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1 Differential Equations in A Nutshell

Let’s start with a simple problem:

du

dt

= ru, t > 0

which is a typical model in population growth and resource supply. It is called the Malthus

model. It is a simple model where the time rate of change of population u = u(t) is propor-

tional to the population. Here t is time and u = u(t) is the population of a given system of

individuals. u is often refered to state variable. The equation governs the evolution of this

state variable. The real number r is a parameter that rpresents the relative growth rate and

could be measured for the given population. The solution to this model is

u(t) = u

0

e

rt

, t > 0

where u

0

= u(0) represents the initial population. The Malthus model is about exponential

growth. The state variable is a function of a single independent variable (time t).

A paritial di↵erential equation (PDE) di↵ers from this model in that the state variable

depends on more than one independent variable. Thus a PDE model models the evolution

of a system with more than one variable of interests. The system could be about both time

and the other variables u = u(t, x) from

@u(t, x)

@t

= c

@

2

u(t, x)

@x

2

or it could be independent of time but depend on several variables u(x) = u(x
1

, x

2

, x

3

) from

@u(x)

@x

1

+
@u(x)

@x

2

+
@u(x)

@x

3

= 0

such as spatial variables x. If x belongs to a bounded set x 2 X , it is important to give

some conditions of u(t, x) on the boundary of this set X . For example u(0, t) = 0 and

u(x
max

, t) = 0 for any t > 0. This type of conditions is called boundary conditions. On

the other hand, if initially the model has a functional form, for example u(x, 0) = '(x) for

0 < x < x

max

, then we call this condition an initial condition. Because it specifies the state

variable at time t = 0.
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In general, a PDE in one variable x and time t is an equation of the following form

G

✓
x, t, u,

@u

@t

,

@u

@x

,

@

2

u

@t

2

,

@

2

u

@x

2

,

@

2

u

@t@x

, . . .

◆
= 0, x 2 X , t 2 T .

Very often, the time interval T is just the positive time t � 0. If G(·) is a linear function in

u and in all of its derivatives, this PDE is called a linear PDE problem. It means that u and

its derivatives are uncorrelated and the equation only contains their first order information.

A linear equation is homogenous if every term contains u or some derivative of u. Linear

equations have an algebraic structure to their solution sets. For example, the sum of two

solutions to a homogenous linear equation is again a solution, as are constant multiples of

solutions. Nonlinear equations lost this property.

Examples of physical models using PDEs are the heat equation for the evolution of the

temperature distribution in a body, the wave equation for the motion of a wavefront, the

flow equation for the flow of fluids and Laplace’s equation for an electrostatic potential or

elastic strain field. Some standard linear homogeneous PDEs

Flow Equation: c
@u

@x

+
@u

@t

= 0,

Heat Equation: c2
@

2

u

@x

2

� @u

@t

= 0,

Wave Equation: c2
@

2

u

@x

2

� @

2

u

@t

2

= 0,

Laplace’s Equation:
@

2

u

@x

2

1

+
@

2

u

@x

2

2

= 0.

An example of a linear but non homogeneous PDE, Poisson’s equation:

@

2

u

@x

2

+
@

2

u

@y

2

= f(x, y)

An example of a nonlinear PDE, a nonlinear heat equation:

c

2

@

2

u

@x

2

� u

@u

@t

= 0.

Sometimes we denote partial di↵erentiation by subscripts, as in u

x

for @u

@x

or u
tt

for @

2
u

@t

2 . So,

for example, the heat equation can be written

c

2

u

xx

� u

t

= 0.
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If we have more variables, or need to write programs for solving a PDE, then often we use

numbered variables, such as, x
1

, x

2

, . . . , x

n

and then we denote a partial derivative by the

subscript number. For example, u
22

is the second partial derivative of u with respect to x

2

.

A solution to the PDE means a function u = u(x, t) satisfies the equation and the

conditions. It means that u must have continuous partial derivatives as required by the

PDE. There could be many solutions satisfying the requirements. For example,

u(x, t) = x

2 + 2t, u(x, t) = e

�t sin x

both satisfy u

t

= u

xx

.

Remark. In some simple cases, solutions can be found in terms of sums and products of

elementary functions. Find all the first and second order partial derivatives of the functions

u(x, t) and try to match the functions to the above linear homogeneous partial di↵erential

equations with suitable initial and boundary conditions. Solutions to practical models using

these equations are usually very di�cult to obtain analytically and computers are used

to obtain numerical approximate solutions by standard iterative procedures. You can see

examples of some numerical programs in R from the book Solving Di↵erential Equations in

R.

Many PDE models come from a basic balance law called conservation law. A conservation

law is just a mathematical formulation of the fact that the rate of quantity changes in a given

domain must equal the rate of quantity flows on the boundary plus the rate of birth and

death within this domain. Let u = u(t, x) be the population density of one city. Let f(x, t) be

the birth and death rate at location x at time t and let '(x, t) be the number of inhabitants.

At location x at time t, the change of number of inhabitants can be measured by '
x

(x, t).

Then the dynamical population in this city follows the conservation law

ˆ
X
(u

t

(x, t)� ('
x

(x, t) + f(x, t))) dx = 0.

If u
t

, '
x

and f are continuous, the integrand must identically everywhere in X , so we have

u

t

(x, t) = '

x

(x, t) + f(x, t).

If ' is proportional to the density ' = cu, then above model is called an advection model.

The equation is reduced to

u

t

� cu

x

= 0
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if f = 0. The solution of this advection equation is u(x, t) = F (x+ ct) for any di↵erentiable

function F . This solution just shifts F (x) to ct units. This kind of shift is called a transport.

If in addition, we assume that u(x, 0) = u

0

(x). Then the solution becomes u(x, t) = u

0

(x+ct).

If X ⇢ R, We can think of the density moving along a straight line ⇠ = x+ ct. This line or

this parameterization ⇠ is called characteristic. A general transport equation has the form

u

t

� cu

x

+ au = f(x, t).

We can solve this equation by the characteristic. Let ⇠ = x + ct. Denote u(x, t) in the new

variable by U(⇠, t). Then by the chain rule

u

t

= cU

⇠

+ U

t

, u

x

= U

⇠

.

Substitute these into the previous transport equation, the equation becomes U
t

+aU = f(⇠, t),

an ODE equation. This equation can be solved by multiplying an integrating factor eat and

integrating w.r.t. t.

If the advection equation u

t

= '

x

has two additional conditions (1) the movement is

from higher concentrations to lower concentrations, and (2) the steeper the concentration

gradient, the greater ', then we can have another type of equation, heat equation or di↵usion

equation. Assuming a simple linear relation ' = u

x

, we have u

t

= u

xx

which is the heat

equation. We will consider its solution later in this course.
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2 Expectations and PDEs

Many quantities in economics represent as the expected value of some random variable that

is moving in a stochastic model of the market. Given the model, there are two ways to

compute the expected value. One method starts with values that are expected to achieve

in the future and computes expected values at successively earlier times until the present

expected values are found. The other method starts with given probabilities for current

market conditions and works forwards in time to find probabilities for market conditions at

a desired future time. These two evolution equations are similar but not identical. One of

the di↵erences is the natural direction of time change, backwards for expected values and

forwards for probabilities.

