
MENG INDIVIDUAL PROJECT

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

Performance-Test-Driven Development for
WebApps

Author:
Zhai Zirun

Supervisor:
Dr Robert Chatley

June 22, 2023

Submitted in partial fulfillment of the requirements for the MEng Computing degree of Imperial
College London

Abstract

Performance optimization is critical for websites as it directly impacts user experience, revenue, and
search engine rankings. Synchronous and asynchronous Javascript affect page loading time signifi-
cantly. However, existing performance testing tools rely on measuring execution times of deployed
systems, and are hence unsuitable for early-stage unit testing. Furthermore, these tools have high
turnaround times, hindering continuous performance testing even after deployment. No previous
tool exists for early-stage performance testing in front-end web-app development, resulting in tech-
nical debt and suboptimal final products. The development of a pre-deployment performance testing
tool with fast turnaround times is therefore crucial.

This project proposes QuiP, a novel tool for performance testing Javascript front-end web-app code
before deployment. QuiP extends the Jest testing framework to enable quick performance testing.
It utilizes performance models for efficient runtime estimation in virtual time. To enable QuiP to
analyze asynchronous code using the Async hooks API, this project also proposes a novel systematic
search that identifies deviations between asynchronous dependencies and execution context relation-
ships in Javascript.

QuiP is thus unique in that it can automatically analyze both synchronous and asynchronous code,
which is novel in the field of performance testing before deployment. We demonstrate these capa-
bilities by applying QuiP to the development of the front-end of an example web-app, showcasing
its ability to accurately process complex combinations of asynchronous dependencies. Although only
based on simple performance models, QuiP can predict percentage runtime changes within 20% be-
fore deployment and within 5% after refining with empirical data. QuiP outperforms state-of-the-art
performance measurement tools with a 765% faster turnaround time while minimally impacting Jest
unit test turnaround. These features demonstrate QuiP to be a promising candidate for integration
into continuous unit testing practices for the front-end.

Acknowledgments

I would like to express my gratitude to my supervisor, Dr Robert Chatley, for your invaluable guid-
ance, constant enthusiasm, and insightful ideas throughout this project. Thank you for always having
patience for my questions.

I would also like to thank my parents for their support all these years. I would not be here without
you (literally). Thank you for always helping me do what I want to do, and for inspiring me to be the
best version of myself.

Last but definitely not least, thank you to my friends for helping me laugh through the pain. Special
mention goes to Ethan (my boyfriend) for coming up with the name QuiP.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 2

2 Background 3
2.1 Front-end Performance Testing . 3

2.1.1 Performance metrics . 3
2.1.2 Significance of Javascript in front-end performance 4
2.1.3 Timing of performance testing in development 4

2.2 Existing Tools to Measure Front-end Performance . 5
2.2.1 Javascript Libraries . 5
2.2.2 Google Lighthouse and Google PageSpeed Insights 5
2.2.3 DrAsync . 6

2.3 Current Performance Testing in Test-Driven-Development 7
2.3.1 PerfMock . 8
2.3.2 Estimating performance with performance models 9

2.4 Unit Testing Frameworks in the Front-end . 10
2.4.1 Using Jest . 10
2.4.2 Extending expect . 11
2.4.3 Extending mocks . 12

3 Design and Implementation 13
3.1 Project Design: Extending over Modifying Jest . 14
3.2 Architecture . 14
3.3 Runtime Estimation . 15

3.3.1 Investigating when mocks are called . 15
3.3.2 Estimating mock response time with performance models 16
3.3.3 Attaching models to mocks . 16
3.3.4 Adding up runtimes . 17
3.3.5 Visualizing timelines . 18

3.4 Asynchronous Execution Analysis . 20
3.4.1 Async mocks with different types of execution 21
3.4.2 Async and non-async mocks with different types of execution 24
3.4.3 Nested function calls with different types of execution 27

4 Usage 31
4.1 Checkout architecture . 31
4.2 Writing performance tests with QuiP . 32

4.2.1 Setting up test context and mocks . 32
4.2.2 Writing tests for the checkout view . 33

4.3 Fixing failing performance tests . 35
4.4 Refining tests with empirical data . 36

ii

Table of Contents

5 Evaluation 39
5.1 Evaluating asynchronous dependency parsing by QuiP (RQ1) 40

5.1.1 Serial and concurrent executions . 40
5.1.2 Async and non-async mocks . 41
5.1.3 Nested and non-nested function calls . 41
5.1.4 Summary . 43

5.2 Evaluating runtime predictions (RQ2) . 43
5.2.1 Runtime measurement results . 43
5.2.2 Factors leading to inaccuracy in runtime estimation 45
5.2.3 Summary . 45

5.3 Evaluating predictions of the effect of code changes (RQ3) 45
5.3.1 Runtime measurement results . 46
5.3.2 Accuracy of percentage change estimation despite inaccuracy of runtime esti-

mation . 46
5.3.3 Summary . 47

5.4 Evaluating QuiP’s effect on performance test turnaround time (RQ4) 47
5.4.1 Comparison with current performance testing methods 48
5.4.2 Comparison with current unit testing methods 49
5.4.3 Summary . 49

6 Conclusion and Future Work 50
6.1 Future Work . 50
6.2 Ethical Considerations . 51

iii

Chapter 1

Introduction

1.1 Motivation

Performance optimization is crucial for websites. Faster web pages enhance the satisfaction of users,
which leads to higher traffic and repeat visits. Ultimately, this raises page revenue and search en-
gine rankings [1]. Every 100ms of latency in Amazon’s site costs it 1% of sales [2]. Computational
processes contribute up to 35% of page loading time, with a large proportion being synchronous
and asynchronous Javascript code [3]. However, performance testing is usually not performed in the
early stages of Javascript development [4]. This incurs technical debt and affects the performance of
the end product [5]. Therefore, it would be ideal to conduct performance testing earlier, throughout
development.

The reason why this is not standard practice for the front-end is because performance testing tools
for the front-end, such as Google Lighthouse and DrAsync, currently rely on measurements of the
execution times of deployed systems [6]. However, unit testing should be performed from the start
of development with testing frameworks such as Jest, before the software is deployed [7]. There-
fore, it is currently impossible for early-stage unit tests for the front-end to involve performance
testing tools. Moreover, due to these tools’ reliance on real-time measurements, they require a high
turnaround time [8]. This obstructs continuous performance testing even after deployment.

Motivated by the benefit earlier testing can have on performance, performance testing before deploy-
ment is an active research area. Of great interest is PerfMock, an extension upon the jMock2 mock
object framework for Java that performs runtime estimations based on performance models. This
enables performance unit testing in the back-end with fast turnaround times [9].

In order to process both synchronous and asynchronous Javascript for runtime estimation in the
front-end, the asynchronous dependencies in code need to be detected. Notably, DrAsync adopts the
node.js Async hooks API, which uses the execution context feature of Javascript to dynamically an-
alyze the dependencies between asynchronous deployed code [10]. However, Async hooks could be
leveraged to analyze code before deployment as well.

Therefore, no previous tool exists for testing front-end performance before deployment, especially
with fast turnaround times. To do so involves estimating runtime for both synchronous and asyn-
chronous code without relying on real-time measurements. Existing research can only estimate the
runtime of synchronous code for the back-end (in Java). Hence, novel techniques are expected to
be developed to handle asynchronous dependencies in JavaScript for the front-end, even though the
required libraries (such as the Async hooks API) rely on poorly documented features of JavaScript.
[11]

1

Chapter 1. Introduction

1.2 Objectives

Therefore, this project aims to overcome the current limitation in front-end performance testing, and
develop a novel tool that enables performance testing in front-end Javascript prior to deployment.
It should provide fast turnaround times, which makes it suitable for integration into continuous unit
testing. The more specific objectives of this work are as follows.

• Propose a novel tool for performance testing front-end web-application code before deploy-
ment. It can estimate the effect of synchronous and asynchronous Javascript on runtime, with
short turnaround times.

• Demonstrate how the proposed tool can be used to test the performance of synchronous and
asynchronous Javascript before deployment, by applying it to the development of the front-end
of an example web-app.

• Evaluate the value that the proposed tool adds to current coding practices for the front-end, by
testing its ability to estimate the effect of code on runtime before and after deployment and its
test turnaround time.

1.3 Contributions

The contributions of this project are as follows:

• We develop a novel tool, QuiP, for performance testing JavaScript front-end web-app code
before deployment. QuiP utilizes performance models to estimate runtime, with a focus on
performance optimization rather than estimation accuracy. The design and implementation of
QuiP as an extension to the Jest testing framework are presented in Chapter 3.

• To enable QuiP to analyze asynchronous code, we perform a novel systematic search that iden-
tifies deviations between asynchronous dependencies and execution context relationships in
Javascript. This process, explained in Section 3.4 of Chapter 3, allows us to effectively use the
Async hooks API in QuiP’s implementation.

• QuiP is thus unique in that it can automatically analyze both synchronous and asynchronous
code, which is novel in the field of performance testing before deployment. We demonstrate
this capability by integrating it into the development of the front-end of an example web-app
in Chapter 4.

• We evaluate the accuracy and efficiency of QuiP in Chapter 5 by using it to analyze code from
our example web-app. These tests show that QuiP is capable of:

– Accurately processing complex combinations of asynchronous dependencies in JavaScript,
covering five out of the six considered cases of asynchronous code. It may have slight
limitations in handling specific edge cases within the last case, concurrent executions.

– Predicting the percentage change in runtime after a code change within 20% of the actual
change before deployment, and within 5% after refining performance models with em-
pirical data from deployment. Further accuracy can be achieved with more sophisticated
performance models.

– Outperforming other performance measurement tools (such as Google Lighthouse) with
a 765% faster turnaround time while increasing Jest unit test turnaround time by only
11.3%.

• The project is fully open-source and available to install as a npm package at
https://www.npmjs.com/package/jest-performance-monitor. The project code is available
at https://github.com/zzirun/jest-performance-monitor, which also includes the code
for the examples generated in this work.

2

https://www.npmjs.com/package/jest-performance-monitor
https://github.com/zzirun/jest-performance-monitor

Chapter 2

Background

This chapter provides an overview of the current techniques in performance testing for the front-end,
and links it to unit testing. Section 2.1 explains the performance of front-end web-app code, and
the significance of testing and optimizing it earlier in development. Section 2.2 introduces existing
popular tools to measure performance. These tools have limited functionality before the system can
be deployed, due to their reliance on concrete measurements. Section 2.3 thus presents the state-of-
the-art technique of integrating performance testing into Test-Driven-Development with the PerfMock
study (for Java development in the back-end). It bypasses the need for exact measurements by
estimating performance using performance models, but is incapable of analyzing asynchronous code.
Finally, Section 2.4 introduces Jest, a unit-testing framework for Javascript. This can provide a basis
for our proposed technique of extending Javascript unit testing for performance optimization.

2.1 Front-end Performance Testing

Performance is an integral consideration in software engineering. The performance of front-end web-
app code is often a determining factor in its success [12]. Faster web-apps improve the experience of
its users, raising user satisfaction. This impacts its search engine rankings and user traffic, ultimately
increasing its online revenue [1]. For instance, the BBC observed that they lost 10% of their users with
every second their Page Load Time (PLT) increased by [13]. Developers of web-apps are therefore
motivated to measure performance as part of testing [14].

2.1.1 Performance metrics

While measuring the performance of the back-end may involve factors such as resource utilization,
memory leak detection, and response times, the performance of the front-end can be measured by its
functionality and speed [15]. In particular, we focus on how long users have to spend waiting for the
page to load.

Overall, this is indicated by the page’s PLT. The PLT is defined as the time between when the page is
first requested, and when the DOMLoad event is fired (i.e. when all embedded objects in the page are
fetched and added to its DOM) [3].

More nuanced metrics may also be adopted for further insight on user experience. For example, First
Contentful Paint (FCP) is the time taken for the first element or piece of content on the page to be
rendered. The Total Blocking Time is how long the page is non-responsive for, while it is loading.
Time to Interactive (TTI) is the time it takes for users to be able to interact with the application, and
First Input Delay (FID) measures the response time of the application when the user makes an input
[6].

3

Chapter 2. Background

2.1.2 Significance of Javascript in front-end performance

According to stack overflow, Javascript has held the title of most popular programming language for
10 years running, especially for professional software engineers [16]. This makes it ubiquitous for
front-end development, and it plays a critical role in website performance.

The loading time of web pages is determined by a multitude of factors including its Javascript, due to
the complexity of the loading process. This is illustrated by Figure 2.1 (from [3]). The process begins
when a user creates a request. The Object Loader then downloads the page’s root HTML, which is
then sent to the HTML Parser. Once the HTML Parser receives its first chunk, it begins parsing the
page and downloading its embedded objects. These objects have varying types, but two of them in
particular (Javascript and CSS) require further Evaluation. Thereafter, the Rendering Engine renders
the page on the web browser. The Object Loader is a network process, while the HTML Parser,
Evaluator and the Rendering Engine are computation processes [3].

Figure 2.1: The workflow of a loading page (from [3])

WProf, a profiling tool that investigates the dependencies of a page’s load time, was applied to the
top 200 most visited web pages and 200 random pages from the top million most visited web pages
(according to Alexa). It found that computation processes took a significant amount of time, 35% of
the total PLT. Among these processes, Javascript evaluation took up a high proportion of time. The
work also found that Javascript has been increasingly embedded into web pages [3]. It can be seen
that a web page’s Javascript has great bearing on its performance, and thus performance should be
carefully considered during development.

On the other hand, this may not be universal, as there are optimization techniques that can help
to reduce the impact of Javascript on performance. Firstly, caching reduces computation time, as
browsers tend to cache the intermediate computation steps of web pages [3]. However, this will not
have an effect on the first time users load a page, which could heavily determine if they continue
using it. Google found that 53% of users give up on a mobile site if it takes more than 3 seconds to
load [17]. Therefore it is insufficient to solely rely on caching to improve PLT.

Secondly, Javascript evaluation takes up a significantly reduced fraction of the critical path of page
loading when asynchronous Javascript is used. This is because synchronous Javascript blocks the
HTML parser from parsing further till it is fully evaluated. Asynchronous Javascript removes this
blocker, which helps parsing to take less time [3]. Therefore, developers would be highly motivated
to utilize asynchronous Javascript to optimize performance. Performance testing hence needs to be
accessible for both synchronous and asynchronous Javascript.

2.1.3 Timing of performance testing in development

Performance testing is located in the fourth and last of the Agile Testing Quadrants. This is attributed
to Agile development’s focus on functionality prioritized by (often non-technical) customers. These
customers, on the other hand, often overlook performance as a consideration that developers take
care of independently [18]. Moreover, performance testing tools can only reliably measure the perfor-
mance of deployed systems, and doing so involves a high turnaround time. Thus, developers usually

4

Chapter 2. Background

need to wait till the full software system is deployed to conduct performance testing [4].

However, conducting performance testing this late in development is not ideal. It means that in-
adequate performance is usually only detected when a high amount of technical debt has been ac-
cumulated. It may be expensive to fix this problem as the software system has already been fully
implemented. Any optimizations may require large changes to the design of the system, which is
highly inefficient [5]. It would be problematic if the optimizations were too expensive to perform,
given how instrumental performance is to a web-app. Early performance testing before the software
is deployable can prevent the above problems.

2.2 Existing Tools to Measure Front-end Performance

In general, front-end performance is currently monitored in local “lab” environments, and in the “real
world” based on the usage environments of real users [6]. Within the local environment, Javascript
has some functions that can measure execution timings using the system clock.

More insights can be obtained using browser-side tools that collect metrics by observing the deploy-
ment of the web-app. These tools also support performance optimization by inspecting elements of
the page for sources of poor performance. Popular examples are Google Lighthouse and Google Page-
Speed Insights. However, these tools cannot inspect code and thus have limitations for performance
optimization.

On the other hand, DrAsync is an example of a code-side tool that can specifically inspect Javascript
code. It helps to minimize misuse of asynchronous Javascript. Overall, however, the functionality of
all of these tools are limited before the front-end can be deployed due to their reliance on concrete
time measurements.

