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Abstract

A step to consilience, starting with a deconstruction of the causality of uncertainty
that is embedded in the fundamentals of growth and inequality, following a construc-
tion of aggregation laws that disclose the invariance principle across heterogeneous
individuals, ending with a reconstruction of metric models that yields deeper structural
connections via U.S. GDP and income data.

1 Motivation

With a simple belief about facts that must be, Laozi in the 6th BCE deems the phenomena
that are wholly in harmony behaving in a completely natural and uncontrived way. He
says, “Nature does nothing, but everything is done.”1 A similar economic ideology, laissez
faire used by the physiocrats in the 17th century or later invisible hand used by Adam
Smith on income distribution and production, has been deeply rooted in the core of modern
economic analysis. In this perspective, individuals optimize decisions, markets rationalize
deals, different forces stabilize interferences, and so equilibria are established, as an outcome
of these self-organized dynamics, which in principle should lead us to a well-acceptable status.

However when one turns to another perspective viewing these economic elements as
an integrated, evolving and continuous entity, one may lose oneself in a chaotic, intricate,
and unordered retrospective of economic history. Economic system is consistently vibrating.
Individuals are incapable of seizing their own fates, markets tend to generate various bubbles,
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political forces weave a gravity field making things fallen. The commonly accepted equilibria
seem to be in an unreachable state. The dynamical process, instead of driving us to a utopia,
constructs a predicament of mankind concealing the problems origins. Joseph Schumpeter in
[9] writes the following words, “The essential point to grasp is that in dealing with capitalism
we are dealing an evolutionary process. It may seem strange that anyone can fail to see so
obvious a fact which moreover was long ago emphasized by Karl Marx. [...] Capitalism,
then, is by nature a form or method of economic change and not only never is but never can
be stationary.”

One ostensible reason of this inconsistency is that models and their assumptions are
merely abstractions or oversimplifications of the reality, thus it would be natural that they
fail to consider some of these phenomena. It would be even more natural to attribute these
unexplained imperfections to a category caused by uncertainty and then let it explain them,
since by definition uncertainty is uncertain and is hard to be merged into a system that
is certain. But what if there is no inconsistency? What if everything is in order and one
unpleasant outcome in an economy is just a consequence of a sequence of pleasant decisions
well-accepted amongst individuals? What if in this sequence uncertainty will certainly bring
in the denouement?

A crux is the role of uncertainty. Current treatment on uncertainty is to separate it
from the fundamentals of economic theory while expecting it to conciliate the contradictory
theories about how to interpret the existing phenomena. The gap between two perspectives,
as long as it does not affect the self-consistencies in either domain, is considered to be
harmless. Nevertheless, there may exist another perspective: all things return to uncertainty.
It could be the uncertainty that manipulates the economy, that shapes the social order, that
generates and wipes out our expectations. In such a case, uncertainty is no longer the bridge
over the gap, it eliminates the gap. This faith is simple: diverse individual decisions reflected
by their own beliefs about the laws of this uncertain world, after rationalization, integration
and evolution, converge to a field that is characterized by a certain law, an invariant of the
individuals’. Uncertainty, therefore, is certain.

Return to the controversial fundamentals. Two basic opposites co-exist along the eco-
nomic history: growth and inequality. About their causal relationship, [7] asks the following
question “Does inequality in the distribution of income increase or decrease in the course of
a country’s economic growth?” He did not answer this dualism question in [7], nor elsewhere
to my best knowledge. The dilemma is that the obvious answer seems to contradict the
righteousness in theory while in the rigid dichotomy the alternative answer is too ambiguous
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to be believed as a law. In the history of economy, when new products are introduced there
is an intense amount of research and development which leads to dramatic improvements in
quality and reductions in cost. This leads to a period of rapid economic growth. However,
the owners of these new products, at the time of their occurrences, stand in sharp contrast
to the great mass of their contemporaries. Every advance first comes into being innovation
developed by one or few persons, only to become, after a time, the indispensable necessity
taken for granted by the majority. Equality does not seem to exist at the very beginning
of the growth. The opportunities of quality improvement and cost reduction are gradually
exhausted, then the products are in widespread use and the trend turns into alleviating such
an inequality but also growth. Stimulus in production caused by the inequality is considered
as an abstract source, full of uncertainties. Thus entanglement of growth and inequality, like
other controversial fundamentals, masks the causality behind complex stochastic patterns.

Economic growth and inequality, from the most causal matters of divergences in incomes
and wages to the profoundest concentration of capital, is from my perspective a man-made
configuration. Growth is a human right of surviving and propagating while equality is a hu-
man desire rooting deeply in the conscious and belief. How would the invisible hands dispose
the relationship of these two basic elements? Enlightened by theories and methodology in
[10], this paper considers uncertainty as a composition of more elementary stochastic compo-
nents available amongst individuals then formulate concrete dynamics using laws extracted
from individuals. Deconstruction of uncertainty makes it feasible to epistemologically dis-
cuss previous questions. Abstraction of inequality as a limit aggregation law of economic
growth concretizes its representation. All these are done with the preservation of two basic
elements, growth and equality, over individuals. Uncertainty of growth entails the laws by
which inequality is invariantly revealed. The latter is so determined by its intrinsic equality
conditions that there is few choice left to an attempt of wiping it out, even at the fundamental
level.

2 Guide

Section 3 is a preliminary where the connection with mainstream growth model is established
but the substance emphasizes the use of new assumptions. Section 4 extends the set of new
assumptions to a more general setting in order to incorporate with uncertainty. Equilibrium
is shown to be in existence and its law is unique for each individual. Individuals are endowed
with stationary probabilistic laws for the equilibrium growth. Section 5 shifts the attention to
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aggregates. Infinite divisible law is introduced. Individual’s law becomes aggregatable. Non-
stationary aggregates are distinguished from stationary aggregates. The latter ones follow
the same law as individuals’ while the former ones need some additional characterization.
Section 6 exploits structural relationship between individual and aggregate laws. Aggregation
of laws is represented by summing and scaling of structural parameters. These parameters
reveal possible latent movements. Some of them conflict with superficial facts. Section 7 uses
data to illustrate some theoretical arguments. Some forward-looking thoughts are refined
in Section 8. Proofs, if necessary, are given in the appendix. Some proofs are chosen to be
heuristic so that they are accessible to readers with general mathematical background. Each
main section is followed by general remarks summarizing its main theme.

3 A non-abstract model

It is sometimes said that societies have to choose between greater equality and economic
growth. This section shows an ideal growth model that can achieve the equal status regardless
of initial heterogeneities amongst different individuals. It reveals that growth does not
necessarily have negative correlation with equality. Once we separate the causality between
growth and equality, we examine different objectives of growth and equality and see how
these differences consequently consolidate and become coherent in the equilibrium. All these
arguments rely on three assumptions.

3.1 Scarcity, growth, and equality

Let Xt(ω
i) denote an economic variable of individual i at time t with an initial state X i

0 = ωi,
such as a capital intensity. Suppose ωi ∈ Ω and Xt(ω

i) ∈ Ω for any t and i. For the simplest
case, we assume that the set Ω is on a closed and bounded interval. When there is no
necessity for emphasizing a specific individual, sometime Xt(ω) may refer to any individual.

Assumption 1. The set Ω is on a closed and bounded interval in R. Without loss of
generality, we assume Ω = [0, 1].

This assumption reflects that each individual faces the scarcity of economic resources.
The assumption applies to both initial endowments ωi and future states {Xt(ω

i)}t>0 of this
individual. It eliminates the possibility of unbounded growth for any individual i.
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Assumption 2. Assume the growth function f of this economic variable as a real-valued
monotone non-decreasing function f(·) : Ω→ Ω where Xt(ω

i) = f (t)(ωi) = f(f (t−1)(ωi)) for
t = 1, 2, . . . .

This assumption gives a non-decreasing growth function. With Assumption 1, these two
assumptions induce that any individual in this economy will ultimately reach his or her
equilibrium status. Because f(·) is a monotone function on [0, 1], any sequence of f (t)(·)
converges as t → ∞.2 Otherwise, either there exists a divergent sequence that will violate
the condition of monotonicity or the sequence f (t) will go beyond the bounded interval [0, 1].

Consider two households with initial endowment 0 and 1 respectively. At time t, their
economic variables become Xt(0) = f (t)(0) and Xt(1) = f (t)(1). The convergent property of
f entails Xt(0) ↑ X∗(0) and Xt(1) ↓ X∗(1) where X∗(0) and X∗(1) are the convergent limits
and X∗(0) ≤ X∗(1).

Assumption 3. Two limits X∗(0) and X∗(1) of the convergent sequences Xt(0) and Xt(1)

are equivalent.

This assumption implies an ideology of equality, as the individual with the smallest initial
endowment is assumed to be able to achieve the same equilibrium state as those with the
biggest endowment X∗(0) = X∗(1). Because everyone in this economy has a convergent
X∗(ω) and because any X∗(ω) should be not smaller than X∗(0) and not larger than X∗(1),
we have X∗(ω) = X∗(0) = X∗(1). The fact is that for any individual with any initial state
ω ∈ [0, 1], when t → ∞ such an individual will attain the same limit X∗(ω) as the others.
Thus X∗(0) is the unique fixed point of the limit of {Xt(ω)}t for any ω ∈ Ω. This result is
summarized in the following theorem.

Theorem 1. Given Assumption 1 to 3, the economy reach an equal status, namely any
Xt(ω

i) converges to the same X∗ .

These three assumptions play different roles. Assumption 1 allows for heterogenous
initial states for all individuals and allows us to identify their wealth levels especially those
at the extremes. Assumption 2 imposes the same growth function f(·) to all individuals
with different endowments. The monotone non-decreasing f(·) implies that growth happens
for all individuals. Assumption 3 is analogous to the statement “all men are created equal”,
because it assumes that the poor and the rich will come to the same state. The inequality
exists at the very beginning due to the heterogenous initial endowments, but with the same
growth function, eventually the inequality vanishes in this economy.

2Any monotone sequence on a bounded and closed set in R always converges.
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3.2 A Growth Model for N Individuals

Although it looks simple, the previous specification can illustrate some essences in framework
of the classic Solow growth model. In Solow’s framework, the economic variable Xt refers to
capital per labor such that Xt = Kt/Lt. Provided that the production function fP (Kt, Lt)

has constant returns to scale, one can set the production per labor to fP (Xt, 1). The growth
function refers to the fundamental equation of the Solow model3

Xt+1 = f(Xt) = β1fP (Xt, 1)− (β2 − 1)Xt

where β1 is the saving rate and β2 is the effective depreciation rate of capital per labor.
Given an arbitrary number of individuals N in this economy, these individuals provide

labor and rent capital in a competitive labor and capital market, they have access to the
same neoclassical technology, and produce a homogeneous output. For a monotone f(·) and
Xt = Kt/Lt in Ω, there exists one X∗. If the poorest and the richest can reach the same
level of production in the long run, then Theorem 1 assures a unique fixed point for all
initial endowments ωi ∈ Ω. Therefore for any individual, f(Xt) → X∗ as t → ∞. In the
equilibrium, the production function becomes

f(X∗) = β1A
∗
S + (β1B

∗
S + 1− β2)X∗

where B∗S and A∗S are equilibrium coefficients satisfying the fixed point result f(X∗) = X∗

which coincides with the result in the classic Solow model.4The value X∗ is independent
of the initial endowment ω. One can conclude that for any initial state ω ∈ [0, 1], the
equilibrium X∗ makes all individuals access to the same production type as they use exactly
the same capital-labor ratio.

Moreover, a linear aggregation is simplified as a summation of N identical X∗s when
t→∞. The growth function

f (N ×X∗) = N ×X∗.

induces the stability of the structure. It refers to the fact that the aggregate growth acts as
if it was a non aggregated function of individuals. The aggregation process does not distort

3The corresponding differential equation is dX/dt = β1fP (Xt, 1) − β2Xt which is derived from Cobb-
Douglas production function. This equation models the capital stock for an economy in which technology
and the supply of labor do not change.