We briefly discuss these evolution equations in the simple case of discrete time and

discrete state space in Section 2.1. Then in Section 5 we extense to more complex situations,

continuous time and continuous state space. There is a duality relationship between them

which will be discussed in Section 6.1

2.1 Markov Chain: Backwards and Forwards

2.1.1 Forwards

Many discrete time discrete state space stochastic models are Markov chains. Such a Markov

chain is characterized by its state space, S, and its transition matrix, P . For discrete state

space, we denote the probability mass ofX(t) at x at time t as u(x, t) = Pr(X(t) = x). These

probabilities satisfy an evolution equation moving forward in time. We use similar notation

for conditional probabilities, for example, u(x, t|X(0) = x

0

) = Pr(X(t) = x|X(0) = x

0

),

p(x, y) = Pr(x ! y) = Pr(X(t + 1) = y|X(t) = x). These “transition probabilities” are the

elements of the transition matrix, P . The transition probabilities have the properties:

0  p(x, y)  1 for all x 2 Sand y 2 S. (1)

and
P

y2S p(x, y) = 1 for all x 2 S. The first property comes from the fact that p(x, y) are

probabilities, the second comes from the fact that the state x must go somewhere in next

period. It will possibly go back to x

1It is an extension of the relationship between a matrix and its transpose.
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The Markov property is that knowledge of the state at time t is:

Pr(X(t+ 1) = y|X(t) = x

0

, X(t� 1) = x

1

, . . .) = Pr(X(t+ 1) = y|X(t) = x

0

)

namely all the information to predict the future only depends on the present relevant, no

matter what extra history information (X(t � 1) = x

1

, . . .) we have for the past relevant.

This may be thought of as a lack of long term memory. It may also be thought of as a

completeness property of the model: the state space at time t is rich enough to characterize

the possible future state of the system completely.

The evolution equation for the probabilities u(x, t) is found using conditional probability:

u(x, t+ 1) = Pr(X(t+ 1) = x)

=
X

y2S

Pr(X(t+ 1) = x|X(t) = y) · Pr(X(t) = y)

u(x, t+ 1) =
X

y2S

p(y, x)u(y, t) . (2)

To express this in matrix form, we suppose that the state space, S, is finite, and that the

states have been numbered x

1

, . . ., x
n

. The transition matrix, P , is n⇥n and has (i, j) entry

p

ij

= p(x
i

, x

j

). Sometimes it is also natural to write p

xy

= p(x, y). With this convention,

(2) can be interpreted as vector–matrix multiplication if we define a row vector u(t) with

components (u
1

(t), . . . , u
n

(t)), where we have written u

i

(t) for u(x
i

, t). As long as ordering

is unimportant2, we could also write u

x

(t) = u(x, t). Now, (2) can be rewritten

u(t+ 1) = u(t)P . (3)

Since u is a row vector, the expression Pu does not make sense because the dimensions of

the matrices are incompatible for matrix multiplication. The previous relation can be used

repeatedly to yield

u(t) = u(0)P t

, (4)

where P

t means P to the power t (for transpose of P , it is P>).

2If you start programming in the computer, you need to order the states.
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2.1.2 Backwards

There are several situations in which expected (present values of) payouts can be computed

using an evolution equation that has time moving backwards from the future to the present.

The basic idea comes through an undiscounted terminal payout. At the terminal time, T ,

we get a payout that depends on the state of the system at that time: f
T

(X(T )). We want

to compute the expected value of this payout:

E [f
T

(X(T ))] . (5)

To compute this, we compute a connected collection of expectation values, f(x, t), defined

as

f(x, t) = E [f
T

(X(T ))|X(t) = x] . (6)

We find a relationship between these numbers by considering one step of the Markov chain.

If the system is in state x at time t, then the probability for it to be at state y at the next

time is p(x ! y) = p(x, y). For expectation values, this implies

f(x, t) = E [f
T

(X(T ))|X(t) = x]

=
X

y2S

E [f
T

(X(T ))|X(t+ 1) = y] · Pr (X(t+ 1) = y | X(t) = x)

f(x, t) =
X

y2S

f(y, t+ 1)p(x, y) . (7)

The final time values, f(x, T ) are the given values f

T

(x). From these, we compute all the

numbers f(x, T � 1). Continuing like this, we eventually get to t = 0. We may know X(0),

the state of the system at the current time. Otherwise we can use

E [f
T

(X(T ))] =
X

x2S

E [f
T

(X(T ))|X(0) = x] · Pr (X(0) = x)

=
X

x2S

f(x, 0)u(x, 0) .

All the values on the bottom line should be known.

As with the probability evolution equation (2), the equation for the evolution of the

expectation values (7) can be written in matrix form. The di↵erence from the probability

evolution equation is that here we arrange the numbers f
j

= f(x
j

, t) into a column vector,
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f(t). The evolution equation for the expectation values is then written in matrix form as

f(t) = Pf(t+ 1) . (8)

This time, the vector goes on the right:

f(t) = P

T�t

f(T ) . (9)

2.1.3 Duality

The forward evolution equation (2) and the backward equation (7) are connected through a

duality relation. For any time t, we compute (6) as

E [f
T

(X(T ))] =
X

x2S

E [f
T

(X(T ))|X(t) = x] · Pr(X(t) = x)

=
X

x2S

f(x, t)u(x, t) . (10)

For now, the main point is that the sum on the bottom line does not depend on t. Given

the constancy of this sum and the u evolution equation, we can give another derivation of

the f evolution equation. Start with

X

x2S

f(x, t+ 1)u(x, t+ 1) =
X

y2S

f(y, t)u(y, t) .

Then use (2) on the left side and rearrange the sum:

X

y2S

 
X

x2S

f(x, t+ 1)p(y, x)

!
u(y, t) =

X

y2S

f(y, t)u(y, t) .

Now, if this is going to be true for any u(y, t), the coe�cients of u(y, t) on the left and right

sides must be equal for each y.

The evolution equations (2) and (7) have some qualitative properties in common. One is

that they preserve positivity. If u(x, t) � 0 for all x 2 S, then u(x, t + 1) � 0 for all x 2 S
also. Likewise, if f(x, t + 1) � 0 for all x, then f(x, t) � 0 for all x. These properties are

simple consequences of (2) and (7) and the positivity of the p(x, y).3

3Positivity preservation does not work in reverse. It is possible, for example, that f(x, t+1) < 0 for some
x even though f(x, t) � 0 for all x.
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The probability evolution equation (2) has a conservation law not shared by (7). It is

X

x2S

u(x, t) = const . (11)

independent of t. This is natural if u is a probability distribution, so that the constant is 1.

The expected value evolution equation (7) has a maximum principle

max
x2S

f(x, t)  max
x2S

f(x, t+ 1) (12)

as f(x, t) has a convex combination representation
P

y2S f(y, t+1)p(x, y). This is a natural

consequence of the interpretation of f as an expectation value. The probabilities, u(x, t)

need not satisfy a maximum principle either forward or backward in time.

This duality relation has is particularly transparent in matrix terms. The formula 6 is

expressed explicitly in terms of the probabilities at time T as

X

x2S

f(x, T )u(x, T ) ,

which has the matrix form4

u(T )f(T ) .