2.2.1 Javascript Libraries

There are several Javascript functions that report information on system time. They can be applied to
measure PLT. For example, console.time and console.timeEnd can be used to record time elapsed
in milliseconds. A usage example can be seen in Listing 2.1. These functions can be leveraged to
measure the time taken to execute code. However, they cannot be used to measure the execution
timings of functions that have not yet been implemented.

1 console.time("Test 1");

2 // functions here

3 console.time("Test 2");

4 // functions here

5 console.timeEnd("Test 2");

6 console.timeEnd("Test 1");

7
8 // this prints to output:

9 // Test 2: 0.575ms

10 // Test 1: 3.38293 ms

Listing 2.1: Example usage of console.time and console.timeEnd

2.2.2 Google Lighthouse and Google PageSpeed Insights

Google lighthouse is one of Google Chrome’s developer tools (DevTools) that audits the quality of a
website and suggests improvements based on failing audits. It can be run from the command line, in
Chrome DevTools, or as a Node module. These audits fall under the categories of performance, ac-
cessibility, best practices, SEO (Search Engine Optimization), and PWA (Progressive Web-Apps) [19].
The performance audits measure a list of metrics such as FCP, TTI, and so on by reloading the site
and recording when relevant milestones occur [14]. Lighthouse then inspects elements of the page

5

Chapter 2. Background

to suggest optimization opportunities such as sizing images properly and removing render-blocking
resources [19].

There are some limitations to Lighthouse’s functionality. As the tests are conducted locally with a
single run per report, environmental fluctuations in client hardware and resource contention, as well
as the network and web server, may result in inconsistencies in the measurements. Hence, users have
to resort to aggregating the results of multiple runs [14]. Alternatively, Google PageSpeed Insights
can perform the same analysis on individual web pages, but with real-user experience data and a
more limited set of metrics [20].

Notably, both Lighthouse and PageSpeed Insights can also be integrated into local automatic test-
ing. Lighthouse can be run programmatically as a Node module [21], and PageSpeed Insights has a
callable API [22]. Both of these allow developers to test for performance automatically once deploy-
able versions of the website are created.

The drawback of doing this is the large amount of time it would take, as the site would have to be
reloaded with each relevant test. The HTTP Archive reports that even the fastest 1% of websites
render TTI in approximately 2.2 seconds [8]. To test the performance of such websites, the devel-
oper would have to repeatedly load the site, taking 2.2 seconds each time. This leads to a high test
turnaround time, which impedes the efficiency of testing.

Moreover, both Lighthouse and PageSpeed Insights can only be used to measure performance once the
website is deployable to production (for PageSpeed Insights), or at least to localhost (for Lighthouse).
Therefore, they are unable to address the problem of performance testing earlier in development.

2.2.3 DrAsync

A tool that can help to optimize front-end performance before it is fully deployed is DrAsync. DrAsync
performs two types of analysis: static and dynamic, targeted at improving the usage of promises and
async/await in implementing asynchronous Javascript [10].

DrAsync performs a static analysis for instances of previously defined antipatterns, which are pieces
of code that result in sub-optimal performance. For example, the asyncFunctionNoAwait anti-pattern
identifies async functions that do not contain await expressions. These are formatted as CodeQL
queries that can be ran at any stage of development [10]. However, this static analysis is highly
limited in that it is only able to check for previously known mistakes, with only 8 antipatterns being
checked for in the study. The tool would not be able to help with blind spots that the developer is
unaware of. It is also not very extensible, as additional antipatterns have to be hard-coded as queries.

Interestingly, DrAsync uses the Async hooks API to perform its dynamic analysis to visualize promise
lifetimes. The Async hooks API facilitates this in two ways. Firstly, it enables customizable call-
backs during the creation and resolution of resources. This allows DrAsync to log the system time
these events occur at [10]. Secondly, Async hooks assigns asyncIds, as well as triggerAsyncIds to
asynchronous resources. This was used to report the dependencies between asynchronous resources
during deployment, which would be highly useful for debugging and optimizing performance [10].
However, similarly to Google Lighthouse, this feature can only be used at run-time once the system
is deployable, and therefore has limited effect during the development process. Clearly, DrAsync has
only explored asyncId in a limited way. This feature was applied to determine the dependencies
between promises in deployable code, but it could be used to analyze code under test as well. Modi-
fications could be made to the analysis procedure, such as using mocks to replace dependencies that
have yet to be implemented.

Moreover, DrAsync makes the assumption that unique asyncIds are assigned to each promise [10].
This is not necessarily true - unique asyncIds are actually assigned to each execution context. Each
execution context also has a triggerAsyncId, which is the asyncId of the execution context that

6

Chapter 2. Background

triggered it [23].

In Javascript, a promise is returned by every async function, and represents its completion. It acts as
a placeholder for the eventual value returned by the function. Meanwhile, an execution context is the
environment where code is executed. The global execution context in Javascript is its base execution
context, where all code is run. This is assigned the asyncId 0. On the other hand, functional exe-
cution contexts are created upon every function invocation [24]. The Async hooks API monitors the
lifetimes of execution contexts related to asynchronous operations. An execution context triggering
another means that the new context was created due to the triggering context finishing its execution
(such as sequential function calls), not that the new context was created within the triggering context
(such as a function call within a function).

However, these contexts may not necessarily be unique to promises. For example, concurrent promises
share the same execution context, and therefore share the same asyncId. Their individual relation-
ships with subsequently triggered promises cannot be identified, as it is impossible to tell which
specific promise, or all of them, triggered their child with just one shared asyncId.

Fortunately, this does not strongly affect DrAsync’s functionality, as a large part of its visualization re-
lies on timelines generated from promise runtimes in real system time [10]. Most ambiguities can be
resolved with this additional information. However, before deployment is possible, real system time
elapsed during Promises may be very small, making it more difficult to distinguish dependencies.

Finding ways to overcome this would be a necessary but non-trivial aspect of applying Async hooks
to analyze code before deployment. This task is difficult due to the lack of exhaustive documentation
on asynchronous execution contexts and their relationship to asynchronous Javascript [11].

2.3 Current Performance Testing in Test-Driven-Development

Agile testing and the continuous delivery of software have been increasingly adopted in software
development [25]. These techniques involve incremental delivery of new functionality and testing
changes during the development process [26], and can be applied to both the front-end and the
back-end. By using mock objects to replace collaborators (external dependencies) of an object under
test, components of software can undergo unit testing in isolation [27]. This is often employed in
Test-Driven-Development (TDD). The ‘red, green, refactor’ cycle in TDD, as illustrated by Figure 2.2
(from [28]), has the benefit of creating fast feedback loops, which can reassure the developer that
each change fits the current requirements and reduces the likelihood of large, expensive refactoring
[7]. These tests are written and ran far before a deployable version of the software is completed.
As the performance of a system cannot be reliably measured before it is deployed, it is difficult to
consider performance in unit testing.

Figure 2.2: ‘Red, green, refactor’ cycle in Test-Driven Development (from [28])

7

Chapter 2. Background

On the other hand, PerfMock illustrates an approach to measuring performance in unit testing
through estimating it with models. This has the additional benefit of ensuring low turnaround times.

2.3.1 PerfMock

PerfMock, an extension upon a mock object framework, was created to enable performance unit test-
ing in the back-end for Java. Out of all the aspects of performance, response time is the most relevant
to unit testing, since it can be directly measured by micro-benchmarking code [29]. However, it is
difficult to determine response times when collaborators are replaced by mock objects, as they lack
the internal logic of the collaborator being mocked [9].

PerfMock solves this problem by making it possible to assign performance models to mock objects.
The performance models, ranging from (deterministic) average delays to probability distributions,
are estimators for how long the collaborator will take to process messages it received. PerfMock per-
forms these estimations in virtual time, which makes it possible to test performance in a continuous
way before the full software can be deployed. This provides fast turnaround times, which is crucial to
TDD. The models can also be iteratively refined as more real-time data is made available, such that
predicted performance converges to actual performance [9].

1 public class CassandraUserServiceTest {

2 @Rule

3 public PerformanceMockery ctx =

4 new PerformanceMockery ();

5 CassandraOperations db = context.mock(

6 CassandraOperations.class ,

7 PerformanceModels.cassandraOpsModel ());

8 @Test

9 public void getUserAliceFromCassandra () {

10 UserService users = new CassandraUserService(db);

11
12 ctx.repeat (2000, () -> {

13 ctx.checking(new Expectations () {{

14 exactly (1).of(db).selectOne(

15 "SELECT * FROM users WHERE username=’Alice ’;",

16 User.class);

17 }});

18 users.getByUsername("Alice");

19 });

20
21 assertThat(ctx.runtimes (), matchMean(

22 PerformanceModels.userServiceModel ()));

23 }

24 }

Listing 2.2: Example unit test written with PerfMock, using the matchMean function

An example unit test written with PerfMock is shown in Listing 2.2. A performance model, cassandraOpsModel,
can be chosen according to the assumed performance characteristics of the external Cassandra ser-
vice. The accuracy of the model can be assessed by checking whether it passes the matchMean check.
Once the test passes, the model used can then be applied to estimate the performance impact of
changes made to code calling on the Cassandra service.

1 public class TweeterControllerTest {

2 @Test

3 public void rendersUserTimelineWithReplies () {

4 TweeterController ctlr = new TweeterController (...);

5 User alice = new User("Alice");

6 List <Message > TEN_MSGS = ...

7
8 ctx.repeat (2000, () -> {

9 ctx.checking(new Expectations () {{

10 exactly (1).of(users).getByUsername("Alice");

11 will(returnValue(alice));

8

Chapter 2. Background

12 exactly (1).of(msgs).getUserTimeline(alice);

13 will(returnValue(TEN_MSGS));

14 exactly (10).of(msgs).getReplies(

15 with(any(Message.class)));

16 }});

17 ctlr.userTimeline("Alice", new ModelMap ());

18 });

19
20 assertThat(ctx.runtimes (),

21 hasPercentile (80, lessThan (15.0)));

22 }

23 }

Listing 2.3: Example unit test written with PerfMock, using the hasPercentile function

Models can also be set as performance targets. Listing 2.3 illustrates an example where the test en-
sures that the runtime of the process tested is up to standard according to the model used. The test
context’s runtime ctx.runtimes is updated with the duration of execution of each process (either
from real time, or virtual time as estimated by its model), and this runtime is expected to be within
the 80th percentile of its performance model.

PerfMock does have limitations due to its reliance on estimations of performance before real data is
made available. The performance of collaborators may be inaccurately estimated to a great extent,
and there is a trade-off between accuracy and detail. Moreover, even when empirical data is available,
models may still not be 100% accurate as device-side times are inconsistent and may cause actual
performance to deviate [9]. This inaccuracy, however, is likely not to be higher than that of other
performance measurement tools working locally, as they would have the same sources of error.

Moreover, PerfMock is still able to provide an estimate of whether code changes will cause perfor-
mance to improve or worsen. This can provide valuable guidance for developers [9]. Fine tuning its
accuracy with empirical data will make it relevant as an automatic performance testing tool that can
be integrated into unit testing throughout the process of engineering a piece of software, before and
after it is deployed for concrete performance measurements.

Therefore, the same idea of estimating performance with models during unit testing could be applied
to performance testing in the front-end as well. However, PerfMock is concerned with serial execu-
tions, and is unable to estimate the runtimes of concurrent code. The Async hooks API, as used by
DrAsync, could possibly be used to adapt this approach to analyze async Javascript.

2.3.2 Estimating performance with performance models

A performance model is any piece of code that returns a numerical estimation of the response time
of the object represented [9]. Since exact measurements of time delay cannot be obtained till the
system is deployed, estimations can be used to simulate how code changes can affect loading times.
Even after the system is deployed, since it takes a long time to retry deployment, estimates in virtual
time can offer a method of measuring performance with lower turnaround time.

Before deployment, performance models can be constructed based on theory. For example, a log-
normal distribution can be used to represent the performance of network services, [9] since many
network services have heavy tails [30]. Existing research on modelling the performance of big-data
systems, such as Apache Hadoop [31], or No-SQL databases, such as Apache Cassandra [32], can be
utilized to develop performance models.

After the system is deployed, the PLT can be measured. Performance models can now be constructed
as aggregates of empirical data. For example, a large number of trials can be conducted to obtain a
dataset of PLT, which can be approximated as a normal distribution. This distribution can then be
implemented as a performance model to predict future PLT.

9

Chapter 2. Background

2.4 Unit Testing Frameworks in the Front-end

Given the significant amount that Javascript evaluation contributes to page loading time, as explained
in Section 2.1, improving performance testing in Javascript development is highly important.

There are many popular Javascript frameworks used to create unit tests. Examples include Jest [33],
Mocha [34], AVA [35], and Jasmine [36]. Jest was designed by a Meta team for the React library, as
an extension to Jasmine [37]. In particular, it is known for its simplicity, large amount of features,
and comprehensive documentation. It is also widely used, having a large presence on stack overflow
[38]. These factors will all contribute to the likelihood of Javascript developers using Jest for unit
testing.

Since using a popular testing framework increases the applicability of our work, we will focus on
implementing performance testing by extending the Jest unit testing framework in Javascript. This
section aims to introduce the relevant Jest boilerplate for writing unit tests, as well as frameworks for
extending them. It is impossible exhaustively introduce its library functions - all functions used are
defined and explained in Jest documentation.

2.4.1 Using Jest

The describe function is used to create a test suite/block. Test cases can be defined within it with the
it function [39]. Matchers are used to assert the expectations of each test, with the expect object
[40]. These tests can be grouped to properly represent the object they describe [41].

Additionally, the beforeEach function can be used to reduce duplication, as it is called before each
test in the block. Similarly, the afterEach function is called after each test. The beforeAll and
afterAll functions are called before and after all of the test cases [39].

Listing 2.4 (from [41]) shows an example of tests written for the implementation of a calculator. The
toEqual matcher compares the result argument of expect(result) with its own argument, and
asserts that they are equal. Test results will then be printed based on the result of the assertions.

1 describe(’addition ’, () => {

2 let calc = null

3 beforeEach (() => {

4 const options = {

5 precision: 2

6 }

7 calc = new Calculator(options)

8 })

9 it(’adds two positive numbers ’, () => {

10 const result = calc.add (1.333 , 3.2)

11 expect(result).toEqual (4.53)

12 })

13 it(’adds two negative numbers ’, () => {

14 const result = calc.add(-1.333, -3.2)

15 expect(result).toEqual (-4.53)

16 })

17 })

Listing 2.4: Example of Tests written in Jest (from [41])

Jest also supports creating mocks. Mocks lack the internal logic of the object they are mocking, and
are used to avoid making a real call to the object. A mock function can be created with jest.fn()

[42]. An example is given in Listing 2.5 (from [41]). The mock tracks its invocations, and can be
audited by expect.

1 it(’is callable ’, () => {

2 const mock = jest.fn()

10

Chapter 2. Background

3 mock(’arg’)

4 expect(mock).toHaveBeenCalled ()

5 expect(mock).toHaveBeenCalledWith(’arg’)

6 expect(mock).toHaveBeenCalledTimes (1)

7 })

Listing 2.5: Example usage of jest.fn (from [41])

2.4.2 Extending expect

The expect object can be extended to define the developer’s own matchers. This can be done with
the expect.extend function, within which a custom matcher function can be defined. This can then
be used in tests [40]. An example is Listing 2.6 (from [40]). The toBeWithinRange matcher is newly
defined to return unique pass/fail messages and a boolean based on the result of matching.

1 expect.extend ({

2 toBeWithinRange(received , floor , ceiling) {

3 const pass = actual >= floor && actual <= ceiling;

4 if (pass) {

5 return {

6 message: () =>

7 ‘expected ${received} not to be within range

8 ${‘${floor} - ${ceiling}‘}‘,
9 pass: true ,

10 };

11 } else {

12 return {

13 message: () =>

14 ‘expected ${received} to be within range

15 ${‘${floor} - ${ceiling}‘}‘,
16 pass: false ,

17 };

18 }

19 }

20 })

21
22 ...

23 it(’identifies numbers within a range’, () => {

24 expect (100).toBeWithinRange (90, 110)

25 })

26 ...

