the probability space (Ω,F ,P). �

Remark. Some relevant contents can be found in Chapter 3, 4, 7 in [2]. We follow the same
motivation as that in Stroock and Varadhan theorem [3], namely formulating the search for
the law of a process in terms of a martingale problem. Stroock and Varadhan theorem points
out that solving a SDE in the weak sense induces a probability measure which can solve the
martingale problem and the converse assertion is also true.
11The constant is the initial value ψ(0) = x from the following ODE problem:

∂f(ψ(t))

∂t
= 〈a,∇f〉(ψ(τ)).
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Theorem 3 basically says that if the evolution of state X satisfies the maximal principle
up to second moment, the solution of this martingale problem is also the one for diffusion
problem. With IF claim, the original martingale model and the approximating martingale
model are equivalent in the weak sense such that probability measures share the same law
up to the second moment.

This approximating martingale model is a compromise. Being more specific, given the
whole transition contents of X, our attention is only restricted on those transitions that will
maintain the maximum principle up to the second order. The reason is that only the transi-
tions satisfying invariance fairness can be revealed and identified in the standard economic
model. For example, suppose Xt is the hidden state with an evolution function f(Xt) and
h(Xt) is the choice function for rational consumers. According to the rationality assumption
in economics, the choice h(Xt) is observable only if it satisfies the maximum principle. Thus
for breaking down the complexity, only the first two orders’ law of f(Xt) is taken into account.
It does not mean that the unqualified transitions do not exist, conversely, many transitions
in the system have high order features such as complex trading strategies in pricing, multiple
correlated options, etc.. What we can state here is that those transition features however
are too complex to be embedded in a diffusion model12. Therefore, those higher order laws
of transitions of X will be assigned to the P-null set in F in the approximating model.

Remark. The invariance property in lemma 5 indicates an important fact: under W, future
increments are independent of the past and have the same distribution as the initial incre-
ment. It is the reason that we are able to construct a specific expression of the optional
process on Yt.

Remark. The generator A in lemma 7 is said to be local on C∞b if Af(x) = 0 whenever f
vanishes in some neighbourhood of x. For a generator with this property, we note that the
positive maximum principle implies a local positive maximum principle.

Corollary 8. If a(·) and b(·) in A are bounded and continuous, the weak solution of diffusion
problem (a, b) is unique. Then

a(Xt) =

ˆ ∞
−∞

xW(Xt|dx), b(Xt) =

ˆ ∞
−∞

x2W(Xt|dx),

where the Wiener’s law W(·) is the transition probability per unit time.

Now it is clear that transition probability per unit time is exactly the Wiener’s measure
if we add IF claim to MF claim.
12One can define a more complicated model to incorporate these effects, but the cost is to use high order
stochastic calculus. In fact, later we will see that the diffusion problem already induces an almost infeasible
representation for the conditional density. So far, the complexity level of the problems that depart from the
diffusion ones is still not quite clear.
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Remark. The uniqueness law of f(Xt) is the necessary condition for regularizing the condi-
tional probability π. It releases the fact that the problem of uniqueness of a SDE solution is
expressible in terms of the resolvability of a certain parabolic PDE.13

If the uniqueness is satisfied, the evolution f(Xt) will maintain the strong Markovian
property as Xt in section 3.1. Strong Markovian property is a condition of defining an
exponent process eW with a standard Wiener process W , see [3]. Loosely speaking, one can
think that the approximating model only consider the first two items in the Taylor series of
eW .

3.3. Indifferent Projection. By the feature of the characteristic function, the martingale
(3.2) together with the initial condition captures all the information, first and the second
order moment, of W . This implies that A(·) captures the first two moments information of
the process f(Xt) on the economic model (Ω,F ,P). In other words, the process f(Xt) is a
diffusion type process on the Wiener’s path.

In fact, IF claim is nothing but pinning the problem onto the Wiener’s space L2(W),
a L2 space with Wiener’s measure. To see the argument, we need to use the martingale
representation theorem. The theorem says that any continuous martingale, i.e.

Mf,t :=

(
f(Xt)− f(X0)−

ˆ t

0

(Af)dt,Ft,P
)

generated by W , can be written as

Mf = E[Mf ] +

ˆ T

0

hsdWs

with a predictable process hs. Without loss of generality, we consider the case E[Mf ] = 0.
The functional space of h is

L2
T :=

{
h : h is Ft-previsible and E

[ˆ T

0

‖hs‖2ds
]
<∞

}
.

The stochastic integral of h is a map J : L2
T → L2(FT ) such that

J(h) =

ˆ T

0

hsdWs.

This map is an isometry as the consequence of the Itô isometry theorem. The image of J of
the Hilbert space L2

T is complete. Therefore, the martingale Mf and the stochastic integral
13The duality is: the existence of a solution to the Cauchy problem

∂u

∂t
= Au, in [0,∞)× S

u(0, ·) = f in f ∈ Cb(S)

implies the uniqueness, at least for one dimensional marginal distributions, of the solution to the martingale
problem.
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J(h) ∈ L2(Ft) are isometry. What we emphasize here is that the IF claim carries us to a L2

space where the classic projection techniques are available.
The last thing we have not exploited is the observable process Y . The process Y is used

to reflect the law of X, so the topological structure of Y should contain as much information
as X. Given any map h in L2, the isometry property implies that if Y = h(t,Xt), it can
maintain all the information in the martingale Mf . However, some information about P-null
set in Y , is not contained in the X but affects the outcome of Y . We use the measurement
errors to model this information. The following claim is to specify the law of Y .

Claim. (Independent Accompanist, IA) Suppose the observable process Y is contaminated
by an additive noise Wiener processW . The noise processWt is generated by the information
set Ft but is independent of h(t,Xt). The function h(·) satisfies IF claim.

The Wiener process is often modelled independent14 of Xt. Thus Yt is a larger filtration
thanFt, e.g.

Yt = σ(Xs,Ws, s ∈ [0, t]) ∨N ,

since it allows for the measurability of the noise process. Now we can define the process Y
with additive noise term:

(3.3) Yt =

ˆ t

0

h(Xs)ds+Wt, t ≥ 0.

Note that this specification is to restrict the process Y in L2(Yt) because

E
[ˆ

h(Xs)
2ds

]
<∞, and Wt ∈ L2(Yt).

Theorem 9. If claim MF and IF are true, IA claim induces (3.3) for observable process Yt.
Suppose E

[
exp

(
1
2

´
h(Xs)

2ds
)]
<∞, then the following statements are true:

(i) under measure P̃,

dP̃
dP

∣∣∣∣∣
Ft

= exp

(
−
ˆ t

0

h(Xs)dWs −
1

2

ˆ t

0

h(Xs)
2ds

)
,

Y is independent of X and the motions of X under P̃-law and under P-law are the same.
(ii) For any Ft-measurable random variable ϕ(X),

Ẽ [ϕ(X)|Yt] = Ẽ [ϕ(X)|Y ]

where Y = ∨t∈R+Yt and Yt = σ(Ys, s ∈ [0, t]) ∨N .