We may rewrite this as

u(0)P T

f(T ) .

Because matrix multiplication is associative, this may be rewritten

⇥
u(0)P t

⇤
·
⇥
P

T�t

f(T )
⇤

(13)

for any t. This is the same as saying that u(t)f(t) is independent of t, as we already saw.

In linear algebra and functional analysis, “adjoint” or “dual” is a generalization of the

transpose operation of matrices. People who don’t like to think of putting the vector to the

left of the matrix think of uP as multiplication of (the transpose of) u, on the right, by the

transpose (or adjoint or dual) of P . In other words, we can do enough evolution to compute

an expected value either using P its dual (or adjoint or transpose). This is the origin of the

term “duality” in this context.

4Written in this order, the matrix multiplication is compatible; the other order, f(T )u(T ), would represent
an n⇥ n matrix instead of a single number.
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Remark. (Dynamic programming) It is a method for making current decisions that e↵ect the

ultimate payout. The idea is to define the appropriate value function, f(x, t), that satisfies

a nonlinear version of the backwards evolution equation (7). I will explain the idea in an

abstract sense. We have a Markov chain as before, but now the transition probabilities

depend on a control parameter, ⇠. That is

p(x, y, ⇠) = Pr (X(t+ 1) = y|X(t) = x, ⇠) .

We are allowed to choose the control parameter at time t, ⇠(t), knowing the value of X(t)

but not any more about the future than the transition probabilities. Because the system is a

Markov chain, knowledge of earlier values, X(t� 1), . . ., will not help predict or control the

future. Choosing ⇠ as a function of X(t) and t is a “decision”. The point here is that the op-

timal control policy is a feedback control. That is, instead of trying to choose a whole control

trajectory, ⇠(t) for t = 0, 1, . . . , T , we instead try to choose the functions⇠(X(t), t). We will

write ⇠(X, t) for such a decision strategy. Any given strategy has an expected payout, the

object is to compute E
⇠

[f
T

(X(T ))] under the optimal decision strategy: max
⇠

E
⇠

[f
T

(X(T ))].

The principle of dynamic programming is: One replaces the multiperiod optimization prob-

lem with a sequence of hopefully simpler single period optimization problems. Conditional

expected value is

f(x, t) = max
⇠

E
⇠

[f
T

(X(T ))|X(t) = x] . (14)

Provieded that we have the condition f(x, T ) = f

T

(x), we need to compute the values f(x, t)

in terms of already computed values f(x, t+1). If we use control variable ⇠(t) at time t, and

the optimal control thereafter, we maximize this expected payout over ⇠(t) gives the optimal

expected payout at time t:

f(x, t) = max
⇠(t)

X

y2S

f(y, t+ 1)p(x, y, ⇠(t)) . (15)

which is the principle of dynamic programming.
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3 Some Remarks

At the beginning, we mention the growth ODE. Now consider a similar but more general

setting
dx

dt

= u(x), x(0) = x

0

,

where u is a continuous function. When there is a unique solution x(t) to this problem for

all initial data x

0

, then we can write

x(t) =  

t(x
0

)

such that  t is called the solution operator and forms a one-paramter group of operators

 

t+s =  

t �  s

, 8t, s 2 R and  0 = Id

where Id is the identity operator. The inverse of  t is  �t. If h is Lipschitz continuous such

that

|u(x)� u(x0)|  L|x� x

0|

for some constant L, then this ODE has a unique solution for any x

0

. Moreover, we have

the following inequality:

| t(x)�  

t(x0)|  e

tL|x� x

0|.

This result comes from Gronwall’s lemma. Here is the lemma.

(Gronwall - di↵erential form) Let ⌘(t) be a continuous function satisfying the di↵erential

inequality
d⌘(t)

dt

 a⌘(t) + k(t), ⌘(0) = ⌘

0

then ⌘(t)  e

at(⌘
0

+
´
t

0

e

�as

k(s)ds).

(Gronwall - integral form) Let ⇠(t) be a continuous function satisfying the integral in-

equality

⇠(t)  a

ˆ
t

0

⇠(s)ds+ b,

then ⇠(t)  b exp(at).

This lemma is easy to prove. For the di↵erential form, one can multiply it by exp(�at)

so that ✓
d

dt

⌘(t)

◆
exp(�at)  (k(t) + a⌘(t)) exp(�at)

14



which means ✓
d

dt

⌘(t) exp(�at)

◆
 k(t) exp(�at).

Integrating this inequality from 0 to t and then multiplying it by exp(at) gives the result.

For integral form, one can use previous result by defining ⌘(t) =
´

t

0

⇠(s)ds. Then one has
d⌘(t)

dt

 a⌘(t) + b. Thus

⌘(t)  b

a

(exp(at)� 1)

by the previous result and ⌘
0

= 0. As ⇠(t)  a⌘(t) + b, the result follows.

Gronwall’s lemma says that if a di↵erential form (or a function) is bounded by the function

itself (or an integral form), then the function is bounded exponentially. Lipschitz condition

implies that
1

2

d

dt

|x� x

0|2 = hu(x)� u(x0), x� x

0i  L|x� x

0|2,

so |x� x

0| is exponentailly bounded. The solution 't(x) and 't(x0) are also bounded expo-

nentially.

Now suppose we are interested in some function f of x. The way of characterzing how

this function f change with time is done by the generator A:

Af = u(x) ·rf(x)

where r denotes the gradient.5 This generator comes from

d

dt

f(x(t)) = rf(x(t)) · dx
dt

(t)

= rf(x(t)) · u(x(t)) = Lf(x(t)).

If f is positive then it is possible to use di↵erential inequalities, such as the Gronwall lemma,

to obtain bounds on f(x). Then f(x) is called a Lyapunov function.

Given an initial condition '(x) = f(x, 0), the generator induces a Cauchy problem

@f

@t

= Af, f(x, 0) = '(x).

It is also the a backward equation whose solution is f(x, t) = (etL')(x). 6 The generator A
5If the problem is n-dimension, then u(x) ·rf(x) =

P
n

i=1 u(xi

)@f(xi)
@xi

.

6This is often referred to as the semigroup notation for the solution of a time-dependent linear operator
equation.

15



can also be defined by the following limit

Af = lim
t!0

e

At
'� '

t

.

The form (etA')(x) of the ODE equation is also the solution of the following linear PDE

@f

@t

= hrf(x, t), u(x)i .

This representation is the same as the previous method of characteristics. It shows that the

family of solutions of the nonlinear ODE as in the Cauchy problem can be represented via

the solution of a linear PDE. Conversely soving the transport equation may induce a solution

of a nonlinear system of ODEs.

Now consider x
0

= X

0

as a random variable. We place a probability measure on X

0

so

that

E[f(X
0

)] =

ˆ
f(x)p(x, 0)dx

is our interest. The generator A of f has an adjoint A⇤ for p. The time variation of the

adjoint is characterized by the Liouville equation

@p

@t

= A⇤
p, p(x, 0) = p

0

(x).