4The exact forms are B∗S = f
′

P (X∗) and A∗S = fP (X∗) − f ′

P (X∗)X∗. The result comes from the maxi-
mization of a quasi-linear utility function. Illustration is given in Appendix B.1.
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the individual growth function in the limit.5

3.3 Remarks

Assumption 1 to 3 restrict our attention to one simple model with N -individuals. In this
model, individuals share the same growth function but at the end they reach the same
status. This model implies that individual deterministic growth itself may not generate
inequality, on the contrary, it may alleviate inequality. In this N -individuals economy, when
an equilibrium capital-labor ratio exists and its existence is independent of the initial state
ω for any individual, then eventually the productions of individuals converge to the same
level. This economy is homogenized as the inequality together with heterogeneous growth
features vanish amongst the individuals. Another implication is that the linear aggregation
may not distort the growth if the deterministic economy stays in its equilibrium.6

In reality, economic growth often accompanies with greater inequality. Inequality may
be enlarged by some relevant factors driven by the growth as well as the initial heterogenous
states. Given their unrealistic implications, Assumption 1 to 3 will not be used afterwards.
However, the enlightenment of these assumptions is that without uncertainty some specifi-
cation can drive a growing economy with heterogeneous individuals to an equality status.
With this enlightenment in mind, we introduce uncertainty to the economy in order to ac-
commodate more general and realistic dynamics. The new model accommodates the criteria
of scarcity, growth and equality in a wider sense.

4 An Abstract Model

There are several ways of introducing uncertainty to growth models. One may think of
multiple equilibria or unstable dynamics7 or statistical errors. These methods usually need
some rigid conditions for the aggregation and can only compile limited types of uncertainty.
Instead of adding uncertain features to the aggregates, we search for probabilistic laws that

5We should distinguish it from the capital deepening situation in the Solow model where population
growth is represented by an increase of L. In this case, the population increases and the capital intensity
K/L decreases, so economic expansion will not continue indefinitely. Normally, in the Solow model, capital
deepening is considered as a necessary but not a sufficient condition for the economic development.

6In fact, the social welfare maximized by the equilibrium X∗ is equivalent to the sum of maximum
individual utility that is the same across all individuals. A social planner can choose X∗ to maximize the
social welfare meanwhile all individuals also agree with X∗ as it maximizes their utilities. Thus in this model,
the decentralized market economy and the centralized economy are isomorphic.

7For example, Lotka-Volterra type differential equations, known as the predator-prey equations.

7



relate to both individuals and aggregates. Individuals are governed by these laws, meanwhile
a similar law is automatically attached to the aggregates.

Such probabilistic laws are formed in an equilibrium economy.8 This section provides
the result of this equilibrium economy. Three new assumptions are proposed. The new
assumptions are comparable with the previous deterministic ones. The result says that the
probabilistic law of any individual growth is a stationary distribution that is independent
identical across all individuals in this equilibrium economy.

4.1 Abstract Assumptions

We consider an abstract dynamical economy that is a space of N -individuals

((Ω,B, (Bt),P),A, f)⊗N .

We allow N to grow so that we can represent a large economy with possibly arbitrary num-
ber of individuals. The space (Ω,B, (Bt),P)⊗N is an N -folds of a filtered probability space
including a state space Ω, a filtration B1 ⊆ B2 ⊆ · · · such that limt→∞ Bt → B, and an un-
known probability law P for each individual. The set A⊗N is an N -folds arbitrary index set
for an N -folds growth function f⊗N . Each individual i has the growth function f : Ω → Ω

indexed by at ∈ A such as f (at)(ωi). In this economy, a sequence of measurements of dy-
namical variables (vectors) on Ω are collected over time. For example the first measurement
of the variable X of individual i is denoted as X1(ωi) = f (a1)(ωi). If an argument is true for
any i, there is no necessity of emphasizing i. In this case, we can drop i and express Xt(ω)

for a variable of an arbitrary individual at time t.

Assumption 4. (Abstract scarcity) In the economy ((Ω,B, (Bt),P),A, f)⊗N , each individual
faces an identical set Ω of potential states. Given a total ordered set P such that Ω ⊂ P. we
assume that P is a complete lattice so that the set Ω has an infimum Ω ⊂ P and a supremum
Ω ⊂ P.

Assumption 4 generalizes Assumption 1. Since the number of individuals is allowed to
grow to infinity and we assume that each individual faces the same set of potential states,
the topological structure of Ω for all possible states in this economy needs to be extended.
This previous setting Ω = [0, 1] is a special case of the total order set with a complete lattice

8The way of constructing these probabilistic laws as equilibria is inspired by Volterra’s classification for
deterministic laws of physics and de Finetti’s infinite divisible laws of probability.
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in R.9 The total ordered structure (P ,≤) assures that the individual is able to compare and
rank any two elements from Ω ⊂ P . The complete lattice structure states that the individual
face scarcity in a wider sense. In the deterministic scarcity ω ∈ [0, 1], ω has to be a scalar
value while ω ∈ Ω in Assumption 4 is endowed with a general set theoretic structure. This
assumption implies that an unlimited want of economic elements in Ω is impossible.

Assumption 5. (Individual stochastic growth) The index sequence a := {at} is a sequence
of i.i.d. random variables at taking values in the set A. For any sequence a ∈ A, there exists
a subsequence {a′t} such that function f (a

′
t)(·) : Ω → Ω is a monotone non-decreasing. For

any x and y in Ω, the set {a : f (a)(x) ≤ y} is measurable in (Ω,B, (Bt),P).

Assumption 5 is a stochastic counterpart of Assumption 2. In Assumption 2, every
{f (a)(·)}a∈A needs to be monotone while Assumption 5 only requires that every {f (a)(·)}a∈A
has at least one monotone subsequence {f (a

′
t)(·)}t∈N and the index set {a′t}t∈N of this subse-

quence is a random variable that is measurable.
The consequence of Assumption 1 and 2 is that any Xt(ω) = f (t)(ω) will converge to a

limit as t → ∞ regardless of its initial endowment. This consequence does not hold in the
stochastic setting. However, Assumption 4 and 5 can induce a similar proposition in a wider-
sense. With Assumption 4 and 5, we have the Markov property in Lemma 1 and convergences
of the probabilities for individuals with infimum or supremum initial endowments in Lemma
2. Proposition 1 states that the convergent probabilities are stationary for these Markov
processes.

Lemma 1. Given Assumption 4 and 5, Xt(ω) is a Markov process.

Lemma 2. For any {f (a)(·)}a∈A, select a sequence a = {at} and denote Xt(·) = f (at)(·). If
Assumption 4 and 5 are true, any Pr(Xt(Ω) ≤ y) is non-increasing in t and Pr(Xt(Ω) ≤ y)

is non-decreasing in t. Hence, Pr(Xt(Ω) ≤ y) and Pr(Xt(Ω) ≤ y) are convergent for each y.

Proposition 1. If Assumption 4 and 5 hold and P (X∗(Ω) ∈ X ) = limt→∞ Pr(Xt(Ω) ∈ X )

and P
(
X∗(Ω) ∈ X

)
= limt→∞ Pr(Xt(Ω) ∈ X ) for some subset X ⊂ Ω, then P (X∗(Ω) ∈ X )

and P
(
X∗(Ω) ∈ X

)
are stationary.

Proposition 1 is analogous to the existence of fixed points in the deterministic case.
Stationarity is a way of characterizing invariant property in stochastic models. The invariance
property of these probability measure implies a Markov equilibrium. A Markov equilibrium

9When the total ordered set P is a complete lattice, the structure of P induces compactness for Ω ⊂ P.
However, the countable union of Ω may not be compact.
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is the stochastic analogue of a steady state in the deterministic model. The individual growth
process is Markovian and its convergent distribution is stationary when t→∞.

To obtain the uniqueness result of the stationary distributions of all individuals, we need
an assumption that is similar to the equality condition X∗(1) = X∗(0) in Assumption 3.
Because all convergences are for probability measures, the equality concept should also be
adapted to a probabilistic setting. The following assumption supposes that the poor and
the rich may be allocated to any possible states in the future. If these re-allocations can
happen in probability, it automatically implies the others in the economy should face similar
possibilities too. Since everyone has a stochastic monotone growth function and everyone can
probably has his or her status changed to any other states, then in the long run, everyone’s
growth transition probability may converge to the same stationary distribution as that of
the initially rich or poor person. This implication is concretized in Theorem 2 given an
assumption about the extreme initial states are not absorbing states.

Assumption 6. (Equality in probability) For any subset X ⊂ Ω, there exists some time τ
such that

Pr (Xt(Ω) ∈ X ) > 0, and, Pr
(
Xt(Ω) ∈ Ω\X

)
> 0

when t ≥ τ .

Theorem 2. Given Assumption 4 to 6, then there is a unique stationary distribution such
that

P (X∗(Ω) ∈ X ) = P
(
X∗(Ω) ∈ X

)
= P (X∗(ω) ∈ X )

where P (X∗(ω) ∈ X ) = limt→∞ Pr(Xt(ω) ∈ X ) for any ω ∈ Ω in the economy.

Theorem 2 reveals the ideology of equality in probability or equality in opportunity. It
says that in the equilibrium, individuals with different types of initial states ω should have
the same chance to get into a certain state. The opportunities of entering better or worse
states in this equilibrium are the same for everyone. Theorem 2 is the result of the unique
probabilistic law for an N number of Markov processes.

Some similar results existed in the economics literature. For example, the results in [6] are
compatible to Theorem 2. The indispensable reason of proposing this theorem is to show that
the stationary Markov processes can be derived from a new set of assumptions. Assumption
4 to 6 are relatively more concrete than the existing conditions and have straightforward
meanings and implications about growth and equality.10 These assumptions also induce a
less technical proof of the theorem.

10For example, [6] consider stochastic dominate condition of the distribution and supermodular condition
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4.2 Remarks

Assumption 4 gives the concept of scarcity on measurable sets. Assumption 5 allows het-
erogeneous individuals to have independent stochastic monotone functions as their growth
functions. Assumption 6 implies that the poor and the rich have opportunities for living in
any type of states in this economy. This gives a broader sense of equality - equality in prob-
ability. By these three assumptions, a stochastic economy is modeled where all individuals
following the same probabilistic law in the equilibrium. The law implies that the probability
of entering any state in the growth process is the same for everyone. The initial status plays
no impact on the equilibrium probabilistic law.

Assumption 6 illustrates a way of establishing equality in a broader sense. Equality in
probability admits heterogeneous initial status and uncertain growth, meanwhile it provides
an equal competitive criterion for individuals. Thus in this wider sense, uncertainty in the
growth process does not distort equality from the probabilistic perspective. Then where
does the inequality come from? Note that our current focus starts from the individual
growth. Equality in probability refers to the equality of individual’s probabilistic law. We
will see a completely different image in the following section when the focus is switched to
the aggregates.

5 Aggregation

It was pointed out by the Sonnenschein-Mantel-Debreu theorem that there was no general
restriction on the behavior of data aggregates. An implicit implication is that the general
equilibrium results of the good behavior assumed at the micro-level can not be extended to
the aggregate level of the equilibrium. Based on this point, some argued that the absence
of aggregate empirical restrictions in general equilibrium theory suggested that theory was
incomplete as a way of understanding economic phenomena. The results in this section show
the opposite of this argument.

In the first part of this section, individual’s probabilistic law from Theorem 2 is shown
to be aggregatable and to be in the same distribution family as the law of linear aggregates.
On the other hand, a twist of the aggregates may simultaneously affect the laws of individ-
uals. Thus the economy, individuals and aggregates as a whole, establishes a self-consistent
probabilistic law of growth. This law is called infinite divisible law and it was proposed in

for the transition operators while Assumption 5 uses the index set of monotone production functions and
Assumption 6 considers non-degenerated transitions for the growth.
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[2] and [3].
In the second part of this section, we consider non-linear aggregates. The stationarity

of the linear aggregation is distorted, so is the infinite divisible law. Recent elaborations
of general equilibrium theory with aggregate features use the methods from the mean field
theory, for example in [1]. By the mean field theory, the scope of aggregates in this stochastic
economy can be extended to the non-stationary case. A system of mean field equations is
shown to approximately capture the information of non-stationary aggregates.

