
Zowe “app store”
A pluggable network package manager registry architecture for “zwe”

Initial concept

• “zwe” can install packages of standardized format when provided
their local path

• What if the path could be substituted for a query to an off-the-shelf
package manager to retrieve the same package
• Same zowe action takes place, but getting files on disk becomes more

powerful

• Most package managers adhere to common functions, “install”,
“upgrade”, “uninstall”, “search”. These would be useful in “zwe”.

• Most package managers do automatic dependency resolution
• Installing becomes easier if you can install 3 dependencies in 1 operation.

Which package managers are good on z/OS?

• z/OS requirements may rule out some technologies. We need:
• Custom package registries. Offline access as an option. Getting files from

untrusted internet places will not work. Curated internal networks are ideal,
so they must be easy to create.

• Simple to install – common dependencies and few of them

• A version that exists for z/os

• Can handle file tagging

• SMPE will continue to exist. How does another package manager coexist?

Which package managers are good on z/OS?

• Candidate package managers: npm and conda

• npm:
• Most already have it, due to nodejs usage in zowe
• Can setup LAN registries quickly (I did for the demo!)
• Can namespace different packages to different registries (get company A’s product from

company A’s registry, and product B from B?)
• Assumes library is nodejs code… but accepts anything really.
• Assumes ASCII…. But a package can just be a pax archive!

• conda:
• Python-based, but python already on the platform
• Also easy LAN registry setup
• Multiple registries can coexist any way you want – even more capable than npm
• Does not assume package language
• Does not assume ASCII, but again a pax archive is fine too!

Initial
implementation
concept

What actually happened

Innovation week end result

• New “zwe” commands and functionality. “zwe components” can
delegate to a “zowe extension registry handler”
• npm as a handler is 100% functional in demo
• No blockers on conda, it’s 25% done, just ran out of time this week ☺

zwe

init…

components

install -c zowe.yaml --component (path or query) [--handler npm] [--registry https//localhost:1234/] [--dry-run]
search -c zowe.yaml --component (query) [--handler npm] [--registry https//localhost:1234/]
uninstall -c zowe.yaml --component (name) [--handler npm] [--registry https//localhost:1234/] [--dry-run]
upgrade -c zowe.yaml --component (name|’all’) [--handler npm] [--registry https//localhost:1234/] [--dry-run]

Innovation week end result
• Any “zwe components” command can accept --handler and --registry to state which handler or registry to use for a

command.
• Defaults specified in zowe.yaml within zowe.extensionRegistry

• Install
• Can accept a path or component name. If path, skips package manager. Existing behavior, no code change.

• If component name, delegate to package manager. New “registry handler” API

• Package managers may install more than 1 object if dependencies needed.
• Zwe upgraded to handle this. Can do multiple install operations with a single input.

• Upgrade
• Takes the name of an already installed component, or “all”
• Upgrades all existing packages related to the given name, if dependencies exist
• Essentially “install”, but for existing things.

• Uninstall
• Takes name of already existing component
• Removes the component, disables it in zowe.yaml, but doesn’t remove zowe.yaml customizations in case of future re-install
• Package manager tracks if a package was only installed for the purpose of dependency, so uninstall may remove dependencies

automatically, 1 uninstall may remove 3 things.

• Search
• Takes a query. Can be a component name, id, tag, whatever a package manager accepts. Can be wildcard, can be versioned.
• Prints out whatever the package manager prints out, whatever format.

Handler API – new code

• npm and conda work in zwe by “zowe extension registry handlers”

• Handlers can be built-in or 3rd parties can plug-in. They are found by giving their
path in zowe.yaml config.

• They are ECMAScript2020-compatible JavaScript module code (NOT nodejs), run
in the zwe scripting environment.

• Run with input/output environment variables.

• Input: ZWE_zowe_extensionDirectory
• ZWE_CLI_PARAMETER_REGISTRY: In whatever format the handler understands
• ZWE_CLI_REGISTRY_COMMAND: install | upgrade | uninstall | search
• ZWE_CLI_REGISTRY_DRY_RUN: true | false
• ZWE_CLI_PARAMETER_COMPONENT_NAME: A string

• Output: ZWE_CLI_PARAMETER_COMPONENT_FILE: A CSV of one or more paths
(to install) or names (to uninstall), or ‘null’ if failure or nothing to do.

https://github.com/zowe/zowe-install-packaging/blob/2751a194048f0050fc7ebcaeaac8c96a36106991/bin/commands/components/handlerutils.ts

The code

• https://github.com/zowe/zowe-install-packaging/pull/2980

• Handler API

• npm handler

• schema update

This presentation is uploaded to the PR.

https://github.com/zowe/zowe-install-packaging/pull/2980
https://github.com/zowe/zowe-install-packaging/blob/2751a194048f0050fc7ebcaeaac8c96a36106991/bin/commands/components/handlerutils.ts
https://github.com/zowe/zowe-install-packaging/blob/2751a194048f0050fc7ebcaeaac8c96a36106991/bin/commands/components/npm.ts
https://github.com/zowe/zowe-install-packaging/pull/2980/files#diff-a447288c9a6790a3b4b995f3f41ca307b188d0a50bb1b44d9a9d5003e2857c6c

Futures

• Why not add it into Zowe right away?
• It does nothing if not configured, adds no chores or dependencies

• If nodejs present, configuration only takes a moment, and even registries are
easy to set up on-prem: https://blog.bitsrc.io/how-to-set-up-a-private-npm-
registry-locally-1065e6790796

• Setup zowe’s own registry, and publish some stuff!

• Conda support will take a more few days, its much the same code to
write as npm

• “real app store” means making a UI. Putting a UI on top of zwe and
putting that in the Desktop and APIML seem like exciting next steps.

https://blog.bitsrc.io/how-to-set-up-a-private-npm-registry-locally-1065e6790796

Futures 2

• More complex features could be added including
• Ability for zwe to tell registry handler about components installed outside the

package manager, so that packages can have dependencies satisfied
regardless

• zwe should check manifest.yaml (not pkg manager data) to see if a
component depends upon a core component, and throw error if the core
component is missing/disabled.

• If a package manager can UNINSTALL packages during an upgrade (cleanup
no-longer-needed dependencies) then zwe must turn “upgrade” into a hybrid
install-and-uninstall operation

• Test multiple registries coexisting… it might “just work” already.