This is also sometimes refered to as the forward equation. Using the semigroup notation,

the solution can be denoted by p

t

(x) = (eA
⇤
t

p

0

)(x). Because A⇤ is the adjoint of A, eA⇤
t is

the adjoint of eAt:

E[f(X
t

)] =

ˆ
f(x, t)p

0

(x)dx =

ˆ
(eAt')(x)p

0

(x)dx =

ˆ
(eA

⇤
t

p

0

)(x)'(x)dx.

Thus E[f(X
t

)] =
´
'(x)p

t

(x)dx =
´
f(x, 0)p

t

(x)dx.
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4 Heat Equation

When the state S is continuous, we denote the transition probability function as p = p(x,A),

x 2 S, A 2 F where F is the �-algebra generated by S. Let (S,F) be the state space of a

Markov process X
t

. Markov property now becomes:

Pr(X
t+1

2 B|�(X
0

, . . . , X

t

)) = p(X
t

, B).

Notice that if we define,

Pr(X
0

2 A

0

) = u(A
0

)

Pr(X
0

2 A

0

, X

1

2 A

1

) =

ˆ
A0

p(x
0

, A

1

)u(dx
0

)

Pr(X
0

2 A

0

, X

1

2 A

1

, X

2

2 A

2

) =

ˆ
A0

u(dx
0

)

ˆ
A1

p(x
0

, dx

1

)p(x
1

, A

2

)

and so on, then we have a sequence of distributions on (S,F), (S2

,F2), . . . .

If we define a linear operator7

Tu(B) =

ˆ
p(x,B)u(dx),

then Tu is a new probability distribution. Similarly,

Tt

u(B) =

ˆ
p

t

(x,B)u(dx) = distribution of X
n

where p

t

(x,B) = Pr(X
t

2 B|X
0

= x). In fact, we can describe p

t

(x,B) recursively as

p

t

(x,B) =

ˆ
p

t�1

(x, dy)p(y, B).

Using this fact, it is straightforward to verify the associative property that T(Tu) = T2

u.

One can extend this argument to Ts+t = Ts � Tt for any s, t > 0. For each bounded and

measurable f ,

Tt+s

f(x) =

ˆ
p

s+t

(x, dy)f(y)

7A detail discussion of the linear operator can be in Section 6.2. Here one can think a linear operator as
the general abstract analogue of a square matrix. That is, the transition probability p(x,B) evaluated at n
points of x is an n⇥ n matrix.
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=

ˆ
p

s

(x, dz)

ˆ
p

t

(z, dy)f(y) Chapman-Kolmogrov equation

=

ˆ
p

s

(x, dz)Tt(f(z)) = (Ts � Tt)f(x)

This is semigroup property.

Remark. The Chapman-Kolmogorov (CK) equation for Markov process says that

p

t+⌧

(x, x0) =

ˆ
S
p

t

(x, dy)p
⌧

(y, x0).

If {p
t

, t � 0} is the family of transition kernels of a Markov process, the Markov property

guarantees the Chapman-Kolmogrov relation, so the family of opertators T associated with

a Markov process is a semigroup. There exists a generator A of the transition semigroup T
defined as

Af := lim
t#0

Tt

f � f

t

for suitable f .

By the homogenous property of Brownian motion, we can deduce a new Chapman-

Kolmogorov equation

1p
2⇡t

e

� (x0�x)2

2t = p

t

(x� x

0) =

ˆ
S
p

t

(x� y)p(y � x

0)dy

By definition and change of variables,

Tt

f(x) =

ˆ
R
p

t

(x, y)f(y)dy

=

ˆ
1p
2⇡t

e

� (y�x)2

2t
f(y)dy

=

ˆ
1p
2⇡

e

� z

2

2
f(x+

p
tz)dz

As for the generator, for f with two continuous derivatives f 0 and f

00 such that f 00 is bounded,

Af(x) = lim
t#0

Tt

f(x)� f(x)

t

= lim
t#0

ˆ
1p
2⇡

e

� z

2

2
f(x+

p
tz)� f(x)

t

dz

18



= lim
t#0

ˆ
1p
2⇡

e

� z

2

2
f

0(x)
p
tz + f

00(x+ 

p
tz)tz2/2

t

dz

= lim
t#0

ˆ
1p
2⇡

e

� z

2

2
f

00(x+ 

p
tz)z2

2
dz

=
1

2
f

00(x)

where  2 [0, 1] is function of x and
p
tz, so as t # 0 there is the convergence 

p
tz ! 0,

hence f

00(x+ 

p
tz) ! f

00(x) by continuity of f 00, and the last step comes from Var(Z) = 1

if Z ⇠ N (0, 1).

The expected vaule can be defined as

u(t, x) =

ˆ
S
p

t

(x� y)u(0, y)dy.

Then we have

Au(t, x) = lim
t#0

Tt

u(0, x)� u(0, x)

t

= lim
t#0

u(t, x)� u(0, x)

t

=
@u(t, x)

@t

.

As we have seen Af(x) for Brownian motion is equivaelent to f

00(x)/2, we have the following

equation
@u(t, x)

@t

=
1

2

@u(t, x)

@

2

x

which is called heat equation or di↵usion equation. This is a PDE problem.

Remark. We can give a random walk interpretation of heat equation. Consider the lattice

x = (x
1

, x

2

) with spatial steps h 2 Z and a collection of particles moving on it. Let u
i,j

be

the number of particles at (i, j). The particles only move at times t
k

= k4t. Let uk

i,j

be the

number of particles at (i, j) at time t
k

. For each step, a particle at (i, j) can only hop to the

four adjacent grids (i+1, j), (i� 1, j), (i, j +1), (i� 1, j) with equal probability (1/4 each).

Then

u

k+1

i,j

=
1

4

⇥
u

k

i+1,j

+ u

k

i�1,j

+ u

k

i,j+1

+ u

k

i,j�1

⇤
.

Subtracting u

k

i,j

from both sides, we have

u

k+1

i,j

� u

k

i,j

=
1

4

⇥
u

k

i+1,j

+ u

k

i�1,j

+ u

k

i,j+1

+ u

k

i,j�1

� 4uk

i,j

⇤
.
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Let �t = h

2

/4, we obtain

u

k+1

i,j

� u

k

i,j

�t

=

⇥
u

k

i+1,j

+ u

k

i�1,j

+ u

k

i,j+1

+ u

k

i,j�1

� 4uk

i,j

⇤

h

2

.

The left hand side looks like u

t

(t, x). Note that by Taylor’s theorem

f(x+ ✏) =f(x) + ✏f

x

(x) +
✏

2

2
f

xx

(x) + o(✏2),

f(x� ✏) =f(x)� ✏f

x

(x) +
✏

2

2
f

xx

(x) + o(✏2),

where o(✏2) ! 0 as ✏! 0. If we add the two equations and let ✏! 0, we have

f

xx

(x) = lim
✏!0

f(x+ ✏) + f(x� ✏)� 2f(x)

✏

2

.

Now we can expect8

lim
h!0

⇥
u

k

i+1,j

+ u

k

i�1,j

� 2uk

i,j

+ u

k

i,j+1

+ u

k

i,j�1

� 2uk

i,j

⇤

h

2

= u

xx

(x, t)

The result follows.