5.1 Infinite Divisibility

Generally speaking, stationarity property alone does not induce any particular type of proba-
bility distributions. Then it would be a problem when one considers aggregating the stochas-
tic variables, as stochastic properties usually vary from the individual level to the aggregate
one. Fortunately the specification of stochastic economy ((Ω,B, (Bt),P),A, f)⊗N and the
assumptions restrict all possible stationary distributions to one specific class in which the
linear aggregation, namely the sum of all individual variables, is a scale invariant of the
individual variable. Without any further assumption, one has the following theorem for the
probabilistic law of the linear aggregates.

Theorem 3. If the economy ((Ω,B, (Bt),P),A, f)⊗N satisfies Assumption 4 to 6 and the
number of individuals N ∈ Z+ is arbitrary, then the stationary distribution P(X∗(ω)) is
infinite divisible. That is, if X∗(ωi) is distributed in P such that X∗(ωi) ∼ P for any i, then

(
X∗(ω1) +X∗(ω2) · · ·+X∗(ωj)

)
∼ P,

for any 0 < j ≤ N .

Because the economy ((Ω,B, (Bt),P),A, f)⊗N allows arbitrary number of individuals,
variation of the number N should not have any effect on P. Suppose at the beginning, there
was one individual Adam in the economy who faced the stationary distribution P for his
uncertain growth path. Then Eve appeared. As Adam’s P should not be affected by the
newcomer and as Adam and Eve were equal in probabilities, Eve would have the same P
as her probabilistic law of growth. As time passed by, more people show up but according
to the principle of induction, their probabilistic law of growth are the same P. Theorem 3
concretizes this idea.

Infinite divisible law implies that the economy ((Ω,B, (Bt),P),A, f)⊗N can accommodate
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infinite individuals. The evolution of these probabilistic laws can be summarized as an array

P(ω1) Adam’s law
P(ω1),P(ω2) Adam’s and Eve’s laws
...

... . . .

P(ω1),P(ω2), . . . , . . . , . . . ,P(ωN) Current individuals’ laws

namely any probabilistic law P of the linear aggregation can be thought as a convolution of
N identical laws of P itself. This triangular array can be extended to infinite entities.

Although the probabilistic law P is invariant with the changes of N , some other criteria
related to P may be influenced by such changes. For example, if an individual products
x units, the probability of being the most productive agent for this individual in an N -
individuals economy is smaller than in an (N − 1)-individuals economy, as

Pr

{
max
i≤N

X(ωi) ≤ x

}
=

N∏
i=1

P
{
X(ωi) ≤ x

}
decreases when N increases. In addition, other possible influences of aggregation may be on
the parameters of the distributions rather than the distribution family itself. For example, if
P is a Poisson distribution with parameter 1 in the Adam’s stage, then in the current stage,
the parameter of the aggregate P is still 1 but individuals’ parameter decreases to 1/N which
means that a growth event is more difficult to happen. For those who happen in the growth
state, they are in the small fraction of the whole population and hence this is an unequal
economy. Systematic discussions about these influences are given in Section 6 where the
structural parameters of P are introduced.

Infinite divisible law includes a large class of probabilistic laws. Examples of infinite
divisible distributions include the normal distribution, the Poisson distribution, the Cauchy
distribution, the χ2 distribution and many others. One interesting distribution is the stable
distribution.

Corollary 1. If the growth function f(·) is linear such that Xt(ω) = AXt−1(ω) + B, then
the stationary distribution P(X∗(ω)) is a stable distribution.

Stable distribution admits linear transfers. It means that if stochastic growth function
is linear, any other linear transforms of this stationary aggregates should also be stationary.
All stable distributions follow infinite divisible law.
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5.2 Mean Field Growth and Volatility

Non-stationarity is a common feature for growth processes. For example, one of the most
standard growth models, exponential growth model, induces a geometric Brownian motion
Xt(ω) which is a non-stationary stochastic process.11 Generally speaking, if the underlying
system is stationary but the observable system is non-stationary, this non-stationarity comes
from the nonlinear transformation of the underlying system. For the exponential growth
model, the growth process would be trend stationary if one applies logarithm transform of
Xt. Since we have stationary Xt(ω) and

∑j
i=1Xt(ω

i) for any 0 < j ≤ N in the equilibrium,
we can consider non-stationary aggregates as non-linear transforms of some stationaryXt(ω

i)

or
∑j

i=1Xt(ω
i).

Stationarity and infinite divisibility from Theorem 2 and 3 cannot be preserved if one
considers a non-linear function of some or all X∗(ωi). However, Markov property as a
fundamental property about information is preserved.

Assumption 7. Non-stationary aggregation follows Yt(ω) = g (Xt(ω)) where Xt(ω) repre-
sents an arbitrary individual Xt(ω

i) or a sub-group
∑j

i=1Xt(ω
i) for 0 < j ≤ N , and the

function g(·) is one-to-one.

Corollary 2. If (Xt(ω
1), . . . , Xt(ω

N)) are Markovian, Yt(ω) follows Assumption 7, then
Yt(ω) contains the exact information of (Xt(ω

1), . . . , Xt(ω
N)). Thus Yt(ω) is Markovian.

As the state at time t is known, then any information about the process’s behavior
before time t is irrelevant. All the relevant information from the history is stored in
(Xt(ω

1), . . . , Xt(ω
N)), thus Yt(ω) is a Markov process. Especially, when Xt(ω) = X∗(ω)

is stationary at time t, Yt(ω) is a homogeneous Markov process such that

Pr (Yt+h(ω) = y2|Yt(ω) = y1) = Pr (Yt+2h(ω) = y2|Yt+h(ω) = y1) = Qh(y2|y1)

where Qh(y2|y1) stands for a h-step Markov transition kernel between states y1 and y2.
There is a general equation of Markov processes describing the dynamical probability of

varying states. The equation is given as follows:

∂

∂h
Qh(y2|y1) =

ˆ
[W(y3|y2)Qh(y2|y1)−W(y2|y3)Qh(y3|y1)] dy2 (1)

11For unit growth rate and volatility, Xt(ω) is the solution of the following stochastic differential equation
dXt(ω) = Xt(ω)dt+Xt(ω)dBt where Bt is a Brownian motion.
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which is called master equation.12 The function W(·|·), instantaneous transition rate or sim-
ply transition rate, is the probability for a transition during an extremely short time interval
∆t → 0. Intuitively one can think this part of the transition probability is independent of
time. So W(·|·) holds a different role from Qh(·|·) in describing the transition probability.
Appendix B.2 gives a heuristic derivation of (1).

Equation (1) holds for both inhomogeneous and homogenous Markov processes. Since
the equilibrium economy implies the stationary Xt(ω) and the stationarity implies the ho-
mogenous Markov process g(Xt(ω)), it is better to cast the above master equation in a more
intuitive form by using homogenous property. Noting that all transition probabilities are for
a given value y1 at t, we can write a simpler expression by suppressing redundant indices
Q(y, t) = lim∆t→0 Qt+∆t(y|y1). Equation (1) becomes:

∂

∂t
Q(y, t) =

ˆ
[W(y|y′)Q(y′, t)−W(y′|y)Q(y, t)] dy′. (2)

This is the master equation of transition distribution of Yt(ω) to the state Yt(ω) = y. The
first term is the probability gain due to transitions from other states y′, and the second term
is the probability loss due to transitions into other states y′. A detailed discussion about
this equation can be found in [12].

Master equation (2) completely determines the probabilistic law of Yt(ω) for all t. Since
Yt(ω) is a function of some individual Xt(ω

i) or groupings
∑j

i=1 Xt(ω
i), Yt(ω) contains het-

erogenous information. From an ordinary macro viewpoint, however, aggregation procedure
ignores fluctuations caused by heterogeneous individuals or groups that have negligible im-
pacts on the aggregates. This argument has both empirical and theoretical values. Empir-
ically, specific macroeconomic information is recorded as a single variable such as GDP or
gross imports and exports. This variable alone indicates the dynamics of the aggregated
growth. Theoretically, although common individual’s growth can be significant in the indi-
vidual level, it may contribute very little to the total growth in the whole economy.13

Instead of describing all possible fluctuations of Yt(ω) by Q(y, t), it is natural to consider a
non-stochastic representative trend of Yt(ω). Because full information of Q(y, t) is difficult to
obtain and some Yt(ω) ∼ Q(y, t) may be not informative. The non-stochastic representative

12Not only is the master equation more convenient for mathematical operations than some other analytic
equations used for Markov processes, such as Chapman-Kolmogorov, it also holds a more general role in
illuminating Markovian properties.

13Here we do not refer to very important individual growth, such as important innovations. It is quite
likely that some of these individuals generate non-linearities of g(·) function. But this concern goes beyond
the current context.
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trend is contained in the moments of Yt(ω) such as mean and variance. For a non-stationary
Markov process Yt(ω), the expected value

´
yQ(y, t)dy is a mean function of t that is denoted

as
mY (t) =

ˆ
yQ(y, t)dy.

This equation only considers the information contained in the first order moment of Q(y, t)

rather than the whole distribution. As the master equation determines the entire probability
distribution, it is possible to derive from it the mean-field equation as an approximation for
the case that fluctuations are negligible. The evolution of mY (t) w.r.t. time t is described
by a deterministic differential equation called the mean-field equation:

dmY (t)

dt
=

ˆ
a1(y)Q(y, t)dy (3)

where ar(y) stands for the r-th order moment ar(y)

ar(y) =

ˆ
(y′ − y)rW(y′|y)dy′, r = 0, 1, . . . .

The derivation of (3) is given in Appendix B.3. Further deliberation of a1(y) is to see its
relation with mY (t), as a1(y) in (3) is not a linear function of mY (t). One can investigate
this non-linear relation by expanding a1(y) around mY (t) via Taylor series. This gives higher
order information of the evolution in the mean field. Let σ2

Y (t) =
´

(y −mY (t))2Q(y, t)dy,
the variance of mY (t). One can think σ2

Y (t) as the volatility of the mean field growth.

Theorem 4. Given Assumption 4 to 7, the growth equation of mean field mY (t) is

(Reduced Form)


dmY (t)
dt

= a1(mY (t)) + 1
2
σ2
Y (t)

dσ2
Y (t)

dt
= a2(mY (t)) + 2a

(1)
1 (mY (t))σ2

Y (t)
(4)

where ar(mY (t)) =
´

(y′ − mY (t))rW(y′|y)dy′ for r = 1, 2 and a
(1)
1 (mY (t)) denotes 1st-

derivative of a1(mY (t)) w.r.t. y.

Theorem 4 is a reduced form description of the growth dynamics of the whole economy.
Equations in (4) only illustrate the first and the second moment evolutions of Q. But they
have no implication about how the equilibrium probabilistic laws P influence Q.

The mean field technique is used to analyze a system with a large number of components
determining the collective deterministic behavior and seeing how this behavior modifies when
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the system is perturbed. In the model (4), the first two moments, mY (t) and σ2
Y (t), extract

necessary information of the non-stationary probabilistic law Q(y, t) by which the collective
growth path is embedded. Although it lacks of structural interpretation, Theorem 4 gives
a way of describing the essential non-stationary dynamics and (4) is easy to implement.
For a reduced form analysis, (4) can capture significant information of the non-stationary
aggregates. An empirical study using this reduced form model is given in Section 7.

5.3 Remarks

The stationary identical distributions, as an equilibrium result of the stochastic economy,
induce restrictions on the behavior of aggregates both cross-sectionally and inter-temporally.
By these restrictions, a class of probabilistic laws, the infinite divisible law, characterizes the
uncertainty of all individuals and stationary aggregates in this economy. The appearance of
this aggregate specification suggests that the theory is complete as a way of understanding
economic growth. Common types of aggregate behavior such as power law or Gaussian law
are explained by the infinite divisible law.

Although these laws are identical across heterogenous individuals and they remain in-
variance after stationary aggregations, the stochastic economy endowed with these laws does
not alleviate inequality. When the economy evolutes, all individuals simultaneously alter
their probabilistic laws. Inequality appears and becomes significant during this evolutionary
process.

When the aggregation involves non-linear patterns, invariant aggregation of P is violated.
The relation between growth and inequality is more ambiguous when the growth of aggregates
become non-stationary. A reduced form model is proposed to capture the first two moments’
dynamics of non-stationary aggregates. The causal effect of P is invisible in the reduced form
analysis. To examine the impact of P, we introduce structural aggregation in the next section.