Listing 2.6: Example of defining a matcher in Jest (from [40])

expect.extend can also support async matchers, which will return a Promise with the results. Tests
using the matcher have to be async as well, and await the settlement of the matcher’s Promise.
While a Promise awaited is still pending, execution of the test pauses, and control returns to the
main event loop. When the Promise is settled with a value, or rejected with an error, the result of the
expect is printed and execution of the test resumes, such as by executing the next await expression
[40]. An example can be found in Listing 2.7 (from [40]).

1 expect.extend ({

2 async toBeDivisibleByExternalValue(received) {

3 const externalValue =

4 await getExternalValueFromRemoteSource ();

5 const pass = received % externalValue == 0;

6 if (pass) {

7 return {

8 message: () =>

9 ‘expected ${received} not to be divisible by

10 ${externalValue}‘,
11 pass: true ,

12 };

13 } else {

11

Chapter 2. Background

14 return {

15 message: () =>

16 ‘expected ${received} to be divisible by

17 ${externalValue}‘,
18 pass: false ,

19 };

20 }

21 },

22 })

23
24 ...

25 it(’is divisible by external value’, async () => {

26 await expect (100).toBeDivisibleByExternalValue ()

27 await expect (101).not.toBeDivisibleByExternalValue ()

28 })

29 ...

Listing 2.7: Example of defining an async matcher in Jest (from [40])

2.4.3 Extending mocks

Mocks created with jest.fn() can optionally take in a mock implementation to define its behaviour,
in both synchronous and asynchronous contexts [42]. For example, in Listing 2.8 (from [41]),
fakeAdd is a mock that takes in the implementation (a, b) => 5. Therefore, when it is called with
(1, 1), it will return 5, as expected by toBe(5).

1 it(’adds two positive numbers ’, () => {

2 const fakeAdd = jest.fn().mockImplementation ((a, b) => 5)

3 expect(fakeAdd(1, 1)).toBe (5)

4 expect(fakeAdd).toHaveBeenCalledWith (1, 1)

5 })

Listing 2.8: Example of customizing the implementation of mocks in Jest (from [41])

Jest is also capable of automatically mocking collaborator modules with jest.mock. For example,
axios is a module used to call APIs asynchronously. This should be mocked in unit testing to pre-
vent real calls to the API. In Listing 2.9 (from [43]), the async test for swapiGetter aims to test
its ability to call an api through axios. axios is imported as mockAxios to indicate that it is being
mocked locally. It is mocked with jest.mock and a custom implementation is set for the mock us-
ing mockResolvedValue. This function is a refactor of mockImplementation, and causes mockAxios
to return a Promise resolved with its input. Therefore, when swapiGetter is called, it calls upon
mockAxios instead of axios, and we are able to monitor its actions towards axios through the mock.

1 import swapiGetter from "../ swapiGetter";

2 import mockAxios from "axios";

3
4 jest.mock("axios");

5 mockAxios.get.mockResolvedValue ({ data: { name: "Jimmy Jedi" } });

6 // is equivalent to

7 // mockAxios.get.mockImplementation (() =>

8 // Promise.resolve ({ data: { name: ’Jimmy Jedi’ } })

9
10 describe("swapiGetter", () => {

11 afterEach(jest.clearAllMocks);

12
13 test("should return the first entry from the api", async () => {

14 const result = await swapiGetter (1);

15 expect(result).toBe("Jimmy Jedi");

16 expect(mockAxios.get).toHaveBeenCalledTimes (1);

17 });

18 });

Listing 2.9: Example of mocking the axios module and invoking the mock asynchronously (from [43])

Jest does provide other mechanisms for mocking, but for simplicity’s sake we will focus on these.

12

Chapter 3

Design and Implementation

In this work, we propose QuiP, a novel method for performance testing Javascript front-end web-app
code before deployment. QuiP extends the Jest testing framework to support performance optimiza-
tion by estimating runtime using performance models, as shown in Fig 3.1. This chapter provides the
details of the design and implementation of QuiP.

Section 3.1 explains why QuiP was designed as an extension, rather than a modification of Jest. Sec-
tion 3.2 describes the architecture of QuiP, which uses an Observer pattern. Unit tests trigger the
RuntimeContext subject within QuiP, which notifies the RuntimeMonitor observer about mock calls.
The SerialRuntimeMonitor, an extension of the RuntimeMonitor class, processes non-async code to
facilitate this estimation. The implementation details of this approach are illustrated in Section 3.3.

Building on this, QuiP analyzes asynchronous code automatically, which is novel in the area of per-
formance testing before deployment. Section 3.4 explains how QuiP achieves this by implementing
the AutoRuntimeMonitor, which leverages the Async hooks API. The API is used to detect relation-
ships between the execution contexts of Javascript code under test, in order to form a timeline of
asynchronous dependencies. This involves a systematic search for deviations in Javascript execution
context relationships from asynchronous dependencies, which is a novel contribution of this project
as well.

Figure 3.1: An overview of QuiP’s implementation

13

Chapter 3. Design and Implementation

3.1 Project Design: Extending over Modifying Jest

In order to incorporate performance testing into Jest unit tests, QuiP could be set up as a modi-
fied version of Jest. The advantage of this approach is that being able to modify Jest code provides
more flexibility to QuiP’s functionality. The internal structure of a mock can be changed to include
information on its performance, such as performance models, to enable testing before deployment.
Meanwhile, Jest testing implementations can be adjusted by adding virtual runtime estimations to
the runtime of tests. These extensions have the additional benefit of ensuring that the existing Jest
boilerplate only needs to be modified minimally for users to track performance in their unit tests.

However, the downside of this method is its maintainability. When the original Jest package is up-
dated with new features or bug fixes, users may face a dilemma of choosing between using the
updated version of Jest or sticking with QuiP. Given that QuiP’s implementation differs from Jest,
applying the updates to QuiP can be a complex and time-consuming task.

Therefore, an alternate approach considered is to set up QuiP as an extension of Jest. For example,
a wrapper class or method can be created to store both the mock and its corresponding performance
model, to add onto Jest’s tests. This means that no matter what changes are made to Jest, only its
API will affect the functionality of QuiP. This may be more challenging to implement, with no edit
access to Jest’s original code. Additionally, users may need to write more boilerplate, which reduces
the convenience of the performance tests. However, workarounds can be devised to account for both
functionality and user experience.

Hence, to avoid issues of maintainability, QuiP is set up as an extension of Jest. The rest of this chapter
describes how its implementation enables performance testing before deployment is possible, even
without edit access to the Jest repository.

3.2 Architecture

Figure 3.2: Architecture for QuiP

Before the system under test is fully deployable, its measured runtime in real time may not be an
accurate indicator of its final performance. This is because for each piece of code tested, its collab-
orators may not be deployable, and running the code under test may take a shorter time as it skips
over the runtime of its collaborators. Hence, the collaborators could be replaced with mocks contain-
ing information on their estimated performance. During each mock call, estimations of collaborator
response time can be made, and added as virtual time to the real runtime of the code under test. The
simulated runtime of the code under test now becomes the sum of the real time taken for the code to
execute, and the total virtual runtime of mock calls.

Hence, the architecture for QuiP (as shown in Figure 3.2) is designed with the initial intuition of
tracking mock calls. This requires QuiP to set up a listener for mock calls. Therefore, an observer
pattern can be used for QuiP’s implementation. Tests are considered stimuli. Within each test suite,
a RuntimeContext object is created to act as the subject. Its role is to notify its RuntimeMonitor, the
observer, about mock calls. The RuntimeMonitor ultimately uses this information to calculate the
total estimated runtime for each piece of test code, which can be returned to the user.

14

Chapter 3. Design and Implementation

3.3 Runtime Estimation

Figure 3.3: Flowchart of QuiP’s algorithm

In order to calculate the total estimated runtime, both the real time and virtual time elapsed during
code execution must be measured. The real time elapsed can be measured using system clock time,
but virtual time measurement is far less straightforward. Since the virtual component of the test
runtime is the product of the number of mock calls made and their respective virtual response times,
the RuntimeMonitor must know when each mock is called in the test code, and what its estimated
response time is.

Figure 3.3 illustrates QuiP’s algorithm to estimate runtime, and will be explained throughout the
following subsections.

3.3.1 Investigating when mocks are called

The need of the RuntimeMonitor to know when a mock is called during a test program gives rise to
a difficult design choice, as QuiP cannot change Jest internally. Therefore, we are unable to change
the behaviour of a Jest mock to notify the RuntimeMonitor in response to a new mock call. However,
we can take advantage of the Jest API. For each mock created, calling .mock on it returns an object
with three members: calls, instances, and invocationCallOrder. The number of times a mock is
called during each test can be inferred from calls, and the order of mock calls can be obtained from
invocationCallOrder. On the other hand, the specific timing of mock calls and how much real time
is between them is still unknown. It will be possible to sum up the total virtual runtime, assuming a
serial (non-async) execution, but constructing a detailed timeline is not possible.

15

Chapter 3. Design and Implementation

Therefore, it will make more sense to automatically append a notify(mock) call to each mock imple-
mentation. To do so, a wrapper function is defined in the RuntimeContext. This function takes in the
user implementation and appends the notify(mock) call to it, before defining the combined function
as the actual mock implementation. This is shown in Listing 3.1. As a result, the RuntimeMonitor
can be notified exactly when mock calls are being made, and the user does not need to write any
additional input to achieve this (as shown in Listing 3.2).

1 mockImpWithModel(mock , imp) {

2 const implementationWithNotif = () => {

3 this.monitor.notify(mock);

4 return imp();

5 };

6 mock.mockImplementation(implementationWithNotif);

7 }

Listing 3.1: Abbreviated function definition of RuntimeContext.mockImpWithModel() leaving model out

1 ctx.mockImpWithModel(mockAdd , () => (5));

Listing 3.2: Example of user code assigning an implementation to a mock using QuiP

3.3.2 Estimating mock response time with performance models

Performance models are used in PerfMock to estimate response times of mocks. Each model returns a
numerical estimation of the response time of its associated mock. As previously explained in Section
2.4 of the Background, these models can be applied to estimate mock response times during front-end
unit testing before deployment.

Performance models can provide an estimate of the effect of code changes on runtime. This paper
primarily focuses on using these models to estimate the effect of code changes, enabling performance
optimization, rather than striving for maximum accuracy. Although their accuracy may be limited
before deployment, these models can be enhanced with empirical data gathered post-deployment.
Moreover, since the estimates are made in virtual rather than real time, performance can be measured
with low turnaround time both before and after deployment. Therefore, developers can benefit from
their estimations without needing highly precise models.

3.3.3 Attaching models to mocks

Hence, users should be allowed to assign performance models to mocks. Once again, this is difficult
due to the fact that Jest mocks are not defined with a model field, and their implementation cannot
be changed. The performance model of a mock cannot be directly stored within it.

Therefore, the most elegant way to give the RuntimeMonitor access to a mock’s performance model
is to directly pass the model to it during the mock call notification. This can be done by the Run-
timeContext, when calling notify(mock, model) on the RuntimeMonitor in response to mock calls
in the test code (illustrated in Listing 3.3). Users should pass the mock’s performance model to the
RuntimeContext when defining the mock implementation, as shown in Listing 3.4.

1 mockImpWithModel(mock , model , imp) {

2 const implementationWithNotif = () => {

3 this.monitor.notify(mock , model);

4 return imp();

5 };

6 mock.mockImplementation(implementationWithNotif);

7 }

Listing 3.3: Brief function definition of RuntimeContext.mockImpWithModel()

16

Chapter 3. Design and Implementation

1 // returns random duration between MAX and MIN (excluded)

2 const randPerfModel = (run , args) =>

3 (Math.floor(Math.random () * (MAX - MIN)) + MIN + 1);

4
5 runtimeCtx.mockImpWithModel(mockAdd , randPerfModel , () => (5));

Listing 3.4: Example of user code assigning a performance model and an implementation to a mock

3.3.4 Adding up runtimes

At this point, the RuntimeMonitor needs to measure the real time elapsed, and combine that with the
virtual time estimation. The real time elapsed can be measured by the difference in system time be-
fore and after the test code is run. In order to do so, the user could manually calculate the difference
within their test code, as shown in Listing 3.5. However, this introduces code repetition and may not
be accurate. Instead, the code under test could be passed to the RuntimeContext as a lambda, as
shown in Listing 3.6.

1 test("should add up input", async () => {

2 const runs = 10;

3 const start = process.hrtime.bigint ();

4 for (let i = 0; i < runs; i++) {

5 registrar.addUp(1, 2);

6 }

7 const end = process.hrtime.bigint ();

8 expect ((end - start) / runs).toBeLessThan (10);

9 });

Listing 3.5: Example of manually measuring real time elapsed during code execution

1 test("should add up input", async () => {

2 const runs = 10;

3 await runtimeCtx.repeat(runs , () => {

4 registrar.addUp(1, 2);

5 });

6 expect(runtimeCtx.runtimeMean ()).toBeLessThan (10);

7 });

Listing 3.6: Example of passing code under test to RuntimeContext

RuntimeMonitor measures the duration of code execution with a RuntimeStopwatch, which encap-
sulates the reading of system time. Different time units can be supported by converting the output
of process.hrtime.bigint(), which is in nanoseconds appropriately. The time units supported,
seconds, milliseconds and nanoseconds, are represented by static TimeUnit objects. Users can be
allowed to customize the time units of test output by passing the corresponding TimeUnit to the Run-
timeContext constructor.

Within the repeat() call in the RuntimeContext, the code under test is passed to its RuntimeMonitor
by calling handle() on it. handle() starts the RuntimeStopwatch, and runs the code. Because of
mockImpWithModel(), notify() is added to the implementations of mocks. During code execution,
Jest runs the implementations of mocks, instead of the implementation of the object mocked. This
triggers the notify() calls embedded in their implementations, which notifies the RuntimeMonitor
that the mock has been called.

Upon each notify() call, the RuntimeMonitor reads the real time elapsed between the previous mock
call (or the start of the program) and the current mock call. It also passes the number of times the
mock has been called so far and the arguments it was called with (both obtained from mock.calls)
to the mock’s performance model, which will then return the virtual response time of the mock. The
real time elapsed between each mock call and the virtual response time of the mock calls form the full
timeline of a serial execution. A visualized example of a timeline generated is shown in Figure 3.4.
Finally, the RuntimeMonitor is able to return the total timing, as well as the timeline (as a JSON),
after executing the code under test. Commonly used data, such as the mean runtime or nth percentile

17

Chapter 3. Design and Implementation

Figure 3.4: Example of a visualized serial code execution timeline

of runtime across multiple runs of the same code under test, can also be calculated by the RuntimeM-
onitor. It can be retrieved by the runtimeContext and returned to the user to be asserted upon, like
in line 6 of Listing 3.6.

3.3.5 Visualizing timelines

It may be difficult for the user to view the timeline data in the form of a JSON, especially considering
the number of test runs and complexity of test timelines. Hence, a timeline visualizer tool is imple-
mented to display timelines in the form of graphs. This can help greatly to interpret the timelines
and optimize the critical path of the timeline. The test suite automatically saves results to a .txt file,
which can be uploaded to the visualizer.

A screenshot of the timeline visualizer is shown in Fig 3.5. Graph representations of the timelines
are automatically created with random unique colours for each mock, with a legend displaying the
colours for the mocks. These graphs are generated with the Chart.js API [44]. Hovering over the
lifetimes of each mock call displays information on its mock call name, and estimated start and end
time. In the event where a large number of test runs are made for the same code under test, it may
not be practical for the viewer to look through every timeline generated. Instead, the timeline visual-
izer creates an overview of the runs by only printing the timelines for the runs with longest, shortest
and median timing.

18

Chapter 3. Design and Implementation

Fi
gu

re
3.