14The dependence between W and X is difficult to eliminate in economics and will cause the endogenous
problem. But, technically speaking, this issue is often caused by using a too simple function h(·). Since h(·)
here can be highly non-linear, i.e. containing all endogenous effects, it is reasonable to ignore this issue here.
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This theorem is an important step to derive a specific form for the optional process in
(2.1). It allows us to replace the time dependent σ-algebras Yt in the conditional expectations
Ẽ[ϕ(Xt)|Yt] with a time invariant σ-algebra Y . This enables us to use techniques based on
Kolmogorov’s conditional expectation which would not be applicable if the conditioning set
is time dependent, such as Yt.

We can modify the IA claim to a little bit stronger version which, however, is a common
assumption in economics literature:

Claim. (IA’) There is a risk-free measure P̃ such that for any Ft-adapted random variable
ϕ(Xt), given all observations (future, present and past), finding the Yt-optional projection
of ϕ(Xt) is equal to compute Ẽ[ϕ(Xt)|Yt]; that is, future observations have no influence on
making an expectation under the measure P̃.

This claim has a similar role as the MF claim. MF claim is to ensure the existence of
a martingale problem for the state process and IA claim does the same job but for the
observable process. The aim is to make the state process X, the generator Af and the
observable process Y comparable.

Remark. All the consequences induced by these three claims, e.g. non-arbitrage, maximum
principle, and risk-free measures, should not be alien to most economists and should be
acceptable for most dynamic models in econom(etr)ics. Thus, the approximating model
that characterizes these claims is absolutely a non-trivial model. However, as we stated,
some existing economic phenomena as well as statistical features in observable data have
lost. MF and IF claims almost squeeze all the complex strategies/behaviours to the P-null
set, IA claim ignores non-Gaussian measurement errors. All these ignored events definitely
happen in the real world: hedging (complex trading), bounded rational agents (infeasible
equilibrium), co-integrated processes (mis-measuring continuous processes), etc. The more
data you have, the more complex events it can reflect. On the other hand, the complexity
of the model is restricted by imposing these three claims.

Remark. Throughout these sections, one theme is very clear: the model, as well as the
approximating one, in some sense, is a “wrong” model. Our attempt is to approximate the
domain of the real economic world even though the world is definitely too complicated for the
available set-up. This attempt should be treated as a subjective belief such that we believe
that our claims capture most essential economic features and the model is on the right track
of approximation. Statistics reflect the evidences revealed by real complex economic systems
which may be not in the probability space (Ω,F ,P), but we believe our model, (Ω,F ,P), is
approximately right. These two facts do not contradict each other.
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Remark. If the current situation is that we know the model absolutely does not coincide
with the real statistical evidences. Then a natural question is how is our attitude towards
statistical techniques? A rejection from the statistical test is not beyond our expectation
but the meaning of such a rejection should be interpreted in a right way. A statistical test is
a signal to indicate how imperfect the model is. But the target of modelling is not to please
the statistical decision. It is true the model is “wrong” and we should realize it! Then a
natural question follows: what is the meaning of using a statistical test if one already notices
the invalidity of his model?

4. A Probabilistic Estimate

By the claims in section 3, the model is defined as the following pair (X, Y ):

Definition. X is a solution of the martingale problem for (A; π0); in other words, assume
that the distribution of X0 is π0 and that the process Mf = {Mf,t, t ≥ 0}, where

(4.1) Mf,t = f(Xt)− f(X0)−
ˆ t

0

Af(Xs)ds, t ≥ 0,

is an Ft-adapted martingale for any f ∈ C∞b and (Af)(·) corresponds to (a(·), b(·)) of a
diffusion process. Y satisfies the evolution equation 3.3, namely

Yt =

ˆ t

0

h(Xs)ds+Wt, t ≥ 0,

with null initial condition.

Our concern is a diffusion-type state model and Gaussian noise corrupted observations.
The observations are recorded discretely, our idea is to approximate the weak solution of the
Kolmogorov forward equation that associates with A and then use Bayes’ rule to incorporate
the past observations, a forward and backward analysis.

Both the forward and backward step base on probability distributions. In the forward
step, the probabilistic analysis is simplified to a computationally feasible form of the Kol-
mogorov forward equation. The feasible form is an approximation operating on a simplified
representation of the probability distribution, namely mean and covariance. In the backward
step, numerical computation method produces optimal fitting for the conditional distribution
with the available information, e.g. data and evolution path.

The motivation of this method closely relates to particle filter [ref here] and Kalman filter
[ref here] of diffusion processes. Particle filter is to approximate a posteriori distribution by
means of the empirical distribution of a system of weighted particles. Kalman filter obtains
the mean and covariance of a posteriori distribution by optimal projection to a subspace (or
say recursive least square). Our intention is to combine these two approaches. The approach
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develops from standard Kalman filter but its covariance matrix is computed by the sample
covariance of the particles’ evolution path instead of the state covariance in Kalman filter.
It avoids evolving the covariance matrix of the density function of the state vectors.

In section 4.1, we show that the estimation bases on the so-called representation theorem,
which is a“limit” form of Bayes’ rule. By conditioning on the first and second moment,
the representation becomes two separate equations. In section 4.2, we set up an Markov
chain approximation by looking forward and then we use past information to interpolate the
approximating model and true observations by looking backward.

4.1. Kushner-Stratonovich-Pardoux Representation. The filtering problem in princi-
ple is to determine the conditional distribution πωt of theX(ω) at time t given the information
accumulated from observing Y in the interval [0, t]. Let πt be a shorthand for πωt . For any
bounded continuous function ϕ ∈ Cb(S), what we want is to compute

(4.2) πt(ϕ) := E[ϕ(Xt)|Yt],

a conditional expectation of ϕ. The function ϕ is also called test function in the generalized
function theory. Especially, when ϕ = xi and ϕ = xixj we have mean and covariance
respectively under πt.

Theorem 1 and 9 imply that a suitable regularization of Π := {πt, t ≥ 0} will make πt to be
an optional (progressively measurable), Yt-adapted probability measure-valued process for
which (4.2) holds almost surely. Thus our current task is to figure out what this process is.
We know that for diffusion process the transition density q(x′, x, t)dt := dQt(X

′|X) satisfies
the following type Kolmogorov forward equation:

(4.3)
∂q(x′, x, t)

∂t
= A∗q(x′, x, t),

where A∗ is the adjoint (or dual) operator of A such that

(4.4) A∗q = −
∑
i

∂(ai(·)q(·)
∂xi

+
1

2

∑
i,j

∂2(bij(·)q(·))
∂xi∂xj

.

