-
Notifications
You must be signed in to change notification settings - Fork 6
/
t.go
168 lines (154 loc) · 3.28 KB
/
t.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright 2018 The ZikiChombo Authors. All rights reserved. Use of this source
// code is governed by a license that can be found in the License file.
package lpc
import (
"log"
"math"
)
const eps = 1e-12
// T holds states for doing linear predictive coding of a given order.
type T struct {
rs []float64
k []float64
alpha []float64
}
// New returns a new linear predictive coder.
func New(order int) *T {
return &T{
rs: make([]float64, order+1),
k: make([]float64, order+1),
alpha: make([]float64, order+1)}
}
// Order returns the order of p.
func (p *T) Order() int {
return len(p.rs) - 1
}
// Model causes p to learn coeficients for d, returning
// the model error.
func (p *T) Model(d []float64) float64 {
err := p.levDurb(d)
return err
}
// State returns an lpc state for incrementally predicting
// and synthesizing values according to the model in p.
func (p *T) State(seed []float64) *State {
order := p.Order()
st := &State{
hist: make([]float64, order),
alpha: make([]float64, order)}
copy(st.hist, seed)
copy(st.alpha, p.alpha[1:])
half := order / 2
end := len(st.alpha) - 1
for i := 0; i < half; i++ {
st.alpha[i], st.alpha[end-i] = st.alpha[end-i], st.alpha[i]
}
return st
}
// Residue applies the model to d and for d[p.Order():]
// replaces the value of the input with the error (aka residue)
// of the model.
func (p *T) Residue(d []float64) {
order := p.Order()
for i := len(d) - 1; i >= order; i-- {
iModel := 0.0
for o := 1; o <= order; o++ {
iModel += p.alpha[o] * d[i-o]
}
d[i] -= iModel
}
}
// Restore restores d if d[p.Order():] is a residue generated
// from d[:p.Order()].
func (p *T) Restore(d []float64) {
order := p.Order()
N := len(d)
for i := order; i < N; i++ {
acc := 0.0
for o := 1; o <= order; o++ {
acc += p.alpha[o] * d[i-o]
}
d[i] += acc
}
}
// R0 returns the zero autocorrelation value, useful
// for normalizing error.
func (p *T) R0() float64 {
return p.rs[0]
}
func (p *T) ld2(d []float64) float64 {
p.autoCorr(d)
err := p.rs[0]
r := 0.0
order := p.Order()
for i := 1; i <= order; i++ {
r = -p.rs[i]
for j := 1; j < i; j++ {
r -= p.alpha[j] * p.rs[i-j]
}
r /= err
p.alpha[i] = r
err *= (1.0 - r*r)
for j := 1; j < i/2; j++ {
t := p.alpha[j]
p.alpha[j] += r * p.alpha[i-j]
p.alpha[i-j] += r * t
}
if i%2 == 1 {
p.alpha[i/2] += p.alpha[i/2] * r
}
if err == 0.0 {
log.Printf("need to limit order...")
}
}
for i := 1; i <= order; i++ {
p.alpha[i] = -p.alpha[i]
}
return err
}
func (p *T) levDurb(d []float64) float64 {
p.autoCorr(d)
err := p.rs[0]
if math.Abs(err) < eps {
err = 1.0 / eps
}
order := p.Order()
alphaTmp := make([]float64, len(p.alpha))
i := 1
for i <= order {
k := p.rs[i]
for j := 1; j < i; j++ {
fub := p.alpha[j] * p.rs[i-j]
k -= fub
}
k /= err
if math.Abs(k) > 1.0 {
k = 1.0 / k
}
alphaTmp[i] = k
for j := 1; j < i; j++ {
alphaTmp[j] -= k * p.alpha[i-j]
}
copy(p.alpha, alphaTmp[:i+1])
err *= (1.0 - k*k)
i++
if math.Abs(err) < eps {
break
}
}
p.rs = p.rs[:i]
return err
}
func (p *T) autoCorr(d []float64) {
N := len(d) - p.Order()
for i := 0; i < N; i++ {
u := d[i]
for j := 0; j < len(p.rs); j++ {
v := d[i+j]
p.rs[j] += u * v
}
}
for i := range p.rs {
p.rs[i] /= float64(N)
}
}