6 Structural Aggregation14

There is one important difference between individual growth and aggregate growth: inter-
action effect. Interaction happening between individual and aggregate variables should be
highly asymmetric. One would expect the aggregate growth to have significant impacts on
individual’s but not in the reverse order. Because aggregate growth may benefit the whole

14The CORE lectures of uncertainty and economic policy given by Jacques Drï¿œze well inspired me to
develop several arguments in this section.
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economy while individual growth may only benefit one’s adjacency neighbors. This differ-
ence may cause an endogenous issue of inequality during the aggregation process. Intensive
collaborations and concentration of capitals may lead to an innovative process. This innova-
tive process may increase the productivity of the whole economy and thus lead to an equal
growth. On the other hand, the innovators may be the first group of receiving benefits from
this innovation. It means that even an equal aggregate growth may generate derivatives and
these derivatives do not spread equally to the rest of the economy immediately, then this
aggregation may become an endogenous process of creating or enlarging economic inequal-
ity. The interaction term inducing the endogeneities can be revealed from some higher order
information due to the non-linearity.

In this section, a structural relation is established between the probabilistic laws of in-
dividuals and aggregates. To exploit a tractable framework of endogenous aggregation, we
restrict P to a smaller class where structural parameters become visible. By infinite divisible
law of P, these structural parameters are representatives for both individuals and aggregates.
Later, this result is extended to non-stationary aggregates.

6.1 Deeper Parameters

Robert Lucas in his critique suggested looking for deep parameters that are embedded in
the deep layers such as preferences of individuals. But even if with concerns of these deep
parameters, provided that they are measurable individually, policy suggestions may still be
incomplete as the aggregation process itself has potential endogenous effects so that the
values of parameters may already vary after the aggregation. We propose an additional
requirement for structural parameters. Not only do the structural parameters should exist
in the individual level, but these parameters also should be measurable and be in an invariant
structure under different scales of aggregates.

Infinite divisible family from Theorem 3 is an ideal category for structural analysis since
the distributions of this family remain invariance under summations and scalings. There are
several ways of characterizing this family. A general characterization is to consider Feller’s
semi-group. [4, Ch 9 and 10] gives an illustration about constructing parametrized generators
of such a semi-group. This approach sheds some light on the way of parameterizing the
structural connection in our context.

Assumption 8. For any individual i, from time t to t+ ∆t, the probability of a significant
growth of Xt(ω

i) is αi∆t. When αi∆t ≥ 1, the event happens for sure. If the significant
growth happen between Xt(ω

i) and Xt+∆t(ω
i), the total size of changes is ci∆t.
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Parameter αi and ci vary across individuals. When there is no ambiguity, we drop the
index i. The use of the term, significant growth, is to distinguish this growth event from the
trivial individual growth event whose impacts are not strong enough to affect the economy.
The difference of these events can be better understood when another structural parameter
β is introduced. Please find β in the following theorem.

Theorem 5. Given Assumption 4 to 8, (I) the probabilistic law of growth becomes an integro-
partial differential equation

∂

∂t
P(x, t) = −c∂P(x, t)

∂x
+ α

[ˆ
(W(x|x′)P(x′, t)) dx′ − P(x, t)

]
(5)

(II) In addition, if Xt(ω) reaches stationary, and the transition rate is

W(x|x′) = V(x− x′) + δ(x− x′)

where V(x− x′) = β exp(−β(x− x′)) is an exponential kernel function, (5) becomes

c(x)
∂P(x)

∂x
= α

[ˆ
(V(x− x′)P(x′)) dx′

]
(6)

where c(x) =
´ x

0
udu. The solution of this integro-differential equation is

P(x) =
βαxα−1e−βx

Γ(α)
∼ Gamma(α, β)

where Γ(α) =
´∞

0
xα−1e−xdx is the Gamma function.

The reason of assuming exponential distribution for the kernel of W is that exponential
distribution is the only distribution that has continuous memoryless property15:

lim
∆t→0

Pr
{
a > t+ ∆t : f (a)(x′) = x, a > t

}
= lim

∆t→0
Pr
{
a > ∆t : f (a)(x′) = x

}
where a ∈ A in the economy ((Ω,B, (Bt),P),A, f)⊗N is the random time of a growth event.
A description about memoryless and exponential distribution is given in Appendix B.4.

Equation (5) is one of the most important results in this paper. It gives a specific represen-
tation of the probabilistic laws of Xt(ω). Meanwhile, it keeps a general enough formulation

15Only two kinds of distributions are memoryless: exponential distributions of non-negative real numbers
and the geometric distributions of non-negative integers. As most indicators of growth and inequality are
non-negative and continuous in R+, exponential distribution becomes the only option.

19



to cover a large amount of interesting cases. The Gamma distribution as a stationary so-
lution of (5) includes some other standard distributions such as the χ2-square distribution,
the exponential distribution, etc, and can approximate a large class of distributions such as
the log-normal distribution and the power law distribution. Other implications of (5) are
illustrated by two corollaries below, Corollary 3 and 4. In addition, (5) reveals the structural
meaning of its parameters.

α is called shape parameter in Gamma distributions. In the current model, it comes
from Assumption 8. It represents the probability of a significant growth. For the
Gamma distribution, it is known that

Xt(ω
i) +Xt(ω

j) ∼ Gamma(αi + αj, β)

if Xt(ω
i) ∼ Gamma(αi, β) and Xt(ω

j) ∼ Gamma(αj, β). Thus α is an aggre-
gatable parameter. When β is invariance for all individuals and the stationary
aggregates, α is the only parameter that captures heterogeneities. For an indi-
vidual, as this parameter can influence the aggregate growth of the economy, this
individual growth is significant enough. We can attribute technological develop-
ment or innovations to this type of growth. Thus heterogeneity accounts for the
global impacts in the growth. It is natural to think a group of unskillful new
members joining the economy with very small α, since their participations have
negligible impacts on the aggregate production.

β is called rate parameter in Gamma distributions. In the current model, it comes
from the memoryless exponential kernel function. As the exponential kernel is
assumed for any Xt(ω), the value of β remains the same for all individuals. Thus
β is a parameter characterizing those individual growth events that has no impact
on the aggregates. It is known

C ×Xt(ω) ∼ Gamma(α, β/C)

where C is a factor of the total population and Xt(ω) =
∑N

i=1Xt(ω
i) having a

Gamma distribution Gamma(α, β). When a group of new members joining the
economy, say increasing one percentage of Xt(ω), there may be no change of the
aggregate α, however their participations decrease β to β/1.01. The value of β−1

measures a scale. For exponential distribution, the scale of an individual growth
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event has a mean of 1/β. Thus with the evolution of an economy, namely more
producers, the growth of individual, if it happens, has a bigger scale.

c(x) is an accumulation from 0 to Xt(ω
i) = xi in (6). It comes from Assumption 8. It

measures the size of a significant growth event. Although the stationary solution
does not display its contribution, from (6) we can see that c(x)∂P(x)

∂x
on the left

hand side balances the probability changes in the right hand side. It means that
for individual i, αi on right hand side of (6) depends on the accumulation up to the
current state Xt(ω

i) = xi. If the state of individual i is larger than individual j,
Xt(ω

i) > Xt(ω
j) and c(xi) > c(xj), then it is likely that αi > αj. This inequality

does not happen for sure, as it also depends on P and its derivative. But we can
see similar phenomena in economics, intensive capital investments often lead to
high productivities.

Stationary aggregates
∑N

i=1 Xt(ω
i) follows Gamma(

∑N
i=1 αi, β). Its mean and variance are

E

[
N∑
i=1

Xt(ω
i)

]
=

∑N
i=1 αi
β

, Var

[
N∑
i=1

Xt(ω
i)

]
=

∑N
i=1 αi
β2

,

where Xt(ω
i) ∼ Gamma(αi, β). It means that even though the aggregates growth events

can be accumulated w.r.t. αi, this aggregation is not influenced by the homogenous personal
growth events characterized by β. On the other hand, as population growth (increasing N)
causes a decrease of β, this population growth increases mean and variance of stationary
aggregates simultanesouly. More discussion about the aggregates of Gamma distribution is
given in Section 6.2. Early use of Gamma density as a descriptive statistics of incomes can
be found in [8].

The above discussions are for stationary aggregates. For non-stationary aggregates, we
need to modify the mean field method from the previous section. The purpose is to connect
the mean field information of Q with the specified P-law given by (5).

Theorem 6. Given the results of (3) and (5), if P(x, t) and Q(y, t) are mutual continuous,
such that P(x, t) = 0 implies Q(y, t) = 0 and vice versa, then there is a structural form for
the non-stationary aggregation

(Structural Form)


mY (t) = E [g (Xt(ω))L(t)|Xt(ω)]

dmY (t)
dt

= θtmY (t) + et + o(1)

Xt(ω) ∼ P(x, t) as a solution of eq.(5)

(7)
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where L(t) = [Q(y, t)dy/P(x, t)dx] is the likelihood ratio, E[·] is taken w.r.t. P, θt and et are
time varying constants.

The first equation in (7) establishes the relation between the mean field of non-stationary
aggregate mY (t) and stationary aggregate Xt(ω) =

∑
Xt(ω

i). It links the mean field of non-
stationary law Q with the expectation evaluated by the stationary law P. The connection of
first order information of Q and P is contained in this equation. Since P is parameterized and
mY (t) has a reduced form representation, it is easy to empirically estimate this equation.

Affine structure with time varying constants often comes from point-wise linearization of
nonlinear functions. The second equation of (7) is in this structure. Time varying parameters
make the linear equation possible to consistently capture higher order information along the
dynamics. The discrete time stochastic version of this equation is analogous to a recursive
structure called Kesten process. It has been used in finance, see [5]. Since we have additional
information of P, it would be easier to structurally estimate this affine equation rather
than consider Kesten processes. Another advantage of using affine structure in (7) is the
tractability. Having tractable solutions for recursive estimation is useful because it has
a closed form expression for each step updating instead of casting a black-box algorithm.
Implementation of Theorem (7) is given in Section 7.

By dividing the term mY (t) in the second equation in (7), this equation can be simplified
as

d lnmY (t)

dt
= θt +

et
mY (t)

(8)

as d lnmY (t) = (mY (t))−1dmY (t). The differentiation of logarithm refers to the growth
rate of the mean field mY (t). One can replace mY (t) in (8) with the first equation of (7).
Since computation of expected g(·) is feasible by using the parametrized P-law, one can use
stationary aggregates Xt(ω) and the structural parameters (α, β) from P-law to describe the
mean field dynamical of non-stationary Q-law.

Changes of α and β are the endogenous forces of the growth. In the equilibrium economy,
α and β are fixed on the individual level, but on the global level the aggregate impact
can increase productivities for some heterogenous individuals (cause the change of α) and
evolution can increase the size of the economy (cause the change of β). Because the mean and
the variance of the Gamma distribution are α/β and α/β2, α and β have different propagate
effects over the mean and the volatility of the growth. This endogeneity may relate to one
open question in growth theory about the correlation between growth and growth volatility.
Business cycle volatility and growth has been extensively studied. Many models showed
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that growth volatility negatively affects growth and that economies with higher volatility
experience lower growth. With the structural relation between P and Q, we can decompose
the volatility effects and examine their deep role in the growth. In Section 7, we give a
structural estimate of the growth volatility. The result shows that the causality between
volatility and growth is mainly due to endogenous variations of α and β.

Corollary 3. If Xt(ω) reaches stationary, α = x, c = −1 and W(x|x′) ≡ 0 degenerates, (5)
becomes

dP(x)

dx
− xP(x) = (S ◦ P)(x) = 0

where S is the Stein operator such that (S ◦ f)(x) = (∂f(x)/∂x)− xf(x) for a function f .

This operator is one of the major devices to prove central limit theorem. Thus most, if
not all, i.i.d. sums can be approximated by this operator. Please refer to [11] for its details.