Thus a natural attempt will be connecting the martingale problem in (4.1) with a diffusion
type representation. Theorem 3 tells us that when the process is on the Wiener’s path, the
solution of a martingale problem associated with the second order differential operator is the
solution of the diffusion process. Theorem 9 tells us that Y is on the Wiener’s path under
P̃.

Proposition 10. If Ẽ[ϕ(Xt)Zt|Yt] is bounded under P̃-law, where

Zt = exp

(
−
ˆ t

0

h(Xs)dWs −
1

2

ˆ t

0

h(Xs)
2ds

)
,

18



then for any ϕ ∈ Cb(S) the process ρt(ϕ) := Ẽ[ϕ(Xt)Zt|Yt] follows

ρt(ϕ) = π0(ϕ) +

ˆ t

0

ρs(Aϕ)ds+

ˆ t

0

ρs(ϕh)dYs

on P̃ almost surely.

Proof. Note that Zt is a P̃-martingale, then

Zt = exp

(
−
ˆ t

0

h(Xs)dYs −
1

2

ˆ t

0

h(Xs)
2ds

)
since Yt is a Wiener process under P̃. By Girsanov theorem

Zt = 1 +

ˆ t

0

Zth(Xs)dYt.

Because ρt(ϕ) is bounded, Fubini’s theorem and Itô’s lemma implies

(4.5) dẼ[ϕ(Xt)Zt|Yt] = Ẽ[Aϕ(Xt)Zt|Yt]dt+ Ẽ[ϕ(Xt)h(Xs)Zt|Yt]dYt.

Taking the integral, we have the result. �

A new measure is constructed under which Y becomes a Brownian motion and π has a
representation in terms of ρ by Bayes’ rule such that

(4.6) πt(ϕ) =
ρt(ϕ)

Ẽ[Zt|Yt]
=

ρt(ϕ)

exp
(´

πs(h)dYs − 1
2

´ t
0
[πs(h)]2ds

) .
Since ρt(·) satisfies a linear evolution equation, we expect this will lead to an evolution
equation for π.

Theorem 11. (Kushner-Stratonovich-Pardoux, KSP) For any ϕ ∈ Cb(S), proposition 10
induces

(4.7) πt(ϕ) = π0(ϕ) +

ˆ t

0

πs(Aϕ)ds+

ˆ t

0

(
πs(ϕh)− [πs(h)]2

)
(dYs − πs(h)ds).

Proof. From equation (4.6), we have

(4.8) d

(
1

Ẽ[Zt|Yt]

)
=

1

Ẽ[Zt|Yt]

(ˆ
πs(h)dYs −

1

2

ˆ t

0

[πs(h)]2ds

)
which is equivalent to

πt(ϕ) = ρt(ϕ) · 1

Ẽ[Zt|Yt]
.

Note that integration by parts implies

ρt(ϕ) · 1

Ẽ[Zt|Yt]
=

ˆ
1

Ẽ[Zt|Yt]
dρt(ϕ) +

ˆ
ρt(ϕ)d

(
1

Ẽ[Zt|Yt]

)
.

19



Substituting equation (4.5) and (4.8), we have the result. �

Remark. In proposition 10 and theorem 11, we did not use the representation of πt (or un-
normalized πt) directly, but a weak form representation of πt (or unnormalized πt). Because
the representation of πt, as in diffusion process case, involves the adjoint operator A∗ as in
(4.4), which is not tractable in many cases.

Equation (4.7) is called KSP which is applied to solve non-linear filtering and smoothing
problems recently in applied mathematics [10]. One can think KSP representation charac-
terizes an equilibrium conditional expectation over any ϕ ∈ Cb(S). It is a stochastic PDE
problem and has a unique solution 15. Although solving KSP problem can be transferred to
solving a parabolic PDE problem, except for the case when the model and the observations
are linear and all the disturbances and the initial conditions are normally distributed, finding
a closed form expression for these density functions of (4.7) is virtually impossible.

Unlike the state-of-the-art analytic approach, Kalman (linear and non-linear) filter is a
rather matured alternative and is familiar to many scholars in control/filtering related fields
in economics. The simple scheme of Kalman filter is to update the mean and the covariance
of the conditional distribution. In short, it is a sequential or recursive estimation method
that is integrated forward in time and, whenever measurements are available, these are used
to re-initialize the model before the integration continues. One can see that this scheme is
quite similar to the content of KSP equation. In fact, if h(Xt) and f(Xt) at every time t can
be linearised as matrices (vectors) HtXt + ht and FtXt + ft such that

Xt =X0 +

ˆ t

0

(FsXs + fs)ds+

ˆ t

0

σsdVs,(4.9)

Yt =

ˆ t

0

(HsXs + hs)ds+Wt,(4.10)

then KSP with test functions ϕ = xi and ϕ = xixj will give us the standard Kalman or
called Kalman-Bucy filter.

Proposition 12. Let x̂ be the conditional mean of X such that

x̂i,t = E[Xi,t|Yt] = πt(xi,t)

and R be the conditional covariance such that

Rij
t = E[Xi,tXj,t|Yt]− E[Xi,t|Yt]E[Xj,t|Yt] = πt(xi,txj,t)− πt(xi,t)πt(xj,t.)

15Please refer to chapter 4.8 in [10] for the details about the SPDE problem.
20



If (4.9) and (4.10) are acceptable localizations for (4.1), then the solution of x̂t satisfies the
following SDE

(4.11) dx̂t = (Ftx̂t + ft)dt+RtH
T
t (dYt − (Htx̂t + ht)dt),

and Rt satisfies the deterministic Riccati equation

(4.12)
dRt

dt
= σtσ

T
t + FtRt +RtF

T
t −RtH

T
t HtRt.

Proof. Substituting ϕ = xi and ϕ = xixj into KSP equation respectively, one will have the
result. A detailed proof is given in theorem 4.4.1 [10]. �

Equation (4.11) together with (4.12) is often called the forward prediction step. Usually
RtH

T
t HtRt in (4.12) is expressed as KtC

W
t Kt where Kt = RtH

T
t [CW

t ]−1 and CW
t is the

covariance of Wt. The matrix Kt is called Kalman gain. In the backward analysis, we need
to use observable information Yt to update the system. The update step in Kalman filter
basically is to minimize the mean square error. By doing this, one sets up a cost function
using Gaussian property:

p(x) ∝ exp

(
−1

2
(x− µ)TQ−1(x− µ)

)
, p(y|x) ∝ exp

(
−1

2
(y − h(x))TR−1(y − h(x))

)
where Q = σTσ = b and µ = a. The cost function is log-likelihood of p(x) and p(y|x) over
t. It is obvious that the optimal cost function relates to recursive least square minimization.
We skip the derivation and just list the result:

Kt = Rt−1H
T
t (HtRt−1H

T
t + CW

t )−1, x̂t = x̂t−1 + Kt(yt −Htx̂t−1)

and Rt = (I −KtHt)Rt−1.
There are several obstacles in the Kalman implementation for non-linear system, non-

linearization, non-Gaussian, etc. But the most direct thread comes from the conditional
covariance R. In both prediction and update step, R is the crucial part of Kalman gain. The
fixed point solution of Riccati equation (4.12) is not always available, or even R is solvable,
the existence of R−1, which is required in update step, still requires a careful detection.