8This method is called the five-point stencil finite di↵erence method. It corresponds to the matrix2

4
0 1 0
1 4 1
0 1 0

3

5, the discrete Laplacian operator.
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5 Analytical Solutions of PDE

Recall that an ordinary di↵erential equation is an equation in which the derivative of a

variable appears. Let X(t) be a function of variable t whose derivative is dX(t)/dt. A

di↵erential equation consists of dX(t)/dt. The di↵erential equation for a growth rate model

is
dX

dt

(t) = r.

The solution of this equation is X(T ) = X(0) + rT which can be easily found using the

tools of calculus
´

T

0

dX(t) =
´

T

0

rdt giving X(0). The principle of causal relations among

phenomena finds its simplest mathematical expression by means of di↵erential equations.9

Remark. (Di↵erential equation and Markovian) One can easily see that the di↵erential equa-

tion dX(t)/dt = f(X(t)) is in a Markov process. The equation says that the rate of change

of X at time t depends only on X at t and not on X(⌧), ⌧ < t. As a result of this, for

t

1

< t

2

, the solution at t

2

is a function of x
t1 and does not depend on x

⌧

for ⌧ < t

1

. The

Markov property says that the probability law of the process in the future, once it is in a

given state, does not depend on how the process arrived at the given state. Namely, the

future can be predicted from a knowledge of the present.

5.1 Separation of Variables

A power series about x
0

is an infinite sum of the form

a

0

+ a

1

(x� x

0

) + a

2

(x� x

0

)2 + · · · =
1X

n=0

a

n

(x� x

0

)n,

where the a
n

’s are constants. Many functions can be represented e�ciently as such an infinite

series. For example

e

x = 1 + x+
1

2!
x

2 +
1

3!
x

3 + · · · =
1X

n=0

1

n!
x

n

, (16)

and the trigonometric functions,

cos x = 1� 1

2!
x

2 +
1

4!
x

4 � · · · =
1X

k=0

(�1)k
1

(2k)!
x

2k

9The greater part of the laws of nature discovered at the time of the birth of mathematical physics are
expressed in just such a manner.
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and

sin x = x� 1

3!
x

3 +
1

5!
x

5 � · · · =
1X

k=0

(�1)k
1

(2k + 1)!
x

2k+1

.

An infinite series of this type is called a power series. In order for a power series to be useful,

the infinite sum must actually converge to a finite number, at least for some values of x. Let

s

N

be the sum of the first (N + 1) terms,

s

N

= a

0

+ a

1

(x� x

0

) + a

2

(x� x

0

)2 + · · ·+ a

N

(x� x

0

)N =
NX

n=0

a

n

(x� x

0

)n.

We say that the power series
P1

n=0

a

n

(x� x

0

)n converges if the sum s

N

approaches a finite

limit as N ! 1.

Power series can help us to solve di↵erential equations. The equation of the following

ordinary di↵erential equation10:
d

2

y

dx

2

+ y = 0, (17)

Suppose that we don’t know the general solution and want to find it by means of power

series. We could start by assuming that

y = a

0

+ a

1

x+ a

2

x

2 + a

3

x

3 + · · · =
1X

n=0

a

n

x

n

.

Assuming that the standard technique for di↵erentiating polynomials also works for power

series, we would expect that

dy

dx

= a

1

+ 2a
2

x+ 3a
3

x

2 + · · · =
1X

n=1

na

n

x

n�1

.

(Note that the last summation only goes from 1 to 1.) Di↵erentiating again would yield

d

2

y

dx

2

= 2a
2

+ 3 · 2a
3

x+ 4 · 3a
4

x

2 + · · · =
1X

n=2

n(n� 1)a
n

x

n�2

.

10It is called the simple harmonic motion that can be obtained by means of Newton’s second law (and
Hooke’s law for a mass on a spring).
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We can replace n by m+ 2 in the last summation so that

d

2

y

dx

2

=
1X

m+2=2

(m+ 2)(m+ 2� 1)a
m+2

x

m+2�2 =
1X

m=0

(m+ 2)(m+ 1)a
m+2

x

m

.

The index m is a dummy variable in the summation and can be replaced by any other letter.

We replace m by n and obtain the formula

d

2

y

dx

2

=
1X

n=0

(n+ 2)(n+ 1)a
n+2

x

n

.

Substitution into equation (17) yields

1X

n=0

(n+ 2)(n+ 1)a
n+2

x

n +
1X

n=0

a

n

x

n = 0,

or
1X

n=0

[(n+ 2)(n+ 1)a
n+2

+ a

n

]xn = 0.

Now a polynomial is zero only if all its coe�cients are zero. By analogy, we expect that a

power series can be zero only if all of its coe�cients are zero. Thus we must have

(n+ 2)(n+ 1)a
n+2

+ a

n

= 0,

or

a

n+2

= � a

n

(n+ 2)(n+ 1)
. (18)

This is called a recursion formula for the coe�cients a
n

.

The first two coe�cients a
0

and a

1

in the power series can be determined from the initial

conditions,

y(0) = a

0

,

dy

dx

(0) = a

1

.

Then the recursion formula can be used to determine the remaining coe�cients in the power

series by the process of induction. We will find that

y = a

0

+ a

1

x� 1

2!
a

0

x

2 �� 1

3!
a

1

x

3 +
1

4!
a

0

x

4 + · · ·
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= a

0

✓
1� 1

2!
x

2 +
1

4!
x

4 � · · ·
◆
+ a

1

✓
x� 1

3!
x

3 +
1

5!
x

5 � · · ·
◆
.

We recognize that the expressions within parentheses are power series expansions of the

functions sin x and cos x, and hence we obtain the solution,

y = a

0

sin x+ a

1

cos x.

Using a similar idea, we can solve some PDE problems. First we need to transfer a PDE

problem into an ordinary di↵erential equation. We substitute u(x, t) = p(x)g(t) into the

heat equation and obtain

p(x)g0(t) = c

2

p

00(x)g(t).

Now we separate variables, putting all the functions involving t on the left, all the functions

involving x on the right:
g

0(t)

g(t)
= c

2

p

00(x)

p(x)
.

The left-hand side of this equation does not depend on x, while the right-hand side does not

depend on t. Hence neither side can depend upon either x or t. In other words, the two

sides must equal a constant, which we denote by � and call the separating constant. Our

equation now becomes
g

0(t)

c

2

g(t)
=

p

00(x)

p(x)
= �,

which separates into two ordinary di↵erential equations,

g

0(t)

c

2

g(t)
= �, or g

0(t) = �c

2

g(t), (19)

and
p

00(x)

p(x)
= �, or p

00(x) = �p(x). (20)

The second problem is an eigenvalue problem for the di↵erential operator

4 =
d

2

dx

2

.

One can apply power series to solve it.
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5.2 Fourier Series

The solution of previous ordinary di↵erential equation includes periodic functions:

y = a

0

sin x+ a

1

cos x.

It gives us a hint that periodic properties may provide other uses in solving PDEs.

If a function f(t) is periodic, then for some C,

f(t+ C) = f(t)

for every t. The smallest C is the period. Hence f(t + nC) = f(t) for every integer n. The

most important family of periodic functions of time are sinusoids, A sin(�t+ b). A periodic

function may be approximated by a finite sum of sinusoids, i.e.

f(t) =
NX

n=0

A

n

sin(2⇡nt+ '

n

).