5:
Sc

re
en

sh
ot

of
ti

m
el

in
e

vi
su

al
iz

er
to

ol
di

sp
la

yi
ng

ex
am

pl
e

te
st

re
su

lt
s

19

Chapter 3. Design and Implementation

3.4 Asynchronous Execution Analysis

The previous RuntimeMonitor design can only work with non-async executions, since they arrange
mock calls by their sequence in real time. It is referred to as the SerialRuntimeMonitor from now on.
With async executions, even if two mock calls are triggered sequentially in real time, it is unclear if
they are called serially or concurrently, as environmental factors can account for minute differences
in their start time. For example, given a piece of code that executes two get() calls concurrently,
the SerialRuntimeMonitor assumes that they are scheduled serially, because one call is made slightly
after the other. This could lead to huge discrepancies in how the timings of the test program’s mock
calls are added up.

Using Async hooks for dependency analysis

In order to simulate the execution of test programs involving asynchronous mock calls, the dependen-
cies between mock calls need to be analyzed. The AutoRuntimeMonitor is implemented to perform
this analysis automatically, using the Async hooks API. The central idea of this novel implementation
is to take advantage of the unique asyncIds that Async hooks assigns to each execution context re-
lated to asynchronous resources.

At any time, executionAsyncId() returns the asyncId assigned to the current execution context,
while triggerAsyncId() returns the asyncId of the execution context that triggered the current
one. This asyncId is the triggerAsyncId of the current execution context. The current context
is created due to the triggering context finishing its execution (such as sequential function calls).
Therefore, there is a high level of correlation between asyncIds, and the dependencies between asyn-
chronous function calls.

Once mappings between mock calls and asyncIds are stored, it is possible to track the dependencies
between mock calls. This can be used to determine if the execution of two mocks is concurrent.

Since Async hooks assigns asyncIds to execution contexts, there are different cases of async test
program execution that cause deviations in asyncId assignments from actual async dependencies.
Due to insufficient documentation of the relationship between execution contexts and asynchronous
code, these cases are found through systematic testing of the Async hooks API. They are described in
Table 3.1.

Table 3.1: Table showing various cases of asynchronous code that cause deviations in asyncId assignments

Characteristic Categories Description

Executions
Serial Whether mocks are called serially or concur-

rently (or a mix)Concurrent

Mocks
Async Whether mock implementations are async

(i.e. return a promise)Non-async

Function calls
Whether all mock calls are made within func-
tion under test, or made by other functions
that are then called by the function under test

Non-nested
Nested

The way that the AutoRuntimeMonitor analyzes asyncIds needs to be modified for these cases.
Section 3.4.1 describes how the base case, async mocks with different types of execution in a non-
nested function call, is processed. Section 3.4.2 extends this by mixing async and non-async mocks,
and Section 3.4.3 explains how nested function calls are analyzed. More information is required
to analyze a few edge cases with greater accuracy, given that the code under test is not ready for

20

Chapter 3. Design and Implementation

deployment. Additionally, it is possible that the edge cases listed are not exhaustive. However, most
edge cases currently considered are successfully analyzed after modifications to the algorithm for the
base case.

3.4.1 Async mocks with different types of execution

The base case assumes that all mocks have asynchronous implementations. Before AutoRuntimeMo-
nitor.repeat() runs the code under test, an async hook is created, and starts listening for events. Each
mock call causes a call to asyncNotify() on the AutoRuntimeMonitor. asyncNotify(), as shown in Fig
3.6, calculates the ending time of the mock call.

Figure 3.6: Diagram of flow within asyncNotify() function

Within the asyncNotify() function, the asyncId and triggerAsyncId of the current execution con-
text (corresponding to the mock call) are retrieved with Async hooks. The ending time of the current
mock call can be estimated using these ids.

First, the end time of the most recent mock call in the current mock call’s dependency chain (i.e. the
current mock’s parent) needs to be found. This is handled by the getParentEndTime() function. The
parent’s end time is to be used as the start time of the current mock’s execution. Therefore, a map,
endingTimes, of asyncId to the ending time of its corresponding mock call should be stored. The id
of the current mock’s parent can be used to query the map for its ending time.

However, the parent mock call’s asyncId may not necessarily be the triggerAsyncId of the current
execution context, as shown in Fig 3.7. This is because there may be execution contexts between the
parent and the current mock, and the triggerAsyncId of the current mock is the asyncId of the ex-
ecution context triggering it. In order to find the id of the parent, the init function of the async hook
is defined to store each execution context’s triggerAsyncId in a local map, triggers. The asyncId

of the parent can be found by tracing each id’s trigger until an id is found having a corresponding
ending time stored in endingTimes.

The ending time of the parent mock call can thus be retrieved from endingTimes. This is used to
estimate the ending time of the current mock in getCurrEndTime(). The estimated response time of
the mock is the sum of the real time elapsed since its parent mock call and the virtual time generated

21

Chapter 3. Design and Implementation

(a) Asynchronous dependencies

(b) Execution context dependencies

Figure 3.7: The async dependencies of the parent and the current mock call, compared to their execution
contexts

by its performance model. This should be added to the parent’s ending time to obtain the ending
time of the current mock call.

Thereafter, the end time of the mock call can be set to its asyncId in the endingTimes map. This
process repeats upon each mock call in the code under test, until the execution timeline and to-
tal estimated runtime are obtained. Examples of executions that can be correctly analyzed by this
AutoRuntimeMonitor are shown in Figure 3.8. Get and put are both async mocks. The performance
model assigned to the mocks for the tests are random number generators (within a predefined range),
which explains the inconsistencies in their estimated runtimes.

(a) Serial executions (b) Concurrent executions (c) A mock call triggering two concurrent mock calls,
with a real time delay before one of the concurrent mock
calls

Figure 3.8: Examples of various executions correctly analyzed by the base case of the AutoRuntimeMonitor

Concurrent mocks with children edge case

However, a problematic edge case occurs when mocks with children are called concurrently. Concur-
rent mock calls are made in the same execution context, and are assigned the same asyncId. Since
mock call dependencies are tracked by asyncId, and mock call ending times are stored by asyncId,
this can lead to conflicts when concurrent mock calls’ children look up their parents’ end times.

There are two ways to handle the storage of ending times under the same asyncId: storing the
longest ending time so far (according to virtual time), or storing the most recently occurring ending

22

Chapter 3. Design and Implementation

time (according to real time). Both of these strategies are suboptimal in different situations. This is
illustrated through the example code in Listing 3.7. Timelines that are accurate to the actual asyn-
chronous dependencies in the awaitAllGets(), awaitLastGet(), and awaitFirstGet() function
calls are shown in Fig 3.9.

1 // concurrently calls get 3 times

2 async getIdTogether(id) {...}

3 // serially calls get 2 times

4 async doubleGet(id) {...}

5
6 // concurrently calls 3 gets. Last get called upon the completion of all 3 concurrent

get calls

7 async awaitAllGets(id) {

8 await this.getIdTogether(id);

9 const get4 = await axios.get(‘https://swapi.dev/api/people/${id}/‘);
10 }

11 // concurrently calls 3 gets. Last get called upon the completion of the last get

call

12 async awaitLastGet(id) {

13 const get1 = axios.get(‘https:// swapi.dev/api/people/${id}/‘);
14 const get2 = axios.get(‘https:// swapi.dev/api/people/${id}/‘);
15 const get3And4 = this.doubleGet(id);

16 return Promise.allSettled ([get1 , get2 , get3AndPut]);

17 }

18 // concurrently calls 3 gets. Last get called upon the completion of the 1st get call

19 async awaitFirstGet(id) {

20 const get1And4 = this.doubleGet(id);

21 const get2 = axios.get(‘https:// swapi.dev/api/people/${id}/‘);
22 const get3 = axios.get(‘https:// swapi.dev/api/people/${id}/‘);
23 return Promise.allSettled ([get1 , get2andPut , get3]);

24 }

Listing 3.7: Example of code under test where the non-async mock has more than one child

(a) Timeline for awaitAllGets() (b) Timeline for awaitLastGet() (c) Timeline for awaitFirstGet()

Figure 3.9: Accurate timelines according to asynchronous dependencies in example functions from List-
ing 3.7

Table 3.2 shows the parent ending times of the final get, get4, when the two ending time storage
strategies are used in various situations. Correct ending times (according to asynchronous depen-
dencies) are highlighted in green. Both of these methods work when the ending time that they store
coincides with the ending time of the child call’s parent. However, storing the longest ending time is
always correct for the general case where the child awaits all the concurrent get calls. Meanwhile,
storing the most recent ending time is correct for the general case where the child is awaiting the
most recent get call.

We chose to store the longest ending time, assuming that subsequent calls awaiting all previous
concurrent calls might be more common than only the most recent concurrent call being awaited.
However, this means that the analysis produced by AutoRuntimeMonitor may not be entirely accurate
for the listed scenarios.

23

Chapter 3. Design and Implementation

Table 3.2: Table showing accuracy of ending storage strategies in various situations

Situation Parent ending time according to storage strategy
Parent(s) Longest

get call
Longest ending
time

Most recent end-
ing time

Actual parent end-
ing time

All get calls
get3 get3 get3 get3
get2 get2 get3 get2

Most recent get call
(get3)

get3 get3 get3 get3
get2 get2 get3 get3

Not most recent
get call (get1)

get3 get3 get3 get1
get2 get2 get3 get1

3.4.2 Async and non-async mocks with different types of execution

The next edge case to consider is the use of both async and non-async mocks. The mock imple-
mentations of async mocks are async functions that return a Promise which may contain its output.
Meanwhile, the mock implementations of non-async mocks do not return promises. Since the Async
hooks API specifically tracks the lifetimes of execution contexts related to asynchronous resources, it
is unable to track non-async resources accurately. During a non-async mock call, the asyncIds and
triggerAsyncId returned would not follow the same conventions as those assigned to async mock
calls.

(a) Asynchronous dependencies

(b) Execution context dependencies

Figure 3.10: The async dependencies between the parent of the non-async mock call, the non-async mock
call, and its child, compared to their execution contexts

Experimentation confirms that the asyncId assigned to the execution context for a non-async mock
call is skipped over when identifying the triggerAsyncId of its child. This could be attributed to
the fact that the non-async mock does not initialize an asynchronous execution context, and thus the
execution contexts of its children are considered to be triggered by the execution context of the most
recent asynchronous parent. This is visualized in Figure 3.10.

During the actual execution of the code under test, the child of the non-async mock call needs to
wait for its completion. Therefore, it is dependent on the non-async mock call. However, the
triggerAsyncId of the child is the triggerAsyncId of the non-async mock call, rather than its
asyncId. This means that the trigger of the child’s execution context is the execution context of the
most recent async mock call. It can be seen that these mock calls’ execution contexts do not directly
reflect their dependencies.

24

Chapter 3. Design and Implementation

Since the child of a non-async mock recognizes the triggerAsyncId of the non-async mock as its
own triggerAsyncId, its corresponding notify() call does not have access to the asyncId of the
non-async mock. When the child is retrieving its parent end time, it retrieves the ending time of the
most recent async mock, instead of the ending time of the non-async mock (its actual parent). This
means that the start time of the non-async mock’s child is recognized to be the same as that of the
non-async mock. The AutoRuntimeMonitor will identify them to be executing concurrently, when
that is not possible with non-async code. This can be seen in Figure 3.11, where add is a non-async
mock and get and put are async mocks.

(a) Timeline accurate to asynchronous dependencies (b) Timeline generated according to execution context

Figure 3.11: Timeline of a serial execution of async and non-async mocks

Hence, the behaviour of the AutoRuntimeMonitor needs to be modified to analyze the asynchronous
dependencies of non-async mocks. A new notify() function is set up to handle non-async mocks
separately. In order for the child of the non-async mock to retrieve the ending time of the non-async
mock as its parent ending time, the child must be either given access to the asyncId of the non-async
mock, or the ending time of the non-async mock.

Giving the child of the non-async mock access to its id

The first approach considered is to give the child of the non-async mock access to the id of the non-
async mock. This cannot be done during the asyncNotify() or notify() call of the child, as there
are no ways to distinguish the child of a non-async mock call from the child of an async mock call. The
only difference between these are their triggerAsyncIds, but there is no other information available
to determine if a mock call’s triggerAsyncId is actually reflective of its dependency. Therefore, the
AutoRuntimeMonitor will not know when to modify the child’s behaviour to account for a non-async
parent.

Hence, the notify() function needs to be modified to leave subsequent mock calls access to its id. For
example, its id could be stored in a local variable, to be read by its child. However, this approach is
problematic, as it cannot be determined which of its subsequent mock calls (in real time) are actually
its children and needs to read its id. Consider the code in Listing 3.8, where axios.put is an async
mock, and add is a non-async mock. The AutoRuntimeMonitor’s base case produces the timeline in
Fig 3.12b when analyzing it, even though a more accurate timeline would be the one in Fig 3.12a. In
modifyId, add has more than 1 child - put1 and put2. It is erroneous to assume by default that only
the first mock call succeeding the non-async mock call in real time is its child. The method is thus
inoperable in this case.

25

Chapter 3. Design and Implementation

1 async modifyIds(p) {

2 await axios.put(‘https:// swapi.dev/api/people/‘, {id: modifiedId , name: "test "});

3 var modifiedId = add(p, 1);

4 let put1 = axios.put(‘https://swapi.dev/api/people/‘, {id: modifiedId , name: "

test "});

5 let put2 = axios.put(‘https://swapi.dev/api/people/‘, {id: modifiedId , name: "

test "});

6 await Promise.allSettled ([put1 , put2]);

7 }

Listing 3.8: Example of code under test where the non-async mock has more than one child

(a) Timeline accurate to asynchronous dependencies (b) Timeline generated according to execution context

Figure 3.12: Timeline of execution of code under test from Listing 3.8

Giving the child of the non-async mock access to its end time

The other approach considered is to give the child access to the non-async mock’s end time. For the
same reasons as above, this cannot be done in the asyncNotify() or notify() call for the child.
Storing the end time as a local variable would also fail in some cases, as shown above. Instead, the
end time should be stored during the notify() call in a way that only the child of the non-async
mock can access.

In order to do so, we consider that by default, the parent end time of each mock call is retrieved with
its parent id. This parent id is found by tracing the trigger ids of the mock call’s triggerAsyncId

until an id is found with a corresponding ending time. We know that the non-async mock call and
its child share a common triggerAsyncId. Therefore, during the notify() call for the non-async
mock call, the estimated ending time of the non-async mock could be set for both its asyncId and its
triggerAsyncId. In this way, when its child retrieves its parent end time using the non-async mock’s
triggerAsyncId, the correct end time is returned.

A concern with this method is whether the parent timings of other mock calls are affected, since the
non-async mock call sets its ending time to an id that is not its own. Earlier mock calls (in real time)
would not be affected, as their end times have already been saved to the timeline output. This can be
seen in Fig 3.13, where add is a non-async mock and get and put are async mocks.
Later mock calls (in real time) with the same triggerAsyncId as the non-async mock call can be
considered in two broad categories: children of the non-async mock call and children of the parent
of the non-async mock call. Children of the non-async mock call are meant to take on the end time
of the non-async mock call as their parent end time, leaving children of the parent of the non-async
mock call as the problematic group.

26

Chapter 3. Design and Implementation

(a) Timeline accurate to asynchronous dependencies (b) Timeline generated according to execution context

Figure 3.13: Timeline of execution of code under test from Listing 3.8

However, if the children of the parent of the non-async mock call are called later in real time than the
non-async mock call is, they should start after the non-async mock call ends. Non-async mock calls,
by definition, cannot be executed concurrently with any other function calls. It is impossible for any
other mock calls to share a parent end time with it, as this would mean that they start at the same
time and are concurrent. Originally, these children would recognize their parent end time as the end
time of the parent of the non-async mock call. Now, their parent end time would be set as the end
time of the non-async mock call, which is accurate to their async dependencies.

Therefore, the final approach chosen to resolve this edge case is to give children of non-async mocks
access to the non-async mock’s end time, by setting this end time to its triggerAsyncId as well. This
modified AutoRuntimeMonitor is used to generate the accurate timelines illustrated in Figures 3.11a,
3.12a and 3.13a.