In this paper, we suggest using sample counterpart covariance instead of solving (4.12)
analytically. Applying Monte Carlo method to compute R in Kalman gain is not novel,
similar idea can be found in [ref here]. The different thing is that the evolution path of X
in our setup comes from KSP representation. The solution of KSP equation is obtained via
a stochastic approximation which is given in the next subsection.

Remark. We know that in most case KSP representation certainly induces a non-Gaussian
evolution due to the forward integration of non-linear model equations, but we do the lo-
calization to truncate those non-linear effects and only use the Gaussian part, first and
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the second moment, of the distribution just as the spirit of using quasi-likelihood or GMM
approach in econometrics.

4.2. Stochastic Approximation and Interpolation. We should realize that all approx-
imations to the conditional density of (4.1) are actually approximations to some representa-
tion of Bayes’ rule, such as the fundamental Bayes’ rule formula (4.6). From the perspective
of computation, when the representation is involved in computing the approximation to the
conditional density, the simplest form of the approximation method is analogous to methods
for solving parabolic PDE’s by finite differences or finite elements method.

Thus to obtain the representation, we follows the idea of Euler–Maruyama approximation,
a finite difference numerical method 16 associated with a Markov chain simulator which is
used to obtain numerical solution of SDEs. The specific procedure is the following: One
constructs an approximating Monte Carlo implementation of the Bayesian update problem
on a finite state space, with an approximation parameter τ , and that is “locally consistent”
with the diffusion. Then one solves for the cost or optimal cost function for the approximating
Markov chain, and finally proves that as τ → 0, these functions converge to those for the
original model.

To stay with a finite state space, we need to adapt the to the discrete Xn, n ∈ N, for a
moment. Let Xn be an Ft-adapted Markov chain. We know that for all t, as τ → 0, by (3.1)
we have

Qτ = P(Xt+τ = j|Xt = i) = δi(j) + qij(t)τ + o(τ)

uniformly in t. From equation (4.3), we know that for Xn, the role of (a, b) is taken by the
Markov transition matrix Qn = {qij(n)}i,j∈I on finite state space I. The martingale problem
(4.1) now becomes

Mt,f = f(Xt)− f(X0)−
ˆ t

0

(∑
j∈I

qij(s)f(xj)|Xs = xi

)
ds,

because limτ→0(Qτf − f)/τ = Af . The discrete analogue of Y is

Yn = Yn−1 + h(tn−1, Xn−1)τ +4Wn−1,

and the discrete analogue of Z is

Zn = exp

(
−

n−1∑
l=0

h(tl, Xl)4Yl −
1

2

n−1∑
l=0

h(tl, Xl)
24t

)
,

16Euler scheme is the most common numerical solver for differential equations.
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where 4t denotes the time interval for the approximation. Then the representation in (4.6)
has the following form:

πτt (ϕ) =
Ẽτ [ϕ(Xn)Zn|Ft]

Ẽτ [Zn|Ft]
,

where Ẽτ is taken w.r.t. the simulated law P̃τ . The law of Yn is Brownian motion under P̃τ .
Thus for πτt , only Xn and h(tn, Xn) matter. We will see later that even h(·, ·) is unknown,
h(tn, ·) does not matter us because it will be a localization in terms of Htn while Htn will
be interpolated by some pre-allocated Xn. Therefore, our main concern is the diffusion
approximation Xn, a discrete-time finite-state Markov chain whose “local properties” are
“consistent” with those of (4.1), namely Xn converges to Xt in the mean square.

Proposition 13. If the following local consistency conditions hold:

aτ (x)4t = a(x)4t+ o(4t), bτ (x)4t = b(x)4t+ o(4t),

then
lim
τ→0

sup
t≤T
|πτt (ϕ)− πt(ϕ)| → 0,

for ϕ ∈ Cb(S).

Proof. In appendix. �

Suppose for each process Xn we generate N sample paths, with equation (4.11), then we
have a Monte Carlo estimated moment x̂τn which means an average of model states evolves
in the state space with the mean as the best estimate. Instead of using (4.12), we suggest
to use the covariance of the sample paths as the error variance Rτ

n. Since the sample paths
are generated independently, we know x̂τn and Rτ

n are unbiased estimates of x̂t and Rt when
n = t. The information contained in first and the second moment of πt becomes available
now.

Before showing the full scheme, we need to give an illustration about how to interpolate
the unknown h(·). The idea is to extrapolate (predict) a value of h and then fit the function
of h at observation points by one step ahead extrapolation and one step behind interpolation.
This idea can be found in other works, e.g. [9]. As an illustration, let us consider the simple
case of three grid points e, f, g and two observations, 1 and 2, see figure 4.1. Monte Carlo
approximation generates Xe, Xf and Xg where g is an extrapolation point, then we have
interpolated observations, h0(Xe), h0(Xf ) and h0(Xg), where h0(·) could be an initial linear
function or some other basis functions. With h0(Xe), h0(Xf ) and h0(Xg) and observations
Y1 and Y2, we can tune the coefficient values of the interpolated function h0(·) and then use
it for next step analysis.

The full scheme of this estimate is listed below:
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Figure 4.1. Illustration about extrapolation and interpolation

(1) Creation of the N initial states: If initial condition X0 and R0 are known, we generate
N number of normal distributed random variables. The k-th draw has the following
form

Xτ
0 (k) = X0 +R

1
2
0 ε0

where ε0 is the standard normal variable.
(2) On n step, create forward states and compute sample mean and covariance: On

discrete time interval [n− 1, n], for each k ≤ N , we use Markov chain Q to generate
the forward state of Xτ

k−1

Xτ
n(k) = Xτ

n−1(k) + a(Xτ
n−1(k)) + b(Xτ

n−1(k))(εn − εn−1).

The forward sample mean is

Xτ
n =

1

N

N∑
k=1

Xτ
n(k).

The forward variance is

Rτ
n =

1

N

N∑
k=1

(Xτ
n(k)−Xτ

n)(Xτ
n(k)−Xτ

n).

(3) On step n, create backward estimated states and compute sample mean and covari-
ance: Use simulated Xτ

n to extrapolate Hn. By (4.11) and (4.12), we have backward
states

x̂n(k) = Xτ
n(k) + Kn[Yn(k)−HnX

τ
n(k)]

where
K = Rτ

nH
T
n [HnRτ

nH
T
n + CW

n ]−1

is the sample counterpart Kalman gain. The mean and covariance of backward states
are

x̂τn =
1

N

N∑
k=1

x̂n(k)

and
Rτ
n = (I −KnHn)Rτ

n(I −KnHn)T + KnC
W
n KT

n .