6.2 Remarks

This section attempts to give a structural description of the aggregation process. The con-
cern of the structure in the aggregation is that the probabilistic laws of individual growth
events may aggregate simultaneously thus the parameters of these laws may vary after the
aggregation. The specification of Assumption (8) leads to a refined equilibrium solution,
Gamma distribution. This distribution follows the infinite divisible law. It has two different
parameters, α and β, that separately characterize events that have heterogenous aggregate
impacts and have homogenous individual impacts. This specification makes the structural
analysis of aggregation possible. Parameter α is aggregatable so that α of the aggregates
contains heterogeneous individual information measured by αi. Parameter β evaluates the
homogenous growth opportunities of the whole economy and it also counts the evolutionary
influence of the economy structure. After parametrizing these simultaneous effects along
with the aggregate growth, one can return to epistemic state of inequality encoded by these
parameters. Because these parameters consistently characterize the equilibrium distributions
of this economy.

Figures 1 show some possibilities for altering α =
∑
αi and β in order to give an inte-

grated insight of the roles of α and β in growth and inequality. From the figures, one can
easily distinguish the contributions made by α and β to inequality in a dynamical setting.
Figure 1(a) by holding the same mean value, increasing both α and β shifts the center to
the right. Although percentages in the high value states reduce, more is gained as the per-
centages in the low value states reduce more significantly. Figure 1(b) considers changes of
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β. By reducing β from 0.5 to 0.1, we can see more and more probabilities tend to be in the
high value states. However, the changes for low value states are not so significant. Figure
1(c) considers the same initial position as (b) then we increase the values of α. The final
position of the dynamics share the same mean as the final one in (b). However, the whole
shape of the distribution moves more significantly to the right. The movements around the
low value regions are much more significant than those happened for β, even though the
changes of means are the same. Figures 1(d) and (e) consider increasing α and decreasing
β simultaneously but in different scales. By holding the same means, one trend is to in-
crease more α the other is to decrease more β. For subtle changes, (α = 1.8, β = .09) and
(α = 1.6, β = .04), the effects are quite similar. But if we amplify the trends, we can see
that an increase of α eliminates larger percentages of lower value states than a decrease of
β, moreover, the decrease of β attributes more probabilities to very high value states.

If we consider the value of states below 20 as poor status, Figures 1(b) and (c) demon-
strate that increasing α can more efficiently reduce the poverty percentage. It means that
encouraging individuals to make significant contributions to the aggregate growth can be
helpful to reduce the inequality issue of the economy. To summarize these figures, the role
of α emphasizes individual strengths that have impacts on the aggregates, the role of β
considers growth events that happen with an equivalent size 1/β across all individuals in the
economy. To increase the mean of stationary aggregates, one can think of increasing α, de-
creasing β or doing both. From the dynamical patterns in Figure 1, one can see that within
the same magnitude of mean value changes, α plays a more important role in reshaping the
distribution structure.

6.3 Equality Paradox

Previous discussions and examples of Gamma distributions suggest that increasing α can
more efficiently reduce the poverty percentage than decreasing β. It suggests that encourag-
ing individuals to make significant contributions to the aggregate growth can be more helpful
to reduce the inequality issue even though equivalently increasing possible growth size for
all individuals seems more fair at first glance. As change of β refers to an equality strategy,
it is counter-intuitive to think that an economic growth by reducing β may arise inequality.
This is an equality paradox: an attempt of achieving equality generates inequality.

Increase of 1/β in fact only matters when growth event happens. For example, increasing
returns to all inventions only matters to those who have made an invention, however everyone
has a probability of inventing something thus this policy is supposed to be beneficial to
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everyone. What hidden in paradox is that it emphasizes the equality of opportunity and
returns (everyone has the same law and everyone has the same return if the event happens)
but it does not mention the distortion of opportunities for individuals. Since the size of
individual growth events increase for everyone, those who are in the motion of growing will
have bigger improvements of their states. Even if this movement has so little effect to the
others that α remains the same, the economy could become more unequal. Because those
who seize the opportunities will get bigger returns but those who have no opportunity in
this round will face the same situation in the future. If this trend continues, namely winners
get more and losers keep the same expectation, inequality will be enlarged.

Things could get worse, if the trend of increasing 1/β happens unconsciously. In this
model, the evolution of economy automatically admits new labor forces with the same
stochastic production patterns as the existing ones. By scaling property of P-laws, it im-
plies an increasing trend of 1/β along this evolutionary path. Additionally, a policy that is
intended to meet social moral criteria often claims more for equality meanwhile economic
instruments of the policy are often intended to use rewards as incentive plans. So 1/β in-
creases. In the process, people may not even realize their actions of generating inequality.
It is even harder to perceive the trend if the whole economy is in an expansion. When the
effect of decreasing α is compensated by increasing 1/β, the mean α/β can still be the same
as before or even higher. Thus one should be aware that some parts of the growth caused by
β may be a sacrifice of the value α. This tendency is shown clearly in Figures 1(d) and (e).
Higher 1/β increases the percentage of upper and upper middle class but the poor almost
remain the same as before. New upper and upper middle class consist mainly of those from
the previous middle class.

6.4 Conjectural Strips

Corollary 4. If Xt(ω) reaches stationary, c = x and W(x|x′) ≡ 0 degenerates, (5) becomes

x
dP(x)

dx
= αP(x) (9)

whose solution is P(x) = P(1)x−γ, a power law distribution with parameter γ = α−1.

Corollary 4 gives a continuous version of the model used in [10] where the power law
comes from a difference equation. For more discussion about power law and its applications
in economics, please refer to the survey [5]. From Corollary 4, one can easily obtain the
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Riemann Zeta distribution.16 A short description is given in Appendix B.5.
The Zeta distribution from (9) and the Gamma distribution from (6) can be connected

by the Riemann functional equation

ζ(s) = 2sπs−1 sin
(sπ

2

)
Γ(1− s)ζ(1− s). (10)

It connects the Riemann Zeta function ζ from the denominator of the Zeta distribution
and the Gamma function Γ from the denominator of the Gamma distribution. Equation
(10) can have multiple zeros at those s = −2,−4, . . . such that sin(sπ/2) = 0. These are
called trivial zero of Zeta function. As the Zeta distribution is not defined for negative s, we
can only consider the corresponding Gamma distributions at α = 3, 5, 7, . . . . Suppose that
there are two connected systems, one is an equilibrium economy with stationary Gamma
distribution from (6), the other one with an equilibrium characterized by a Zeta function ζ.
Assume that these two systems are connected by the same parameter α. When α = 3, 5, . . . ,
although the economy has stationary solutions, the other system faces zeros of ζ. If this
ζ is the denominator of an equilibrium solution, such as ζ in the Zeta distribution of (9),
then the other system is arriving at a singular point. In this case, even α does not cause
any significant change for the economy, economy may confront some shocks from the other
system.

Another hypothesis to consider is the case of s = 1/2. At s = 1/2, equation (10) gives a
unique result of Γ(1/2) which is

√
π.17 Moreover, Stirling’s formula gives a useful recurrence

form for
√
π that relates to Γ(·)

Γ

(
k +

1

2

)
= Γ

(
1

2

)
· 1

2
· 3

2
· · · · · 2k − 1

2
=
√
π · (2k)!

22kk!
.

Since π often refers to a stable and harmonic state, a natural question is whether these
values have meanings for economic dynamics? Does π affect the economic activities? Does
an economy tend to stay in a growth path with α = k + 1/2 such as α = 3/2, . . . rather
than other values? Here is a conjecture: α that indicates the vigor of an economy has some
critical values, some values may cause singular effects in the related systems, some values
may establish stable states that are difficult to pass over. These values could be the critical

16If the infinite divisible distribution comes from a counting data set, the Zeta distribution (or empirically
Zipf’s law) rather than the Gamma distribution would be a better candidate to describe the law how the
data points distribute.

17When s is a complex number, the Riemann hypothesis asserts that any s satisfying ζ(s) = 0 and s 6= 2k
(non-trivial zero) locates at Re(s) = 1/2, the so-called critical line.
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strips for the growth of human beings.

7 Growth and Inequality in U.S. 1994-2015

Two data sets are used for the illustration. For growth, the data information comes from U.S.
real GDP per capita issued by the U.S. Bureau of Economic Analysis. It is a quarterly data
set available from 1947 to the present. For personal income, the data comes from Current
Population Survey (CPS) issued by the U.S. Bureau of Labor Statistics and the Census
Bureau. We choose the category that records personal total money income from persons of
15 years old and over. Both data sets are public and available on-line.18 Time period from
1994 to 2015 is selected to make the time range of two data sets comparable.

Estimates are divided into two parts. The first part considers the reduced form mean
field system that is developed in (4). Aggregate GDP is assumed to stochastically follow
Q-law and its realization is mY (t). The main interest is to capture non-stationary dynamics
of Q. We estimate the parameters that specify the dynamics of the first two moments of
Q. The second part considers the structural form system that is developed in (7). Income
distribution is treated as an equilibrium aggregate solution following P-law. A structural
relationship between GDP and income distribution is exploited. We first estimate structural
parameters that characterize P-law and then use them to make a further estimate for the time
varying parameters that characterize Q-law. The structural relationship between income and
GDP data eliminates an endogenous effect that is shown in the regression pre-analysis. The
scheme of both estimates is given in Appendix B.6.

First, let mY (t) in (4) represent the realized GDP per capita in year t. The continuous
time representation of (4) needs to be discretized for time series data and its regression
analogy is given as follows

mY (t+ 1)−mY (t) = Constant + Coef1mY (t) + Coef2σ2
Y (t) + εt (11)

σ2
Y (t+ 1)− σ2

Y (t) = Constant + Coef3m2
Y (t) + Coef4σ2

Y (t) + υt (12)

where εt, υt are assumed to be white noise. The variance σ2
Y is constructed by the resid-

ual from a pre-estimate of (11) without σ2
Y . The model shares some similarities with the

conditional heteroskedasticity models in statistics and econometrics such as the class of
(generalized) autoregressive conditional heteroskedasticity (GARCH) models. As Yt(ω) is

18Information about data and implementation is available in the online-appendix: https://rpubs.com/
larcenciel/UncertaintyA
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generated by nonlinear function g(·), one would expect severe heteroskedasticities caused by
g(·). This concern is well understood in the statistics literature. But there are two crucial
differences. First, the variance term σ2

Y (t) does not relate to the noise εt. It is the higher
order information term from the expansion of mean field equation while in heteroskedasticity
models σ2

Y (t) represents the variance of the noise. Second, as σ2
Y (t) is an expansion term,

it also depends on the mean field function mY (t). This never happens in heteroskedastic-
ity models. These two differences are reflected by the coefficient of σ2

Y (t) in (11) and the
coefficient of m2

Y (t) in (12).
Estimate results for for (11) and (12) are given in Table 1. The results contain two cases.

One uses GDP as the mean field growth variable mY (t) the other one uses logarithm of GDP
as the mean field growth rate.19 From the table, we can see the coefficients of σ2

Y (t) in (11)
and (12) are all significant which means the mean field dynamics dmY (t) is correlated with
the higher order information from its volatility σ2

Y (t). 20 The residual plots for both cases are
given in Figure 2 and 3 respectively. All residual look stationary. However, the residuals in
(12) some dependent structure remains. This may be due to the large perturbation around
2008.

For structural estimation of (7), some specification of non-linear function g(·) is pre-
required. For simplicity, it is assumed that g(·) is an exponential function and (5) is station-
ary so that

∑N
i=1Xt(ω

i) ∼ Gamma(αt, βt). The income distribution therefore is a stationary
outcome but the parameters (αt, βt) as endogenous variables adjust to the new level each
year due to the interaction and evolution effects of the aggregation. The estimation form is
given as follows

E

[
N∑
i=1

Xt(ω
i)

]
=
αt
βt

= Cons + Coef1 × lnmY (t), (13)

lnmY (t+ 1)− lnmY (t) = θ(t) + ε1,t +
ε2,t∑N

i=1Xt(ωi)
, εi,t ∼ GWN(0, 1). (14)

The assumption of Gaussian white noises for ε1,t and ε2,t and the simplification of et/mY (t)

in (8) are purely due to technical purposes. Because assuming linear additive Gaussian
structure can give us a feasible filtering algorithm. In the estimation, we use the forward

19Strictly speaking, without a further justification, using logarithm transform in a regression is quite vague,
as in this transform non-linear property disappear. If the mean field mY (t) is transformed, the expansion
form of the system should be implemented using the transformed expression. So the terms in (11) and (12)
may be different from the original form (4).

