A modern, user-friendly web application built using Django and scikit-learn to predict the species of Iris flowers (Setosa, Versicolor, Virginica) based on input parameters: sepal length, sepal width, petal length, and petal width.
- πΌ Predicts Iris species in real-time from four input features.
- π¬ Integrated ML model trained on Iris Dataset (UCI Repository).
- π Highly accurate predictions using Random Forest or Logistic Regression.
- π₯οΈ Intuitive and clean Bootstrap-powered web interface.
- π Optional CSV input extension ready for batch prediction.
- π Easily extendable for more features or UI enhancements.
- π Secure input handling and form validation.
- π Optionally add visual graphs for feature importance/predictions.
Technology | Purpose |
---|---|
Python | Core language |
Django | Web framework (MVC) |
scikit-learn | Machine Learning model training |
joblib | Model serialization |
HTML/CSS | Web UI |
Bootstrap | Responsive styling |
This project is licensed under the Apache License 2.0 Β© 2025 Shrish Maruge.
Feel free to use, modify, and distribute β with proper attribution.
- Python 3.7β3.11 installed
git
installed- Internet connection for package install
# Clone the repo
git clone https://github.com/your-username/iris-prediction-ml-django.git
cd iris-prediction-ml-django
# Create and activate a virtual environment
python -m venv venv
# On Windows:
venv\Scripts\activate
# On macOS/Linux:
source venv/bin/activate
# Install required packages
pip install -r requirements.txt
# Start the development server
python manage.py runserver
---