(4) Set the mean and covariance of backward states as the initial state on step n+ 1.
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The estimate method tries to break those seemingly infeasible problems, solving KSP for the
whole conditional density and updating covariances based on the second moment evolution of
KSP representation, into several tractable problems. Two potential concerns for the method
are worth to mention. Firstly, though the method uses the full non-linear dynamics to
propagate the forecast error statistics, it mimics the traditional Kalman filter in the analysis
step and uses only the Gaussian part of the prior distribution. We know that least-squares
estimation is very inefficient for highly non-Gaussian processes, whose distributions are not
well characterized by means and variances. Secondly, the updated sample paths preserve only
the first two moments of the “posterior”. Consequently, the initial condition for the further
integration of the Kolmogorov forward equation does not coincide with the “posterior” one,
an inconsistent scheme. We leave these questions to the future research.

5. Inference For A Simulated Complex System

Why linear systems are so important. The answer is simple: because we can
solve them! - Richard Feynman

The fluttering of a butterfly’s wing in Rio de Janeiro, amplified by atmospheric
currents, could cause a tornado in Texas two weeks later. - Edward Lorenz

The most famous complex system is the deterministic 3-states Lorenz system (the butterfly
effect):

dx1
dt

= θ1(x2 − x1),

dx2
dt

= θ2x1 − x2 − x1x3,

dx3
dt

= x1x2 − θ3x3.

The original derivation of these equations are for fluid flow of the atmosphere: a two-
dimensional fluid cell is warmed from below and cooled from above and the resulting motion
is modeled by this system. Later on, the system is used to model some of the unpredictable
behaviour which normally associate with chaotic phenomena in the economics, finance, bi-
ology, earth science, physics and even philosophy of human brain. One can also found some
empirical evidences from lower dimensional cases of Lorenz system in economics, for example,
logistic map in cobweb models, see [ref here].

One of the most important differences between chaotic processes and truly stochastic
processes is that the future behaviour of a chaotic system can be predicted in the short term,
while stochastic processes are characterized in terms of their statistics. Since in practice none
of economic data has truly predictable features, the deterministic Lorenz model should be
embedded into a stochastic model. The procedure is simple, one simply add stochastic
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disturbances into each of these functions:

dX1 = θ1(X2 −X1)dt+ dW1,

dX2 = (θ2X1 −X2 −X1X3)dt+ dW2,

dX3 = (X1X2 − θ3X3)dt+ dW3.

The system is called stochastic Lorenz system or stochastic Lorenz attractor. From figure
5.2, one can see the system is still approximately attached to a regular manifold as in the
deterministic case, but the movement path becomes completely irregular.

We model the non-linear feature of h(·) by using a random matrixH at each time step. The
reason is that at each time t, if there is no drift, then linearisation of h(xt), Htxt+Rem, gives
us Gaussian property ofHtxt and truncates the non-Gaussian effect by ignoring the reminder
term Rem; however, the propagation of this effect still disturbs the future linearisation and
therefore attaches the non-Gaussian features to the system. The simplest way to model this
non-linear feature is to use a time varying random coefficient matrix Ht(ω). The process Y
is assumed to be discretely observed, every five movements of X generates one Y :

Yt = Ht(ω)Xt + εt

where Y = (Y1, Y2, Y3)
T , X = (X1, X2, X3)

T , Ht(ω) = Ht−1Xt−1 − Yt−1 + βε, and ε is
standard normal. The notation Xt means an average of five moments of Xt in the time
interval [t − 1, t]. In the experiment, we try two different values of β, please see figure 5.6
and 5.7.

When solving the system, it is not very difficult to perform the iterations and then take the
average over various realizations. However, the accuracy of Euler-Maruyama method is not
very good. In particular it is very hard to improve the accuracy by an order of magnitude,
therefore we use Dormand–Prince method17. Although the evolution of Y depends on this
highly non-linear mechanism, in prediction step, we assume Y to be Gaussian. Thus the
computational speed is significantly reduced but the estimated model still maintains an
acceptable level of root mean square errors, please see figure 5.4.

Appendix:Proof of Theorem and related Lemma

Before giving the proof of theorem 1, we will introduce three lemmas. The result of theorem
1 will be the consequence of these lemmas. Lemma 14 constructs a countable vector space
U on S. Lemma 15 defines a non-negative process that corresponds to the element in U ,
Lemma f16 extends U to the space of continuous bounded functions, Cb(S), checks whether

17A build-in matlab solver, ode45, uses this method.
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the definition of the process is still valid, and find a representation of πt Finally, theorem 1
use extend the results in Cb(S) to B(S).

Lemma 14. For any continuous bounded choice function ϕ(x) where x ∈ S and S is a com-
pact set, there is a representation of ϕ(·) consisting of a class of orthogonal choice functions
{ϕi}∞i=1 such that ϕi ⊂ Cb(S).

Proof. For Cb(S), compact S induces that Cb(S) is dense and that a linear span exists. Let
{ϕi}∞i=1 be the set of basis function in the linear span and thus any ϕi is bounded continuous.
Let U be a countable vector space generated by finite linear combinations of {ϕ1, . . . , ϕn}
with rational coefficients such that

U :=

{
ϕ =

n∑
i=1

αiϕi, ai is rational for all i

}
,

where ϕ1 = 1. These ϕis are linearly independent for any i ∈ Z+. �

Lemma 15. There is a Yt-measurable process Λt
ω(ϕ) corresponding to the choice function

of stochastic states ϕ(Xt).

Proof. For ω ∈ Ω and any fixed t, Xt(ω) is a function Xt(ω) : ω 7→ S. Lemma 14 gives
a representation of ϕ on the base U := {ϕ =

∑n
i=1 αiϕi}. Thus for any ϕi ∈ U and fixed

t,
∑n

i=1 αiϕi(Xt) is a Ft-measurable representation of ϕ. 18. Equation (2.1) implies that a
Yt-adapted representation gtn exists for ϕn(Xt). Thus a sequence {gti}ni=1 is corresponding to
{ϕi(Xt)}ni=1. Thus if

∑n
i=1 αiϕi(Xt) represent ϕ(Xt), then a Yt-adapted process gt, corre-

sponding to ϕ, is linearly and uniquely represented by
∑N

i=1 αig
t
i . We can define the linear

functional
Λt
ω(ϕ) = gt(ω), ∀t.

�

Because the conditional distribution is a non-negative process, we need to construct a
non-negative analogue of Λt

ω.

Lemma 16. There is a non-negative Yt-measurable process Λ̃ω
t (ϕ) corresponding to any

continuous and bounded choice function ϕ ∈ Cb(S). Furthermore, the non-negative Λ̃ω
t (ϕ) has

a representation w.r.t. the non-negative distribution process πωt such that Λ̃ω
t (ϕ) = 〈πωt , ϕ〉.