20GARCH modules in tseries package of R provide either non-convergent or insignificant estimates.
Please refer to on-line appendix for the output results of GARCH.
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filtering part of the Baum-Welch formula. For details, please see Appendix B.7.
The full estimation is divided into two steps. First, we need to estimate (αt, βt) using

income data from 1994 to 2015. Figure 4 shows three selective years for illustration. The
plots show the Gamma specification fits well with both density and cumulative distribution
function. The plots for other years provide similar results that can be found in the online
appendix. Dynamical patterns of (αt, βt) can be found in Figure 5. The trend of αt is
increasing but it has fluctuations around late 1998, 2003, 2008 and 2012 which correspond
to early 2000s recession and financial crisis of 2008. It is surprising that the drop at 2012

has a bigger scale than that of 2008. The trend of βt is monotone decreasing. It drops
about 30% (from 0.17 in 1994 to 0.12 in 2015). According to this calculation, the scale of
β decreasing contributes more to the growth than the increase of α. This argument can be
verified in Figure 6(a) where it shows an almost linear trend between GDP and αt/βt, the
mean of Gamma distribution. U.S. GDP keeps growing since 1994. However if we compare
this result with the trends of αt and βt, we can see the growth may be mostly from the
decline of β value. From the arguments in Section 6.2, we can see these phenomena may
imply an enlarged inequality happening in U.S..

With estimated (αt, βt), the second step is to estimate equations (13) and (14). The
results are given in Table 2. The first result is from a regression of mY (t) on αt/βt. It shows
a significant relation that coincides with Figure 6(a). Equation (13) also has a significant
coefficient. However, αt/βt is shown to have a significant correlation with the residual of (13)
that implies an endogenous issue of (13). Figure 6(b) also illustrates this problem. With
this concern, we give a structural estimate of equation (14). First we filter out the effect of
θ(t) then by using the information of the variance αt/β2

t of Gamma distribution, we remove
the heteroskedasticity effect. The residual of this estimate as shown in the in Table 2 is
uncorrelated with αt/βt. Figure 7(a), (c), (d) show that forward filter estimate has captured
the heteroskedasticity and that its residual is stationary and uncorrelated with αt/βt.

The estimated values of time varying parameter θt can be found in Figure 7(b). By ex-
tracting high order information interacting with the income distribution, dynamical pattern
of θ gives us a very different picture about recent growth in the U.S.. As we have seen in
Figure 5, the growth of stationary aggregates αt/βt is mainly intrigued by reducing βt. The
decrease of β contributes to the GDP growth thorough the non-linear aggregation. Once we
extract these stationary and non-stationary effects, the filtered growth rate of U.S. GDP is
significantly decreasing after 2003 and it remains at a relatively low level. Although Figure
7(b) gives a different dynamical patterns from the existing figures of U.S. GDP growth rate,
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the mean of this structural parameter, 0.02, is close to the averaged official figures.21 This
closeness results from the economic expansion in late 90s.

Overall, these empirical results give interesting alternative interpretations to the recent
development in the U.S.. We need to emphasize that these empirical estimates have make
some simplifications from the theoretical models. These simplifications so far have not
generated unrobustness. But we expect more sophisticated approaches to improve these
estimates.

8 Bird’s-eye View

8.1 Deterministic and Stochastic Economies

Section 3 and 4 discuss two different types of economies. It is obvious that the stochastic
economy is more realistic and closer to the economy where we live. On the other hand,
deterministic economy describes an illusion that is closer to the utopian images where there
is no unequal status and people produce ample goods. If we want our society to evolve to a
utopian state, can this deterministic economy be the destination of this evolution sequence?

To reach this destination, the deterministic economy needs to reach the same level of
production as the stochastic one. That is to say, the deterministic individual growth function
f(·), need to produce as much as the stochastic counterpart f (a)(·) does. Unfortunately, the
functional class of f is smaller than that of f (a) which means f cannot incorporate with some
growth patterns that are feasible under f (a). In fact, f can be a special case of f (a) where a
is a deterministic sequence indexing every period of time. Even for deterministic function,
f can not be embedded in many interesting cases. For example, some deterministic logistic
maps or cobweb models can be ruled out from the class of f , because they can induce infinite
many bifurcations that give the randomness to the growth.

Another important point is that in the evolution process variation happens in an uncer-
tainty way, at least, to our best understanding so far. Innovations and their external effects
are rather crucial to our growth and evolution but they are unpredictable. Thus instead of
viewing deterministic economy as a utopia limit of our evolution, it is better to think it as
the garden of Eden, the initial state of a stochastic economy from which the uncertainty
appeared.

21By the second equation of (7), we can see that θt is compatible with the role of the coefficient of mY (t) in
the reduced form equation (11). The estimated value of this reduced form coefficient is 0.201 which is about
ten times of the mean of θt. However, one should keep in mind that volatility of mean fields contributes a
negative effect in the reduced form.
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8.2 Nonlinearity

Section 5 points out the difference between stationary and non-stationary aggregates. As
non-stationarity comes from nonlinear aggregation functions, one concern is the role of non-
linearity. It is well known that many nonlinear patterns can be found in population growth,
urbanization, social interactions, etc. All these nonlinear processes in some senses seem to
increase our productivities. Meanwhile, these processes also cause many problems.

The same dilemma can be found in the model in Section 5. It shows that uncertainty level
is propagated by nonlinearity. Volatility or even higher order information may contribute
to the final aggregation. Laws of individual or stationary aggregates are distorted during
the nonlinear aggregation. One can infer that the higher the nonlinearity, more severe the
distortion is. It is not so clear the total effect of this type of distortion. We know the
innovation is highly unpredictable, so we tend to believe that the likelihood of innovation
is higher in a nonlinear agglomeration. But the occurrences of war and crisis also reflect
some nonlinear features, can we believe that non-stationary aggregations also conspire these
events? If non-stationary aggregation accompanies with both angels and evils, it is our duties
to prevent the worst case scenarios.

8.3 α-Growth and β-Growth

Section 6 uses (α, β) to connect individual probabilistic laws and aggregates’. It points out
the different roles of α and β in determining inequality. The growth driven by α tends to
create a more equal economy than the one driven by β. A policy maker should be in favor
of proposals that may increasing α rather than decreasing β.

However, α and β are deeper parameters that can be embedded in people’s characters (risk
loving or risk aversion), social norms (conservative or liberal), or even culture and religion
(creative and independent or stable and united). The direct policy on income or wealth
may hardly affect these intrinsic characters making up of (α, β). For example decreasing
β can be an unconscious action as shown in the equality paradox in Section 6. The core
of this paradox is that β is uncorrelated with α and decreasing β happens naturally in the
evolution of the economy. So far it is hard to identify the connection between α and β. Thus
the way of drafting a policy to support α-growth is in the mist. Deeper policy that can
affect these parameters may relate to some fundamentals of society such as education and
religious systems.

An economy of considering only β-growth could be in danger. When β becomes small
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enough, the economy will become highly unequal. In this case, even if the economy scale can
reach to a very high level (by assuming α not decreasing), the structure is fragile because
the majority concentrate on one side and they are far from the elites whose fraction of the
population decreases with β. This type of social structure often leads to a revolution, a war,
or a creative destruction. Should we need to resist a β-growth? If yes, then how?

9 Conclusive Remarks

A new perspective, new laws, and new models are proposed. Meanwhile, a new paradox,
new challengings and new expectations are initiated. Lights are shining onto an unfamiliar
and perhaps treacherous direction that however can not and should not be concealed. Ef-
fective work in this direction necessarily calls for a shift from classical devices to novel ones.
New theories deal simultaneously with heterogeneity, endogeneity, and dynamics. New in-
terpretation considers to treat the nature, the forces and the human factors that determine
the characteristics and trends of our evolution as a whole. New machineries integrate these
complexities in reality and are ready for a venture into fields beyond recognized patterns.
A fascinating risk awaits in front. But one intuition becomes clear. Growth and inequality,
two symbiosis contraries in the names of goodwill and “evil”, will float with us towards the
brave uncertain new world, that has such people expecting it.
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(a) Mean invariance (b) Variations of β

(c) Variations of α (d) Variations of (α, β)

(e) Variations of (α, β) in the tail

Figure 1: Gamma Distribution
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(a) (b)

(c) (d)

Figure 2: Residuals in Reduced Form Estimate (Growth)

Table 2: Results of Structural Form Estimates

Dependent variable:

αt/βt Residual of Residual of

pre-analysis (13) (13) (14)

mY (t) 0.0003∗∗∗
(0.00002)

Coef-1 −35.695∗∗
(15.500)

αt/βt 0.790∗∗∗ −0.002
(0.091) (0.002)

Constant −3.891∗∗∗ 11.916∗∗∗ −8.999∗∗∗ 0.023
(0.712) (0.348) (1.043) (0.027)

Observations 22 22 22 22
R2 0.959 0.210 0.790 0.051
Adjusted R2 0.957 0.170 0.780 0.003
Residual Std. Error (df = 20) 0.279 1.220 0.559 0.015
F Statistic (df = 1; 20) 464.048∗∗∗ 5.303∗∗ 75.425∗∗∗ 1.071

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(a) (b)

(c) (d)

Figure 3: Residuals in Reduced Form Estimate (Growth rate)
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(a) (b) (c)

(d) (e) (f)

Figure 4: Estimates of Income Distribution by Gamma(αt, βt)

(a) (b)

Figure 5: (αt, βt) in 1994− 2015
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(a) (b)

Figure 6: Dynamics of αt/βt and GDP

(a) (b)

(c) (d)

Figure 7: Structural Estimate
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A Proofs

A.1 Proof of Lemma 1

Proof. We know that Xt(·) = f (at)f (at−1) · · · f (a1)(·) and that (a1, . . . , at) are i.i.d.. Xt and at
generate the same σ-algebra Bt. Then for any a′t−2 ∈ Bt−2, a

′
t−2 and at are independent, so

Pr
{
Xt ∈ A

∣∣a′t−2, Xt−1

}
= Pr

{
f (at)(Xt−1) ∈ A

∣∣a′t−2, Xt−1

}
= Pr

{
f (at)(Xt−1) ∈ A |Xt−1

}
which is the Markov property Pr{Xt ∈ A|Bt−1,Bt−2} = Pr{Xt ∈ A|Bt−1}. The result
follows.

A.2 Proof of Lemma 2

Proof. Assumption 5 implies that we can select a subsequence {a′t} ⊂ {at} so that X̃t(·) =

f (a
′
t)(·) and X̃t(·) is monotone. We have X̃t(Ω) ≤ X̃t+1(Ω) almost surely. Then given y,

we have Pr(X̃t(Ω) ≤ y) ≥ Pr(X̃t+1(Ω) ≤ y). Since given Ω < y < Ω, Pr(X̃t(Ω) ≤ y) is
monotone in t and Pr(X̃t(Ω) ≤ y) is bounded between 0 and 1, we know that for each y,
Pr(X̃t(Ω) ≤ y) must converge as t→∞.22

Similar argument holds for Pr(X̃t(Ω) ≤ y). As y < Ω, it is obvious that Pr(Ω ≤ y) = 0.
Thus we have Pr(X̃t(Ω) ≤ y) ≤ Pr(X̃t+1(Ω) ≤ y). Monotonicity and boundedness tell that
Pr(X̃t(Ω) ≤ y) must converge as t→∞.

Because the index set A only contains i.i.d. random variables, any other sequence {at}
has the same distribution as {a′t}, then any Xt(·) = f (at)(·) will induce the same convergent
results for Pr(Xt(Ω) ≤ y) and Pr(Xt(Ω) ≤ y).

A.3 Proof of Proposition 1

Proof. Lemma 1 shows that Xt(ω) is a Markov process. For a Markov process, let P (x,X ) =

Pr(f (a)(x) ∈ X ) be a transition probability where a has the same distribution as a1. By

definition, Xt(·) =

t−times︷ ︸︸ ︷
f (a)f (a) · · · f (a)(·). We have an expression of a transition probability for

t-times
P (t)(X0 = Ω,X ) =

ˆ
Ω

P (x,X )dP (t−1)(X0 = Ω, x).