Based on previous trigonometric relations, we have

NX

n=0

A

n

sin(2⇡nt+ '

n

) =
NX

n=0

(A
n

sin'
n

cos 2⇡nt+ A

n

cos'
n

sin 2⇡nt)

=
NX

n=0

(a
n

cos 2⇡nt+ b

n

sin 2⇡nt) =
NX

n=�N

c

n

e

2⇡int

.

or f(t) =
P

N

n=�N

c

n

e

2⇡int.11 Then we may expect that any periodic function or even any

function can be expressed as finitely or infinitely many sinusoids (complex exponentials).

Remark. Fourier transform and Fourier inverse transform:

Ff(n) =
ˆ

f(t)e�2⇡int

dt

is called a Fourier transform of f(t). Under suitable conditions, f can be reconstructed from

11Recall the Euler’s formula: e

ix = cosx + i sinx and its relation to trigonometry cosx = (eix + e

�ix)/2
and sinx = (eix � e

�ix)/2i.
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Ff(n) by the inverse transform

f(t) =

ˆ
Ff(n)e2⇡intdn = (F�1F)f(t)

for every real number t. I describe briefly about its origin. Suppose that f(t) =
P

N

n=�N

c

n

e

2⇡int.

We can determine the coe�cients {c
k

}. Note that

f(t)

e

2⇡ikt

=c�N

e

2⇡i(�N�k)t + · · ·+ c

k

+ c

k+1

e

2⇡it + c

N

e

2⇡i(N�k)t

=c

k

+
X

n=�N,n 6=k

c

n

e

2⇡i(n�k)t

.

By arranging the expression, we have

c

k

= f(t)e�2⇡ikt �
X

n=�N,n6=k

c

n

e

2⇡i(n�k)t =

ˆ
f(t)e�i2⇡kt

dt.

To obtain the last equality, we take the integrals on both sides such that
´
c

k

dt = c

k

and

ˆ
1

0

e

2⇡i(n�k)t

dt =

8
<

:
1, n = k,

0, n 6= k.

Thus we have a dual representation of f(t), f(t) =
P1

n=�1(Ff)(n)e2⇡int where (Ff)(n) =
c

n

=
´
f(t)e�2⇡int

dt. Normally, t represents time and the transform variable n represents

frequency.

In fact, for any (periodic) function f(t) with
´
|f(t)|2dt < 1, it is known that there is

lim
N!1

ˆ �����f(t)�
NX

n=�N

Ff(n)e2⇡int
�����

2

dt = 0.

{e2⇡int}
N

is called a Fourier series with coe�cients Ff(n), n = �N, . . . N .
P1

n=�1 Ff(n)e2⇡int

is the best approximation to f(t).

With this result, we can apply Fourier series to solve PDE. Recall the problem of the

heat equation:
@u

@t

(x, t) =
1

2
u

xx

(x, t)
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with u(x, 0) = p(x) at t = 0. Now apply Fourier transform to u

xx

(x, t) over the variable x:

@

@t

Fu(�, t) = �1

2
�

2Fu(�, t)

and Fu(�, 0) = Fp(�) by the fact that the Fourier transform of @
xx

u(x, t) is (�i�)2Fu(�, t).
The above problem is not a partial di↵erential equation anymore but an ordinary di↵erential

equation. Solving this di↵erential equation we have

Fu(t,�) = c(�)e��

2
t/2

where c(�) = Fp(�) by the Fourier transform of the initial condition. Therefore:

(F�1F)u(x, t) =F�1

h
Fu(�, 0)e��

2
t/2

i

=
1p
2⇡t

ˆ
e

�(x�y)

2
/2t

p(y)dy.

The second equality comes from the fact that inverse Fourier transform of e

��

2
/2 is the

Gaussian density. If the initial condition is u(x, 0) = f(x) = �

x

, then the solution is the

Gaussian distribution (2⇡t)�
1
2
e

�x

2
/2t. It is also called the fundamental solution of the heat

equation.
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6 Duality

In linear algebra and functional analysis, “adjoint” or “dual” is a generalization of the

transpose operation of matrices. In Section 2 Markov chain has

u(T ) = u(0)P t =
h⇥
P

t

⇤>
[u(0)]>

i>
.

People who don’t like to think of putting the vector to the left of the matrix think of uP as

multiplication of (the transpose of) u, on the right, by the transpose (or adjoint or dual) of

P . In other words, we can do enough evolution to compute an expected value either using

P its dual (or adjoint or transpose). This is the origin of the term “duality” in this context.

6.1 Duality in Di↵usion Equations

Now we turn to continuous time and continuous state space. The state at time t is a vector,

X 2 R

n consisting of n components, or “factors”, X = (X
1

, . . . , X

n

). The dynamics are

given by the Ito di↵erential equation

dX(t) = a(X(t))dt+ b(X(t))dW . (21)

Here W (t) is a vector of m independent standard Brownian motions. For each x, there is a

drift, a(x), and an n ⇥ m matrix b(x), that is related to the volatility. There is no reason

that m, the number of noise sources, should equal n, the number of factors, but there is no

reason ever to have more noises than factors. The columns of b are vectors in Rn. Column

j gives the influence of noise j on the dynamics. If these columns do not span R

n, then the

di↵usion is degenerate.

There are forward and backward evolution equations that are dual to each other. The

forward equation is for u(x, t), the probability density for X(t). This is the di↵usion equation

@

t

u = �
nX

j=1

�
@

x

j

a

j

(x)u
�
+

1

2

nX

j,k=1

@

x

j

@

x

k

(µ
jk

(x)u) . (22)

The matrix of di↵usion coe�cients, µ, is related to b by

µ(x) = b(x) · b>(x) . (23)

28



We write M

> for the transpose of a matrix, M . The coe�cients, a
j

(x) are the components

of a(·).12 The second term on the right of (22) involves two derivatives. The actual form

(22) has the martingale property that, if there is no drift (a ⌘ 0), then the expected value

of X does not change with time. To see this, use (22) with a = 0 and compute

@

t

E [X(t)] = @

t

ˆ
xu(x, t)dx

=

ˆ
x

1

2

nX

j,k=1

@

x

j

@

x

k

µ

jk

(x)u(x, t)dx

= 0 .

The last line follow from the one above if you integrate by parts twice to put the two

derivatives on the x. The result would generally not be zero if a 6= 0.

The drift term, @
x

au, corresponds to the drift term, a(X)dt. It is easy to see what the

term would be if a were constant (independent of x and t) and b were zero. In that case the

solution of (21) would be X(t) = X(0) + at. For this reason, the probability density is also

simply shifted with speed a: u(x, t) = u(x � at, 0). A rough idea about the relation (22)

between volatility and di↵usion coe�cients is given in the simplest case n = m = 1. The

number µ should depend on b in some way. Observe that the di↵usion governed by (21) will

be unchanged of b if it is replaced by �b, because W (t) is indistinguishable from �W (t).

This implies the formula µ = b

2.

The simplest backward equation is for the expected payout starting at x at time t:

f(x, t) = E [f
T

(X(T ))|X(t) = x] .