Proof. Define a countable sub-base for positive choice function:

U+ :=

{
ϕ =

n∑
i=1

αiϕi, ϕ ≥ 0

}
.

18This statement skips one intermediate assumption which requires Xt to be progressive measurable (see [2]
Remark 7.1.1 Lemma 7.1.2).
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For ϕ ∈ U+ and fixed t, we define the null set for ϕ such that

N (ϕ) :=
{
ω ∈ Ω : Λt

ω(ϕ) < 0
}
,

where Λt
ω(ϕ) is the Yt-measurable process from lemma 15. If ϕ(Xt) ≥ 0 almost surely, then

by equation (2.1) the optional process would be non-negative on U+ and hence N (ϕ) is a
P-null set for U+. To extend this construction to U , we can define a new process Λ̄ω

t :

Λ̄ω
t (ϕ) :=

Λω
t (ϕ) ω /∈ N (ϕ),

0 ω ∈ N (ϕ).

Next, we need to check whether Λ̄ω
t is bounded. It is obvious that Λ̄ω

t (1) = 1. Since ϕ ∈ U ,
the uniform norm has such a property that |ϕ| ≤ ‖ϕ‖∞1. Then ‖ϕ‖∞1 ± ϕ ≥ 0, from step
2, we know

Λ̄ω
t (‖ϕ‖∞1± ϕ) ≥ 0

‖ϕ‖∞ ± Λ̄ω
t (ϕ) ≥ 0

where the second inequality comes from the linearity of Λ̄ω
t and Λ̄ω

t (1) = 1. It implies

sup
t
‖Λ̄ω

t (ϕ)‖∞ < ‖ϕ‖∞,

so Λ̄ω
t (ϕ) is bounded for ϕ ∈ Cb(S).

Let any ϕ ∈ Cb(S). Since U is dense in Cb(S), there exists a sequence ϕk ∈ U such that
ϕk → ϕ. We can define

Λ̃ω
t (ϕ) :=

Λ̄ω
t (ϕ) ϕ ∈ U ,

limk Λω
t (ϕk) ϕ ∈ Cb(S) \ U .

over the all Cb(S). For boundedness, we only need to check the case ϕ ∈ Cb(S) \ U . Note
that for any two sequence ϕk and ϕj, if ϕk → ϕ and ϕj → ϕ′, we will have

sup ‖Λ̃ω
t (ϕk)− Λ̃ω

t (ϕj)‖∞ ≤ ‖ϕk − ϕ‖∞ + ‖ϕ− ϕ′‖∞ + ‖ϕ′ − ϕj‖∞

by the boundedness result in U and the triangle inequality. So Λ̃ω
t (ϕ) is bounded.

We also need to ensure that the optional process of Λ̃ω
t (ϕ) is well-defined on Cb(S). For

ϕk in U , we have Yt-adapted process Λ̃ω
t (ϕk) for ϕk(Xt), then

E
[
Λ̃ω
T (ϕ)IT<∞

]
= lim

k→∞
E
[
Λ̃ω
T (ϕk)IT<∞

]
,

= lim
k→∞

E [ϕk(XT )IT<∞] ,

=E [ϕ(XT )IT<∞] .

The last equation comes from the dominated convergence theorem for bounded sequence.
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Since S is compact, Riesz representation theorem shows the existence of πωt ,

Λ̃ω
T (ϕ) =

ˆ
S
ϕ(x)πωt (dx) = 〈πωt , ϕ〉 = πωt ϕ, for ∀t

for any bounded and well-defined inner product. �

Proof of Theorem 1.

Proof. We need to extend the definition of πωt ϕ in lemma 16 to incorporate ϕ ∈ B(S). Let
B̄(S) is a subset of B(S) such that πωt ϕ is Yt-adapted optional process of ϕ(Xt) on B̄(S). It
is obvious that Cb(S) ⊂ B̄(S). Note that the Borel σ-algebra generated by B(S) is B(S). By
the completeness of Cb(S), we can construct a sequence of subset {B̄i(S)}∞i such that

B̄1(S) ⊂ B̄2(S) ⊂ · · · .

Compactness of S implies that B(S) is closed under finite intersection. From the construction
in step 1, we know the constant function is included in every B̄i(S). Monotone class theorem
implies ∪iB̄i(S) ⊇ B(S), since any monotone non-negative increasing sequence {B̄i(S)}∞i ,
with indicator function of every set in S, contains the σ-algebra B(S) which is closed under
finite intersection. Thus B̄(S) contains every bounded S-measurable function of S. While
B̄(S) is a subset of B(S), we conclude B̄(S) = B(S). �

Proof of Lemma 4.

Proof. The maximum principle definition is simply the first and the second derivative con-
ditions in the calculus. If a function f : S → R attains its maximum at point x ∈ S,
then

∇xf(t, x) = 0 and 4xf(t, x) ≤ 0

Furthermore, since f is a time-dependent function such that f : [0, T )× S→ R at a certain
time interval [0, t], f attains its maximum on x when time is t, then

∂f

∂t
(t, x) ≥ 0.

Together with ∇xf(t, x) = 0 and 4xf(t, x) ≤ 0, the inequality ∂tf ≥ 0 express the uncer-
tainty of the future such that ∂tf(x, ·) could either strictly increase along t or obtain its
optimal at t. A naïve attempt of formalizing the idea of preserving the maximum principle
on ([0, T )× S) is to connect these two inequality functions by an equality19:

(5.1)
∂f

∂t
(t, x) = −1

2
4xf(t, x),

which is the heat equation. Without loss of generality, we consider the standard case with
the diffusion factor −1/2 but the result holds for any vector factor −b/2. �
19In physics, the equality is set by Fourier’s heat conduction law.
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Proof of Lemma 5.

Proof. Identical : Note that a function f over ψ will not change the expression except that
ψ(t) is replaced by f(ψ(t)). By Lemma 3.4.3 and Theorem 3.4.16 (Kolmogorov’s Criterion)
[2], Stroock shows that for a subset µ of all tight measuresM(P(S)) and ψ ∈ P(R):

sup
µ∈M(P(S))

Eµ [|ψ(t)− ψ(s)|r] ≤ CT |t− s|1+α,

where CT <∞ is a constant, α > 0 and r ≥ 1. Then we have

lim
t→s

sup
ψ∈P(S)

(ψ(t)− ψ(s))2

(t− s)
= lim

t→s
sup

ψ∈P(S)

(
ψ(t)− ψ(s)

t− s

)2

(t− s)→ 0.

It means the increments are controlled by the length of time interval. When the interval is
extremely small, all the increments are treated the same. So the smooth function f does not
matter the law of W .

Independent : For ψ, $ ∈ P(R), let $(t) = ψ(t + s) − ψ(s), by the formula of Wiener’s
measure, both ψ(s) and $(t) associate withW on the time path [0, s] and [0, t] respectively.
Clearly, they are independent. �

Proof of Lemma 6.