22Monotone sequence on a bounded domain always converges.
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As P (x,X ) is a bounded, continuous and real-valued functions on x, by Helly-Bray theorem
(P (t) → P) and Lemma 2, we have

P (X∗(Ω) ∈ X ) =

ˆ
Ω

P (x,X )dP (X∗(Ω) = x)

as t → ∞. This means that P (X∗(Ω) ∈ X ) is a stationary distribution. Similar argument
holds for P

(
X∗(Ω) ∈ X

)
.

A.4 Proof of Theorem 2

Proof. Given a subsequence {a′t} ⊂ {at}, X̃t(·) = f(X̃t−1(·)) and f is monotone, Proposition
1 shows that Pr(X̃t(Ω) ∈ X ) and Pr(X̃t(Ω) ∈ X ) converge. As Pr(X̃t(Ω) ∈ X ) ≥ Pr(X̃t(Ω) ∈
X ), we have

P (X∗(Ω) ∈ X ) ≥ P
(
X∗(Ω) ∈ X

)
.

We now prove P (X∗(Ω) ∈ X ) ≤ P
(
X∗(Ω) ∈ X

)
.

With Assumption 6, let τ denote the time whenXτ (Ω) andXτ (Ω) will enter two separated
sets. Let τ = inf

{
t : Xt(Ω) ∈ X , Xt(Ω) ∈ Ω\X

}
. This hitting time τ is random and

Pr(τ < ∞) = 1. Then use the transition probability P (x,X ) = Pr(f (a)(x) ∈ X ) and
stationary property, we have

Pr (Xt(Ω) ∈ X , t > τ)
(a)
=

t−1∑
j=1

{ˆ
P (x,X )dP (Xt−j(Ω), x|τ = j)

}
Pr(τ = j)

(b)

≤
t−1∑
j=1

{ˆ
P (x,X )dP (Xt−j(Ω), x|τ = j)

}
,

where
(a)
= comes from the iterative expression P (X2(Ω),X ) =

´
Ω
P (x,X )dP (X1(Ω), x) and

the conditioning of τ ,
(b)

≤ comes from Pr(τ = j) < 1 for some js.
Similar approach is applied to Xt(Ω):

Pr
(
Xt(Ω) ∈ X , t > τ

)
=

t−1∑
j=1

{ˆ
P (x,X )dP (Xt−j(Ω), x|τ = j)

}
Pr(τ = j)

(c)

≥
t−1∑
j=1

{ˆ
P (x,X )dP (Xt−j(Ω), x|τ = j)

}
,
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where
(c)

≥ comes from the fact that when t > τ , Xt(Ω) ∈ Ω\X so Pr(τ = j) = 0. Because the
subset X is arbitrarily chosen, we can choose the set “closer” to Ω so that P (Xt(Ω),X ) ≥
P (Xt(Ω),X ) when t→∞. Combine this result with the previous two inequalities and take
t→∞ so that Pr{t > τ} = 1, we have

Pr (X∗(Ω) ∈ X ) ≤
∞∑
j=1

{ˆ
P (x,X )dP (Xt−j(Ω), x)

}
≤

∞∑
j=1

{ˆ
P (x,X )dP (Xt−j(Ω), x)

}
≤Pr

(
X∗(Ω) ∈ X

)
so P (X∗(Ω) ∈ X ) ≤ P

(
X∗(Ω) ∈ X

)
, the result follows.

A.5 Proof of Theorem 3

Proof. By Theorem 2, we know X∗(ω1)
d
= X∗(ω2) · · · d

= X∗(ωN). d
= means equivalence in

distribution. A simple arrangement

X∗(ω1) +X∗(ω2)−X∗(ω2)
d
= X∗(ω1)

does not violate the equality in distribution. The distributional expression of above equality
is a convolution of X∗(ω1) +X∗(ω2) and −X∗(ω2) such that

ˆ
Ω

PX∗(ω1)+X∗(ω2)

(
X∗(ω1) + x

)
PX∗(ω2)(−x)dx = P(X∗(ω1))

PX∗(ω1)+X∗(ω2) and PX∗(ω2) stand for the stationary distribution functions of X∗(ω1)+X∗(ω2)

and X∗(ω2). Without loss of generality, we just consider Ω ∈ Rd
+ ∪ {0}. Note that

PX∗(ω2)(−x) = 0 for Ω ∈ Rd
+ and PX∗(ω2)(0) ≥ 0 by the property of production functions.

Then the convolution degenerates to

PX∗(ω1)+X∗(ω2)

(
X∗(ω1)

)
= P(X∗(ω1)).

So X∗(ω1)+X∗(ω2) ∼ P. This argument can be extended to a sum of all X∗(ωi). The result
follows.
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A.6 Proof of Theorem 4

Proof. Given the mean field equation (3), one expands a1(y) around mY (t) via Taylor series

ˆ
a1(y)Q(y, t)dy = a1(mY (t))+

(∗)︷ ︸︸ ︷[ˆ
(y −mY (t))Q(y, t)dy

]
∂a1(mY (t))

∂y

∣∣∣∣
y=mY (t)

+
1

2

[ˆ
(y −mY (t))2Q(y, t)dy

]
∂2a1(mY (t))

∂y2

∣∣∣∣
y=mY (t)

+ . . .

where a1(mY (t)) =
´

(y′ − mY (t))W(y′|y)dy′. By the definition
´
yQ(y, t)dy = mY (t), we

know (∗) is zero. Thus the expression becomes

ˆ
a1(y)Q(y, t)dy = a1(mY (t)) +

1

2

=σ2
Y (t)︷ ︸︸ ︷[ˆ

(y −mY (t))2Q(y, t)dy

]
a

(2)
1 (mY (t)) + . . .

where a(2)
1 (mY (t)) denotes ∂2a1(mY (t))/∂y2|y=mY (t) and σ2

Y (t) is variance ofmY (t). Similarly,
one can deduce the second moment of the mean field

ˆ
y2∂Q(y, t)

∂t
dy =

ˆ ˆ
y2 [W(y|y′)Q(y′, t)−W(y′|y)Q(y, t)] dydy′

=

ˆ ˆ (
y′2 − y2

)
W(y′|y)Q(y, t)dydy′

=

ˆ ˆ [
(y′ − y)

2
+ 2y(y′ − y)

]
W(y′|y)Q(y, t)dydy′

=

ˆ
a2(y)Q(y, t)dy + 2

ˆ
y a1(y)Q(y, t)dy.

As σ2
Y (t) =

´
(y −mY (t))2Q(y, t)dy =

´
y2Q(y, t)dy −m2

Y (t), there is

dσ2
Y (t)

dt
=

ˆ
y2∂Q(y, t)

∂t
dy − 2mY (t)

dmY (t)

dt

=

ˆ
a2(y)Q(y, t)dy + 2

ˆ
y a1(y)Q(y, t)dy − 2mY (t)

ˆ
a1(y)Q(y, t)dy

=

ˆ
a2(y)Q(y, t)dy + 2

ˆ
(y −mY (t)) a1(y)Q(y, t)dy

(a)
=

ˆ
a2(y)Q(y, t)dy + 2

ˆ {
(y −mY (t)) a1(mY (t))
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+
∂a1(mY (t))

∂y

∣∣∣∣
y=mY (t)

(y −mY (t))2 + . . .

}
Q(y, t)dy

(b)
= a2(mY (t)) + 2a

(1)
1 (mY (t))σ2

Y (t) + . . .

where
(a)
= comes from a Taylor expansion of a1(y) around mY (t) and

(b)
= comes from another

Taylor expansion of a2(y) around mY (t). Expansion terms that outvie (y − mY (t))2 have
not displayed in the expression.

A.7 Proof of Theorem 5

Proof. A heuristic proof of (I) and (II).
(I) By Assumption 8, we consider two states transition at small time interval, a monotone

growth from x′ to x = 1 or to stay at position x = 0:

P∆t(x = 1|x′) = α∆t+ o((∆t)2),

P∆t(x = 0|x′) = 1− α∆t+ o((∆t)2).

Let P(x1, t) = Pr{Xt(ω) = x1}. Then

P(x1, t+ ∆t)
(a)
=P(x1, t) Pr{X∆t(ω) = 0|x1}+ P(x1, t) Pr{X∆t(ω) = 1|x1}

=P(x1, t)(1− α∆t) + P(x1, t)× α∆t+ o((∆t)2)

(b)
=P(x1, t)(1− α∆t) +

ˆ
W(x1|x′)P(x′, t)dx′ × α∆t+ o((∆t)2)

where
(a)
= comes from transition from P(x1, t) to P(x1, t+ ∆t) and

(b)
= comes from

P(x1, t)
(c)
= lim

∆t→0

ˆ
(P∆t(x1|x′)P(x′, t)) dx′

(d)
=

ˆ
W(x1|x′)P(x′, t)dx′.

(c)
= comes from Chapman-Kolmogorov equation (see (18)) and

(d)
= uses the instantaneous rate

W(x1|x′) in (16) to approximate the transition probability when ∆t→ 0.
Arrange the expression of Pr{Xt+∆t(ω) = 1} and take the limit of ∆t,

lim
∆t→0

P(x1, t+ ∆t)− P(x1, t)

∆t

= α

(ˆ
W(x1|x′)P(x′, t)dx′ − P(x1, t)

)
+ lim

∆t→0
o(∆t)
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d

dt
P(x1, t) = α

(ˆ
W(x1|x′)P(x′, t)dx′ − P(x1, t)

)
.

Assumption 8 imposes the rate of size change, c, to be linear in t. By change of variable
x = x1 + ct, one has

∂

∂t
P(x, t) + c

∂

∂x
P(x, t) = α

(ˆ
W(x|x′)P(x′, t)dx′ − P(x, t)

)
.

The result follows.23

(II) As the right hand side of (6) is a convolution integral, it can be compactly represented
as [ˆ x

0

udu

]
∂P(x)

∂x
= α [V ∗ P] (x).

On the right hand side of the equation, Laplace transform of [V ∗P](x) is VL(s)PL(s) where
VL(s) and PL(s) are the Laplace transform of V(x) and P(x) respectively. Note that VL(s) =

β/(s+ β) by the property of Laplace transform of exponential distribution.
On the left hand side of this equation, Laplace transform is

ˆ {[ˆ
udu

]
∂P(x)

∂x
e−sx−su

}
dx =

ˆ ∞
0

(ˆ ∞
0

e−sudu

)(
x
∂P(x)

∂x
e−sx

)
dx.

Since −
´∞

0
e−sudu = 1/s, after simplification, the above equation becomes

−
ˆ
x

s

∂P(x)

∂x
e−sxdx =

ˆ
1

s

∂P(x)

∂x

∂e−sx

∂s
dx =

∂
{

1
s

´ (∂P(x)
∂x

e−sxdx
)}

∂s

(a)
= −∂PL(s)

∂s
,

where
(a)
= comes from differentiation by parts:

−1

s

ˆ ∞
0

(
∂P(x)

∂x

)
e−sxdx =

ˆ ∞
0

P(x)e−sxdx−
[
P(x)e−sx

]∞
0

= PL(s),

So the equation becomes
∂PL(s)

∂s
= −αβPL(s)

s+ β
.

23An alternative way of attaining this expression is to use Poisson semigroup.
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Dividing PL(s) on both sides gives

1

PL(s)

∂PL(s)

∂s
=
∂ ln(PL(s))

∂s
= −α∂ ln((s+ β)/β)

∂s
.

Taking the integral w.r.t. s gives

ln(PL(s)) = −α ln

(
s+ β

β

)
.

The solution is PL(s) = βα[s+ β]−α which is the Laplace transform of Gamma distribution.
To see this, assume X follows Gamma distribution, then its Laplace transform is

E
[
e−sX

]
=

ˆ
e−sx

βα

Γ(α)
xα−1e−βxdx =

βα

Γ(α)(β + s)α

ˆ
((β + s)x)α−1 e−(β+s)xd ((β + s)x)︸ ︷︷ ︸

(∗)

.

Substitute u = (β + s)x into the (∗) term, it becomes Γ(α). So PL(s) = βα[s + β]−α. The
result follows.

