Random Erasing Data Augmentation
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
models Fix error for Python 3 Jul 19, 2018
utils Update transforms.py Dec 19, 2017
.gitignore Initial commit Sep 15, 2017
README.md Update README.md Aug 2, 2018
cifar.py modified: README.md Sep 25, 2017
fashionmnist.py modified: README.md Sep 25, 2017
transforms.py Update transforms.py Jan 13, 2018

README.md

Random Erasing Data Augmentation

===============================================================

This code has the source code for the paper "Random Erasing Data Augmentation".

If you find this code useful in your research, please consider citing:

@article{zhong2017random,
title={Random Erasing Data Augmentation},
author={Zhong, Zhun and Zheng, Liang and Kang, Guoliang and Li, Shaozi and Yang, Yi},
journal={arXiv preprint arXiv:1708.04896},
year={2017}
}

Thanks for Marcus D. Bloice, Marcus D. Bloice reproduces our method in Augmentor. Augmentor is an image augmentation library in Python for machine learning.

Original image Random Erasing
Original Original

Other re-implementations

[Python Augmentor]

[CamStyle]

[Keras]

[Person_reID_baseline + Random Erasing + Re-ranking]

Installation

Requirements for Pytorch (see Pytorch installation instructions)

Examples:

CIFAR10

ResNet-20 baseline on CIFAR10: python cifar.py --dataset cifar10 --arch resnet --depth 20

ResNet-20 + Random Erasing on CIFAR10: python cifar.py --dataset cifar10 --arch resnet --depth 20 --p 0.5

CIFAR100

ResNet-20 baseline on CIFAR100: python cifar.py --dataset cifar100 --arch resnet --depth 20

ResNet-20 + Random Erasing on CIFAR100: python cifar.py --dataset cifar100 --arch resnet --depth 20 --p 0.5

Fashion-MNIST

ResNet-20 baseline on Fashion-MNIST: python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20

ResNet-20 + Random Erasing on Fashion-MNIST: python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20 --p 0.5

Other architectures

For ResNet: --arch resnet --depth (20, 32, 44, 56, 110)

For WRN: --arch wrn --depth 28 --widen-factor 10

Our results

You can reproduce the results in our paper:

 CIFAR10 CIFAR10 CIFAR100 CIFAR100 Fashion-MNIST Fashion-MNIST
Models  Base. +RE Base. +RE Base. +RE
ResNet-20  7.21 6.73 30.84 29.97 4.39 4.02
ResNet-32  6.41 5.66 28.50 27.18 4.16 3.80
ResNet-44  5.53 5.13 25.27 24.29 4.41 4.01
ResNet-56  5.31 4.89 24.82 23.69 4.39 4.13
ResNet-110  5.10 4.61 23.73 22.10 4.40 4.01
WRN-28-10  3.80 3.08 18.49 17.73 4.01 3.65

NOTE THAT, if you use the latest released Fashion-MNIST, the performance will slightly lower than the results reported in our paper. Please refer to the issue.

If you have any questions about this code, please do not hesitate to contact us.

Zhun Zhong

Liang Zheng