SNARK intro.

|C| = # gates in C (Circuit)

& means sample uniformly from the finite field.
Structured vs. unstructured circuits :

An unstructured circuit: a circuit with arbitrary wires
A structured circuit :

A structured circuit:

1ndul

> MM = M

1ndino

M is often called a virtual machine (VM) -- one step of a processor

structured circuit is fixed, and input just repeated over and over again. also called Virtual Machine .

Some SNARK techniques only apply to structured circuits
NARK:

NARK means Non-interactive ARgument of Knowledge.

Public arithmetic circuit: C(x, w) — F

public statement in F" —J L

Preprocessing (setup): S(C) — public parameters (pp, vp)

secret witness in F™

C : circuit
z : public statement

w : secret withess

Preprocessing is alse called setup, it takes a description of the circuit as input, then it outputs these public parameters, which we'll
call pp & vp :

pp means public params for Prover.

vp means public params for Verifier.

NARK :

pp, X, W

proof T that C(x,w) =0

accept or
reject

Prover and Verifier will each take their own inputs :

prover takes the z (public statement) & pp (public (circuit)params) & the Witness
Verifier takes vp & z (public statement)

Then the prover is trying to convince the verifier that it knows some w such that C(z, w) =0
NARK Definition : A pre-processing NARK is a triple (S, P, V) , where :

S(C) — generate the Circuit's pp & wvp as public params for P & V.
P(pp, z,w) — : proof =



V(vp, z, ) — 1 Accept or Reject .
All algs. and adversary have access to random oracle .

SNARK:
SNARK: means a Succinct ARgument of Knowledge
A succient preprocessing NARK is a triple (S, P, V) , where :

S(C) — generate the Circuit's pp & wvp as public params for P & V.

P(pp, z,w) — : short proof = ;
which means len(w) = sublinear(|w|)
We require that the length of the proof is sublinear in the length of w.

V(vp, z, ) — : fast to verify ;
time(V) = O,(|z|, sublinear(|C|))
@ the running time of the verifier should be sublinear in the size of the circuit. So the verifier cannot simply rerun the circuit C
@ It has to be linear in the statement z because the verifier has to at least read the statement z in order to know what it's
verifying. So we allow it to be linear in z. haha.

example sublinear: like f(n) = v/n .
in reality we want to be more greedy, so a SNARK in practice actually is going to be strongly succinct.
A strongly succient preprocessing NARK is a triple (S, P, V) , where :

S(C) — generate the Circuit's pp & wvp as public params for P & V.
P(pp, z,w) — : shorter proof « ;

which means len(w) = O,( log|C]| )
V(vp, z, ) — : fast to verify ;
time(V) = O,(|z|, log|C]|)

len(r) = O,(log|C]) :

the time to verify should be at most logarithmic in the size of the circuit.
So we get very, very short proof even if we have very, very large circuits.

time(V) = Ox(|z|, log|C]| ) :
you can realize the verifier actually doesn't even have time to read the circuit C !!!! it has to operate in time that's logarithmic and the
size of the circuit C. ( Verifier EZ;& B8] iZEREE M B IR)
So the verifier doesn't even know what the circuit C is. So how can it possibly verify a statement if it doesn't know what the underlying
circuit is? ( Verifier 08 B2 4889, XAZURIEIIEIE ? & preprocessing )

And this is exactly why we need the preprocessing step. preprocessing is in some sense it reads the entire circuit C and it generates
a summary of the circuit C for the verifier.

zk-SNARK :

SNARK : a NARC (complete and knowledge sound) that is succinct
zk=SNARK : a SNARK that is also zero knowledge

intuitively meaning that the SNARK proof reveals nothing about the witness.

The trivial SNARK is not a SNARK :



(@) Prover sends w to verifier,
(b) Verifier checksif C(x,w) = 0 and accepts if so.