A.8 Proof of Corollary 4

Proof. By infinite divisible distribution from Theorem 3, one knows

P(bx) = k(b)P(x)

for any integer b = 1, 2, 3, . . . , as bx ∼ P and x ∼ P, k(·) is a normalized function. Set x = 1,
P(b) = k(b)P(1), one knows k(b) = P(b)/P(1). So P(bx) = P(b)P(x)/P(1). By taking the
differentiation w.r.t. b on both side, one has x(Ṗ(bx)) = P(x)Ṗ(b)/P(1) where Ṗ stands for
differentiation w.r.t. its argument. Set b = 1,

x
dP(x)

dx
=

Ṗ(1)

P(1)
P(x) = αP(x)

one has (9) and α = Ṗ(1)/P(1). Integrate above equation

lnP(x) =
P(1)

Ṗ(1)
lnx+ Constant. (15)
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One has Constant = lnP(1) by setting x = 1. Taking the exponential of both sides in (15)
gives P(x) = P(1)xα. The results follows.

A.9 Proof of Theorem 6

Proof. The first equation in (7) comes from Assumption 7 that g(·) is one-to-one. Thus by
change of measures, we have

mY (t) =

ˆ
yQ(y, t)dy =

ˆ [
g(x)

Q(y, t)dy

P(x, t)dx

]
P(x, t)dx.

Thus Et [g (Xt(ω))L(t)] = mY (t).
To show the second equation in (7), we need to represent the mean field equation (3):

dmY (t)

dt
=

ˆ ˆ
(y′ − y)W(y′|y)Q(y, t)dy′dy

=

ˆ ˆ
y′W(y′|y)Q(y, t)dy′dy −

ˆ ˆ
yW(y′|y)Q(y, t)dy′dy

(a)
=

ˆ ˆ
y′W(y′|y)Q(y, t)dy′dy −

ˆ ˆ
y(A−W(x′|x))Q(y, t)dy′dy + o(1)

(b)
=

ˆ ˆ
(y′W(y′|y)− yA)Q(y, t)dy′dy +

{ˆ
yQ(y, t)dy

}{ˆ
W(x′|x)dg(x′)

}
+ o(1)

=θtmY (t) + et + o(1)

where
(a)
= uses the transition rate W(x′|x) in Theorem 5, in

(b)
= we replace the aggregation y′

with g (x′). Let et =
´ ´

(y′W(y′|y)− yA)Q(y, t)dy′dy, A = sup |W(y′|y) + W(x′|x)| is the
sup-norm of two transition kernels, θt =

´
W(x′|Xt)dg(x′) uses the kernel conditional on the

state value x = Xt(ω), mY (t) =
´
yQ(y, t)dy. The result follows.

The third expression in (7) is a direct result of Theorem 3 and 5.

B Miscellaneous

B.1 Solow Model

Provided that the quasi-linear utility of individual i is

U(Ki
t , L

i
t) = fP (Ki

t , L
i
t)−Bi

S,tK
i
t − AiS,tLit,
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the rational household maximizes the utility with the following FOC

Bi
S,t = f

′

P (X i
t), AiS,t = fP (X i

t)− f
′

P (X i
t)X

i
t ,

where f ′P is the derivative of fP w.r.t. X i
t = Ki

t/L
i
t. In this expression, Bi

S,t and AiS,t are the
return to capital and the cost rate respectively for household i. This FOC gives an affine
representations for the production function as well as the growth function

fP (X i
t) =AiS,t +Bi

S,tX
i
t ,

f(X i
t) =β1A

i
S,t +

(
β1B

i
S,t + 1− β2

)
X i
t .

B.2 Derivation of Equation (1)

Proof. Given a small time interval ∆t, one expands the transition probability Q∆t(y3|y2) in
a Taylor series over zero

Q∆t(y3|y2) = δ(y2 − y3) + ∆tW(y3|y2) +O((∆t)2). (16)

Dirac delta function δ(y2−y3) expresses that the probability to stay at the same state y3 = y2

equals one for any test function φ whereas the probability to change state y3 6= y2 equals
zero such that

´∞
−∞ φ(y)δ(y)dy = φ(0).

W(y3|y2) = lim
h→0

∂Qh(y3|y2)

∂h

is the time derivative of the transition probability at h = 0.
Integrating right hand side of equation (16) w.r.t. y3 may be larger than one. So we need

to normalize δ(y2 − y3) by subtracting a factor
´
W(y3|y2)dy3 so that

Q∆t(y3|y2) =

(
1−
ˆ

W(y3|y2)dy3

)
δ(y2 − y3) + ∆tW(y3|y2) +O((∆t)2). (17)

The Chapman-Kolmogorov equation is

Qh+∆t(y3|y1) =

ˆ
[Q∆t(y3|y2)Qh(y2|y1)] dy2. (18)

48



Substitute (17) into (18),

Qh+∆t(y3|y1) =

ˆ
Qh(y2|y1)δ(y2 − y3)dy2 −∆t

ˆ ˆ
W(y3|y2)dy3δ(y2 − y3)Qh(y2|y1)dy2

+ ∆t

ˆ
W(y3|y2)Qh(y2|y1)dy2 +O((∆t)2)

=Qh(y3|y1)−∆t

ˆ
W(y2|y3)Qh(y3|y1)dy2 + ∆t

ˆ
W(y3|y2)Qh(y2|y1)dy2.

Re-arrange the expression and take ∆t→ 0

lim
∆t→0

Qh+∆t(y3|y1)−Qh(y3|y1)

∆t
=

ˆ
[W(y3|y2)Qh(y2|y1)−W(y2|y3)Qh(y3|y1)] dy2.

The result follows.

B.3 Derivation of Equation (3)

Proof. Take the time derivatives on both sides of mY (t) =
´
yQ(y, t)dy

dmY (t)

dt
=

ˆ
y
∂Q(y, t)

∂t
dy

=

ˆ ˆ
y [W(y|y′)Q(y′, t)−W(y′|y)Q(y, t)] dydy′

(a)
=

ˆ ˆ
(y′ − y)W(y′|y)Q(y, t)dydy′ =

ˆ
a1(y)Q(y, t)dy,

where
(a)
= is from

ˆ ˆ
y′W(y′|y)Q(y, t)dydy′ =

ˆ ˆ
yW(y|y′)Q(y′, t)dydy′

by Fubini theorem.

B.4 Discussion of Memoryless Transition Rate

The idea of memoryless transitions can be traced back to [3] who considers

Pr{a > t+ ∆t|a > t} =
Pr{a > t+ ∆t}

Pr{a > t}
= Pr{a > ∆t}.
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Taking logarithm and denoting k(t) = log Pr{a > t}, one has k(t + ∆t) = k(∆t) + k(t) a
linear decreasing function. Thus k(t) should be a linear function of t such as k(t) = −βt
which means Pr{a ≤ t} = 1− e−βt, a exponential distribution whose density kernel is βe−βt.

B.5 Zeta Distribution

The solution of (9) is P(x) = P(1)x−γ such that x = 1, 2, 3, . . . and P(1) is a constant. By
the definition of Riemann Zeta function ζ(γ) =

∑∞
x=1 x

−γ, one knows

∞∑
x=1

P(x) = 1 = P(1)
∞∑
x=1

x−γ = P(1)ζ(γ) = P(1)ζ(−α).

Thus P(x) = (xγζ(γ))−1 = xα/ζ(−α) which is the zeta distribution, in particular, P(1) =

1/ζ(γ).

B.6 Scheme of Estimates

Reduced estimate:

Step 1. Regress mY (t+ 1)−mY (t) on mY (t) for all t = 1, . . . , T .
Step 2. Use residual ε̂t to construct σ2

t .
Step 3. Regress mY (t+ 1)−mY (t) on mY (t) and σ2

t .
while ε̂t is not a white noise do

Update σ2
t and go to Step 3.

end while
Step 4. Regress σ2

t − σ2
t−1 on m2

Y (t− 1) and σ2
t−1 for all t = 1, . . . , T .

Step 5. Heteroskedasticity check of υ̂t.

In our analysis, the “while loop” after Step 3 is not executed in all cases because white noise
patterns are quite significant.

Structural estimate:

Step 1. Use income distribution dataset to estimate αt and βt for all t = 1, . . . , T .
Step 2. Regress αt/βt on mY (t) for all t = 1, . . . , T .
if Coef1 is significant then enter Filtering:
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Set θ(t) = mY (t) at t = 1. Recursively compute the mean and variance of

θ(t) +
ε2,t∑N

i=1Xt(ωi)

for t = 2, . . . , T .
else

Income data is not qualified for structural estimate. End.
end if
Step 3. Store filter mean and variance estimates.
Step 4. Regress αt/βt on filter residuals for all t = 1, . . . , T and check endogeneity.

B.7 Forward Filter

This is an analogy to the forward-algorithm in Kalman filter. Recall equation (14)

lnmY (t+ 1)− lnmY (t) =

(∗)︷ ︸︸ ︷
θ(t) + ε1,t +

(∗∗)︷ ︸︸ ︷
ε2,t∑N

i=1Xt(ωi)
.

Let LY (t) denote lnmY (t + 1) − lnmY (t), let θ̃ denote (∗) term, let ẽ denote (∗∗) term so
that

LY (t) = θ̃ + ẽ

where θ̃ is normally distributed with time varying mean and variance. By the property of
Gamma distribution, we know that E[

∑N
i=1Xt(ω

i)] = αt/βt and Var[
∑N

i=1Xt(ω
i)] = αt/β

2
t .

So ẽ is also conditional normal distributed ẽ|X ∼ N (0, σ2(X)) where σ2(Xt) = β2
t /αt. At

t = 0, let the initial θ̃ ∼ N (θ0, 1).
Given observationsMY (t) := (LY (1), . . . LY (t)) and conditioning on X, we consider

(θ̃|MY (t), X) ∼ N (θt, Ct|MY (t), X).

The distribution of θ̃ can be updated by Baye’s rule such that

N (θt, Ct|MY (t), X) ∝
t∏
i=1

N (LY (i), σ2(X)|θ̃, X)N (θ̃, 1)

=
t∏
i=1

1√
2πσ(X)

exp

{
− 1

2σ2(X)
(LY (i)− θ̃)2

}
×
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1√
2π

exp

{
−1

2
(θ̃ − θ0)2

}
∝ exp

{
− 1

2σ2(X)

(
t∑
i=1

LY (i)2 − 2θ̃
t∑
i=1

LY (i) + tθ̃2

)
−

1

2
(θ̃2 − 2θ̃θ0 + θ2

0)

}
(a)
∝ exp

{
− 1

2σ2(X)

(
t∑
i=1

LY (i)2 − 2θ̃tL̄Y + tθ̃2−

σ2(X)
(
θ̃2 − 2θ̃θ0 + θ2

0

))}
∝ exp

{
− 1

2σ2(X)

(
(t+ σ2(X))θ̃2 − 2(tL̄Y + σ2(X)θ0)θ̃

)}
∝ exp

{
−(t+ σ2(X))

2σ2(X)

(
θ̃2 − 2

tL̄Y + σ2(X)θ0

t+ σ2(X)
θ̃

)}
(b)
∝ exp

{
−(t+ σ2(X))

2σ2(X)

(
θ̃2 − tL̄Y + σ2(X)θ0

t+ σ2(X)

)2
}

where L̄Y =
∑t

i=1 LY (i)/t. In step (a) because
∑t

i=1 LY (i)2 and θ2
0 do not relate to θ̃, they

will not be used to construct updated distribution. Similar argument is applicable to (b)

where the quadratic form is constructed. Note that (θ̃|MY (t), X) ∼ N (θt, C
2
t ). From the

last expression, we have

θt =
tL̄Y + σ2(X)θ0

t+ σ2(X)
, Ct =

σ2(X)

t+ σ2(X)

Some simplifications give

θt =
1

1 + σ2(X)/t
L̄Y +

σ2(X)/t

1 + σ2(X)/t
θ0

the updated mean is a weighted average between the sample mean L̄Y and the initial state
θ0, with weights depending on and σ2(X). We can have a recursive expression

θt = θt−1 +
Ct−1

Ct−1 + σ2(X)
(LY (t)− θt−1), Ct =

(
1

σ2(X)
+

1

Ct−1

)−1

(19)

θt is obtained by correcting the previous estimate θt−1. Once we have the recursive expression,
we can update the conditional variance by setting σ2(Xt) = β2

t /αt in (19).
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