Skip to content
Traffic Graph Convolutional Recurrent Neural Network
Jupyter Notebook Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
Code_V1
Code_V2 Update HGC_LSTM & Experiments.ipynb Jul 19, 2019
Images
LICENSE Create LICENSE Oct 6, 2019
README.md Update README.md Dec 11, 2019

README.md

Traffic Graph Convolutional Recurrent Neural Network

A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting


Extended version of High-order Graph Convolutional Recurrent Neural Network

2nd version of the TGC-LSTM Model Structure

alt text

  • The 2nd version of the structure of Traffic Graph Convolutional LSTM (TGC-LSTM).
    • equation is the K-th order adjacency matrix
    • equation is the Free Flow Reachability matrix defined based on the network physical topology information.
  • The traffic graph convolution module is designed based on the physical network topology.
  • The code of this model is in the Code_V2 folder.
    • Environment (Jupyter Notebook): Python 3.6.1 and PyTorch 0.4.1
    • The code contains the implementations and results of the compared models, including LSTM, spectral graph convolution LSTM, localized spectral graph convolution LSTM.

1st version of the High-order Graph Convolutional Recurrent Neural Network Structure

drawing

  • The 1st version of Traffic Graph Convolutional LSTM.
  • The code of this model is in the Code_V1 folder.
    • Environment: Python 3.6.1 and PyTorch 0.3.0

Dataset

The model is tested on two real-world network-wide traffic speed dataset, loop detector data and INRIX data. The following figure shows the covered areas. (a) Seattle freeway network; (b) Seattle downtown roadway network.

drawing

Check out this Link for looking into and downloading the loop detecotr dataset. For confidentiality reasons, the INRIX dataset can not be shared.

To run the code, you need to download the loop detector data and the network topology information and put them in the proper "Data" folder.


Experimental Results

Validation Loss Comparison Chart & Model Performance with respect to the number of K

drawingdrawing

For more detailed experimental results, please refer to the paper.


Visualization

Visualization of graph convolution (GC) weight matrices (averaged, K=3) & weight values on real maps

drawing

drawing


Reference

Please cite our paper if you use this code or data in your own work: Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting

Hope our work is benefitial for you. Thanks!

@article{cui2019traffic,
  title={Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting},
  author={Cui, Zhiyong and Henrickson, Kristian and Ke, Ruimin and Wang, Yinhai},
  journal={IEEE Transactions on Intelligent Transportation Systems},
  year={2019},
  publisher={IEEE}
}
You can’t perform that action at this time.