Problems with this:

(1) w might be long: we want a “short” proof
(2) computing C(x,w) may be hard: we want a “fast” verifier

(3) w might be secret: prover might not want to reveal w to verifier

Types of preprocessing Setup

The preprocessing step often will take some random bits, they will use to generate parameters ( pp; pv)
Setup for circuit C:  S(C;r) — public parameters (pp, vp)
random bits

There are 3 types of setup :

@ trusted setup per circuit :

1. the setup procedure has to be run afresh for every circuit that we want to preprocess.

2. And more importantly, it's really critical that the random bits r are kept secret from the prover. In particular, if the prover ever learns these
random bits r , that it will allow it to prove false statements

3. that allows the prover to actually create money or steal, and so on.

@ trusted but universal (updatable) setup :

trusted but universal (updatable) setup: secret r is independent of C
S = (Sinit: Sindex): lSinit(A; r) — gp, ISindex(gp» C) = (pp, Up).

one-time setup, secret r deterministic algorithm

split the set of procedure into 2 different procedures Sinit and Sindex.

Sinit is something that's run once and for all. generates global parameter gp

gp RS, v #REEER
@ transparent setup : S(C) doesn't use secret data (no trusted setup)

Significant progress in recent years :

size of e L. post-
verifier time setup 5
proof T guantum?
’ ~ 200 Bytes ~ 1.5ms trusted per
Ctotig S 0;(1) 0, (1) circuit il
. ~ 400 Bytes ~3ms universal
PlonkaManin 0,(1) 0;(1) trusted setup 4G
~ 1.5 KB ~ 3 sec
Bulletproofs transparent no
P 0, (log|CI) 0,(ICD) P
~ 100 KB ~ 10 ms
STARK transparent es
0;(log? [C]) 0 Qlog? |C]) P Y

Al of these Prover Time is almost linear in |C|



Definitions: knowledge soundness
RIEREXE D ??
Rormally: (S, P, V) is (adaptively) knowledge sound for a circuit C if
for every poly. time adversary A =(A,, A;) such that
gp Sl ), (G, x, st) = Ag(gp), (PP, VD) ¢ Singex(C), T = Ay(pD, X, st):
Pr[ V(vp, x, ) = accept ] >1/10°  (non-negligible)

there is an efficient extractor E (that uses A) s.t.

gp + Sl ), (C, x, st) « Ag(gp), w +— E(gp, C, x):
Pr[ C(x,w)=0]>1/106 — ¢ (for a negligible €)

General paradigm (@G Hl)

A functional

commitment scheme M
A compatible
interactive oracle proof (IOP)

the functional commitment scheme : is a cryptographic object, meaning that its security depends on certain cryptographic
assumptions. (B— 1M EEF R, HL2MEURTBEFRIR)

the interactive oracle proof : IOP actually is an information theoretic object ({5 2i1833%), so that we can prove security of an IOP
unconditionally without any underlying assumption. (E LA TR ATE IR B AR EFRISHVIER T & MAMIIER I0P M2 1E)

SNARK for

general circuits

Later we will explain what each concept is.
Commitment
So a commitment scheme is made up of 2 algorithms : commit and verify

Commit(m, r) — com (r chosen at random)

Verify(m, com, r) — Accept or Reject .

At a later time, the committer can open up the commitments by revealing the message m and r
And the verifier will run a verification algorithm that outputs either accept or reject.

Commitment schemes need to satisfy 2 properties :

binding : cannot produce com and two valid openings for com

it means once you've committed, you're bound to the message you committed.
hiding : com reveals nothing about commited data.

SO com reveals nothing about the message m.

Polynomial Commitment

Schwartz—Zippel lemma Bg.



comg, com, f,g
Prover P(pp, x, w)

r « H(x) l comg, com, |

ye—fr), yeg) , Verifier V(vp, x)
y, y ’ nfl ng -’
generate g, T, » accept orreject

{£F8 Fiat-Shamir transform XA AHIERER, : Hash(comy, com,)

Attention : this is just a SNARK, but not a zk-SNARK, because the verifier learns the value of the polynomials f and g at the point r . So
the verifier learns something that it didn't know before.