3.4.3 Nested function calls with different types of execution

Finally, the edge case of nested function calls also causes conflict between its asynchronous depen-
dencies and execution contexts. A nested function call refers to mock calls encapsulated within a
separate function, which is called by the function under test. This is opposed to the function under
test making all mock calls directly within itself. An example can be seen in Listing 3.9. Assuming the
axios module is mocked in tests, add, axios.get and axios.put are mock calls. nestedChangeId()
calls the nested function, changeId(), which performs a get mock call and a put mock call. Mean-
while, nonNestedChangeId() performs the get mock call and put mock call directly within itself,
without calling the nested changeId() function.

1 async changeId(oldId , change) {

2 let get = await axios.get(‘https:// swapi.dev/api/people/${oldId}/‘);
3 let newId = add(oldId , change);

4 await axios.put(‘https:// swapi.dev/api/people/‘, {id: newId , name: get.data.name

});

5 }

6 async nestedChangeId(id) {

7 await axios.put(‘https:// swapi.dev/api/people/‘, {id: id, name: "test "});

8 await this.changeId(id , 1);

9 await axios.get(‘https:// swapi.dev/api/people/${1}/‘);
10 }

11 async nonNestedChangeId(id) {

12 await axios.put(‘https:// swapi.dev/api/people/‘, {id: id, name: "test "});

13
14 let get = await axios.get(‘https:// swapi.dev/api/people/${id}/‘);
15 let newId = add(id, change);

16 await axios.put(‘https:// swapi.dev/api/people/‘, {id: newId , name: get.data.name

});

17
18 await axios.get(‘https:// swapi.dev/api/people/${1}/‘);

27

Chapter 3. Design and Implementation

19 }

Listing 3.9: Example of code under test where nestedChangeId() includes a nested function call, and
nonNestedChangeId() performs the same mock calls without nested function calls

Practically speaking, both nestedChangeId() and nonNestedChangeId() perform the same mock
calls, with the same asynchronous dependencies (both of these functions execute their mock calls
serially). However, according to the AutoRuntimeMonitor, the relationships between their execution
contexts are different. This results in different timelines being produced, as shown in Fig 3.14.
Clearly, only the timeline produced from nonNestedChangeId() is accurate to their asynchronous
dependencies.

(a) Timeline produced from nonNestedChangeId() (b) Timeline produced from nestedChangeId()

Figure 3.14: Timelines of execution of code under test from Listing 3.9

(a) Asynchronous dependencies (b) Execution context dependencies

Figure 3.15: The async dependencies between the a nested function call and subsequent mock calls, com-
pared to their execution contexts

In the timeline produced from the nested function, shown in Fig 3.14b, the parent of the get mock
call following changeId() is found to be the first mock call in changeId(). However, it should be the
last mock call in changeId(). This deviation in its execution context dependencies from its async
dependencies is shown in Fig 3.15. Further experimentation confirms the general trend where mock
calls following a nested function call recognize the first mock call in the nested function as its par-
ent, rather than the last. This is regardless of the number of mock calls in the nested function, and
whether the subsequent mock call belonged in a nested function itself.

A possible explanation is that the function execution context of the nested function is the execution
context of the first mock call in the nested function. The execution context of the mock call following

28

Chapter 3. Design and Implementation

the nested function is created due to the nested function’s execution context finishing its execution.
Therefore, the execution context of the mock call recognizes the nested function’s execution context
as its trigger, and is thus triggered by the execution context of the first mock call in the nested func-
tion.

Therefore, the behaviour of the AutoRuntimeMonitor needs to be modified to account for the asyn-
chronous dependencies of nested functions. In order to achieve this, two problems need to be solved.
Firstly, the last mock call in the nested function and its end time needs to be retrievable by the
succeeding mock call. This would be the actual parent of the succeeding mock call of the nested
function. Secondly, the AutoRuntimeMonitor needs to be able to distinguish between mock calls
succeeding entire nested function calls, and mock calls succeeding the first mock call in the nested
function call. These two cases appear to have the same parent, but only the parent end time of mock
calls succeeding the nested function call would need to be modified.

Retrieving the last mock call in the nested function and its end time

Since the mock call succeeds the nested function call, its associated asyncNotify() or notify() call
always occurs later in real time than the asyncNotify() or notify() calls of the mock calls within
the nested function. Therefore, the ending time of the succeeding mock call’s “real” parent (according
to asynchronous dependencies), the last mock call of the nested function, should have already been
stored in the endingTimes map (as this is done during asyncNotify() or notify()). It would be
possible for the succeeding mock call to retrieve this ending time and use that as its parent end time
instead, as long as it has access to the associated asyncId.

Hence, the AutoRuntimeMonitor should first find the latest descendant of the original parent of the
incoming mock call. If the incoming mock call was succeeding a nested function, this descendant
would be the last mock call of the nested function, and the actual parent of the incoming mock call.
To achieve this, the asyncId of each child should be set to the asyncId of each parent in a map
named visitedParentIds. The latest descendant of a parent is the last value obtained when repeatedly
querying the map with the parent’s asyncId until no entries can be found.

At this point, given the asyncId of the last mock call of the nested function, its end time can be
retrieved from the endingTimes map. However, this should not be indiscriminately set as the parent
end time of the incoming mock call. For example, if there are two mock calls running concurrently in
the nested function after the first mock call, the parent of the second concurrent mock call would be
set to the first concurrent mock call. However, its parent is actually meant to be the first mock call of
the nested function. Therefore, the AutoRuntimeMonitor needs to differentiate between a mock call
succeeding a nested function, and a mock call succeeding the first mock call in the function, and only
change the parent of the former.

Distinguishing between mock calls succeeding a nested function call and mock calls succeeding
the first mock call in the nested function call

In order to adjust only the parent of the mock call succeeding the nested function call, instead of the
mock call succeeding the first mock call in the nested function, the AutoRuntimeMonitor needs to be
able to distinguish between these two cases. This can be done based on the real time elapsed between
the first mock call in the nested function and the succeeding mock call. A mock call succeeding the
nested function would be called later in real time than a mock call succeeding the first mock call in
the nested function.

Therefore, the real time that each mock call is made at should be stored in a map named realTimes.
The real times of the first mock call in the nested function, the last mock call in the nested function,
and the incoming mock call (which may be succeeding the nested function, or succeeding the first
mock call in the nested function) can then be retrieved. The real time elapsed from the first mock
call in the nested function to the last mock call, and the real time elapsed from the first mock call in

29

Chapter 3. Design and Implementation

Figure 3.16: Diagram of real times that mock calls are made at for a nested function call with a succeeding
mock call

the nested function to the incoming mock call can be calculated. The difference between the times
elapsed can be simplified to the real time elapsed from the last mock call in the nested function to the
incoming mock call. The bigger this difference, the more likely that the incoming mock call is called
after the last mock call in the nested function, rather than after the first mock call in the nested func-
tion, concurrent with the second. These differences are illustrated by Fig 3.16. The first difference
visualized corresponds to the case where the incoming mock call is actually succeeding the entire
nested function, while the second difference visualized corresponds to the case where the incoming
mock call is actually succeeding the first mock call in the nested function.

The AutoRuntimeMonitor needs to decide based on this difference in time elapsed if the incoming
mock call is called after the first or last mock call in the nested function. However, this difference
may vary greatly between devices, based on environmental factors such as hardware, or resource
contention. It may be more user-friendly to allow users to input a threshold on the difference in
time elapsed, according to their own needs, instead of stipulating a global threshold that is seldom
accurate.

Therefore, the AutoRuntimeMonitor takes in assumeSerialThreshold in its constructor. If the real
time elapsed from the last mock call in the nested function to the incoming mock call exceeds this
threshold, the AutoRuntimeMonitor assumes that the incoming mock call actually succeeds the entire
nested function, rather than the first mock call in the nested function, and changes its parent to the
last mock call in the nested function. This may cause some non-determinism in the timelines gener-
ated across test runs, if the real time elapsed varies above and below the threshold. However, once
a suitable assumeSerialThreshold is found through some experimentation, timelines that are more
accurate to the asynchronous dependencies of the code under test can be produced. For example, the
AutoRuntimeMonitor was able to produce the timeline in Fig 3.14a after this modification, while it
produced Fig 3.14b before.

30

Chapter 4

Usage

This chapter demonstrates how QuiP can be used to test the performance of synchronous and asyn-
chronous Javascript web-app code before deployment. This is done through applying QuiP to the
development of the checkout page of a book-selling web-application, using a Model-View-Controller
pattern. To simulate how a developer might use QuiP, standard test-driven development (TDD) prac-
tices are used. When it comes to the performance aspect of the tests, the testing procedure introduced
by PerfMock is incorporated into the TDD development cycle.

Section 4.1 provides a brief overview of the architecture of the checkout web-application. Section 4.2
explains the process of writing performance tests with QuiP, by going through the process of writing
two example tests for the checkout view. However, the performance assertions within the tests may
not always pass. Section 4.3 demonstrates how these assertions can be made to pass, and how
the performance of the code under test can be improved in the process. Finally, Section 4.4 shows
how QuiP remains useful even after the web-application becomes deployable, since its performance
models can be refined with empirical data.

4.1 Checkout architecture

Figure 4.1: Architecture for the checkout page

Fig 4.1 shows an overview of the architecture of the checkout web-application. The view is exposed
to the user, and forwards input to the controller. The controller processes this input by manipulating
the stock and payment models, which can interact with the database. Following this, any relevant

31

Chapter 4. Usage

updates are sent to the view to be displayed in response to the earlier user input. Since the purpose
of QuiP is to conduct performance tests for front-end web-app code, we focus on tests written for the
checkout view, the front-end of the checkout web-app, during this demonstration.

4.2 Writing performance tests with QuiP

In test-driven development, tests are written for desired behaviour before feature implementation is
done to make the tests pass. Therefore, we begin by writing tests expecting the desired behaviour of
the checkout view, before implementing the view and running the tests. The first step is to set up the
test context, and to mock the collaborators of the view. This is described in Section 4.2.1. Then, the
tests for the view are written, as explained in Section 4.2.2, before they can be run.

4.2.1 Setting up test context and mocks

The user must first initialize a RuntimeContext for the performance tests to be run inside of. This
can be done with the code in Listing 4.1. The RuntimeContext constructor takes in 3 arguments:
the asyncMode, the timeUnit, and (optionally) the assumeSerialThreshold. The asyncMode de-
termines the type of RuntimeMonitor used - a SerialRuntimeMonitor, a ParallelRuntimeMonitor, or
an AsyncRuntimeMonitor. The timeUnit determines the unit of time that test runtime is measured
and presented in - nanosecond, millisecond, or second. The assumeSerialThreshold is used by the
AsyncRuntimeMonitor to resolve ambiguities in execution contexts in the case of nested function calls
in the test code.

1 const runtimeCtx = new RuntimeContext(AsyncMode.Auto , TimeUnit.nanosecond , 5000);

Listing 4.1: Code initializing a new RuntimeContext object to test the CheckoutView

Following this, the collaborators of the view need to be mocked, since the purpose of the tests is
solely to test the functionality of the view. A snippet of the code for this is shown in Listing 4.2.
Jest is used to create the mock object itself and the user can optionally define a custom implemen-
tation for the mock. For the RuntimeMonitor to include the estimated response time of the mock in
the total runtime of tests, the user has to assign a performance model to the mock. To do so, the
user includes the model as an argument when calling mockWithModelAsync() (for async mock im-
plementations), or mockWithModel() (for non-async mock implementations) on the RuntimeContext.

In this example, a simple random number generator within a specified range is used as the perfor-
mance model, instead of a more complex one. The reason for this choice is that the main focus of
this demonstration, as well as the entire work, is to improve performance with runtime estimations
rather than the accuracy of the estimations.

It is important that the user assigns the implementation to the mock by including the implementation
as an argument in mockWithModelAsync() or mockWithModel(). If mockImplementation() from the
Jest library is used instead to assign the implementation to the mock, mockWithModelAsync() and
mockWithModel() will overwrite the mock’s implementation with a notify() call to the RuntimeM-
onitor. However, if the user intends to exclude the mock from the calculation of virtual runtimes, it is
safe to create the mock and assign an implementation to it with vanilla Jest.

1 const mockController = require("../../ exampleCode/caseStudy/checkoutController.js");

2 jest.mock("../../ exampleCode/caseStudy/checkoutController.js");

3
4 const getQtyImp = () =>

5 Promise.resolve(orderView.updateQuantities(QUANTITIES));

6 function produceRandPerfModel(max , min) {

7 const randPerfModel = (run , args) =>

8 (Math.floor(Math.random () * (max - min)) + min + 1);

9 return randPerfModel;

10 }

11 runtimeCtx.mockWithModelAsync(mockController.getQuantities ,

12 "controller.getQuantities",

32

Chapter 4. Usage

13 produceRandPerfModel (1500000 , 1000000) ,

14 getQtyImp);

Listing 4.2: Code to mock the getQuantities function of the checkout controller

The rest of the collaborators of the checkout view are mocked in a similar way. These collaborators in-
clude the other functions of the checkoutController object, and the functions of a documentEditor

object (a utility class that encapsulates any functions on the document object, for editing the html of
the front-end). These can be seen in greater detail in the \ tests \caseStudyTests folder in the
project git repository.

4.2.2 Writing tests for the checkout view

We begin the implementation of the checkout view by writing tests for desired behaviour. Listing 4.3
shows how the test suite is set up, using Jest boilerplate. clearContext() needs to be run on the Run-
timeContext between tests to remove the timeline data of the previous test. writeResultsToFile()
saves the timeline data from all tests in the test suite into a .txt file at the path given.

1 describe("order info view", () => {

2 afterEach (() => {

3 orderView = new OrderView ();

4 QUANTITIES.set("1", {name: "A Tale of Two Cities", qty: "1"});

5 QUANTITIES.set("5", {name: "Pride and Prejudice", qty: "4"});

6 QUANTITIES.set("110", {name: "Maurice", qty: "10"});

7
8 jest.clearAllMocks ();

9 runtimeCtx.clearContext ();

10 });

11
12 afterAll (() => {

13 runtimeCtx.writeResultsToFile("../ orderTimelineData.txt");

14 })

15 }

Listing 4.3: Code to set up the test suite for the order information part of the checkout view

The first behaviour to implement is order quantity rendering. Therefore, a unit test needs to be
written for the renderQuantities() function of the OrderView class. An example is shown in List-
ing 4.4. The unit test is written within the framework of a regular Jest test, but with the code
under test passed to the RuntimeContext to be run, and with performance assertions carried out by
QuiP. Calling repeat() on the RuntimeContext runs the code under test under observation of the
RuntimeMonitor, which estimates the total runtime of each test run. If a performance test name is
specified in the third argument of the call to repeat(), the timeline data from the test runs is saved by
the RuntimeContext to be written into a .txt file when writeResultsToFile() is called. Following
this, the test can make assertions about the performance of the code under test based on the needs
of the web-application.

1 it("should display books and quantities selected", async () => {

2 await runtimeCtx.repeat(runs , async () => {

3 await orderView.renderQuantities ();

4 }, "renders book quantities within average of 15000000 ns")

5
6 // should query controller

7 expect(mockController.getQuantities).toHaveBeenCalledTimes(runs);

8 // should receive and display update from stock model

9 expect(orderView.quantities).toBe(QUANTITIES);

10 expect(mockDocumentEditor.addQtyToOrderTable).toHaveBeenCalledTimes(

QUANTITIES.size * runs);

11
12 // should run within an average of 15000000 ns

13 expect(runtimeCtx.runtimeMean ()).toBeLessThan (15000000);

14 expect(runtimeCtx.runtimePercentile (100)).toBeLessThan (20000000);

15 });

Listing 4.4: A unit test for the renderQuantities() function of the order view

33

Chapter 4. Usage

After writing the unit test, we implement the renderQuantities() and updateQuantities() func-
tions in the OrderView class. renderQuantities() makes a request to the controller for the book
quantities in the order. The mock of the controller calls updateQuantities() with the dummy
QUANTITIES map, which is displayed by the mockDocumentEditor. This allows the functionality
assertions in the test to pass.

However, the performance assertions in the unit test fail. The test output can be seen in Fig 4.2. The
average runtime across the test runs is within the expected 15000000ns, or 15 ms, but the maximum
runtime across the test runs exceeds the expected 20000000ns, or 20 ms. The visualized test timelines
confirm this, as can be seen in Fig 4.3.