More complicated expectations satisfy more complicated but related equations. The back-

ward equation for f is

@

t

f +
X

j

a

j

(x)@
x

j

f +
1

2

X

jk

µ

jk

(x)@
x

j

@

x

k

f = 0 . (24)

This is supplemented with initial data given at the final time, T , f(x, T ) = f

T

(x), and

determines f(x, t) for t < T . Again, we can express unconditional expectation in terms of

12Because u is a probability density, the integral of u(x, t) over x should be independent of t. That will
happen if all the terms on the right of (22) are derivatives of something (i.e. @

x

(a(x)u) rather than a(x)@
x

u).
This is sometimes called conservation form.

29



conditional expectation starting from time t and the probability density for X(t):

E [f
T

(X(T ))] =

ˆ
f(x, t)u(x, t)dx . (25)

The fact that the right side is independent of t. Finally, f satisfies a maximum principle:

min
y

f(y, T )  f(x, t)  max
y

f(y, T ) if t < T .

The probability interpretation of f makes this obvious; the expected reward cannot be less

than the least possible reward nor larger than the largest.

We can motivate a way in which (22) and (24) are consistent with each other using a

PDE version of the argument. We just compute the expected value, at time 0, of the payout

at time T by averaging over the possible states at some intermediate time, t. Using the

probability density for X(t), this gives

E [f
T

(X(t))] =

ˆ
E [f

T

(X(T )) | X(t) = x] u(x, t)dx

=

ˆ
f(x, t)u(x, t)dx .

Since the left side does not depend on t, the right side also must be independent of t. This

leads to

0 =
d

dt

ˆ
f(x, t)u(x, t)dx

=

ˆ
{(@

t

f(x, t))u(x, t) + f(x, t)@
t

u(x, t)} dx .

The evolution equation (22) transforms this into

0 =

ˆ
{(@

t

f(x, t)) u(x, t) � f(x, t)
nX

j=1

@

x

j

(a
j

(x)u(x, t))

+ f(x, t)
1

2

X

jk

@

x

j

@

x

k

(µ
jk

(x)u(x, t))

)
dx .

Now we want to integrate by parts. Normally we would get terms with the derivatives on

f and boundary terms. Here, there are no boundary terms and13

u ! 0 as x ! 1. Upon

13For example, if a and b are bounded it is impossible for X(t) to “escape to 1” in finite time. This
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integrating by parts and grouping terms, we come to:

0 =

ˆ  
@

t

f +
X

j

a

j

(x)@
x

j

f +
1

2

X

jk

µ

jk

(x)@
x

j

@

x

k

f

!
u(x, t)dx .

The simplest way for this integral to be zero automatically is for f to satisfy (24).

6.2 Abstract Duality

The relation between (22) and (24) may be stated more abstractly using the language of

adjoint operators. This has the advantage of clarifying the relationship between the continu-

ous time, continuous X version we are discussing for Markov processes and the discrete time

and discrete X version for Markov chains. Recall that we distinguished between row and

column vectors. The abstract version of this distinction is the distinction between a vector

space, V, and its dual space, V⇤. For example, if V is the space of row vectors, then V⇤ is the

space of column vectors. The abstract relationship between a vector space and its dual is

that elements of V⇤ are linear functionals on V. A linear functional is a linear function that

produces a number from a vector. In the row and column vector setting, a column vector, f

produces a function on row vectors by taking row vector u to the matrix product u · f . Any
such abstract pairing is written (u, f).14 Conversely, any such linear functional corresponds

to a column vector. Summarizing, the spaces of row vectors and column vectors of a given

dimension have a natural duality pairing given by the matrix product: (u, f) = u · f . The

matrix product u · f is the definition of (u, f) in this case.

In our current setting of functions of a continuous variable (or set of variables), x, the

duality relation is defined by integration. If f(x) is a (payout) function, then we may define

a linear functional on (probability) functions by taking a function u(x) to
´
u(x)f(x)dx.

That is, the duality relation given by

(u, f) =

ˆ
u(x)f(x)dx .

Here again, the right side is the definition of the left side. We may be possibly able to think

of functions u as infinite continuous rows and functions f as corresponding columns.

implies that u(x) goes to zero as x goes to infinity.
14In quantum physics, the notations are often adapted to Dirac’s type. (u, f) is written as < u | f >. The

left part, < u |, would have been called a bra vector, and the right, | f >, a ket. Putting them together
forms the Dirac bracket....
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The general abstract analogue of a square matrix is a linear operator, which is a map

from V to V, or from V⇤ to V⇤. Now suppose we have a dual pair of vector spaces and a

linear operator, A, on V, then there is a dual operator on V

⇤. The dual of A is written A⇤.

If f 2 V⇤, then A⇤
f is another element of V⇤. The duality relation for operators is that

(Au, f) = (u,A⇤
f) for every u 2 V and f 2 V⇤.

In the case of row and column vectors, a matrix, M , acts as a linear operator on row

vectors by matrix multiplication from the right. That is Au is the row vector given by the

matrix product u · M . You should not think of A as a matrix, or Au as matrix vector

multiplication, because u has the wrong shape multiplication from the left be a matrix. The

dual of A is also given by the matrix M , this time acting on column vectors, f by matrix

multiplication from the left. That is, A⇤
f is given by the matrix product M · f , which is

another column vector. The duality relation, (Au, f) = (u,A⇤
f), in this case boils down

to the associativity of matrix multiplication. First, (Au, f) = (u · M, f) = (u · M) · f ,
also (u,A⇤

f) = (u,M · f) = u · (M · f). Because matrix multiplication is associative,

(u · M) · f = u · (M · f). Note, in this last formula, the parentheses refer to groupings in

matrix multiplication rather than the duality pairing. This is a flaw in accepted mathematical

notation that I am powerless to correct.

Now we come to the point of this subsection, the duality relation connecting the equations

(2) and (5). If u = u(x) is a function of the continuous variable x, then we can define the

linear operator that gives the function v(x) by

v(x) = �
nX

j

@

x

j

a

j

(x)u(x) +
1

2

X

jk

@

x

j

@

x

k

µ

jk

(x)u(x) .

In operator notation, we might write

(Au)(x) or Au(x) = �
X

j

@

x

j

a

j

(x)u(x) +
1

2

X

jk

@

x

j

@

x

k

µ

jk

(x)u(x) .

The evolution equation (22) is then @
t

u = Au.
We find the dual operator for A through the definition of the duality pairing and inte-

gration by parts. Using the notationg = A⇤
f , we have, using integration by parts,

(Au, f) = (u,A⇤
f) = (u, g)ˆ

Au(x)f(x)dx = (u, g)
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ˆ (
�
X

j

@

x

j

a

j

(x)u(x) +
1

2

X

jk

@

x

j

@

x

k

µ

jk

(x)u(x)

)
f(x)dx = (u, g)

ˆ
u(x)

(
X

j

a

j

(x)@
x

j

f(x) +
1

2
µ

jk

(x)
X

jk

@

x

j

@

x

k

f(x)

)
=

ˆ
u(x)g(x)dx .

Look at the last line here. If we want this to be true for every function u(x), we should set

the left parts of each side equal. That is

g(x) = A⇤
f(x) =

X

j

a

j

(x)@
x

j

f(x) +
1

2
µ

jk

(x)
X

jk

@

x

j

@

x

k

f(x) .