IOP (Interactive Oracle Proof)

Goal: boost functional commitment = SNARK for general circuits
( functional commitment 2—# T B4, IOP MEEA M2 FHE@EA SNARK Proof. )

Example: polynomial commitment scheme for IFéSd) [X]

l Poly-IOP

SNARK for any circuit C where |C| < d

Example: polynomial commitment scheme for F>¢ [X] (3 F, LEYIRZ T (degree < d ), #3# polynomial commitment scheme )
2277 Poly-IOP &1, RILARE! :
SNARK for any circuit C where |C| < d ( for arbitrary circuit C , 318 C BIFENTF d , AT LAH3E SNARK IERR )

An Example Poly-IOP

This will be an example of an IOP(3XE T iERR), that's built on top of a polynomial commitment scheme. It's a bit contrived (A&, B8 E

HHERIELF)

Prover P(pp,X,W) CX,W)=0 & XSWCF, Verifier V(vp,X)
9(2) = xex(Z — x)
f@) = llwew(@Z —w) f q rex
> $
r e [y

9(Z) = [lxex(Z — x)
< (i) query w« f(r)
q(Z)=f/g € ]F;_d) [X] = g(Z)is a factor of f(Z) (i) query q' « q(r)
(iii) compute x « g(r)
(iv) acceptif x-q' =w

Knowledge soundness: V accepts = f=g-q whp = XCSW

Extractor(X,f,q,r): output witness W by computing all roots of f(Z)

Prover wants to prove: X ¢ W € T, , it can be represented as C(X, W) =0
Prover fIFBEE W, X #i& 2 M2 £(2) M 9(2)

r 2R XEBH r FEARNEY Fiat-shamir ¥4 AERE

IOP Protocols



Poly-10P Multilinear-10P Vector-10P
Sonic, Spartan, STARK,
Marlin, Clover, Breakdown,
Orion, ... - -
Plonk, ... AT, or non-interactive
U @ @ via Fiat-Shamir
Poly-Commit Multilinear-Commit Merkle

SNARKS in practice

DSL
program

Circom,
ZoKrates,

friend'y baCkend
format prover

heavy
computation

circuit,

Leo,

Zinc,
Cairo,
Noir,

R1GS,

VY
byte code

domain specific
language

Y WwWithess

You will likely do your programming projects in Circom (domain specific languages, DSL) to construct SNARK circuits.

And what this compiler does is it compiles the given program into a SNARK friendly format like a circuit / R1CS / EVM byte code ..
and that will be the actual input to the SNARK backend system.

Backend Prover: where takes public statement z and the witness w and produces the proof = as output.

IOP(RE AR & 4t)F1Polynomial Commitment(Z IR &%) < B < 2!

Polynomial Commitment &—455rARE S R, B FAE—MERB S,

IOPAYFIEBAA S WIEE #1TRE, MMEIRIEE SEBRIBE ARTMEE M REENEREEMED,
IOPEE MR T EMEIE AR, FlaE EEAEIF,10PF]IA T Polynomial CommitmentiXFhiEFraIEIE S =,
WX MEIE A R IEAA R DURE— MR B Z IR, MAEE 2 MR RN,

EIOPH N E T MBI R E MEIERARTEEMEX M REN SR,
WNRIEFAABESS T BRI E TR EHFRIATE E18, MILA TIEA AR SEMEX T 2R .

J&Polynomial Commitment5I10PE &, il A LASE B IR 21 2 TN A X 1B BRI IEIIE

BT &S 138Polynomial Commitment/5 X, B IAY RIOPETAEIT NS, R AL B — AR IR FNIE G A0IERR.

BE53RI5, Polynomial CommitmentgIOP1R M T IERE Z A RIARNFR. MEBLS U MEE—ROREXIEARS.