Figure 4.2: Test output of unit test for renderQuantities() function of the order view

Figure 4.3: Test timelines of unit test for renderQuantities() function of the order view

The quantities of each book need to be rendered before their prices can. Therefore, the test for
rendering the prices of each book needs to call renderQuantities() first, before their correspond-
ing prices can be rendered with the renderPrices() function. The test code to do so is shown in
Listing 4.5, with functionality assertions removed for brevity.

1 it("should display price of each unique book selected", async () => {

2 await runtimeCtx.repeat(runs , async () => {

3 await orderView.renderQuantities ();

4 await orderView.renderPrices ();

34

Chapter 4. Usage

5 }, "renders book prices within average of ns")

6
7 // should run within an average of 30000000 ns

8 expect(runtimeCtx.runtimeMean ()).toBeLessThan (30000000);

9 });

Listing 4.5: A unit test for the renderQuantities() and renderPrices() functions of the order view

These two render operations are expected to run within an average of 30000000ns, or 30ms, twice
of the time renderQuantities() is expected (and managed) to run for. However, the performance
assertions fail, as shown in Fig 4.4 and Fig 4.5. This may be due to the additional real-time delay
between function calls.

Figure 4.4: Test output of unit test for running renderQuantities(), then renderPrices()

Figure 4.5: Test timelines of unit test for running renderQuantities(), then renderPrices(). Legend is the
same as the one in Fig 4.3

4.3 Fixing failing performance tests

At this point, the performance unit test methodology introduced by PerfMock suggests several strate-
gies to fix the failing performance tests: making the performance assertions more lenient, changing

35

Chapter 4. Usage

the performance models of the mocks called, and editing the code under test [9]. Being able to visu-
alize test timelines guides the developer in choosing an effective approach, as it is easy to determine
which dependencies the longest sections of the critical path correspond to.

If the runtimes of the mock calls take up a majority of the test runtime, changing the performance
models of the mocks may have the greatest impact in optimizing performance. If real time takes up
the majority of the test runtime, making the mocks run faster would have a limited impact on the
total runtime. Instead, the developer would have to either optimize the code under test, or increase
the time limit in the performance assertions.

In the example in Listing 4.4, the performance assertions fail because the maximum runtime of the
test runs is too long. It can be seen that in the run with the longest timing, shown in Fig 4.3, real
time takes up the majority of the test runtime. Since the code under test already consists of just
one function call and cannot be optimized further, it makes more sense to relax the time limit of the
performance assertion for the test to pass.

Meanwhile, for the example in Listing 4.5, real time takes up a significant portion of the test runtime
as well (as seen from the timelines in Fig 4.5. However, it is possible to optimize the average runtime
of the test runs further by parallelizing the renderQuantities() and renderPrices() functions.
This leads to the test results shown in Fig 4.6. The code under test is much faster and passes the
performance assertion.

Figure 4.6: Test timelines of unit test for running renderQuantities() and renderPrices() concurrently.
Legend is the same as the one in Fig 4.3

4.4 Refining tests with empirical data

Once the implementation of the checkout view reaches a deployable state, we are able to obtain
empirical measurements of the response time of the checkout view’s collaborators. This data can be
used to refine the performance models assigned to the mocks of the collaborators.

In this case, we create a minimal viable product for the case study by completing the DocumentEditor
class to populate the html of the checkout page, implementing basic functionality for the Checkout-

36

Chapter 4. Usage

Controller, StockModel and PaymentModel classes, and linking the Model classes to a simple database
hosted on Supabase [45]. Data for the response times of the DocumentEditor and CheckoutController
is thus obtainable through logging while deploying the checkout page locally. The random number
generator models are retained for simplicity, with the bounds of the numbers generated adjusted ac-
cording to the runtime data of 10 deployments. In Table 4.1, the original assumed parameters of the
mock are compared with parameters derived from empirical data.

Table 4.1: Comparison of original assumed model parameters with parameters derived from empirical data

Mocked contributors Model parameters (in ms, to 3s.f.)
Class Function Assumed

minimum
Assumed
maximum

Actual mini-
mum

Actual max-
imum

CheckoutController

getQuantities 5 5.5 63.7 397
getPrices 1.5 5 55.8 306

changeQuantity 3 4 209 377
verifyPaymentInfo 7 8 60.1 117

chargePayment 6 7 0.1 1.4
verifyPaymentWithBank 5 10 58.7 155

getDeliveryDate 3 4 54.8 87.6

DocumentEditor

addQtyToOrderTable 1 1.5 0.1 0.3
addPriceToOrderTable 1.5 2 0.1 0.2

addPaymentStatus 0.6 0.7 0.1 0.2
addDeliveryDate 0.6 0.7 0.1 0.2

After adjusting the mocks according to empirical data, different test timelines are returned from
CheckoutView’s unit tests. For example, Fig 4.7 shows the timelines produced for the unit test for
running renderQuantities() and renderPrices() concurrently. The runtimes of the documentEd-
itor mock calls are now too short relative to the checkoutController mock calls, and cannot be seen
on the graphs unless hovered over. This is in contrast to the test timelines produced before the mocks
were adjusted, as shown in Fig 4.6.

This test output remains highly useful for developers, even though other performance measurement
tools based on real time measurements are now available after the web-app is deployed. It helps in
visualizing the deployment timeline of the web-app and choosing an effective approach for perfor-
mance optimization. For example, based on the output data, it is clear that the checkoutController
dependency is the limiting factor of performance, rather than the documentEditor dependency. More-
over, using QuiP has the advantage of a low test turnaround time compared to deploying the actual
web-app in real time, since mock runtimes are estimated in virtual time.

37

Chapter 4. Usage

Fi
gu

re
4.

7:
Te

st
ti

m
el

in
es

of
un

it
te

st
fo

r
ru

nn
in

g
r
e
n
d
e
r
Q
u
a
n
t
i
t
i
e
s
(
)

an
d
r
e
n
d
e
r
P
r
i
c
e
s
(
)

co
nc

ur
re

nt
ly

,
af

te
r

m
oc

k
m

od
el

s
ha

ve
be

en
ad

ju
st

ed
ac

co
rd

in
g

to
em

pi
ri

ca
ld

at
a

38

Chapter 5

Evaluation

This section focuses on evaluating QuiP’s accuracy and how effective it is in improving front-end
performance. We consider its ability to estimate the effect of Javascript code on runtime before
and after deployment, and its test turnaround time. The final product (integrating performance
testing into unit testing, which can be carried out before deployment) should be compared to existing
controls that represent current runtime simulation, performance testing, and unit testing methods.

1. DrAsync can be used to represent current runtime simulation tools, and it similarly relies on the
Async hooks API like QuiP does.

2. Performance measurement tools that rely on real time measurements from deployed software
can be used to represent current performance testing methods. Examples include logging the
current system time, or Google Lighthouse. This is in contrast with QuiP, which estimates
runtime with virtual time measurements from performance models.

3. Current unit testing methods do not conduct performance testing before the software system is
deployable, as there are no obtainable real time measurements. This is in contrast with QuiP,
which allows performance testing from the start of development.

In the process of comparing QuiP to the above controls, our evaluation aims to answer the following
Research Questions(RQ):

RQ1 To what extent is QuiP capable of processing the dependencies in asynchronous test code?
RQ2 How accurate is QuiP in predicting the runtime of code under test?
RQ3 How accurate is QuiP in predicting the effect of changes in code under test on its runtime?
RQ4 How effective is QuiP in reducing the turnaround time of performance tests?

The following sections cover the evaluation and answers to the above questions. Section 5.1 verifies
if QuiP can accurately process the various cases of asynchronous code present in the unit tests written
for the checkout web-application’s view, to answer RQ1. This is compared to the control of DrAsync,
which represents current runtime simulation tools. Section 5.2 compares the predicted and measured
runtimes of order display and payment making flows in the checkout web-application, to answer
RQ2. The measured runtimes are obtained with real-time measurements using system time logging.
Section 5.3 answers RQ3 by comparing the predicted and actual percentage change in runtime after
a code change, where the actual runtime is measured by system time logging. Finally, Section 5.4
compares the test turnaround time of unit tests with performance testing in virtual time (using QuiP),
performance tests in real time, and unit tests without performance testing. This is used to conclude
how much time QuiP saves in performance testing, and how little additional time is required to
incorporate performance testing in unit testing using QuiP, in answer to RQ4.

39

Chapter 5. Evaluation

5.1 Evaluating asynchronous dependency parsing by QuiP (RQ1)

In order to evaluate QuiP’s ability to analyze test code for asynchronous dependencies, we consider
the various cases of asynchronous code, as listed in Table 3.1. In comparison, DrAsync, another tool
for asynchronous dependency processing that makes use of the Async hooks API, does not account
for these edge cases in its analysis.

We determine whether QuiP can effectively handle different combinations of these scenarios by sim-
ulating runtimes of unit tests written for the checkout view introduced in Section 4.1. We use QuiP’s
AutoRuntimeMonitor to do so, due to its ability to analyze asynchronous code.

5.1.1 Serial and concurrent executions

The first scenario analyzed involves different types of executions: serial, concurrent, serial followed
by concurrent, and concurrent followed by serial executions. We aim to evaluate QuiP’s ability to
process each of these scenarios effectively. This can be done by examining how QuiP processes two
test cases: the overall payment flow for a successful payment without bank verification, and the con-
current rendering of book quantities and price.

Figure 5.1: Timeline QuiP generates for the overall payment flow for a successful payment without bank
verification

During the overall payment flow for a successful payment without bank verification, the various types
of executions mentioned above are present. These are all accounted for by QuiP, as shown in the gen-
erated timeline in Fig 5.1. To invoke the payment flow, the test calls paymentView.processPayment().
The payment flow starts off as serial with a call to controller.verifyPaymentInfo, before calling
controller.getDeliveryDate and controller.chargePayment in parallel. Notably, a delay in real
time was introduced before the call to chargePayment, which is successfully captured by QuiP. After
awaiting the settlement of both of these functions, two serial calls to documentEditor.addDeliveryDate

and documentEditor.addPaymentStatus are made.

On the other hand, the test case for the concurrent rendering of book quantities and price shows
that QuiP’s analysis of concurrent followed by serial executions is not entirely correct. Within the
test code, two calls to orderView.renderQuantities() and orderView.renderPrices() are made
concurrently. A timeline that QuiP generates for this case is shown in Fig 5.2. It can be seen
that two calls to controller.getQuantities and controller.getPrices are scheduled concur-
rently. Technically, the call to controller.getQuantities is settled earlier and it sets off calls to

40

Chapter 5. Evaluation

Figure 5.2: Timeline QuiP generates for the concurrent rendering of book quantities and price

documentEditor.addQtyToOrderTable before the call to controller.getPrices is settled. How-
ever, QuiP records the calls to documentEditor.addQtyToOrderTable as having started only after
both controller.getQuantities and controller.getPrices are settled.

This behaviour, while not ideal, is expected and addressed in Section 3.4.1, which explains the dif-
ferent cases of concurrent followed by serial mock calls that QuiP can and cannot process.

5.1.2 Async and non-async mocks

Next, we aim to evaluate QuiP’s ability to analyze asynchronous code involving both async and non-
async mocks. In particular, it should analyze the asynchronous dependencies of mock calls succeeding
non-asynchronous mock calls correctly, as implemented in Section 3.4.2. Within the test suite writ-
ten for the checkout view, mocks of controller functions have asynchronous implementations, and
mocks of documentEditor functions have non-asynchronous implementations. We can tell from the
test case for the payment flow for a payment invalidated by the bank if QuiP is capable of processing
code containing both async and non-async mocks.

In this test case, paymentView.processPayment() is called. Within this function, calls are made first
to the async mocks controller.verifyPaymentInfo and controller.verifyPaymentWithBank. Fol-
lowing this, a call is made to the non-async mock documentEditor.addPaymentStatus, before an-
other call is made to the async mock controller.verifyPaymentWithBank. Finally, this sets off a
last call to the non-async mock documentEditor.addPaymentStatus. This is processed by QuiP as
the timeline shown in Fig 5.3.

It can be seen that QuiP successfully processes the whole test case as a serial execution. It does
not mistakenly recognize the second call to controller.verifyPaymentWithBank as a concurrent
with the first call to documentEditor.addPaymentStatus. This behaviour has been explained and
successfully implemented in Section 3.4.2, which makes it safe for users to invoke calls to both async
and non-async mocks.

5.1.3 Nested and non-nested function calls

Lastly, we consider QuiP’s ability to process nested function calls. Once an appropriate assumeSerialThreshold
is set, it should be able to accurately process code where mock calls are made within a separate func-
tion, which is then called within the code under test. This is further explained in Section 3.4.3. Every

41

Chapter 5. Evaluation

Figure 5.3: Timeline QuiP generates for the payment flow for a payment invalidated by the bank

test case in the test suite for the checkout view involves nested function calls. To verify this, the cor-
rectness of any timeline generated can be checked. In particular, we focus on the test for performing
quantity changes and re-rendering quantities.

1 // Function definition for changeQuantities:

2 async changeQuantities(changes) {

3 await controller.changeQuantity("test", 0);

4 let toAwait = []

5 for (let i of changes) {

6 toAwait.push(controller.changeQuantity(i.id, i.change));

7 }

8 await Promise.allSettled(toAwait);

9 }

10
11 // Test code:

12 it("should display new quantities after order changes", async () => {

13 await runtimeCtx.repeat(runs , async () => {

14 let change1 = {id: "1", change: 2};

15 let change2 = {id: "5", change: -4};

16 let change3 = {id: "10", change: 4};

17 await orderView.changeQuantities ([change1 , change2 , change3]);

18 await orderView.renderQuantities ();

19 }, "performs quantity changes and re-renders quantities within average of ns"

)

20
21 ...

22 });

Listing 5.1: Code under test for the test case of performing quantity changes and re-rendering quantities

The code under test is shown in Listing 5.1. changeQuantities() sets off a test call to the controller.changeQuantity
mock, before calling it again for each change requested. After that, renderQuantities() calls the
controller.getQuantities mock, which triggers calls to the documentEditor.addQtyToOrderTable
mock.
Users need to choose an appropriate assumeSerialThreshold through some experimentation to en-
able QuiP to identify mock calls succeeding nested functions, as explained in Section 3.4.3. For
example, when the assumeSerialThreshold is set to 500000 nanoseconds, which is too big, this
leads to QuiP being unable to recognize controller.getQuantities as a mock call succeeding
a nested function call. It fails to reassign the latest mock call in the nested function call as its
parent, as shown in Fig 5.4a. However, when the assumeSerialThreshold is set to a more ap-
propriate value of 5000 nanoseconds, it allows QuiP to correctly reassign its parent to be the last
controller.changeQuantity, as shown in Fig 5.4b.

42

Chapter 5. Evaluation

(a) Timeline produced when assumeSerialThreshold is set to 500000 ns (b) Timeline produced when assumeSerialThreshold is set to 5000 ns

Figure 5.4: Timelines of execution of code under test from Listing 3.9

5.1.4 Summary

In answer to RQ1, QuiP performs well in analyzing most of the different cases of asynchronous code
considered in Table 3.1. However, it has difficulty with accurately handling scenarios where mock
calls are scheduled serially after concurrent mock calls. It is also worth noting that the list of cases
considered is not exhaustive. Through future research, there is potential to enhance QuiP’s asyn-
chronous dependency analysis even further, enabling it to achieve even greater accuracy.

Overall, QuiP is an excellent tool for automatically processing asynchronous code dependencies, es-
pecially compared to tools, such as DrAsync, that use the Async hooks API too but lack the fine-tuning
for the above edge cases.

5.2 Evaluating runtime predictions (RQ2)

Another evaluation consideration is the accuracy of QuiP’s runtime predictions. This was evaluated
in the context of the book checkout web-application. In particular, the predicted times to execute the
order display flow and successful payment making flow are compared to their actual measured times,
when the web-application is deployed and observed in Google Chrome.