The backward evolution equation (24) may now be written

@

t

f = �A⇤
f .

The derivation of (22) from (24) may be written abstractly too. For each t we have a

vector u, which we write u(t). Now u(t) is a vector function of t rather than an ordinary

function. That is, u(t) is an element of V rather than being a single number. We similarly

define f(t) 2 V⇤. The expectation that is independent of t is (u(t), f(t)) =
´
u(x, t)f(x, t)dx.

Di↵erentiating and using the abstract form of the u evolution equation, we get15

0 = @

t

(u(t), f(t)) = (@
t

u(t), f(t)) + (u(t), @
t

f(t)) .

Using @
t

u = Au and taking the dual, this gives

(u(t),A⇤
f(t)) = (u(t),�@

t

f(t)) .

The simplest way to make this true is to have @
t

f(t) = �A⇤
f(t). This is the abstract form

of the f evolution equation (24).

6.3 Conditions in PDE and Green’s Function

Di↵usion equations often come with boundary or initial conditions. In this case, the domain

will be a subset of all possible x values. The boundary of the domain will be called B.

Suppose that there will be no payout if X(t) 2 B for any 0  t  T . To value such an

15The product rule for di↵erentiation also works for duality pairings as it does for ordinary products.
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instrument, we use the backwards equation with Dirichlet boundary condition f(x, t) = 0 for

x 2 B. If the forward equation is applicable, we also apply the Dirichlet boundary condition

to u. In the latter case, we usually have
´
udx < 1. This u(x, t) represents the proba-

bility density for those paths that have never touched the boundary. The complimentary

probability is the probability of touching the boundary at some time:

ˆ
u(x, t)dx+ Pr (X(t0) 2 B for some t

0  T ) = 1 .

Most di↵usions do not live in all of Rn, but in a natural subset. For example, stock prices

and interest rates are usually positive. In these cases, the di↵usion coe�cients may go to

zero, as X gets close to the edge, in such a way that X(t) can never leave the set. For

example, in the model used in the Black-Scholes model, dS = rSdt + �SdW , the S(t) can

never become negative if it starts positive. In these cases, no extra boundary conditions

need to be specified.

We do not give a boundary condition at S = 0 when solving the Black-Scholes equation.

Often the initial data, f(x, T ), or u(x, 0), are singular. A singularity is an x value where

the function is not smooth. For example, if X(0) = x

0

is known, then the initial probability

density is a delta function: u(x, 0) = �(x � x

0

). The payout for a stock option has a jump

in its derivative at the strike price.16

Although not essential to the modeling motivation, it is di�cult to go past the derivation

of the Green’s function without some reference to the delta function �(x). The delta function

is like an administrative tool; it makes things easier to treat, once you have the confidence

to use it, but at first sight it is very strange.

For a start it is not a function. It is called a generalized function. It has the property

that it is zero everywhere except at x = 0, where it is infinite enough that
´1
�1 �(x) dx = 1.

Obviously this is not really satisfactory. There are two formal ways of thinking about

generalized functions. The first is that we think of a generalized function as being defined as

a “limit” (more precisely, an equivalence class) of a family of smooth functions; for example,

the delta function is associated with the family of functions
q

1

⇡t

e

�x

2
/t as t ! 0.17

Remark. (Generalized Function) The main way of manipulating generalized functions is not

to manipulate them directly at all, but to define their action by means of integrals. If {g
n

(x)}
is a family of functions in the equivalence class of a generalized function g(x), then we define

16If the di↵usion is nondegenerate (the coe�cient matrix, µ, is positive definite), such singularities quickly
smooth out.

17Note that there are many such families.
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the integral ˆ 1

�1
'(x)k(x) dx = lim

n!1

ˆ 1

�1
'(x)k

n

(x) dx.

Using this definition, it is possible to prove that one can manipulate generalized functions

directly by using this integral property, so that for example, one can define the delta function

through the requirement that

ˆ 1

�1
'(x)�(x) dx = v(0)

for all smooth functions '(x).

Green’s function is the impulse response of an inhomogeneous ordinary di↵erential equa-

tion defined on a domain with specified initial conditions or boundary conditions. The

convolution of a Green’s function with the smooth function '(x) on that domain is the so-

lution to the inhomogeneous di↵erential equation for '(x). A Green’s function, G(x), of a

linear di↵erential operator A acting over a subset of the Euclidean space is any solution of

AG(x) = �(x) (26)

This property of a Green’s function can be exploited to solve di↵erential equations of the

form. If the kernel of A is non-trivial, then the Green’s function is not unique. Green’s

functions in general are distributions, not necessarily proper functions. It is a generalized

function.

If a Green’s function G can be found for the operator A, then, if we multiply the equation

(26) for the Green’s function by f , and then integrate:

ˆ
AG(x� s)'(s) ds =

ˆ
�(x� s)'(s) ds = '(x)

Suppose that for a Markov system, we know Au(x) = '(x), a general linear equation. We

can use Green’s function to represent the system:

Au(x) =
ˆ

AG(x� s)'(s)ds = '(x)

which means, if the operator A and the integral
´
can interchange, u(x) =

´
G(x�s)'(s)ds.

Similarly, we can introduce time dimension to the Green’s function. We can solve Au(x) =
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'(x) using the dynamical system

dG(x, t)

dt

= �AG(x, t) , G(x, 0) = '(x) . (27)

If G(x, t) ! 0 quickly enough as t ! 1, then

u(x) =

ˆ 1

t=0

G(x, t)dt (28)

satisfies Au(x) = '(x).

Let’s consider an example of deriving the expression of a Green’s function. If we want to

solve an initial value problem for Heat equation

u

t

= �u, u(x, 0) = '(x).

Then the Green’s function G(x, t) should satisfy G

t

= �G, G(x, 0) = �(x). As in Section

5.2, we know that by Fourier transfer on x, one has FG(�, t) = e

��

2
t and hence

⇥
F�1FG

⇤
(x, t) = G(x, t) =

1

(4⇡t)d/2
e

�|x|2/4t
.

We can consider a more di�cult problem for G(x). Modifying the Heat equation wiath a

decay term m

2

G, we have a di↵usion deletion equation:

@

t

G = 4G�m

2

G , G(x, 0) = �(x) . (29)

The decay term, �m

2

G, is handled by including an additional exponential decay factor. The

solution to (29) is

G(x, t) =
1

(4⇡t)d/2
e

�|x|2/4t
e

�m

2
t

.

We can take the integral to get the desired integral representation for the stationary distri-

bution u(x):

u(x) =
1

m

2

ˆ 1

t=0

m

2

e

�m

2
t

dt · 1

(4⇡t)d/2
e

�|x|2/4t
.

Remark. This integral representation is useful in Monte Carlo simulation. It suggests a

strategy for sampling stationary distribution. Notice that the first factor on the right is an

exponential density with mean 1/m2 while the second is a Gaussian density in d-dimensions
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with each component having variance 2t. We have turned a seemingly hard d dimensional

sampling problem into a much easier d + 1 dimensional sampling problem. Some of the

most e↵ective innovative Monte Carlo methods developed in recent years are based on clever

enlargements of the sampling space.
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Part II

Applications
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