
Tuya uses a private cluster (0xEF00 or 61184) which they use to set and report data point values.
These datapoints (DPs) values are defined each particular device: I've attached an Excel file Thomas
has sent me earlier, which contains the configured datapoints for this device and their values.
Accessing them requires you to use their privately defined commands and payloads, which are
defined in their documentation:

1. Zigbee Connection Standard-TuyaOS-Tuya Developer

a. TY_DATA_ REQUEST command is used to write data point values
b. TY_DATA_REPORT command is used by the thermostat to report a data point value to

the gateway (marked as ` directionToClient`).
c. The “DP Data Format” is important, note that all number are transferred as

Big-Endian.
d. TUYA_MCU_SYNC_TIME to set the thermostat time. Needs to have both UTC Unix

timestamp in seconds and that same timestamp but then adjusted to the local
timezone.

2. Serial Communication Protocol-Documentation-Tuya Developer

a. This mostly defines the Data Unit (DU) format which becomes part of the Zigbee
command payload.

b. In specific, the different data types are interesting, such as boolean, values & enum.

In short, you can set a datapoint value by using the `TY_DATA_REQUEST` command (0x0 or 0), with as
payload a sequence number and a data unit. And yes, I agree that the command name is confusing.
Below is how I defined the `TY_DATA_REQUEST` command for the Homey platform. Note that this is a
TS abstraction, but the defined `args` are serialized into their bitwise representation and pasted after
each other.

 dataRequest: {
 id: 0x0,
 frameControl: ['clusterSpecific', 'disableDefaultResponse'],
 args: {
 sequenceNumber: ZCLDataTypes.uint16,
 dataPoint: ZCLDataTypes.uint8,
 dataType: ZCLDataTypes.uint8,
 length: ZCLDataTypes.data16,
 data: ZCLDataTypes.buffer,
 },
 },
As an example, this is the helper function I use on the Homey platform to read/write a value data
type, which is basically a 32 bit unsigned integer:

 public readData32(data: Buffer): number {

 return data.readUInt32BE();

 }

 public async writeData32(dataPoint: number, value: number): Promise<void> {

https://developer.tuya.com/en/docs/iot-device-dev/tuya-zigbee-universal-docking-access-standard?id=K9ik6zvofpzql
https://developer.tuya.com/en/docs/iot/tuya-cloud-universal-serial-port-access-protocol?id=K9hhi0xxtn9cb#StatusDataType

 const data = Buffer.alloc(4);

 data.writeUInt32BE(value, 0);

 this.debugger('Writing uint32 value', data);

 return this.cluster.dataRequest({

 sequenceNumber: this.transactionId++,

 dataPoint,

 dataType: TuyaDataType.Value,

 length: 4,

 data,

 });

 }

The final part is the part I struggled the most with: you want to receive reports from the thermostat
so you get the changes made on the thermostat self in your smarthome gateway. It appears that the
thermostat does not start reporting these data points values by itself, but there is trick to do so. You
simply need to make a “magic” request to the basic cluster (0x0 or 0), and request a couple of its
properties in a single query. I haven’t confirmed whether the attribute order is important, but let us
assume it is.

● manufacturerName (0x4)
● zclVersion (0x0)
● appVersion (0x1)
● modelId (0x5)
● powerSource (0x7)
● attributeReportingStatus (0xFFFE)

The thermostat now believes it is connected with the Tuya gateway and it will now start reporting all
data point values on the Tuya private cluster (0xEF00 or 61184) regularly (at least once a minute or
so, or promptly after a change has been made). The reports will come in a `TY_DATA_REPORT`
command (0x2 or 2), but not the `directionToClient` flag: it might need a different approach for your
integration

- Følgende datapunkter

DP ID Data Point (DP) Identifier Data Transfer Type Data Type Properties

1 Switch switch Send and Report bool

2 Mode mode Send and Report enum
Enum Value: 0, 1, 2, 3,
4

16 Set temperature temp_set Send and Report value

Value Range: 5-35,
Pitch: 1, Scale: 0,
Unit:℃

24 Room temperature temp_current Report Only value

Value Range: 0-99,
Pitch: 1, Scale: 0,
Unit:℃

28 Temperature correction temp_correction Send and Report value

Value Range: -9-9,
Pitch: 1, Scale: 0,
Unit:℃

30 Child lock child_lock Send and Report bool

101 地面温度 TempFloor Report Only value

Value Range: 0-99,
Pitch: 1, Scale: 0,
Unit:℃

102 传感器类型 SensorType Send and Report enum Enum Value: 0, 1, 2

103 启动温差 TempActivate Send and Report value

Value Range: 1-9,
Pitch: 1, Scale: 0,
Unit:℃

104 负载 LoadStatus Report Only bool

105 编程 TempProgram Send and Report raw

106 防开窗 OpenWindow Send and Report bool

107 高温保护 MaxProtectTemper Send and Report value

Value Range: 20-95,
Pitch: 1, Scale: 0,
Unit:℃

199 产品序列号 SN Report Only string

- Zigbee Connection Standard-TuyaOS-Tuya Developer.
o TY_DATA_ REQUEST command is used to write data point values
o TY_DATA_REPORT command is used by the thermostat to report a data point value to

the gateway (marked as ` directionToClient`).
o The “DP Data Format” is important, note that all number are transferred as

Big-Endian.
o TUYA_MCU_SYNC_TIME to set the thermostat time. Needs to have both UTC Unix

timestamp in seconds and that same timestamp but then adjusted to the local
timezone.

- The “magic” attribute read to enable the automatic data point reporting by the thermostat.
The gateway should request the following properties (possibly in this order, but in a single
request) from the basic cluster on device initialisation

o manufacturerName
o zclVersion
o appVersion
o modelId
o powerSource
o attributeReportingStatus

Basic cluster:

https://developer.tuya.com/en/docs/iot-device-dev/tuya-zigbee-universal-docking-access-standard?id=K9ik6zvofpzql

 NWK Key Sequence Number: 0
NWK Payload: (23 bytes)
 APS Header: 0xB80101040000FF40
 Frame Control: 0x40
 Destination Endpoint: 0xFF
 Cluster ID: [0x0000] General: Basic
 Profile ID: [0x0104] ZigBee Home Automation
 Source Endpoint: 0x01
 APS Counter: 184
 APS Payload: (15 bytes)
 ZCL Header: 0x001C10
 Frame Control: 0x10
 Transaction Sequence Number: 28
 General Command Frame: [0x00] Read Attributes
 ZCL Payload: (12 bytes)
 Attribute ID: [0x0004] Manufacturer Name
 Attribute ID: [0x0000] ZCL Version
 Attribute ID: [0x0001] Application Version
 Attribute ID: [0x0005] Mode ID
 Attribute ID: [0x0007] Power Source
 Attribute ID: [0xFFFE] Reserved

