Skip to content
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
Python
Branch: master
Clone or download
Latest commit a68011d Aug 12, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
assets Add files via upload Jul 29, 2019
dataset/YOUR_DATASET_NAME Add files via upload Jul 31, 2019
LICENSE Initial commit Jul 29, 2019
README.md Update README.md Jul 31, 2019
UGATIT.py Update UGATIT.py Aug 12, 2019
dataset.py Add files via upload Jul 31, 2019
main.py Update main.py Aug 7, 2019
networks.py Update networks.py Aug 7, 2019
utils.py Add files via upload Jul 31, 2019

README.md

U-GAT-IT — Official PyTorch Implementation

: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

Paper | Official Tensorflow code

The results of the paper came from the Tensorflow code

U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
Junho Kim (NCSOFT), Minjae Kim (NCSOFT), Hyeonwoo Kang (NCSOFT), Kwanghee Lee (Boeing Korea)

Abstract We propose a novel method for unsupervised image-to-image translation, which incorporates a new attention module and a new learnable normalization function in an end-to-end manner. The attention module guides our model to focus on more important regions distinguishing between source and target domains based on the attention map obtained by the auxiliary classifier. Unlike previous attention-based methods which cannot handle the geometric changes between domains, our model can translate both images requiring holistic changes and images requiring large shape changes. Moreover, our new AdaLIN (Adaptive Layer-Instance Normalization) function helps our attention-guided model to flexibly control the amount of change in shape and texture by learned parameters depending on datasets. Experimental results show the superiority of the proposed method compared to the existing state-of-the-art models with a fixed network architecture and hyper-parameters.

Usage

├── dataset
   └── YOUR_DATASET_NAME
       ├── trainA
           ├── xxx.jpg (name, format doesn't matter)
           ├── yyy.png
           └── ...
       ├── trainB
           ├── zzz.jpg
           ├── www.png
           └── ...
       ├── testA
           ├── aaa.jpg 
           ├── bbb.png
           └── ...
       └── testB
           ├── ccc.jpg 
           ├── ddd.png
           └── ...

Train

> python main.py --dataset selfie2anime
  • If the memory of gpu is not sufficient, set --light to True

Test

> python main.py --dataset selfie2anime --phase test

Architecture


Results

Ablation study

User study

Comparison

Citation

If you find this code useful for your research, please cite our paper:

@misc{kim2019ugatit,
    title={U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation},
    author={Junho Kim and Minjae Kim and Hyeonwoo Kang and Kwanghee Lee},
    year={2019},
    eprint={1907.10830},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Author

Junho Kim, Minjae Kim, Hyeonwoo Kang, Kwanghee Lee

You can’t perform that action at this time.