Proof. We define the Fourier transform of f by Ff(ξ) =
´∞
−∞ f(x)eiξxdx, and the inverse

Fourier transform is F−1f(ξ) =
´∞
−∞ f(x)e−iξxdx.20.

As in the deterministic case, the ideal representation of f(t, ψ(t)) onW is the path integral:ˆ t

0

[
∇xf +

1

2
4xf

]
(τ, ψ(τ))dτ.

We need to check whether the approximation error is a “constant” in the stochastic sense.
Note that

f(t, x) = (2π)−1
ˆ
ei(ξt+ξx)(F−1f)dξdη.

By the property F−1( ∂
∂x

)(·) = iξF−1(·), there is

F−1
(
∇xf +

1

2
4xf

)
=

(
iξ − 1

2
|ξ|2
)

(F−1f).

20More discussion about Fourier method is given in the Appendix.
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The approximating error is

f(t, ψ(t))−
ˆ t

0

[
∇xf +

1

2
4f
]

(τ, ψ(τ))dτ

= (2π)−1
ˆ ˆ [

ei(ξt+ξψ(t)) −
ˆ t

0

ei(ξτ+ξψ(τ))(iξ − 1

2
|ξ|2)dτ

]
︸ ︷︷ ︸

Mξ(t)

(F−1f)dξdη

The Fourier term F−1f is bounded and irrelevant to W , if Mξ(t) is martingale in W , then
the error will be a stochastic constant. Rewrite Mξ(t) as:

Mξ,η(t) = eiξteiξx −
ˆ t

0

eiξψ(τ)eiξτd(iξ − 1

2
|ξ|2)τ.

The second term can be written asˆ t

0

eiξψ(τ)+
1
2
|ξ|2τd(eiξτ · e−

1
2
|ξ|2τ )

and the first term can be written as eiξt−
1
2
|ξ|2teiξψ(t)+

1
2
|ξ|2t. Fubini’s Lemma together with

(3.2) implies that

EW [Mξ(t)|PBs] = 1 · EW
[
eiξt−

1
2
|ξ|2t −

ˆ t

0

d(eiξτ−
1
2
|ξ|2τ )dτ |PBs

]
= 1.

Thus
(
f(t, ψ)−

´ t
0

[
∇xf + 1

2
4xf

]
(τ, ψ)dτ,PBt,W

)
is a martingale.

If the state moves with velocity a(Xt), the path derivative becomes a(·)∇f . Moreover,
the Lapalace operator 4 in the heat equation may associate with a volatility coefficient b(·).
Then the approximating model is:ˆ t

0

[
a(Xs)∇xf +

1

2
b(Xs)4xf

]
ds

which is the integral of the Feller’s generator A on f :

A := a(·)∇x +
1

2
b(·)4x.

The generator is a dual representation of a diffusion process (a, b) such that

dXt = a(Xt)dt+ σ(Xt)dVt

where b(Xt) = σ(Xt)
Tσ(Xt) and Vt is a Wiener process. �

Proof of Theorem 9.

Proof. (i) The bounded condition

E
[
exp

(
1

2

ˆ
h(Xs)

2ds

)]
<∞,
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is called Novikov’s condition. By this condition, Girsanov’s theorem implies Zt

dP̃
dP

∣∣∣∣∣
Ft

= Zt := exp

(
−
ˆ t

0

h(Xs)dWs −
1

2

ˆ t

0

h(Xs)
2ds

)
is an Ft-adapted martingale and Martingale representation theorem implies

Wt +

〈ˆ t

0

h(Xs)dWs,Wt

〉
t

= Wt +

ˆ t

0

h(Xs)ds = Yt,

where 〈·, ·〉t is the quadratic variation such that 〈Wt,Wt〉t = t. Thus for dP̃ = ZtdP, Yt is a
Brownian motion with respect to P̃:

Ee(Wt+
´ t
0 h(Xs)ds)e(−

´ t
0 h(Xs)dWs− 1

2

´ t
0 h(Xs)

2ds)

= Ee{
´ t
0 (1+h(Xs))dWs−

´ t
0 (2h(Xs)+h

2(Xs))ds}

= Eet2/2 · e{
´ t
0 (1+h(Xs))dWs−

´ t
0 (1+h(Xs))

2ds} = et
2/2.

The last line is the result of (3.2).
The law of the pair process (X, Y ) can be written as

(Xt, Yt) = (Xt,Wt) +

(
0,

ˆ t

0

h(Xs)ds

)
,

thus on an arbitrary time interval [0, t], under P̃-law, the law of (Xt,Wt) is absolutely con-
tinuous with respect to the law of the pair process (Xt, Yt). For any bounded measurable
function ϕ defined on the product path space of (X, Y ), we have

Ẽ [ϕ(Xt, Yt)] = E [ϕ(Xt, Yt)Zt] = E [ϕ(Xt,Wt)] .

Therefore, X and Y are independent under P̃ since X and W are independent.
(ii) Under the probability measure P̃, the law of the process Y is completely specified as

a Ft-adapted Wiener process with independent increments of Y . Hence, the σ-algebra is
Y†t = σ(Yt+u − Yt) for any u ≥ 0. Note that Yt and Y†t are independent. By the condition
expectation property:

Ẽ [ϕ(Xt)|Yt] = Ẽ
[
ϕ(Xt)|σ(Yt,Y†t )

]
.

Since Y†t includes all the increment information after time t,

σ(Yt,Y†t ) = Yt ∨ Y(t′−t)∈R = Y ,

and Y is a time invariant σ-algebra. �
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Appendix:Others

Itô integral. Suppose a process φn(t, ω) : [0, T ]× Ω→ R has such a partition

0 = t0 < t1 < · · · < tn+1 = T

that φn(s, ω) = hj(ω) when tj < s < tj+1 where hj(ω) is a random variable. hj(ω) is required
to be measurable with respect to the filtration Ft such that Xt is martingale w.r.t. Ft. Itô
integral is: ˆ T

0

φn(t, ω)dXt =
n∑
j=0

hj(ω)(Xt+1 −Xt).

A more general stochastic process can be defined as limit of integrals of simple processes
such that ˆ T

0

f(t, ω)dX = lim
n→∞

ˆ T

0

φn(t, ω)dXt.