This is done by estimating the total runtime of the flows with QuiP during performance unit test-
ing, before and after the performance models of the mocks are improved with empirical data from
deployment. Following this, the time the deployed web-application takes to execute the same flows
is measured by logging the difference between the timings returned by window.performance.now()

before and after the flows are executed. The measurements are performed 10 times and averaged to
reduce noise.

5.2.1 Runtime measurement results

The results of the runtime measurements are shown in Table 5.1 for the order display flow, and Ta-
ble 5.2 for the successful payment making flow. It can be seen that the runtime estimations made
by QuiP deviate significantly initially from the real time required to execute the flows. The average
predicted order display flow time deviates by 92.3% (3s.f.) from the real time required after deploy-
ment. The average predicted successful payment making flow time deviates by 79.8% (3.s.f.) from
the real time required after deployment. This is expected, as the initial runtime estimations are made
based on the predictions of performance models that may diverge from the actual runtimes of the
represented objects.

43

Chapter 5. Evaluation

Table 5.1: Comparison of the predicted and actual timings for order display flow execution of the checkout
web-application

Run
Time to execute order display flow (ms)

Predicted before model
adjustments

Predicted after model
adjustments

Measured after
deployment

1 14.859844 257.13916 219.8
2 15.382149 374.276177 247.8
3 14.729036 274.88913 190.2
4 14.780004 179.758056 179.4
5 14.622264 186.96029 207.3
6 14.848939 393.884073 216.5
7 14.840807 381.493264 104.1
8 14.575085 134.569895 157.3
9 14.55059 178.325559 170.9

10 15.253981 248.978552 233.1
Average 14.8442699 261.0274156 192.64

Deviation% from real time 92.3% 35.5%

Table 5.2: Comparison of the predicted and actual timings for successful payment making flow execution
of the checkout web-application

Run
Time to execute successful payment making flow (ms)

Predicted before model
adjustments

Predicted after model
adjustments

Measured after
deployment

1 47.85667 379.309608 265.2
2 48.926895 395.616684 275.7
3 53.202254 470.31507 280.8000002
4 55.103556 426.911988 267.9000001
5 59.475253 399.63587 273.5999999
6 56.763657 426.200398 258.0999999
7 55.232893 401.71575 274.5
8 55.715547 456.31055 242.2
9 54.093699 409.088178 293.7

10 52.382399 299.542757 241.0999999
Average 53.8752823 406.4646853 267.28

Deviation% from real time 79.8% 52.1%

In contrast, the runtime estimations made by QuiP deviate less from the real time measurements
after the performance models have been adjusted. The average predicted order display flow time
now deviates by 35.5% (3s.f.) from the real time required after deployment, 56.8% less than before
the performance models were adjusted. The average predicted successful payment making flow time
deviates by 52.1% (3.s.f.) from the real time required after deployment, 27.7% less than before
the performance models were adjusted. This increase in accuracy is likely attributed to the fact that
the performance models were improved with empirical data. The response times predicted by the
improved models are closer to the real-time response times of the collaborators mocked. However,
the deviation in runtime estimations after the performance models were adjusted is still larger than
expected.

44

Chapter 5. Evaluation

5.2.2 Factors leading to inaccuracy in runtime estimation

Fundamentally, the performance models used to estimate the runtime of collaborators are extremely
simple and inaccurate. Incorporating empirical data improves their accuracy, even with the same
simple model. To achieve better accuracy, a more sophisticated model would be needed. However,
as this work focuses on early performance testing and optimization rather than precise runtime mod-
elling, uniform probability distributions are used as performance models. These form a limited view
of the runtime of their mocked objects, which causes inaccuracy in the resulting runtime estimation.

Moreover, the runtime estimations and real-time measurements are performed in different environ-
ments. The virtual runtime estimations are conducted in an node.js environment during unit tests,
with the use of the process.hrtime function which has the precision of nanoseconds. Meanwhile,
the real time measurements used to fine-tune the performance models are obtained with logging on
a browser with window.performance.now(). This causes several environmental inconsistencies that
could explain the inaccuracy in the runtime estimation provided by QuiP.

Firstly, the node.js environment may execute the same piece of code more slowly than a browser
environment, as it follows a single-threaded event loop, while the browser environment can make
use of parallelism and multiple threads to speed up its Javascript execution. Additionally, as a secu-
rity measure, browses introduce noise to the output of window.performance.now() to guard against
timing-based attacks such as fingerprinting or Spectre [46]. This could be a factor leading to the
large deviation of virtual runtime estimations from real runtime measurements.

Finally, the measurements used to fine-tune the performance models were obtained through logging
on a browser as well. This introduces inconsistencies and noise into the performance models, for the
same reasons as above. Since the performance models have a uniform probability distribution, they
are sensitive to outliers in the timing data used to determine their parameters. For example, if there
is one significant outlier when measuring the real runtimes of collaborators, it will become the new
maximum/minimum of its mock’s performance model. As a result, the estimated runtimes of the
mock will vary over a larger range, leading to more noise in the final estimated runtime of the tested
code.

5.2.3 Summary

In answer to RQ2, QuiP’s predictions of the runtime of implementation code are limited in accuracy,
especially before deployment. However, QuiP’s predictions could be improved after gathering a larger
amount of empirical data to reduce noise, and using a more sophisticated performance model. As the
model is evolved according to real deployment data, the predicted and actual performance of code
under test will converge to a greater extent.

Moreover, the accuracy of QuiP is not crucial to its effectiveness, since the focus of this work is on the
use of early performance testing to optimize runtime, rather than runtime modelling itself. Despite
the relatively suboptimal precision of QuiP’s estimations, it remains highly valuable for evaluating
the impact of code modifications on performance, as discussed in the next section.

5.3 Evaluating predictions of the effect of code changes (RQ3)

The next evaluation consideration is regarding how well QuiP can estimate the effect of code changes.
To assess this, QuiP is used to evaluate the quantity and price display flow of the checkout view of
the example web-app. QuiP’s predicted improvement in code runtime is compared to the actual im-
provement observed when transitioning from a serial quantity and price display flow to a concurrent
one. The code under test is shown in Listing 4.5 (for the serial flow).

This is done by estimating the total runtime of the flows with QuiP during performance unit testing,
before and after the performance models of the mocks are improved with empirical data from de-

45

Chapter 5. Evaluation

ployment. Based on the estimation results, the predicted percentage improvement in runtime from
the code change can be calculated. Following this, the time the deployed web-application takes
to execute the same flows is measured by logging the difference between the timings returned by
window.performance.now() before and after the flows are executed. The actual percentage im-
provement in runtime can then be obtained as well. The measurements are performed 10 times and
averaged to reduce noise.

5.3.1 Runtime measurement results

The results of the runtime measurements are shown in Table 5.3 for the serial display flow, and
Table 5.4 for the concurrent display flow. Finally, the improvement in runtime as a result of the
code change is calculated as a percentage of the original runtime of the serial display flow. This is
calculated for the predicted runtime before model adjustments, the predicted runtime after model
adjustments, and the real measured runtime. The calculated percentage change in runtime is illus-
trated in Table 5.5. It can be seen that the predicted change in runtime is in the same direction as
the actual change. As the performance model is optimized, the percentage of predicted improvement
converges towards the actual percentage of improvement.

Table 5.3: Comparison of the predicted and actual timings for serial quantity and price display flow of the
checkout web-application

Run
Time to execute serial quantity and price display flow (ns)

Predicted before model
adjustments

Predicted after model
adjustments

Measured after
deployment

1 18.825061 426.992806 232.0999999
2 17.360499 448.678034 193.8
3 17.63538 353.752624 205.7
4 19.200996 337.887007 217.5
5 18.172392 302.089264 253.2
6 18.663854 163.396468 296.5999999
7 19.176275 547.814803 210.6999998
8 18.066921 323.663921 201.6000001
9 19.479879 469.964016 205.8000002

10 17.432495 340.660675 236.8
Average 18.4013752 371.4899618 225.38

Deviation% from real time 91.8% 64.8%

5.3.2 Accuracy of percentage change estimation despite inaccuracy of runtime
estimation

Despite the predicted code runtimes still deviating significantly from the actual runtimes (by up to
91.8% before model refinement and up to 79.1% after model refinement), the predicted change in
runtime is still much closer to the actual change. Before model refinement, the predicted percentage
change was within 20% of the actual change, and after model refinement, the predicted percentage
change was within 5% of the actual change.

This may be due to the fact that the percentage change in runtime was calculated with respect to
runtimes predicted using the same performance models. Even if the predicted runtimes by the models
are highly inaccurate when compared to the real runtimes of the collaborators, the predicted runtimes
of the code before and after the code change are skewed in the same direction. The effect that the
code change has on the order of execution of mocks is the same across both simulated and real code

46

Chapter 5. Evaluation

Table 5.4: Table showing the predicted and actual timings for concurrent quantity and price display flow
of the checkout web-application

Run
Time to execute concurrent quantity and price display flow (ns)

Predicted before model
adjustments

Predicted after model
adjustments

Measured after
deployment

1 15.287281 135.520587 141.8
2 14.160915 244.582309 120.8
3 14.288696 259.686432 130.5
4 13.766373 309.330554 140.3
5 15.015881 227.206228 151.5999999
6 14.519327 321.102314 142.2
7 14.621973 386.091546 158.0999999
8 14.371388 224.264367 138.6999998
9 14.711513 194.260769 140.3000002

10 15.045628 150.238637 105.3
Average 14.5788975 245.2283743 136.96

Deviation% from real time 89.4% 79.1%

Table 5.5: Comparison of the predicted and actual changes in runtime after code change

Performance improvement when switching from serial to concurrent display flow
Predicted

Actual
Before model adjustments After model adjustments

20.8% 34.0% 39.2%

executions. Hence, the predicted percentage change in runtime is likely to be more similar to the real
percentage change in runtime than the estimated runtimes are to the measured runtimes.

5.3.3 Summary

In answer to RQ3, QuiP’s predictions of the effect of code change on runtime are increasingly accurate
with model improvement. Even before deployment, the direction of change of performance predicted
is accurate. As the model is evolved according to empirical data, the predicted and actual change in
performance will converge to a large extent.

Although QuiP may not achieve high accuracy in predicting code runtime, as discussed in Section
5.2, its ability to accurately predict the impact of code changes has greater significance for its pur-
pose of runtime optimization. This capability allows developers to make substantial performance
improvements even before the performance models can be enhanced with empirical data. When
used in conjunction with QuiP’s timeline visualization tool, the high accuracy of QuiP’s predictions
of the effect of code changes can help to significantly enhance code performance at earlier stages of
development.

5.4 Evaluating QuiP’s effect on performance test turnaround time
(RQ4)

Finally, QuiP’s effect on test turnaround time is evaluated. Test turnaround time measures the (real)
time it takes to run a test. In order to assess this, unit testing with QuiP is compared to current

47

Chapter 5. Evaluation

performance testing methods and current unit testing methods, when testing the checkout view of
the example web-app. For the former, the time that QuiP takes to generate a report on page loading
time is compared to that of performance testing methods relying on real-time measurements, using
Google Lighthouse as a representative. For the latter, the time that Jest takes to run a unit test suite
with and without the use of QuiP for performance testing is compared.

5.4.1 Comparison with current performance testing methods

First, QuiP’s test turnaround time is compared to that of current performance testing methods. In
particular, Google Lighthouse is used as a typical tool for measuring the PLT of web-applications.
Table 5.6 shows the real time taken to generate a report on the page loading time of the example
web-app by QuiP and Google Lighthouse respectively. QuiP ran a single test of the page loading
procedure of the checkout view for 10 runs, and returned the average of the runtimes. Meanwhile,
Google Lighthouse generated a typical report on only page performance of the example web-app.

Table 5.6: Comparison of the test turnaround times of QuiP and Google Lighthouse when evaluating the
example web-app

Run
Time to generate a report on page loading time (s)

Using unit testing with QuiP Using Google Lighthouse
1 1.936 12.79
2 1.62 11.77
3 1.651 12.01
4 1.563 11.8
5 1.453 11.23
6 1.308 13.05
7 1.284 12.92
8 1.213 12.375
9 1.243 14.03
10 1.217 13.35

Average 1.4488 12.5325
% Lighthouse is slower by 765%

It can be seen that Google Lighthouse is far slower, by a factor of 765%. This likely stems from the fact
that QuiP measures runtime partially with virtual time. It employs performance models to estimate
the response times of collaborators of the object under test, rather than relying on actual measured
response times. This means that it does not have to wait for the actual page to load before it can
measure the page loading time.

Meanwhile, the long time that Lighthouse takes to generate a report could also be justified by the
larger volume of information scouted for in its report. Lighthouse includes additional statistics such
as FCP and TTI, as well as tailored recommendations to improve the performance of the page. QuiP,
on the other hand, is unable to generate such statistics automatically at the moment.

Hence, Lighthouse could be used for thorough inspections of performance statistics and suggested
optimization opportunities after deployment. In contrast, QuiP offers the advantage of efficiently
gathering large volumes of data, as well as analyzing runtime dependencies and estimating per-
formance before deployment. Perhaps QuiP could be further extended as well, to offer automatic
analysis of the same statistics that Lighthouse scans for.

48

Chapter 5. Evaluation

5.4.2 Comparison with current unit testing methods

Next, QuiP’s impact on test turnaround time is evaluated. We investigate how much longer the same
unit tests take to run when their runtimes are monitored and asserted on by QuiP. This is done by
running the test suite created for the checkout view, which monitors runtime with QuiP, and then
recording the test turnaround time as reported by Jest. Then, QuiP is removed from the test suite,
which is run with only unmodified Jest.

The results of running the same test suite with and without performance testing is shown in Table 5.7.
The results indicate that including performance testing within unit tests leads to small increase in test
turnaround time, with an average of 11.3%. However, when considering the exact increase in time,
which amounts to 0.176 seconds, it appears insignificant compared to the range of test turnaround
times, which spans 0.767 seconds for unit tests without performance testing.

Once again, the minuity of this increase may be due to the fact that QuiP measures runtimes partially
in virtual time. The unit tests do not need to wait for collaborators to contribute their response
times to the overall measured runtime, as performance models can be used to quickly estimate this.
Therefore, any additional time incurred is only because of QuiP’s runtime dependency analysis, and
additional assertions on performance.

Table 5.7: Comparison of the test turnaround times of unit testing with and without QuiP

Run
Time to run unit tests (s)

Unit tests with performance
testing

Unit tests without perfor-
mance testing

1 2.292 1.711
2 2.158 2.059
3 2.011 1.658
4 1.338 1.325
5 1.295 1.368
6 1.342 1.322
7 1.55 1.604
8 1.721 1.354
9 1.88 1.292
10 1.784 1.918

Average 1.7371 1.5611
% Unit testing with QuiP
is slower by

11.3%

5.4.3 Summary

In answer to RQ4, QuiP offers a much faster alternative for measuring runtime, compared to tools
that rely on real-time measurements. At the same time, the inclusion of QuiP in unit testing does
not significantly slow test turnaround times. This indicates that QuiP is capable of quickly estimating
runtime both before and after deployment, enabling its integration within a TDD cycle.

49

Chapter 6

Conclusion and Future Work

In this project, we have successfully developed QuiP, a novel tool for performance testing front-end
web-application code before deployment. Through the development of the checkout view of a web-
app, we have demonstrated QuiP’s effectiveness in testing the performance of both synchronous and
asynchronous JavaScript. Furthermore, we have evaluated QuiP’s value in enhancing current coding
practices by assessing its ability to estimate the runtime impact of code changes before and after de-
ployment, as well as its test turnaround time.

QuiP extends the Jest unit testing framework and offers fast test turnaround times through virtual
runtime estimation with performance models. Our innovative approach also includes a systematic
search that identifies deviations between asynchronous dependencies and execution context relation-
ships in JavaScript, despite limited documentation. This allows us to leverage the Async hooks API
within QuiP. By automatically analyzing both synchronous and asynchronous code, QuiP achieves a
substantial advancement in performance testing before deployment.

Based on the demonstration of QuiP’s capabilities in developing the checkout view of a web-app and
evaluating its performance estimation in unit testing, it is evident that QuiP excels in processing de-
pendencies in asynchronous test code. This allows it to predict the runtime of code under test with
increasing accuracy as its performance models are bolstered with empirical data from deployment.
QuiP also demonstrates its ability to accurately estimate the percentage impact of code changes on
runtime, achieving accuracy within 20% before deployment and within 5% after refinement. Notably,
QuiP surpasses the turnaround time of real-time performance testing tools such as Google Lighthouse
by 765%, while only introducing a marginal 11.3% increase in Jest unit test turnaround time.

In summary, these features demonstrate QuiP to be a promising candidate for integration into contin-
uous unit testing practices for the front-end. Meanwhile, there are still exciting possibilities for further
work, such as enhancing its handling of asynchronous dependencies, and expanding the range of per-
formance insights it offers. By addressing these issues, QuiP’s effectiveness and value to developers
can be further enhanced.

6.1 Future Work

• Enhancing QuiP’s handling of asynchronous dependencies

A limitation of QuiP is in its ability to handle edge cases in asynchronous code, as discussed in
Section 5.1 of Chapter 5. Specifically, QuiP’s analysis of concurrent followed by serial execu-
tions is not entirely correct. Hence, there is a need to derive a more accurate analysis for the
case of concurrent mock calls with children, especially for the wrongly processed scenarios in
Table 3.2. Addressing this can enhance the accuracy of QuiP’s performance estimations.

50

Chapter 6. Conclusion and Future Work

• Constructing more accurate performance models

The accuracy of runtime estimation by QuiP is affected by the simple performance models used
(i.e. uniform probability distributions), as described in Section 5.2 of Chapter 5. Although
the emphasis of this work is on early performance testing and optimization rather than precise
runtime modelling, there is potential for future work to enhance QuiP’s performance models.
This improvement can provide developers with a greater variety of information about runtime
behavior, enabling them to fine-tune their code for further performance optimization.

• Expanding range of performance insights

Currently, QuiP is only capable of reporting the runtime of test cases. It could be enhanced
to report additional performance statistics, such as PLT and TTI, similar to Google Lighthouse.
This would allow developers to measure their web-app’s performance against industry bench-
marks. Suggestions for optimization based on static code analysis could be added as well.

6.2 Ethical Considerations

QuiP does not have a specific target audience or exclusive focus, and can be utilized by both benign
and malicious projects for performance testing. However, it is important to note that the tool itself
was developed without any inherent malicious intent. While we cannot control how users choose to
apply the tool, its purpose remains rooted in supporting software development practices.

Secondly, the project needs to be careful to respect copyright licensing of software it uses. The project
aims to extend Jest, a Javascript testing framework, while making use of the Async hooks API. Both of
these are licensed under the MIT license. This provides us with the right to use both of them, as long
as their copyright notice and permissions notice are included in all copies, or substantial portions of
the Software.

51

Bibliography

[1] Shivakumar SK. In: Getting Started with Web Performance Optimization. Berkeley, CA: Apress;
2020. p. 3-25. Available from: https://doi.org/10.1007/978-1-4842-6528-4_1.

[2] Amazon found every 100ms of latency cost them 1% in sales.;
2022. Available from: https://www.gigaspaces.com/blog/

amazon-found-every-100ms-of-latency-cost-them-1-in-sales/.

[3] Wang XS, Balasubramanian A, Krishnamurthy A, Wetherall D. Demystifying Page Load Per-
formance with {WProf}. In: 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13); 2013. p. 473-85.

[4] Chen L. Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Software.
2015;32(2):50-4.

[5] Smith CU, Browne JC. Performance Engineering of Software Systems: A Case Study. In:
Proceedings of the June 7-10, 1982, National Computer Conference. AFIPS ’82. New York,
NY, USA: Association for Computing Machinery; 1982. p. 217–224. Available from: https:

//doi.org/10.1145/1500774.1500800.

[6] Measuring frontend performance (in modern browsers); 2022. Available from: https://www.
skovy.dev/blog/measuring-frontend-performance-in-modern-browsers?seed=4hvumu.

[7] Beck. Test Driven Development: By Example. USA: Addison-Wesley Longman Publishing Co.,
Inc.; 2002.

[8] Loading speed. HTTP Archive; 2023. Available from: https://httparchive.org/reports/

loading-speed#ttci.

[9] Chatley R, Field T, Wei D. Continuous Performance Testing in Virtual Time. In: 2019 IEEE
International Conference on Software Architecture Companion (ICSA-C); 2019. p. 109-15.

[10] Turcotte A, Shah MD, Aldrich MW, Tip F. DrAsync: Identifying and Visualizing Anti-Patterns
in Asynchronous JavaScript. In: Proceedings of the 44th International Conference on Software
Engineering. ICSE ’22. New York, NY, USA: Association for Computing Machinery; 2022. p.
774–785. Available from: https://doi.org/10.1145/3510003.3510097.

[11] Loring MC, Marron M, Leijen D. Semantics of Asynchronous JavaScript. SIGPLAN Not. 2017
oct;52(11):51–62. Available from: https://doi.org/10.1145/3170472.3133846.

[12] Riet Jv, Paganelli F, Malavolta I. From 6.2 to 0.15 seconds – an Industrial Case Study on
Mobile Web Performance. In: 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME); 2020. p. 746-55.

[13] Clark M. How the BBC builds websites that scale. net magazine; 2018. Available from: https:
//www.creativebloq.com/features/how-the-bbc-builds-websites-that-scale.

[14] Heričko T, Šumak B, Brdnik S. Towards Representative Web Performance Measurements with
Google Lighthouse; 2021. p. 39-42.

52

https://doi.org/10.1007/978-1-4842-6528-4_1
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://doi.org/10.1145/1500774.1500800
https://doi.org/10.1145/1500774.1500800
https://www.skovy.dev/blog/measuring-frontend-performance-in-modern-browsers?seed=4hvumu
https://www.skovy.dev/blog/measuring-frontend-performance-in-modern-browsers?seed=4hvumu
https://httparchive.org/reports/loading-speed#ttci
https://httparchive.org/reports/loading-speed#ttci
https://doi.org/10.1145/3510003.3510097
https://doi.org/10.1145/3170472.3133846
https://www.creativebloq.com/features/how-the-bbc-builds-websites-that-scale
https://www.creativebloq.com/features/how-the-bbc-builds-websites-that-scale

BIBLIOGRAPHY

[15] Doglio F. Top metrics you need to understand when measuring front-end perfor-
mance. OpenReplay Blog; 2021. Available from: https://blog.openreplay.com/

top-metrics-you-need-to-understand-when-measuring-front-end-performance.

[16] Stack overflow developer survey 2022; 2022. Available from: https://survey.

stackoverflow.co/2022/#most-popular-technologies-language.

[17] Mobile site abandonment after delayed load time. Google;. Available from:
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/

mobile-site-load-time-statistics/.

[18] Crispin L, Gregory J. Agile Testing: A Practical Guide for Testers and Agile Teams. 1st ed.
Addison-Wesley Professional; 2009.

[19] Lighthouse overview;. Available from: https://developer.chrome.com/docs/lighthouse/

overview/.

[20] About pagespeed insights nbsp;—nbsp; google developers. Google;. Available from: https:

//developers.google.com/speed/docs/insights/v5/about.

[21] GoogleChrome. Lighthouse/readme.md at main · Googlechrome/Lighthouse; 2022. Avail-
able from: https://github.com/GoogleChrome/lighthouse/blob/main/docs/readme.md#

using-programmatically.

[22] Get started with the pagespeed insights API nbsp;—nbsp; google developers. Google;. Available
from: https://developers.google.com/speed/docs/insights/v5/get-started.

[23] ;. Available from: https://nodejs.org/api/async_hooks.html.

[24] Arora S. Understanding execution context and execution stack in
Javascript. Medium; 2019. Available from: https://blog.bitsrc.io/

understanding-execution-context-and-execution-stack-in-javascript-1c9ea8642dd0.

[25] Papatheocharous E, Andreou AS. Empirical evidence and state of practice of software agile
teams. Journal of Software: Evolution and Process. 2014;26(9):855-66. Available from: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/smr.1664.

[26] Farley D, Humble J. Continuous Delivery: Reliable Software Releases Through Build, Test, and
Deployment Automation. Addison-Wesley signature series. Addison-Wesley Professional; 2010.
Available from: https://books.google.com.sg/books?id=OkeatwEACAAJ.

[27] Mackinnon T, Freeman S, Craig P. Endo-Testing: Unit Testing with Mock Objects. Endo-Testing:
Unit Testing with Mock Objects. 2001 12.

[28] Freeman S, Pryce N. Growing Object-Oriented Software, Guided by Tests. 1st ed. Addison-
Wesley Professional; 2009.

[29] Horký V, Libič P, Steinhauser A, Tůma P. DOs and DON’Ts of Conducting Performance Measure-
ments in Java. In: Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering. ICPE ’15. New York, NY, USA: Association for Computing Machinery; 2015. p.
337–340. Available from: https://doi.org/10.1145/2668930.2688820.

[30] Ersoz D, Yousif MS, Das CR. Characterizing Network Traffic in a Cluster-based, Multi-tier Data
Center. In: 27th International Conference on Distributed Computing Systems (ICDCS ’07);
2007. p. 59-9.

[31] Barbierato E, Gribaudo M, Iacono M. Performance evaluation of NoSQL big-data applications
using multi-formalism models. Future Generation Computer Systems. 2014;37:345-53. Avail-
able from: https://www.sciencedirect.com/science/article/pii/S0167739X14000028.

53

https://blog.openreplay.com/top-metrics-you-need-to-understand-when-measuring-front-end-performance
https://blog.openreplay.com/top-metrics-you-need-to-understand-when-measuring-front-end-performance
https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/
https://developer.chrome.com/docs/lighthouse/overview/
https://developer.chrome.com/docs/lighthouse/overview/
https://developers.google.com/speed/docs/insights/v5/about
https://developers.google.com/speed/docs/insights/v5/about
https://github.com/GoogleChrome/lighthouse/blob/main/docs/readme.md#using-programmatically
https://github.com/GoogleChrome/lighthouse/blob/main/docs/readme.md#using-programmatically
https://developers.google.com/speed/docs/insights/v5/get-started
https://nodejs.org/api/async_hooks.html
https://blog.bitsrc.io/understanding-execution-context-and-execution-stack-in-javascript-1c9ea8642dd0
https://blog.bitsrc.io/understanding-execution-context-and-execution-stack-in-javascript-1c9ea8642dd0
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1664
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1664
https://books.google.com.sg/books?id=OkeatwEACAAJ
https://doi.org/10.1145/2668930.2688820
https://www.sciencedirect.com/science/article/pii/S0167739X14000028

BIBLIOGRAPHY

[32] Dipietro S, Casale G, Serazzi G. A Queueing Network Model for Performance Prediction of
Apache Cassandra. VALUETOOLS’16. Brussels, BEL: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering); 2017. p. 186–193. Available from:
https://doi.org/10.4108/eai.25-10-2016.2266606.

[33] Facebook. Facebook/jest: Delightful JavaScript testing.;. Available from: https://github.

com/facebook/jest.

[34] The fun, simple, flexible JavaScript test framework;. Available from: https://mochajs.org/.

[35] Avajs. Avajs/Ava: Node.js test runner that lets you develop with confidence;. Available from:
https://github.com/avajs/ava.

[36] Frank DW. Jasmine 1.0 released; 2013. Available from: https://web.archive.org/web/

20140222155946/http://pivotallabs.com/jasmine-1-0-released/.

[37] Nakazawa C. Jest 11.0 · jest; 2016. Available from: https://jestjs.io/blog/2016/04/12/

jest-11.

[38] Aroush G. An Evaluation of Testing Frameworks for Beginners inJavaScript Programming: An
evaluation of testing frameworks with beginners in mind; 2022.

[39] Globals · jest;. Available from: https://jestjs.io/docs/api.

[40] Expect · jest;. Available from: https://jestjs.io/docs/expect.

[41] Qiu J. In: Get Started with Jest. Berkeley, CA: Apress; 2021. p. 15-33. Available from: https:
//doi.org/10.1007/978-1-4842-6972-5_2.

[42] Mock Functions · jest;. Available from: https://jestjs.io/docs/mock-functions.

[43] Cleveland J. Mocking asynchronous functions with jest;. Available from: https://blog.

jimmydc.com/mock-asynchronous-functions-with-jest/.

[44] Chartjs documentation;. Available from: https://www.chartjs.org/docs/latest/.

[45] Supabase. SUPABASE documentation; 2023. Available from: https://supabase.com/docs.

[46] MozDevNet. Performance: Now() method - web apis: MDN;. Available from: https:

//developer.mozilla.org/en-US/docs/Web/API/Performance/now.

54

https://doi.org/10.4108/eai.25-10-2016.2266606
https://github.com/facebook/jest
https://github.com/facebook/jest
https://mochajs.org/
https://github.com/avajs/ava
https://web.archive.org/web/20140222155946/http://pivotallabs.com/jasmine-1-0-released/
https://web.archive.org/web/20140222155946/http://pivotallabs.com/jasmine-1-0-released/
https://jestjs.io/blog/2016/04/12/jest-11
https://jestjs.io/blog/2016/04/12/jest-11
https://jestjs.io/docs/api
https://jestjs.io/docs/expect
https://doi.org/10.1007/978-1-4842-6972-5_2
https://doi.org/10.1007/978-1-4842-6972-5_2
https://jestjs.io/docs/mock-functions
https://blog.jimmydc.com/mock-asynchronous-functions-with-jest/
https://blog.jimmydc.com/mock-asynchronous-functions-with-jest/
https://www.chartjs.org/docs/latest/
https://supabase.com/docs
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions

	2 Background
	2.1 Front-end Performance Testing
	2.1.1 Performance metrics
	2.1.2 Significance of Javascript in front-end performance
	2.1.3 Timing of performance testing in development

	2.2 Existing Tools to Measure Front-end Performance
	2.2.1 Javascript Libraries
	2.2.2 Google Lighthouse and Google PageSpeed Insights
	2.2.3 DrAsync

	2.3 Current Performance Testing in Test-Driven-Development
	2.3.1 PerfMock
	2.3.2 Estimating performance with performance models

	2.4 Unit Testing Frameworks in the Front-end
	2.4.1 Using Jest
	2.4.2 Extending expect
	2.4.3 Extending mocks

	3 Design and Implementation
	3.1 Project Design: Extending over Modifying Jest
	3.2 Architecture
	3.3 Runtime Estimation
	3.3.1 Investigating when mocks are called
	3.3.2 Estimating mock response time with performance models
	3.3.3 Attaching models to mocks
	3.3.4 Adding up runtimes
	3.3.5 Visualizing timelines

	3.4 Asynchronous Execution Analysis
	3.4.1 Async mocks with different types of execution
	3.4.2 Async and non-async mocks with different types of execution
	3.4.3 Nested function calls with different types of execution

	4 Usage
	4.1 Checkout architecture
	4.2 Writing performance tests with QuiP
	4.2.1 Setting up test context and mocks
	4.2.2 Writing tests for the checkout view

	4.3 Fixing failing performance tests
	4.4 Refining tests with empirical data

	5 Evaluation
	5.1 Evaluating asynchronous dependency parsing by QuiP (RQ1)
	5.1.1 Serial and concurrent executions
	5.1.2 Async and non-async mocks
	5.1.3 Nested and non-nested function calls
	5.1.4 Summary

	5.2 Evaluating runtime predictions (RQ2)
	5.2.1 Runtime measurement results
	5.2.2 Factors leading to inaccuracy in runtime estimation
	5.2.3 Summary

	5.3 Evaluating predictions of the effect of code changes (RQ3)
	5.3.1 Runtime measurement results
	5.3.2 Accuracy of percentage change estimation despite inaccuracy of runtime estimation
	5.3.3 Summary

	5.4 Evaluating QuiP's effect on performance test turnaround time (RQ4)
	5.4.1 Comparison with current performance testing methods
	5.4.2 Comparison with current unit testing methods
	5.4.3 Summary

	6 Conclusion and Future Work
	6.1 Future Work
	6.2 Ethical Considerations