Four solution forms of heat equation. Four solution forms of the heat equation: Suppose
f(t, x) is a solution of (5.1) and suppose g(t) is any differentiable function thatˆ

A

g(y)f(t, x− y)dy <∞,

then (i)

v(t, x) = (g ? f)(t, x) =

ˆ
A

g(y)f(t, x− y)dy,

(ii) v(t, x) = f(t, x− y), (iii) v(t, x) = ft(t, x) or v(t, x) = fx(t, x), (iv) v(t, x) = f(a2t, ax)

for a ∈ R, are all solutions of (5.1). The symbol ? means convolution.
It is straightforward to show the fact. (i)

∂v

∂t
(t, x)−4xv(t, x) =

ˆ
A

[
∂f

∂t
(t, x− y)−4xf(t, x− y)

]
g(y)dy = 0,

(ii) Change the variable z = x− y then ∂tf(t, z) = ∂tf(t, x) and∂2zf(t, z) = ∂2xf(t, x). (iii)

∂v

∂t
(t, x)−4xv(t, x) =

∂

∂t

[
∂f

∂t
(t, x− y)−4xf(t, x− y)

]
=

∂

∂t
0 = 0,

(iv) ∂tv(t, x) = a2∂tf(a2t, ax), ∂xv(t, x) = a∂xf(a2t, ax),

∂2

∂x2
v(t, x) = a

∂

∂x
∂xf(a2t, ax) = a2

∂2

∂x2
f(a2t, ax)

then
a2
[
∂f

∂t
(t, x− y)− ∂2

∂x2
f(a2t, ax)

]
= 0.
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Fourier analysis and Fourier solution of Heat equation. A “weak” solution of heat
equations is given here. “Weak” here means that solution should, presumably, have a distri-
bution type representation instead of classic ones, i.e. x or x2 − t. To do that, we need an
initial condition, f(0, x).

Proof. A periodic function f ∈ C∞ of period T has a Fourier series21:

f(x) =
∞∑
−∞

a(ξk)e
iξkx(ξk − ξk−1), a(ξk) =

1

2π

ˆ T
2

−T
2

f(x)e−iξkxdx

where ξk = 2πk/T . If f(x) is not periodic, let T →∞ the expression becomes

f(x) =

ˆ ∞
−∞

a(ξ)eiξxdx, a(ξ) =
1

2π

ˆ ∞
−∞

f(x)e−iξxdx.

Two series f and a can represent each other. We define the Fourier transform of f by
Ff(ξ) =

´∞
−∞ f(x)eiξxdx, and the inverse Fourier transform is F−1f(ξ) =

´∞
−∞ f(x)e−iξxdx.

Note that F−1Ff = FF−1f = f . Now apply Fourier transform to (5.1) over the variable x:

∂

∂t
Ff(t, ξ) = −1

2
ξ2Ff(t, ξ)

by the fact that the Fourier transform of ∂xf(t, x) is −iξFf(t, ξ). Solving this ODE we have

Ff(t, ξ) = c(ξ)e−ξ
2t/2

where c(ξ) = Ff(0, ξ) by the Fourier transform of the initial condition. Therefore:

f(x, t) =F−1
[
Ff(0, ξ)e−ξ

2t/2
]

=
1√
2πt

ˆ
e−(x−y)

2/2tf(0, y)dy.

If the initial condition is f(0, x) = δx, then the solution is the Gaussian distribution. �

Proof of Proposition 13. The convergence of

πτt (ϕ)− πt(ϕ) =
Ẽτ [ϕ(Xn)Zn|Ft]

Ẽτ [Zn|Ft]
− Ẽ[ϕ(Xt)Zt|Ft]

Ẽ[Zt|Ft]
essentially depends on the convergence of Zn. The quadratic term in

Zn = exp

(
n−1∑
l=0

h(tl, Xl)4Yl −
1

2

n−1∑
l=0

h(tl, Xl)
24t

)
is easy to deal with when 4t→ 0. So we only consider the stochastic summation term.

21Weierstrass’ second approximation theorem: every continuous function of period 2π is uniformly approx-
imable by trigonometric polynomials.
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Because exp
(∑n−1

l=0 h(tl, Xl)4Yl
)
→ exp

´
h(Xl)dYl when 4t → 0. We will study the

limit case only. Let ς1 and ς2 be two independent bounded processes that are independent
of two standard Wiener process W1 and W2. Let

D = E sup
t≤T

∣∣∣∣exp

[ˆ t

0

ς1(s)dW1(s)

]
− exp

[ˆ t

0

ς2(s)

]∣∣∣∣ .
We will use the inequality ∣∣eA − eB∣∣ ≤ |A−B|(eA + eB).

By Schwarz’s inequality and the above inequality

D2 ≤E sup
t≤T

∣∣∣∣[ˆ t

0

(ς1(s)− ς2(s))dW1(s)

]∣∣∣∣2×[
E sup
t≤T

∣∣∣∣exp

[ˆ t

0

(ς1(s))dW1(s)

]
+ exp

[ˆ t

0

(ς2(s))dW2(s)

]∣∣∣∣2
]
.

The first part on the RHS of the inequality is bounded by martingale inequality22

E sup
t≤T

∣∣∣∣[ˆ t

0

(ς1(s)− ς2(s))dW1(s)

]∣∣∣∣2 ≤ 4E
[ˆ t

0

(ς1(s)− ς2(s))ds
]
,

and the second part is bounded by martingale inequality and Itô isometry:

E sup
t≤T

∣∣∣∣exp

[ˆ t

0

(ς1(s))dW1(s)

]
+ exp

[ˆ t

0

(ς2(s))dW2(s)

]∣∣∣∣2
≤4E

∣∣∣∣exp

[ˆ t

0

(ς1(s))dW1(s)

]
+ exp

[ˆ t

0

(ς2(s))dW2(s)

]∣∣∣∣2
and for i = 1, 2

E exp

[ˆ t

0

ςi(s)dWi(s)

]2
≤ E exp

[ˆ t

0

|ςi(s)|2ds
]
.

Hence we have

D2 ≤ C1E
ˆ T

0

|ς1(s)− ς2(s)|2 ds <∞.

Then supt≤T E|Zn − Zt| is bounded, especially,

E|Zn − Zt|2 → 0

when τ → 0, because by local consistency condition the Markov chain Q converges in the
mean square to A.

The local consistency condition implies

sup
t≤T
|Eτϕ(Xn)Zn − Eϕ(Xt)Zt| → 0

22For any real value (sub)martingale M , there is E supt≤T M
2 ≤ 4EM2.
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as τ → 0. Then

lim
τ→0

sup
t≤T
|πτt (ϕ)− πt(ϕ)| ≤ lim

τ→0
sup
t≤T

E |ϕ(Xn)− ϕ(Xt)|Zn

+C2 lim
τ→0

sup
t≤T

E|Zn − Zt| → 0.
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Figure 5.1. Deterministic Lorenz System: θ1 = 28, θ2 = 10, θ3 = 8/3.
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Figure 5.2. Stochastic Lorenz System: Top left to bottom right, T = 10,
T = 100, T = 1000, T = 10000.
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Figure 5.3. Left: First 4000 evolutions for x1, x2, x3. Right: First 200
evolutions for X1, X2 and X3.
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Figure 5.4. Estimation with interpolation
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Figure 5.5. Estimation without interpolation
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Figure 5.6. Estimation with interpolation, β = 9.
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Figure 5.7. Estimation with interpolation, β = 1.
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